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The linear k? factorization is part and parcel of the perturbative QCD description of high-energy hard
processes off free nucleons. In the case of heavy nuclear targets the very concept of nuclear parton density
becomes ill-defined as exemplified by the recent derivation [N. N. Nikolaev, W. Schäfer, B. G. Zakharov,
and V. R. Zoller, J. Exp. Theor. Phys. 97, 441 (2003).] of nonlinear nuclear k? factorization for forward
dijet production in deep inelastic scattering off nuclei. Here we report a derivation of the related breaking
of k? factorization for single-jet processes. We present a general formalism and apply it to several cases of
practical interest: open-charm and quark and gluon-jet production in the central to beam fragmentation
region of ��p, ��A, pp, and pA collisions. We show how the pattern of k? factorization breaking and the
nature and number of exchanged nuclear pomerons do change within the phase space of produced quark
and gluon jets. As an application of the nonlinear k? factorization we discuss the Cronin effect. Our
results are also applicable to the p? dependence of the Landau-Pomeranchuk-Migdal effect for, and
nuclear quenching of, jets produced in the proton hemisphere of pA collisions.
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I. INTRODUCTION

The familiar perturbative QCD (pQCD) factorization
theorems tell that the hard scattering observables are linear
functionals (convolutions) of the appropriate parton den-
sities in the projectile and target [1] and are based on an
implicit assumption that in the low-parton density limit the
unitarity constraint can be ignored. They play, though, a
fundamental role in interaction with strongly absorbing
heavy nuclei which puts into question the very concept
of a nuclear parton density. Indeed, a consistent analysis of
forward hard dijet production in deep inelastic scattering
(DIS) off nuclei revealed a striking breaking of k? facto-
rization [2]: Namely, starting with the nuclear-shadowed
nuclear DIS cross section, one can define the collective
nuclear unintegrated gluon density such that the familiar
linear k? factorization (see, e.g., the recent reviews [3])
would hold for the forward single-quark spectrum but fail
for the quark-antiquark two-jet spectrum which turns out to
be a highly nonlinear functional of the collective nuclear
gluon density. This finding casts a shadow on numerous
extensions to nuclear collisions of the parton model for-
malism developed for nucleon-nucleon collisions and calls
upon for revisiting other hard processes. The ultimate goal
is the consistent description of nuclear effects from DIS to
ultrarelativistic hadron-nucleus to (the initial stage of)
nucleus-nucleus collisions, for instance at Relativistic
Heavy Ion Collider (RHIC) and CERN LHC.

The purpose of this communication is a demonstration
that the pattern of k?-factorization breaking discovered in
[2] holds also for a broad class of single-jet spectra. Here
we recall that nuclear shadowing in DIS sets in at the
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Bjorken variable

x & xA �
1

RAmN
; (1)

when the coherency over the thickness of the nucleus holds
for the q �q Fock states of the virtual photon [4,5] (for the
color-dipole phenomenology of the experimental data on
nuclear shadowing see [6]). Here RA is the radius of the
target nucleus of mass number A and mN is the proton
mass. The analysis [2] focused on the excitation of quark
and antiquark jets, �� ! q �q, in the photon fragmentation
region at x & xA. The subject of this communication is
excitation of open charm and jets,

g� ! Q �Q; g� ! gg; q� ! qg; (2)

in hadron-nucleon/nucleus scattering and/or DIS off nucle-
ons and nuclei at x� xA. At RHIC that means the large
(pseudo)rapidity region of proton-proton and proton-
nucleus collisions. Our starting point is the color-dipole
multiple scattering theory formulation of the open-charm
production in pA collisions [7] which we extend from the
total to differential cross section and to arbitrary color state
of the projectile parton. We treat the jet production at the
pQCD parton level; our approach to the jet spectra is in
many respects similar to Zakharov’s lightcone description
of the QCD Landau-Pomeranchuk-Migdal (LPM) effect
for the limit of thin targets [8,9]. The results obtained
below for the open-charm and quark and gluon jets make
manifest a change from linear to nonlinear k? factorization
as the target changes from a free nucleon to heavy nucleus.

In the production of dijets in DIS [2] and A collisions
[10] the fragmenting particle was a color-singlet one. Here
we consider the gN; gA; qN; qA collisions in which the
beam partons are colored. In general, the scattering of
colored particles is plagued by infrared problems, but the
-1  2005 The American Physical Society
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excitation cross sections can be calculated as combinations
of infrared-safe total cross sections for interaction with the
target of certain color-singlet multiparton states [2,7,8]. We
discuss to some detail the so-called Cronin effect [11]—
the nuclear antishadowing at moderate to large transverse
momentum p of jets. Decomposing in the spirit of the
leading logp2 (LLp2) approximation, the single-jet cross
section into the so-called direct and resolved interactions
of the incident parton, we demonstrate that the Cronin
effect is a salient feature of the resolved interactions and
identify its origin to be the antishadowing nuclear higher-
twist component of the collective gluon density of a nu-
cleus derived in [12,13]. Regarding the potential applica-
tions to pA collisions at RHIC we note that the
k?-factorization phenomenology of DIS [14] suggests
fairly moderate QA � 1 GeV at x� 10�2 for the heaviest
nuclei [2], but we find that interesting nuclear effects
extend to the pQCD domain of jet transverse momenta
way beyond QA. Qualitatively similar results would be
expected in a regime of strong absorptive corrections also
for hadronic targets other than nuclei; the nucleus repre-
sents a theoretical laboratory, in which saturation effects
are endowed with a large parameter, the nuclear opacity,
which allows for their systematic account.

One more point needs an emphasis. The partonic cross
sections evaluated within the often used collinear approxi-
mation are subject to large smearing corrections for the so-
called intrinsic transverse momentum hpTi of partons; see
[15]. In contrast to that we treat the pQCD partonic sub-
processes with full allowance for the transverse momenta
of all interacting partons and no extraneous hpTi smearing
is needed. The discussion of nonperturbative effects such
as nuclear modifications of the hadronization of jets ([16]
and references therein) or of the recombination of partons
into high-p? hadrons ([17] and references therein) goes
beyond the scope of the present study.

All our results are for the distribution of jets in both the
transverse and longitudinal momentum; the latter is pa-
rametrized in terms of the fraction, z, of the longitudinal
momentum of the incident parton a carried by the observed
parton b. As such, they solve the LPM problem for finite
transverse momentum p, while the early works on the LPM
effect focused on the p-integrated longitudinal momentum
spectrum. The p-dependent LPM effect is important for a
quantitative pQCD treatment of the nuclear quenching of
forward high-p hadrons observed experimentally by
BRAHMS Collaboration [18]. The numerical results for
the LPM effect for forward jets will be reported elsewhere;
here we focus on the derivation and implications of the
nonlinear k? factorization for the transverse momentum
distributions.

The presentation of the main material is organized as
follows. Our starting point is the color-dipole S-matrix
representation for the two-body spectrum from the frag-
mentation a! bc. We demonstrate how the single-parton
014023
cross spectrum can be calculated in terms of the S matrices
for special two- and three-body color-singlet parton states
(some technical details are given in Appendix A). The
color-dipole master formulas for the single-parton spectra
in interactions with free-nucleon and heavy-nucleus targets
are reported in Sec. III. They form the basis of the
k?-factorization representation for the spectra of different
partons and in Sec. IV we start with the linear, and in
Sec. V with nonlinear, k? factorization for open-charm
production off free nucleons and nuclei, respectively. The
subject of Sec. VI is the Cronin effect in open-charm
production off nuclei. We demonstrate that in the general
case the nuclear spectrum is a quadratic functional of the
collective nuclear gluon density and illustrate this property
in terms of the Kancheli-Mueller diagrams for inclusive
cross sections [19]. The Cronin effect is shown to be a
generic feature of the so-called resolved gluon interactions
and its origin is attributed to the nuclear antishadowing
property of the collective nuclear gluon density derived in
[12]. We show that despite the relatively small saturation
scale QA the Cronin effect extends to perturbatively large
transverse momenta. In Sec. VII we apply our master
formula to the transverse momentum spectrum of gluons
from the fragmentation g� ! gg. In this case the nuclear
cross section is a cubic functional of the collective nuclear
gluon density. The subject of Sec. VIII is the production of
quark and gluon jets in the fragmentation q� ! qg. The
relevance of our results to the p-dependent LPM effect is
pointed out in Secs. VII and VIII. The main results are
summarized and discussed in Sec. IX. Our principal con-
clusion is that the k?-factorization breaking is a universal
feature of the pQCD description of hard processes in a
nuclear environment. We comment on earlier works on
single-quark and gluon-jet production [20–34], some of
which invoke the Color Glass Condensate approach ([35]
and references therein). A convenient technique of deriva-
tion of the n-parton interaction S matrices is presented in
Appendix A. The rules for the derivation of the wave
functions of two-parton states in terms of the familiar
splitting functions are given in Appendix B.
II. INCLUSIVE PRODUCTION AS EXCITATION OF
FOCK STATES OF THE BEAM PARTON

Previously, the breaking of linear k? factorization had
been demonstrated for the excitation of dijets, �� ! q �q, in
DIS at x & xA [2]. Specifically, the two-parton transverse
momentum spectrum was shown to be a highly nonlinear
functional of the collective nuclear gluon density. On the
other hand, upon integration over the transverse momenta
of the antiquark jet, the single-quark spectrum was found
to fulfill the linear k? factorization. In this paper we extend
the analysis of [2] to the case of colored beam partons, and
confirm the breaking of k? factorization as a generic
feature of the pQCD description of hard processes in a
nuclear environment.
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FIG. 1 (color online). The rapidity structure of the excitation a! bc: (a) excitation of mid- to large-rapidity open charm g! Q �Q,
(b) radiation of gluons by quarks q! qg, and (c) radiation of gluons by gluons g! gg.
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FIG. 2 (color online). The color-dipole structure (left-hand
side) of the generic three-parton state and (right-hand side) of the
three-parton state entering the color-dipole description of frag-
mentation a! bc with formation of the bc dipole of size r.
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To the lowest order in pQCD the underlying subprocess
for the mid- to large-rapidity open-charm production in
proton-proton collisions is the fusion of gluons from the
beam and target, gg! c �c; for the gluon-jet production one
would consider a collision of a beam quark with a gluon
from the target, qg! qg; at higher energies the relevant
subprocess for gluon production will be gg! gg. All the
above processes are of the general form ag! bc and, from
the laboratory frame standpoint, can be viewed as an
excitation of the perturbative jbci Fock state of the physi-
cal projectile jai by one-gluon exchange with the target
nucleon. In the case of a nuclear target one has to deal with
multiple gluon exchanges which are enhanced by a large
thickness of the target nucleus. A general treatment of
multiple gluon exchanges in nuclear targets has been de-
veloped in [2,7]; its extension to the a! bc transitions can
be described as follows.

Partons with energy Ea and transverse momentum pa
such that

2mNEa
p2
a

*
1

xA
(3)

propagate along straightline, fixed-impact-parameter tra-
jectories and interact coherently with the nucleus, which is
behind the powerful color-dipole formalism [5,36,37]. The
target frame rapidity structure of the considered a! bc
excitation is shown in Fig. 1. The beam parton has a
rapidity �a > �A � log1=xA; the final state partons, too,
have rapidities �b;c > �A. In this paper we focus on the
lowest-order excitation processes a! bc without produc-
tion of more secondary partons in the rapidity span be-
tween �b and �c.

To the lowest order in the perturbative transition a! bc
the Fock state expansion for the physical state jaiphys reads

jaiphys � jai0 ���zb; rjbci0 (4)

where ��zb; r is the probability amplitude to find the bc
system with the separation r in the two-dimensional
impact-parameter space; the subscript ‘‘0’’ refers to bare
014023
partons. The perturbative coupling of the a! bc transition
is reabsorbed into the lightcone wave function ��zb; r,
and we also omitted a wave-function renormalization fac-
tor, which is of no relevance for the inelastic excitation to
the perturbative order discussed here.

If ba � b is the impact parameter of the projectile a,
then

b b � b� zcr; bc � b� zbr; (5)

see Fig. 2. Here zb;c stand for the fraction of the lightcone
momentum of the projectile a carried by the partons b and
c. The virtuality of the incident parton a is given by Q2

a �
k2a, where ka is the transverse momentum of the parton a in
the incident proton (Fig. 1). For the sake of simplicity we
take the collision axis along the momentum of parton a.
The transformation between the transverse momenta in the
a-target and p-target reference frames is trivial, p�a

b;c �

p�p
b;c � zc;bka; below we cite all the spectra in the a-target

collision frame. We shall speak of the produced parton—
or jet originating from this parton—as the leading one if it
carries a fraction of the beam lightcone momentum z! 1,
and a slow one if it is produced with z� 1. We speak of
the produced parton as a hard one if it is produced with
large transverse momentum, and a soft one if its transverse
momentum is small compared to the so-called nuclear
saturation scale to be defined below.
-3
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FIG. 3 (color online). Typical contribution to the excitation amplitude for gA! q �qX, with multiple color excitations of the nucleus.
The amplitude receives contributions from processes that involve interactions with the nucleus after and before the virtual decay which
interfere destructively.
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By the conservation of impact parameters, the action of
the S matrix on jaiphys takes a simple form:

Sjaiphys � Sa�bjai0 � Sb�bbSc�bc��zb; rjbci0

� Sa�bjaiphys � �Sb�bbSc�bc

� Sa�b���zb; rjbci: (6)

In the last line we explicitly decomposed the final state into
the elastically scattered jaiphys and the excited state jbci.
The two terms in the latter describe a scattering on the
target of the bc system formed way in front of the target
and the transition a! bc after the interaction of the state
jai0 with the target, as illustrated in Fig. 3. The contribution
from transitions a! bc inside the target nucleus vanishes
in the high-energy limit

x �
Q2
a �M2

bc

W2xB
& xA (7)

where Mbc is the invariant mass of the excited bc
system, Q2

a is the virtuality of the incident parton a, W is
the total energy in the beam-target nucleon collision
center-of-mass frame, and xB is the fraction of the beam
energy carried by the beam parton a.

The probability amplitude for the two-jet spectrum is
given by the Fourier transform
014023
Z
d2bbd2bc exp��i�pbbb � pcbc��Sb�bbSc�bc

� Sa�b���zb; r: (8)

The differential cross section is proportional to the modu-
lus squared of (8) and one encounters the contributions
containing

S�2�aa�b
0; b � Sya �b0Sa�b;

S�3�abc�b
0; bb; bc � Sya �b0Sb�bbSc�bc;

S�3�b �c a
�b; b0b; b

0
c � Syb �b

0
bS

y
c �b0cSa�b;

S�4�b �c cb
�b0b; b

0
c; bb; bc � Syb �b

0
bS

y
c �b0cSc�bcSb�bb:

(9)

Here we suppressed the matrix elements of S�n over the
target nucleon; for details see [2]. In the calculation of the
inclusive cross sections one averages over the color states
of the beam parton a, sums over color states of final state
partons b; c, and takes the matrix products of Sy and Swith
respect to the relevant color indices entering S�n. Some of
the technicalities of the derivation of S�n are presented in
Appendix A; here we cite the resulting two-jet cross sec-
tion:
d��a� ! b�pbc�pc�

dzd2pbd
2pc

�
1

�24
Z
d2bbd2bcd2b0bd

2b0c exp�ipb�bb � b0b � ipc�bc � b0c���z;bb � bc�
��z; b0b � b0c

� fS�4�b �c cb
�b0b;b

0
c; bb;bc � S�2�aa�b

0; b � S�3�b �c a
�b; b0b;b

0
c � S�3�abc�b

0; bb;bcg

(10)
The crucial point is that the Hermitian conjugate Sy can be
viewed as the S matrix for an antiparton [2,7,38]. As a
result, S�2�aa�b

0; b is an S matrix for interaction with the
target of the a �a state in which the antiparton �a propagates
at the impact parameter b0. The averaging over the color
states of the beam parton a amounts to taking the color-
singlet a �a state. The S�3�abc and S�4�b �c cb
describe interaction of

the color-singlet �abc and �b �c cb states, respectively. This is
shown schematically in Fig. 4.

The S�2 and S�3 are readily calculated in terms of the
two-parton and three-parton dipole cross sections [5,7,37];
general rules for multiple scattering theory calculation of
-4
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FIG. 4 (color online). The S-matrix structure of the two-body density matrix for excitation a! bc.
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the coupled-channel S�4 are found in [2] and need not be
repeated here.

The results for the two-jet cross sections will be pre-
sented elsewhere; here we focus on the single-jet problem.
Integration over the transverse momentum pc of the jet c
gives

b c � b0c; (11)

b � b0 � zb�r� r0; bb � b0b � r� r0;

b0 � bc � zbr
0:

(12)

In the generic case the three-parton state �abc has the
dipole structure shown in Fig. 2 and the dipole cross
section �3 �abc�!; r. In the considered problem of the a!

bc excitation, ! � zbr
0. The case of S�4�b �c cb

deserves special
scrutiny. In the general case, S�4 is a multichannel opera-
tor; an example is found in [2]. Because in the single-
particle spectrum b0c � bc, the unitarity relation

Syc �bcSc�bc � 1 (13)

leads to a fundamental simplification of
S�4�b �c cb

�b0b; b
0
c;bb; bc. Specifically, in a somewhat symbolic

form

S�4�b �c cb
�b0b; b

0
c;bb; bc � Syb �b

0
bS

y
c �bcSc�bcSb�bb

� Syb �b
0
bSb�bb � S�2�bb�b

0
b; bb;

(14)

i.e., the effect of interactions of the spectator parton c
vanishes upon the summation over all its color states and
integration over all its transverse momenta [7]. The
coupled-channel operator S�4�b �c cb

then takes a single-
channel form; some technical points behind this derivation
are clarified in Appendix A. The only trace of the observed
parton b having been produced in the fragmentation a!
bc is in the density matrix ��zb; bb � bc�

��zb; b0b � b0c
014023
which defines the transverse momentum distribution of the
parton b in the beam parton a, and the partition zb; zc �
�1� zb of the longitudinal momentum between the final
state partons. It will be more convenient to regard
S�2�bb�b

0
b; bb as a function of the transverse size of the b �b

dipole b0b � bb, and the impact parameter B of the dipole-
nucleus interaction, and we shall from now on write
S�2�bb�b

0
b; bb ! S�2�bb�B; b

0
b � bb.

The observation (14) can be generalized further to the
cancellations of beam spectator interactions. The detailed
discussion will be reported elsewhere; here we just quote
the simple example of open heavy-flavor excitation. The
above expounded formalism for the fragmentation g!
Q �Q can readily be generalized to excitation of heavy flavor
from the incident quark q� ! q0Q �Q which proceeds via
q� ! q0g, g! Q �Q. The simplest case of direct impor-
tance for midrapidity heavy-flavor production in pp, pA
collisions is when the produced Q �Q pair carries a small
fraction of the incident quark’s momentum, i.e., the under-
lying partonic subprocess is a collision of a slow gluon
from the beam with a slow gluon from the target, gg!
Q �Q. The generalization of Eqs. (11) and (12) to this case
shows that the beam quark q� and the spectator quark q0

would propagate at the same impact parameter bq. One
readily finds that the amplitude of the q� ! q0Q �Q will be
given by Eq. (6) times the extra factor of Sq�bq. Upon the
integration over the transverse momentum of the spectator
quark one gets the equality of the corresponding impact
parameters in the multiparton S matrix and its Hermitian
conjugate, Eq. (11), and upon the application of the uni-
tarity relation (13) the effect of spectator interactions can-
cels out in complete analogy to Eq. (14). The resulting
S�2�bb�B; b

0
b � bb only depends on the dipole parameter

b0b � bb and the overall impact parameter, B, of the multi-
parton system. What will be left of the beam quark q� is the
wave function of its q0g Fock state which defines the
longitudinal and transverse momentum density in the
beam of the gluon g� which excites into the Q �Q state.
-5
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The evident assumption behind the spectator interaction
cancellations is that the coherency condition is fulfilled for
all spectator partons; because the spectators are faster than
the observed parton, this weak condition does not impose
any stringent constraints beyond (7).

III. COLOR-DIPOLE MASTER FORMULA FOR
FREE NUCLEONS AND NUCLEI

For the free-nucleon target, integration over the impact
parameter B gives the corresponding total cross sections;
for instance,

2
Z
d2B�1� S�2�bb�B; b

0
b � bc� � �2; �bb�r� r0;

2
Z
d2B�1� S�3�abc�B; b

0 � bc; bb � bc� � �3; �abc�zbr0; r:

(15)

Then the single-jet spectrum for the free-nucleon target can
be cast in the form
014023
d�N�a
� ! b�pbc�

dzbd
2pb

�
1

2�22
Z
d2rd2r0

� exp�ipb�r� r0���zb;r�
��zb;r

0

� ��3; �abc�zbr
0;r��3;a �b �c�zbr;r

0

��2;b �b�r� r0 ��2;a �a�zb�r� r0��:

(16)

In the generic �abc system there could be more than one
scheme of coupling to a color-singlet state, in which case
S�3�abc would be a coupled-channel operator, but that is not
the case with gluons and quarks. The coupled-channel
operator S�4�b �c cb

also takes the single-channel form (14).
As usual, we apply multiple scattering theory treating the
nucleus as a dilute gas of color-singlet nucleons, and upon
the summation over all the nuclear final states and appli-
cation of the closure relation the nuclear matrix elements
of S�n take the familiar Glauber-Gribov form [39,40]. The
resulting nuclear single-jet spectrum per unit area in the
impact-parameter plane equals
d�A�a� ! b�pbc�

dzd2pbd
2b

�
1

�22
Z
d2rd2r0 exp�ipb�r� r0���zb; r�

��zb; r
0��A�b; �3; �abc�zbr

0; r�

� �A�b; �3;a �b �c�zbr; r
0� � �A�b; �2;b �b�r� r0� � �A�b; �2;a �a�zb�r� r0���: (17)
We can use the Glauber-Gribov multiple scattering theory
result

�A�b; �� � 1� exp
�
�

1

2
�T�b

�
; (18)

where T�b �
R
1
�1 drznA�b; rz is the optical thickness of

the nucleus, and the nuclear density nA�b; rz is normalized
according to

R
d3 ~rnA�b; rz �

R
d2bT�b � A.

Within the color-dipole formalism the x dependence of
the DIS structure function is driven by the x dependence of
the color-dipole cross section �q �q�x; r which is governed
by the color-dipole form of the Balitskii-Fadin-Kuraev-
Lipatov (BFKL) equation [37,41,42]. For x * xA DIS off
a nucleus amounts to the sum of incoherent scatterings off
bound nucleons. The onset of nuclear coherence effects at
x & xA must be treated with the color-dipole cross section
�q �q�xA; r which has been BFKL-evolved down to x � xA.
We recall that for heavy nuclei well-evolved shadowing
sets in at xA � 10�2. The considered lowest-order excita-
tion processes a! bc with rapidities �b;c * �A such that
no more secondary partons are produced in the rapidity
span between �b and �c or between �b;c and �A must also
be treated in terms of �q �q�xA; r. The values of xb;c attain-
able at RHIC are such that jet production in the proton
hemisphere of pA collisions at RHIC is dominated by
precisely these lowest-order processes. The allowance for
higher-order processes would amount to the x evolution of
the k? factorization breaking and will be addressed
elsewhere.

IV. k? FACTORIZATION FOR OPEN-CHARM
PRODUCTION OFF FREE NUCLEONS

Here the underlying pQCD excitation is g! Q �Q, i.e.,
a � g, b � Q, c � Q. The process is symmetric under
Q$ �Q and for the sake of brevity we put z � zQ and p �

pQ. The relevant two-parton and three-parton dipole cross
sections equal [7,37]

�3�x; zr
0; r �

CA
2CF

��q �q�x; zr
0 � r � �q �q�x; zr

0

� �q �q�x; r� � �q �q�x; r;

�gg�x; z�r� r0� �
CA
CF

�q �q�x; z�r� r0�;

(19)

where CA � Nc, CF � �N2
c � 1=2Nc are the familiar qua-

dratic Casimirs, and [43]

�q �q�x; r �
Z
d2�f�x;��1� exp�i�r�;

f�x;� �
4'S�r
Nc

�
1

�4 �F �x;�2:
(20)

�q �q�x; r is the dipole cross section for the q �q color dipole
and
-6
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F �x;�2 �
@G�x;�2

@ log�2 (21)

is the unintegrated gluon density in the target nucleon [our
normalization of f�xA;� and of the related Weizsäcker-
Williams gluon density *�b; xA;� � *WW�b; xA;� (see
014023
below) are slightly different from the ones used in [2]]. In
the momentum space calculations the running coupling
'S�r must be taken at an appropriate hard scale.

Applying the technique developed in [2], upon the rele-
vant Fourier transformations one readily finds
2�22d�N�g� ! Q �Q

dzd2p
�

Z
d2�f�xA;�

�
N2
c

N2
c � 1

�j��z;p ���z;p� z�j2 � j��z;p� � ���z;p� z�j2�

�
1

N2
c � 1

j��z;p ���z;p� �j2
�

(22)

�
Z
d2�f�xA;�

�
CA
2CF

fj��z;p ���z;p� z�j2 � j��z;p� � ���z;p� z�j2 � j��z;p ���z;p� �j2g

� j��z;p ���z;p� �j2
�
: (23)
Here we show explicitly that the target gluon density
f�xA;� enters with the boundary condition argument xA.
The expression j��z;p ���z;p� z�j2 for the Q �Q
Fock state of the gluon is obtained from its counterpart
for the transverse photon cited in [2] by the substitutions
Q2 ! Q2

a and Nc'eme2Q ! TF'S; see Appendix B.
Here we emphasize that Eqs. (22) and (23) account fully

for the transverse momenta of all involved partons; no
further smearing of the obtained spectra for the intrinsic
transverse momentum of partons is needed. Furthermore, it
would be illegitimate. Early discussions of charm produc-
tion in hadron-nucleon collisions in the framework of k?
factorization can be found in [44]; for reviews and a guide
to recent literature we refer to [3]. The rather straightfor-
ward representation (22) and (23) of the heavy quark cross
section in terms of lightcone wave functions for the tran-
sition g� ! Q �Q is new, as are the related expressions for
quark/gluon production to be found below.

Some comments on this simple formula are in order.
First, although we spoke of the charm production, as soon
as the transverse momentum p is perturbatively large
Eq. (23) will be fully applicable to light quark jets and
there is an obvious connection between (23) and the next-
to-leading real correction to the BFKL kernel from light q �q
pair production, but dwelling on that is beyond the scope of
the present communication. Second, we presented our
result for two different groupings of terms. In (23), we
decomposed the cross section into ‘‘non-Abelian,’’ /
CA=2CF, and ‘‘Abelian’’ pieces. Putting CA ! 0 one
would switch off the non-Abelian coupling of gluons to
gluons and obtain indeed the same formula as for the
single-quark spectrum from the �� ! q �q transition, i.e.,
for inclusive DIS [2]. Third, note that the same Abelian
limit is obtained at the boundaries z � 0 and 1� z � 0. In
both cases, that can be traced to the fact that either the
spectator quark for z � 0, or the observed antiquark for
z � 1 would propagate at precisely the same impact pa-
rameter as the parent gluon so that the non-Abelian color
structure of the gQQ is simply not resolved. Still the
physics of the two cases is different: in the limit of z � 0
the ‘‘initial state’’ gg dipole interaction effectively drops
out, whereas at z � 1 there are subtle cancellations be-
tween the gg dipole cross section and the octet-octet dipole
components of the three-parton cross sections. As we shall
see below, the latter cancellations will be upset for nuclear
targets. Fourth, in the large-Nc limit CA � 2CF and for
later reference we quote

2�22d�N�g
� ! Q �Q

dzd2p

��������Nc�1

�
Z
d2�f�xA;�fj��z;p ���z;p� z�j2

� j��z;p� � ���z;p� z�j2g: (24)

Based on the discussion of spectator effects in Sec. III
and anticipating the discussion in Sec. IV, we note that the
open-charm production can be presented in a manifestly
beam-target symmetric form. One can multiply the above

derived cross section d��g�!Q �Q
Q �z; xA;p by the uninte-

grated flux of gluons of transverse momentum ka and
lightcone momentum fraction xB in the beam proton,
F �xB; ka, take the wave functions of Appendix B at Q2 �
k2a, and calculate the charm spectrum for pp, pA collisions
as

d�N;A�z; xA;p �
1

xB

Z d2ka
k2a

F �xB; ka

� d��g�!Q �Q
N;A �z; xA;p� zka: (25)

The usual kinematical constraint, xBxAW2 � �p2 �m2
Q=

�z�1� z�, is understood. The fully inclusive single-parton
cross section is obtained from (25) upon integration over
xB keeping fixed the longitudinal momentum of the ob-
-7
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FIG. 5 (color online). (a) The Kancheli-Mueller diagram for
the two-parton inclusive cross section in proton-proton colli-
sions, (b) its representation in terms of the pomeron exchange
and (c) transition to the optical theorem for the single-parton
inclusive cross section (d) upon the integration over the phase
space of the parton c.
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served parton zxB. We stick to z because (i) the transverse
momentum spectra exhibit a highly nontrivial dependence
on z and (ii) understanding the z dependence is crucial for
the LPM effect.

Within the k? factorization the microscopic QCD de-
scription of the pomeron exchange is furnished by the
unintegrated gluon densities. To this end one can look at
the open-charm cross section (25) through the prism of the
Kancheli-Mueller diagrams [19] for inclusive spectra as
depicted in a somewhat symbolic way in Fig. 5. The
�c �bP �c �bP vertex which enters the pomeron-exchange rep-
resentation (b) for the generic Kancheli-Mueller disconti-
nuity of the four-body forward scattering amplitude is a
highly nonlocal one; its properties will be discussed in
014023
more detail elsewhere. Upon integration over the momen-
tum of the parton c one obtains the Kancheli-Mueller
diagram (d) for the single-parton spectrum, for the non-
local properties of the �bP �bP vertex in the diagram (d) see
Sec. VI D 1.

V. NUCLEAR CASE: NONLINEAR k?
FACTORIZATION

The driving term of small-x nuclear structure functions
and single-quark spectra from the �� ! q �q excitation off a
nucleus were shown to take the familiar k? factorization
form in terms of the collective nuclear Weizsäcker-
Williams gluon density *�b; xA;� per unit area in the
impact-parameter plane as defined in [2,12,13,45]:

�A�b; �q �q�x; r� �
Z
d2�*�b; x;��1� exp�i�r�: (26)

It satisfies the sum ruleZ
d2�*�b; x;� � 1� exp

�
�
1

2
�0�xT�b

�

� 1� Sabs�b (27)

where �0�x �
R
d2�f�x;� is the dipole cross section for

large dipoles. It is conveniently interpreted in the spirit of
additive quark counting for soft hadronic processes as
�0�x � �qN�x � � �qN�x � 2�P

qN�x, so that the meaning
of the factor

Sabs�b � exp
�
�
1

2
�0�xT�b

�
� exp���P

qN�xT�b�

(28)

as representing intranuclear absorption becomes evident.
Equations (17), (19), and (20) allow a straightforward

calculation of the nuclear single-jet spectra. Nice analytic
forms of the nuclear k? factorization are obtained in the
large-Nc limit; the 1=N2

c corrections can readily be derived
following the considerations in [2] and will not be dis-
cussed here. The crucial point about the large-Nc approxi-
mation is that

�3�x; zr0; r ���! �q �q�x; zr0 � r � �q �q�x; zr0;

�gg�x; z�r� r0� ���! 2�q �q�x; z�r� r0�
(29)

so that
�A�b; �3�zr
0; r� � �A�b; �q �q�x; zr

0 � r� � �A�b; �q �q�x; zr
0� � �A�b; �q �q�x; zr

0 � r� � �A�b; �q �q�x; zr
0�;

�A�b; �gg�x; z�r� r0�� � 2�A�b; �q �q�x; z�r� r0�� � �2
A�b; �q �q�x; z�r� r0��:

(30)

Then after some algebra we obtain

�22d�A�g� ! Q �Q

dzd2pd2b
� Sabs�b �

Z
d2�*�b; xA;�fj��z;p ���z;p� z�j2 � j��z;p� � ���z;p� z�j2g

�
Z
d2�1d2�2*�b; xA;�1*�b; xA;�2j��z;p� �2 ���z;p� z�1 � z�2j

2: (31)

One can associate with *�b; xA;�1 the exchange of a nuclear pomeron PA which as indicated in Fig. 6 sums multiple
-8
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exchanges of the pomeron P in interactions with nuclear
targets [2,10] (see also Sec. VI B). The first term is an exact
counterpart of the free-nucleon result: in terms of the
collective nuclear gluon density *�b; xA;� it has exactly
the same linear k?-factorization form as the free-nucleon
result (24) in terms of f�xA;�. As such it corresponds
to the Kancheli-Mueller diagram of Fig. 7(a). Despite
the similarity of diagrams of Figs. 5(d) and 7(a), the
two inclusive spectra are different because PA � P.
Furthermore, this contribution to the nuclear spectrum is
suppressed by the absorption factor Sabs�b and is entirely
negligible for heavy nuclei. In this case only the second
term survives, which is a manifestly nonlinear functional
of the collective nuclear glue *�b; xA;�. It can be
associated with the Kancheli-Mueller diagram of
Fig. 7(b). This completes our demonstration of the
k?-factorization breaking for single-jet spectra: the pattern
of k?-factorization changes from the conventional linear at
the periphery of a nucleus to the nonlinear—quadratic—
one for small impact parameters. In retrospect, the finding
of linear k? factorization for the single-quark-jet spectrum
in �� ! q �q excitation can be traced back to the beam
photon being colorless, by which the single-jet spectrum
becomes an Abelian observable [2]. In contrast to that, the
p

b-

P
p

b-

P

AAA

p

b-

P

PA PAPA

(a) (b) (c)

FIG. 7 (color online). The Kancheli-Mueller diagrams for the
midrapidity single-particle spectrum form gg subcollisions in
pA collisions. The double-zigzag lines describe an exchange by
the nuclear pomeron PA. The open-charm spectrum in pp
collisions is dominated by the diagram (a) with PA ! P (see
Fig. 5), the open-charm spectrum in central pA collisions is
dominated by the diagram (b), and the gluon-jet production is
dominated by the diagram (c).
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origin of the nonlinear term in (31) is in the non-Abelian
nature of the three-parton cross section (19) and (29).

The z dependence of the jet spectra enters through the
wave functions. To this end notice the strikingly different
wave-function structure of the free-nucleon cross section
(25) and its nuclear counterpart (31). This suggests a non-
trivial dependence of the p spectra on the longitudinal
variable z which will be different for the free-nucleon
and nuclear targets. Vice versa, the z distribution will
vary with p and the target mass number which can be
called the LPM effect for open-charm production.
VI. THE CRONIN EFFECT FOR OPEN CHARM

A. The charm p distribution: nuclear vs free-nucleon
targets

The impact of nonlinear k? factorization is quantified by
the ratio of the free-nucleon and nuclear single-jet spectra,

RA=N�z; xA;p �
d�A
Ad�N

:

This ratio exhibits both shadowing, RA=N�z; xA;p< 1, and
antishadowing, RA=N�z; xA;p> 1, properties; in the litera-
ture the latter is usually referred to as the Cronin effect. Our
discussion of the Cronin effect is to a large extent based on
the ideas and technique of the pQCD derivation of nuclear
properties of the coherent diffractive breakup of pions into
hard dijets [12,13].

The principal points are best seen for central impact
parameters, i.e., for Sabs�b ! 0:

�22d�A�g
� ! Q �Q

dzd2pd2b

�
Z
d2�1d

2�2*�b; xA;�1*�b; xA;�2

� j��z;p� �2 ���z;p� z�1 � z�2j
2: (32)

In all the comparisons of the free-nucleon and nuclear
target observables we use the large-Nc approximation
without further notice.

The results simplify greatly in the two interesting cases.
We start with the limit of slow quarks, z� 1, when the
free-nucleon spectrum becomes

2�22d�N�g� ! Q �Q

dzd2p

��������z�1

�
Z
d2�f�xA;�j��z;p ���z;p� �j2: (33)

In the limit of z� 1 the entire dependence of the nuclear
spectrum (32) on �1 is confined to the normalization
integral

R
d2�1*�b; xA;�1 � 1� Sabs�b which lowers

the nonlinearity of the nuclear cross section. Then, in
conjunction with the linear term, / Sabs�b, in (31), we
find a result applicable at all impact parameters:
-9
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�22d�A�g� ! Q �Q

dzd2pd2b

��������z�1

�
Z
d2�*�b; xA;�j��z;p� � ���z;pj2: (34)

We evidently recovered the linear k?-factorization result
(33), now in terms of the nuclear collective glue
*�b; xA; .. The physics behind this finding is the above
discussed Abelianization of g! QQ at z� 1, by which it
becomes equivalent to �� ! QQ.

The second simple result is found for leading quarks
with z! 1. Here the free-nucleon cross section again takes
the form (33), whereas the nuclear single-jet spectrum can
be cast in the convolution form

d�A�g�!Q �Q

dzd2pd2b

��������z!1
�
Z
d2�*�b;xA;�

d�A�x;p��

dzd2pd2b

��������z�1

�Sabs�b
d�A�x;p

dzd2pd2b

��������z�1
: (35)

The leading term in (35) is a manifestly nonlinear—qua-
dratic—functional of *�b; xA;�. Evidently, such a con-
volution would enhance the nuclear effects compared to
the linear k?-factorization formula (34). Arguably, when z

N. N. NIKOLAEV AND W. SCHAFER
014023
varies from z � 0 to 1, the p dependence of the nuclear
charm spectra shall interpolate between the ones given by
Eqs. (34) and (35).

B. Properties of the collective nuclear gluon density

The fundamental quantity of our formalism is the col-
lective nuclear glue *�b; xA;� per unit area in the impact-
parameter plane [2,12,13]. It is characterized by a new
scale— the saturation scale,

Q2
A�b; xA �

42

Nc
'S�Q2

AG�xA;Q
2
AT�b; (36)

a related quantity appears in other approaches to nuclear
parton densities [35,46]. At soft transverse momenta, �2 &

Q2
A�b; xA, the nuclear collective glue exhibits a plateau

which signals the saturation of parton densities. A useful
parametrization in the plateau region is

*�b; xA;� �
1


�

Q2
A�b; xA

��2 �Q2
A�b; xA�

2 : (37)

For hard gluons, �2 * Q2
A�b; xA, it is convenient to cite the

unintegrated gluon density per bound nucleon:
fA�b; xA;� �
*�b; xA;�

1
2T�b

� f�xA;�
�
1�

�2

2
�
'S��

2G�xA;�
2

'S�Q2
AG�xA;Q

2
A

�
Q2
A�b; xA

�2

�

� f�xA;�
�
1�

22�2

Nc�2 � 'S��2G�xA;�2T�b
�
� f�xA;��1� �HT�b; xA;��; (38)
where � � 2 is an exponent of the large-.2 tail f�xA;� /
��2��. Here we show explicitly the leading nuclear
higher-twist correction, �HT�b; xA;�, which gives rise to
a nuclear antishadowing effect [2,12,13]. To this end, the
saturated gluon density (37) can be regarded as a resum-
mation of all higher-twist terms ��Q2

A�b; xA=�
2�n. Note

the very strong nuclear suppression of the gluon density per
bound nucleon fA�b; xA;� in the soft plateau region, �2 &

Q2
A�b; xA:

fA�b; xA;� �
2

Q2
A�b; xAT�b

/
1

T2�b
/ A�2=3: (39)

The explicit expansion for *�b; xA;� in terms of the
collective gluon density of j overlapping nucleons in the
Lorentz-contracted nucleus [2,12,13] is

*�b; xA;� � Sabs�b
X
j�1

1

j!
�



T�b
2

�
j
� f�j�xA;� (40)

where f�j�x;� is the j-fold convolution,

f�j�x;� �
Z
1

Xj
i�1

�i � �

�Yj
i�1

f�x;�id2�i: (41)
Finally, we notice that *�b; xA;� satisfies the important
sum rule (see also [26,33])
Z
d2��2

�
*�b; xA;� �

1

2
T�bf�xA;�

�
� 0; (42)
which readily follows from the property that
�A�b; ��x; r� �

1
2T�b��x; r vanishes / �2�x; r as r2 !

0. The effect of nuclear suppression for nuclear soft gluons
[see Eqs. (37) and (39)] is compensated for by nuclear
antishadowing (38) for hard glue.

The familiar integrated gluon density equals
G�x;Q2 �
Nc

42'S

Z Q2

d2��2f�x;�; (43)
its nuclear counterpart per bound nucleon, GA�b; xA;�2,
can be defined likewise in terms of fA�b; xA;�. Then the
corollary of the sum rule (42) is that for Q2 � Q2

A�b; xA
-10
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GA�b; xA; Q
2 �G�b; xA; Q

2 � �
Z
Q2
d2��2f�xA;��HT�b; xA;�

� �
2�22'S�Q2

Nc
�

'S�Q2G�xA;Q2

'S�Q2
A�b; xA�G�xA;Q

2
A�b; xA�

�
Q2
A�b; xA

Q2 �
@G�xA;Q2

@ logQ2

� �
�22'S�Q

2

Nc
�

'S�Q
2Q2

A�b; xA

'S�Q2
A�b; xA�G�xA;Q

2
A�b; xA�

�
@G2�xA;Q

2

@Q2 ; (44)
where we made use of the expansion (38).

C. The Cronin effect: nuclear shadowing for p2 &

Q2
A�b; xA

For the sake of illustration we start with the case of z�
1 and assume that the saturation scale is so large that even
for m2

Q � p2 � Q2
A�b; xA the jets are still perturbatively

hard. Because the dominant contribution to (34) comes
from �2 �Q2

A�b; xA, the expansion (B6) of Appendix B
simplifies further, and the � integration can be carried out
explicitly,

�22d�A�g� ! Q �Q

dzd2pd2b

��������z�1
� 2TF'S �

1

p2

�
Z
d2�*�b; xA;�

� �1� Sabs�b� � 2TF'S �
1

p2 :

(45)

It is entirely dominated by the contribution from �2 * p2,
which in the language of evolution amounts to the
anti-Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
splitting of collective nuclear gluons with large transverse
momentum . into quarks with small transverse momentum
p.
014023
The integration over all impact parameters gives

2
Z
d2b�1�Sabs�b��2

Z
d2b

�
1�exp

�
�
1

2
�0�xAT�b

��

��A��0�xA�; (46)

which is the familiar Glauber-Gribov nuclear total cross
section �A��0� for a projectile with the free-nucleon cross
section �0, and

RA=N�z; xA;p �
�A��0�xA�
A�0�xA

� A�1=3 < 1: (47)

A marginal caveat is that for the fixed quark-jet momentum
the inequality p2 � Q2

A�b; xA does not hold uniformly
over all impact parameters b; it breaks down for the most
peripheral interactions. The peripheral contribution does
not affect the shadowing property RA=N�z; xA;p< 1,
though.

Now turn to the opposite limit of z! 1. Here the free-
nucleon cross section is the same as for z� 1. The con-
volution representation (35) for the nuclear spectrum is
already suggestive of stronger nuclear effects. The analysis
by the straightforward use of (32) in which one can neglect
p in the arguments of the wave functions is still simpler:
�22d�A�g
� ! Q �Q

dzd2pd2b

��������z!1
� 2TF'S

Z
d2�1d2�2*�b; xA;�1*�b; xA;�2

�2
1

��2
2 �m2

Q���1 � �2
2 �m2

Q�
: (48)

The integral in the right-hand side will be dominated by the two logarithmic contributions from (i) �2
2 � �2

1 and (ii) ��2 �
�1

2 � �2
1:Z

d2�1d
2.2*�b; xA;�1*�b; xA;�2

�2
1

��2
2 �m2

Q���1 � �2
2 �m2

Q�

� 
Z
d2�1�*�b; xA;�1*�b; xA; 0 �*�2�b; xA;�1� log

�2
1

m2
Q

� �*�b; xA; 0 �*�2�b; xA; 0� log
Q2
A�b; xA

m2
Q

(49)
where *�2�b; xA;� is the convolution

*�2�b; xA;� � �* �*�b; xA;�: (50)

For heavy nuclei *�2�b; xA;� has the same meaning as
*�b; xA;� but for twice larger T�b, what counts for the
purposes of the present discussion is that

�*�b;xA;0�*
�2�b;xA;0��

1

Q2
A�b;xA

/A�1=3: (51)
The final result for the nuclear spectrum at z! 1 is

�22d�A�g
� ! Q �Q

dzd2pd2b

��������z!1
�

2TF'S�Q2
A�b; xA�

Q2
A�b; xA

� log
Q2
A�b; xA

m2
Q

: (52)

The first dramatic effect is that the p spectrum of fast
quarks will be flat for p2 & Q2

A�b; xA which must be
-11
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contrasted to the / 1=p2 free-nucleon spectrum (45). The
second dramatic effect is a strong enhancement of the
shadowing effect. The result of the impact-parameter in-
tegration can be evaluated as


Z
d2b�*�b; xA; 0 �*�2�b; xA; 0� �

�A��0�xA�

hQ2
A�b; xAi

(53)

where hQ2
A�b; xAi is an average saturation scale. This gives

the shadowing effect

RA=N�z! 1; xA;p

�
�A��0�xA�
A�0�xA

�
p2

hhQ2
A�b; xAii

� log
Q2
A�b; xA

m2
Q

/ A�2=3: (54)

The analytic formula for the transition from small to large z
can be worked out making use of the explicit parametriza-
tion (36). The gross features of this transition are well
reproduced by the interpolation formula

RA=N�z; xA;p �
�A��0�xA�
A�0�xA

�
p2

p2 � z2hQ2
A�b; xAi

�
z2p2

hQ2
A�b; xAi

� log
hQ2

A�b; xAi

m2
Q

�
(55)

applicable for p2 & hQ2
A�b; xAi.

D. The Cronin effect: hard quark jets, p2 * Q2
A�b; xA

1. Open charm from the direct and resolved gluon
interactions

The above k?-factorization formulas are exact and can
be directly applied to the calculation of the jet spectra. In
order to make a contact with the more familiar treatment of
photoproduction of jets, here we present the LLp2 decom-
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position of the jet spectra into the direct and resolved
interactions of the incident parton a. Such a decomposition
will make the origin of the Cronin effect more obvious,
although in the practical calculations there is no need to
resort to the LLp2 approximation.

For hard jets we can use the large-p approximation (B6)
of Appendix B. Then the hard single-jet spectrum for the
free-nucleon target takes the form

d�N�g
� ! Q �Q

dzd2p
�
TF'S�p2�z2 � �1� z2�

�22

�
Z
d2��2f�xA;� �

�
z2

p2

�
�1� z2

�p� �2

�
�

1

�p� z�2
; (56)

whereas for the heavy nuclear target

d�A�g
� !Q �Q

dzd2pd2b
�

2TF'S�p
2�z2 ��1� z2�

�22

�
Z
d2�1d2�2*�b; xA;�1*�b; xA;�2

�
�z�1 ��1� z�2�

2

�p��2
2�p� z�1 � z�2

2 : (57)

For the sake of brevity here we suppressed the contribution
from the linear term / Sabs�b in (31).

In the spirit of LLp2 one can disentangle two distinct
sources of the transverse momentum of the quark jet. In the
first case the pQCD subprocess can be viewed as the
large-p direct (unresolved) boson-gluon fusion g�g!
Q �Q where the exchanged gluon g has a small transverse
momentum j�j & jpj; the large p flows in the t channel of
the pQCD subprocess g�g! Q �Q. Such a contribution can
be evaluated as
d�N�g� ! Q �Q

dzd2p

��������dir
�
TF'S�p

2�z2 � �1� z2�2

�p22

Z p2

d2��2f�xA;�

�
TF'S�p2�z2 � �1� z2�2

�p22
�
42'S�p2

Nc
� G�xA;p

2

�
2�z2 � �1� z2�

p2 �
42'S�p2

Nc
�
dQ�z;p

dp2 �G�xA;p
2: (58)
First, one recovers the familiar collinear factorization pro-
portionality to the target gluon density G�xA;p2. Second,
one readily identifies the unintegrated density of large-p
quarks in the gluon,

dQ�z;p

dp2
�
TF'S�p

2�z2 � �1� z2�

2p2 : (59)

One can say that the direct process probes the transverse
momentum distribution of quarks in the beam gluon g�.
The second contribution corresponds to the t-channel
quark being close to the mass shell, �p� �2 �m2

Q. In this
case the large transverse momentum p of the quark jet
comes from the large transverse momentum of the ex-
changed gluon, � � �p, in close similarity to the pomeron
splitting mechanism for production of hard diffractive
dijets [47]. It also can be viewed as a jet from the resolved
gluon interactions. All the target information is encoded in
the unintegrated f�xA;� for a free nucleon or *�b; xA;p
-12
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for a nucleus, and the process itself looks as the fusion
Qg! Q0. One must be careful with the fusion reinterpre-
tation as the resolved contribution is only a part of the more
generic g�g! Q �Q and singling it out only makes a unique
sense to the LLp2 approximation.

The case of finite 0< z< 1 is a bit more involved and
will be considered in more detail elsewhere. The two poles
in (56), at �p� z�2 � 0 and �p� �2 � 0, are well sepa-
rated. At z! 1 the two poles merge but the residue van-
ishes / �1� z2. Here below for the sake of illustration we
focus on slow quark production, z� 1. For the massive
quarks upon the azimuthal averaging

1

�p� �2 �m2
Q

� ���! 1���������������������������������������������������������
�p2 � �2 �m2

Q
2 � 4p2m2

Q

q

���! 1

jp2 � �2j � 12
; (60)

where the infrared regulator of the d�2 integration can be
taken as 14 � p2m2

Q. The corresponding contribution to
the quark-jet cross section for the free-nucleon target can
be evaluated as

d�N�g� ! Q �Q

dzd2p

��������res
�
TF'S�p2

�22
f�xA;p log

p2

m2
Q

�
2

p2 �
42'S�p

2

Nc
�
dG�xA;p

2

dp2

�Q�z� 1;p: (61)

The emerging logarithm times the splitting function can be
identified with the integrated quark structure function
Q�z� 1;p2 of the beam gluon g� probed by the ex-
changed gluon g of virtualityQ2

g � p2. The resolved gluon
mechanism probes the transverse momentum distribution
of gluons in the target.

In the more general case one must take the quark density
Q�xB;p2 where xB is the fraction of the lightcone mo-
mentum of the beam carried by the quark Q. Combining
together (58) and (61) we find the spectrum of hard quark
jets which is proportional to�

dQ�xB;p
2

dp2 G�xA;p2 �Q�xB;p2
dG�xA;p

2

dp2

�

�
d

dp2 �Q�xB;p
2G�xA;p

2�; (62)

which restores the beam-target symmetry. A similar obser-
vation has been made in [26]. The last form shows that, in
the general case, both mechanisms are of comparable
importance. It also demonstrates the nonlocality properties
of the �bP �bP vertex in the Kancheli-Mueller diagram of
Fig. 5(d). The derivation of the nuclear counterparts of (58)
and (61) for z� 1 is straightforward and need not be
repeated here. We proceed directly to the derivation of
the Cronin effect.
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2. Antishadowing property of collective nuclear gluon
density as an origin of the Cronin effect

For a more accurate isolation of the Cronin effect for
hard jets consider the nuclear excess cross section

d��A
d2b

�
d�A
d2b

�
1

2
T�bd�N: (63)

Again we start with z� 1. Suppressing common factors
and making use of (60) we need to evaluate

d��A
dzd2pdb

/
Z
d2�

�2

jp2 � �2j � 12

�
*�b; xA;�

�
1

2
T�bf�xA;�

�
: (64)

A priori the sign of this quantity is not obvious because the
function �*A�b; xA;� � *�b; xA;� �

1
2T�bf�xA;� is

negative valued for �2 & Q2
A�xA; b and positive valued

in the antishadowing region described by Eq. (57). We
decompose �2=�jp2 � �2j � 12 as follows:

�2

jp2 � �2j � 12
� 3�p2 � �2 �

�2

p2 � 3��2 � p2

� K�p2;�2: (65)

Here the first term isolates the direct boson-fusion contri-
bution, whereas the collinear quark-pole contribution is
contained entirely inK�p2;�2 which can readily be shown
to be a positive-valued function which vanishes ��4 for
�2 � p2 and �1=�2 for �2 � p2.

The shadowing effect from the negative-valued
�*A�b; xA;� at small p2 & Q2

A�b; xA is concentrated in
the contribution from the first term in (65) which by virtue
of the sum rule (41) can be represented as

1

p2

Z p2

0
d�2�2�*A�b;xA;���

1

p2

�
Z 1

p2
d�2�2�*A�b;xA;�:

(66)

Consequently, the nuclear excess cross section is entirely
calculable in terms of gluon densities in the hard region of
�2 * p2:

p 2 d��A
dzd2pdb

/ �
1

p2

Z 1

p2
d�2�2�*A�b; xA;�

�
Z 1

p2
d�2�*A�b; xA;� �

1



�
Z
d2�K�p2;�2�*A�b; xA;�: (67)

Now notice that in this hard region �*A�b; xA;� /
1=��23 [see Eq. (38)] and all integrals in (67) are well
converging ones. The collinear quark-pole contribution can
be evaluated as it was done in (61), factoring out
-13
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p2�*A�b;p, so that to logarithmic accuracy

p 2 d��A
dzd2pdb

/ �*A�b;p
�
�1�

1

2
� log

p2

m2
Q

�
: (68)

Following the derivation of Eq. (61) we can associate
log�p2=m2

Q with Q�z� 1;p and to LLp2 accuracy

d��A
dzd2pdb

�
d�N
dzd2p

��������res
�T�b �

�
fA�b; xA;p

2

f�xA;p
2

� 1
�

�
d�N
dzd2p

��������res
�T�b�HT�b; xA;p: (69)

The result for the resolved interactions does not depend
on the projectile parton a,

�RA=N�z� 1; xA;p � 1�res � �HT�b; xA;p; (70)

while the dilution of the Cronin effect by the contribution
from direct interactions to the free nucleon is process
dependent:

RA=N�z� 1;xA;p� 1

�
d�N�res

d�N�res�d�N�dir
� �RA=N�z� 1;xA;p� 1�res:

(71)

Hereafter we focus on the projectile independent antisha-
dowing for resolved interaction and suppress the subscript
‘‘res.’’ For heavy nuclei

Z
d2bT2�b �

9A2

8R2
A

(72)

and we obtain our final estimate for the antishadowing
Cronin effect at large-p2

�Qg�z� 1; xA;p � RA=N�z� 1; xA;p � 1

�
9�2

4Nc
�
'S�p2 � G�xA;p2

p2 �
A

R2
A

: (73)

Here we adopted the same subscript Qg as in the familiar
splitting functions.

First, of the two components the direct g�g fusion would
have given nuclear shadowing [see the first line in
Eq. (67)]; the antishadowing nuclear excess cross section
is a feature of the resolved gluon interactions. Second, the
fundamental point is that for hard jets the nuclear excess
cross section follows directly from the nuclear antishadow-
ing component �HT�b; xA;p of the collective nuclear
gluon density [12,13]. Third, the antishadowing rises
with the nuclear mass number, RA=N�z; xA;p � 1 / A1=3.
Fourth, the antishadowing nuclear excess is a special qua-
dratic functional of the gluon density in the proton—a
product of the integrated and unintegrated gluon densities.
Finally, for hard jets the antishadowing Cronin effect van-
014023
ishes / 1=p2. Whereas the antishadowing for hard jets,
RA=N�z; xA;p> 1, has been discussed by many authors
under model assumptions and specific parametrizations for
the dipole cross section/unintegrated glue (e.g., [24–
26,33] and references therein), the above reported model-
independent derivation, and identification of the source, of
the antishadowing Cronin effect are new results.

3. Variations of the Cronin effect from slow to leading
charm

The convolution representation (35) makes it obvious
that the above findings on the Cronin effect are directly
applicable to the opposite limiting case of z! 1 as well.
We recall that the free-nucleon spectra for z! 1 and z�
1 are identical. The smearing of the decreasing spectrum
(34) obviously does enhance the antishadowing effect at
large p which can readily be seen as follows. The p
dependence of the spectra (58) and (61) is driven by the
factor 1=�p22 and the enhancement of the Cronin effect
will for the most part be due to the smearing of 1=��p�
�2�2 in (35). The large-p expansion

1

��p� �2�2
)

1

�p22

�
1� 4

�2

p2

�
; (74)

in which the azimuthal averaging is understood, gives an
enhancement of RA=N�z� 1; xA;p by the extra factor

!A=N�p �
Z
d2�*�b; xA;�

�
1� 4

�2

p2

�

� 1� 2
'S�p

2G�xA;p
2

'S�Q2
AG�xA;Q

2
A

�
Q2
A�b; xA

p2

� 1� �HT�b; xA;p; (75)

cf. Eq. (38) for � � 2. Consequently, at z! 1 the anti-
shadowing Cronin effect will be two times stronger than
that at z� 1,

�Qg�z! 1; xA;p � RA=N�z� 1; xA;p � !A=N�p � 1

� 2�Qg�z� 1; xA;p; (76)

which nicely correlates with the stronger nuclear shadow-
ing at small p. The same correlation is obvious from the
sum rule which relates the p-integrated nuclear cross sec-
tions for z! 1 and z� 1,

d�A�g� ! Q �Q

dzd2b

��������z!1
�
d�A�g� ! Q �Q

dzd2b

��������z�1
; (77)

which readily follows from the convolution representation
(35).

4. Numerical estimates for the Cronin effect

The antishadowing properties of the collective nuclear
gluon density have been studied [12,13] in connection with
the A dependence of coherent diffractive dijet production.
-14
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FIG. 9 (color online). The antishadowing Cronin effect in jet
production off a heavy nucleus at x � 0:001 as a function of the
transverse momentum p of the jet parton for several multi-
plicities of overlapping nucleons j in the Lorentz-contracted
nucleus. The production of slow quarks off nucleus with mass
number A � 200 corresponds to j � 4; the production of slow
gluons off nucleus with mass number A � 200 corresponds to
j � 8.
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The starting point was the unintegrated gluon density in the
proton, f�x;�, adjusted to reproduce the ��N interactions
from real photoproduction, Q2 � 0, to DIS at large Q2

[14]. The quantity of interest is the antishadowing higher-
twist effect in the collective nuclear gluon density for j
overlapping nucleons which is given by the j-fold convo-
lution f�j�xA;�. This density per overlapping nucleon
was represented in Ref. [12] as

fA�b; xA;� �
f�j�xA;�

j�j�1
0

� f�xA;��1� �j� 1�j�xA;��: (78)

With reference to the Poissonian form of the multiple
scattering expansion (40), in Figs. 8 and 9 we show
�Cronin�xA;� � j � �j�xA;� for two values of xA.

These results for �Cronin�xA;� can be used to evaluate
��xA;p � RA=N�xA;p � 1 for different jet production
subprocesses and for different nuclei:

�Qg�z� 1; xA;p � �Cronin�xA;�jj�hji: (79)

For the 196Pt nucleus, which is not any different from
gold— the favorite of RHIC, the average value of j in the
expansion (40) is hji � 4. At xA � 0:01 the peak value of
the antishadowing effect, �Qg�z� 1; xA;p � 0:7, will be
reached at p � �2� 2:5 GeV. It is important that
although the numerical studies in [2] suggest not so large
Q2
A & 1 GeV2, the peak of the antishadowing effect is

placed at transverse momenta p which are sufficiently
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FIG. 8 (color online). The antishadowing Cronin effect in jet
production off a heavy nucleus at x � 0:01 as a function of the
transverse momentum p of the jet parton for several multi-
plicities of overlapping nucleons j in the Lorentz-contracted
nucleus. The production of slow quarks off nucleus with mass
number A � 200 corresponds to j � 4; the production of slow
gluons off nucleus with mass number A � 200 corresponds to
j � 8.
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large to justify the pQCD evaluations. For quark jets with
z! 1 the antishadowing effect will be two times stronger.
The relationship between �Cronin�xA;� and �gg�z; xA;p,
�gq�z; xA;p for gluon jets will be discussed in Secs. VII B
and VIII B, respectively.

The xA dependence of the Cronin effect is noteworthy.
At xA � 0:001 the peak value of the antishadowing effect,
�Qg�z� 1; xA;p � 0:25, will be reached at p �

�3� 3:5 GeV. This x dependence of the position and
magnitude of the peak value of the antishadowing effect
is driven by three effects. The first one is the x dependence
of Q2

A�x;b which is similar to that of the real photoab-
sorption cross section and is rather weak, �x�0:1. The
second source is the variation of the �2 dependence of
f�x;� as x decreases. Indeed, the phenomenological stud-
ies of Ref. [14] show that while the exponent � � 2 is
appropriate for xA � 0:01, at xA � 0:001 the �2 depen-
dence of the unintegrated gluon density in the region of �2

of interest corresponds to � � 1:7 which substantially
lowers the magnitude, and shifts to larger �2 the onset of
the antishadowing regime (38). Finally, because of the shift
to larger p2 with decreasing x the peak value of �Cronin�p
is suppressed by the 1=p2 dependence of the antishadow-
ing contribution; see Eq. (73). This explains the numerical
findings of Ref. [12].

We recall that the shown numerical results are only for
the resolved interactions; any comparison with the experi-
mental data requires an application of the dilution factor
(71). Also, the momentum of the observed hadrons is only
a fraction of the jet momentum that places the Cronin peak
for hadrons at smaller values of p than for jets.
-15
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VII. NONLINEAR k? FACTORIZATION FOR
PRODUCTION OF GLUONS OFF NUCLEI

A. The gluon spectra for the free-nucleon and nuclear
targets

The excitation of the gluon g! gg offers a still more
remarkable example of breaking of linear k? factorization.
In this case a � b � c � g and we take the shorthand
notations z � zg and p � pg. The three-parton cross sec-
tion for the generic three-gluon state equals

�ggg��; r �
CA
2CF

��q �q�x;� � �q �q�x;�� r � �q �q�x; r�:

(80)
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The dipole cross section structure in Eq. (16) takes the
form

CA
2CF

f�q �q�x; r � �q �q�x; zr0 � �q �q�x; r� zr0

� �q �q�x; r0 � �q �q�x; zr � �q �q�x; r0 � zr

� 2�q �q�x; r� r0 � 2�q �q�x; z�r� r0�g: (81)
Repeating the analysis of Secs. III and IV, for the free-
nucleon case one readily finds the k?-factorization repre-
sentation for the gluon-jet cross section,
d�N�g
� ! gg

dzd2p
�

1

2�22
Z
d2�f�xA;�

CA
2CF

fj��z;p ���z;p� z�j2 � j��z;p� � ���z;p� z�j2

� j��z;p ���z;p� �j2g: (82)

In agreement with the generic arguments of Sec. IV, the Abelian limit is recovered for z� 1:

d�N�g� ! gg

dzd2p

��������z�1
�

1

2�22
Z
d2�f�xA;�

CA
CF

� j��z;p ���z;p� �j2: (83)

The same Abelian limit is recovered also for z! 1, but this equality of two limiting cases will again be upset for nuclear
targets.

Following the discussion in Sec. VI D, one can readily decompose the spectrum (83) into the contributions from the
direct and resolved gluon interactions; we shall skip those details here.

The excitation of gluons into gluons, g! gg, is an exceptional case for which exact formulas for a nuclear target are
derived without invoking the large-Nc approximation. Our result for the nuclear gluon-jet spectrum reads

�22d�A�g� ! gg

dzd2pd2b
� �S�gabs�b�

2 �
Z
d2�*g�b; xA;�fj��z;p ���z;p� z�j2 � j��z;p� � ���z;p� z�j2

� j��z;p ���z;p� �j2g � S�gabs�b
Z
d2�1d2�2*g�b; xA;�1*g�b; xA;�2

� fj��z;p� �1 ���z;p� z�2j
2 � j��z;p� �1 � �2 ���z;p� z�2j

2

� j��z;p� �1 ���z;p� z��1 � �2�j
2g �

Z
d2�1d2�2d2�3*g�b; xA;�1

�*g�b; xA;�2*g�b; xA;�3j��z;p� �1 � �3 ���z;p� z��2 � �3�j
2: (84)
Here *g�b; xA;� is the collective nuclear glue which now
must be evaluated from

�A

�
b;
CA
2CF

�q �q�xA;r
�
�
Z
d2�*g�b;xA;��1�exp�i�r�;

S�gabs�b� exp
�
�
1

2
�
CA
2CF

��0�xAT�b
�
:

(85)

in which the non-Abelian factor CA=2CF enters manifestly.
The emergence of a new collective gluon density
*g�b; xA;� � *�b; xA;� illustrates nicely the point
made in [2] that the collective nuclear glue must be de-
scribed by a density matrix in color space rather than by a
universal scalar function. Correspondingly, the nuclear
pomeron P
g
A associated with *g�b; xA;� is different

from PA defined for charm production off nuclei in
Sec. V. The saturation scale for the gluon density
*g�b; xA;� differs from Q2

A�b; xA by the factor
CA=2CF. Also, for hard gluons

f�gA �b; xA;� � f�xA;� �
CA
2CF

�

�
1�

CA
2CF

�HT�b; xA;�
�
:

(86)

In close similarity to open-charm production, the first
term in Eq. (84), which satisfies linear k? factorization (82)
subject to the substitution of the free-nucleon f�xA;� by
the collective nuclear glue *g�b; xA;�, is suppressed by

the square of the nuclear absorption factor, �S�gabs�b�
2. The
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second term, which is quadratic in the nuclear gluon den-
sity *g�b; xA;�, is suppressed by S�gabs�b. What survives
for strongly absorbing nuclei is the third term which is a
cubic functional of collective nuclear glue *g�b; xA;�,
and the pattern of k? factorization for single-gluon-jet
production changes from the conventional linear one for
peripheral impact parameters to the cubic one for small
impact parameters. The three components of the gluon
spectrum can be associated with the three Kancheli-
Mueller diagrams of Fig. 7. A comparison of (82) and
(84) shows that the nuclear cross section cannot be repre-
sented as an expansion in multiple convolutions of the
014023
free-nucleon cross section as was suggested in [28]. The z
dependence of the integrands of the quadratic and cubic
terms is manifestly different from that of the free-nucleon
cross section. The difference between the free-nucleon and
nuclear gluon densities entails different z distributions for
free-nucleon and nuclear targets even in the linear term.
Consequently, all three components of the nuclear spec-
trum will exhibit the p-dependent LPM effect.

The cubic nonlinearity in terms of the collective gluon
density is a pertinent feature of the radiation of gluons with
finite z. Some interesting simplifications are found in the
limiting case of z� 1. In this case, in the quadratic and
cubic terms one will encounter the quantities of the from
Z
d2�1d2�2*g�b; xA;�1*g�b; xA;�2j��z;p� �1 � �2 ���z;pj2 �

Z
d2�*�2

g �b; xA;�j��z;p� � ���z;pj2:

(87)

In terms of the convolution *�2
g �b; xA;� the resulting single-jet spectrum can be cast in the form

�22d�A�g
� ! gg

dzd2pd2b

��������z�1
�

Z
d2��2S�gabs�b*g�b; xA;� �*�2

g �b; xA;�� � j��z;p� � ���z;pj2; (88)
and the triple-Pg
A exchange Kancheli-Mueller diagram of

Fig. 7(c) simplifies to the double-Pg
A exchange diagram of

Fig. 7(b). Finally, we observe that

*gg�b; xA;� � 2S�gabs�b*g�b; xA;� �*�2
g �b; xA;�

(89)

is precisely still another collective nuclear gluon density
defined in terms of the gluon-gluon dipole cross section:

�A

�
b;
CA
CF

�q �q�x; r
�
�

Z
d2�*gg�b; x;��1� exp�i�r�:

(90)

To this end, Eq. (88) is analogous to the linear k? factori-
zation for the free-nucleon case [see (83)] but the free-
nucleon glue f�xA;� is substituted by *gg�b; xA;�,
which is still a nonlinear—quadratic—functional of the
collective nuclear glue *g�b; xA;�, and with which one
must associate still another nuclear pomeron P

gg
A . In terms

of *gg�b; xA;� the transverse momentum spectrum of
gluon jets with z� 1 satisfies the linear k? factorization
and is described by the Kancheli-Mueller diagram of
Fig. 7(a) with P ! P

gg
A . Our final result for z� 1 coin-

cides in its color-dipole form with the one cited in [20] (see
also a discussion in [2]); all the results for finite z are new.

B. The Cronin effect for gluons

The implications of (90) for the Cronin effect for gluon
jets are straightforward. The principal change is that for
soft gluons the collective nuclear gluon density
*gg�b; xA;� is obtained from *�b; xA;� by the substitu-
tion
Q2
A�b; xA ���! Q2

A;gg�b; xA �
CA
CF

Q2
A�b; xA; (91)

so that the plateau in *gg�b; xA;� will be broader than in
*�b; xA;� by the factor CA=CF. For hard gluons

f�ggA �b; xA;� � f�xA;� �
CA
CF

�

�
1�

CA
CF

�HT�b; xA;�2

�
:

(92)

Nuclear shadowing for p2 & Q2
A;gg�b; xA will be stronger

than for the quark jets:

RgA=N�z; xA;p �
�A�

CA
CF
�0�xA�

A�0�xA
�
CF
CA

RQA=N�z; xA;p:

(93)

Evidently the antishadowing effect �gg�z; xA;p> 0 at
p2 * Q2

A;gg�b; xA will persist for gluon jets, too.
Following the analysis of Sec. VI D, one would readily
find that the nuclear antishadowing effect will be domi-
nated by the resolved gluon interactions, and

�gg�z; xA;p �
CA
CF

�Qg�z; xA;p: (94)

In view of the larger saturation scale (91) the position of
the peak value of the antishadowing effect for gluon
jets, �gg�z; xA;p, will be placed at higher p2 than that
for quark jets. For semiquantitative estimates we again
invoke the numerical results for �Cronin�xA;p shown in
Fig. 4 of Ref. [12]. For heavy nuclei like gold or platinum
hjig �

CA
CF

hji � 9. At xA � 0:01 quite a large peak value
�gg�z; xA;p � 1:3 will be reached at p � 3 GeV. At
-17
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xA � 0:001 the peak value �gg�z; xA;p � 0:45 will be
reached at p � 5 GeV. Evidently, the fragmentation of
jets will shift the peak position for observed hadrons to
lower values of p. The antishadowing properties of the
spectrum of leading gluons with z! 1 are readily
derived following the discussion of quark jets in
Sec. VI D. The full treatment of virtual corrections to the
production of leading gluons from the lower-order pQCD
processes is beyond the scope of the present communica-
tion; here we only notice that they are arguably small if the
transverse momentum p of the observed leading gluon is
much larger than the transverse momentum of the beam
gluon g�. The leading gluon version of Eq. (84) demon-
strates how the pertinent nonlinearity at z! 1 changes the
antishadowing Cronin effect compared to the above dis-
cussed case of z� 1. Define first the two special nuclear
spectra

�22d��g1
A

dzd2pd2b
�
Z
d2�*g�b;xA;�j��z;p���z;p��j2;

(95)

�22d��g2
A

dzd2pd2b
�

Z
d2�1d2�2*g�b; xA;�1*g�b; xA;�2

� j��z;p� �1 ���z;p� �2j
2; (96)

in terms of which

d�A�g
� ! gg

dzd2pd2b

��������z!1
� 2S2abs�b

d��1
A �g� ! gg

dzd2pd2b

� 2Sabs�b
�d��g1

A �*g�p

dzd2pd2b

�
�d��g2

A �*g�p

dzd2pd2b
: (97)

The small and large-p properties of the first two terms in
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(97) have already been studied in Sec. VI. After averaging
over the azimuthal angles of �1;2,

hhj��z;p��1���z;p��2j
2ii

�


1

�p��1
2

�
�


1

�p��2
2

�
�

2

p23�p
2��2

13�p
2��2

2

���! 2

jp2��2
1j�1

2�
2

p23�p
2��2

13�p
2��2

2; (98)

where we made a provision for the �1 $ �2 symmetry of
the integrand. At small p the last term in (98) can safely be
neglected and the small-p behavior of d��g2 will be
similar to that of the spectrum of leading quarks (52)
subject to swapping the g! Q �Q splitting function for
the g! gg one as described in Appendix B. For the
derivation of large-p behavior a more convenient repre-
sentation is

hhj��z;p� �1 ���z;p� �2j
2ii

�
2�2

1

�p22
3�p2 � �2

1 �
2

�2
1

3��2
1 � p2 � ~K�p2;�2

1

�
2

p2 3�p
2 � �2

13��
2
2 � p2: (99)

The logarithmic pole contribution is absorbed in ~K�p2;�2
1

which has the same properties as K�p2;�2
1 in the expan-

sion (65). Then the discussion of nuclear shadowing/anti-
shadowing properties of these three contributions will be
entirely identical to that for the quark spectrum in
Sec. VI D. Following the common wisdom the logarithm
log�p2=62

G in the resolved gluon contribution, where 6G

is the appropriate infrared cutoff for gluons, must be asso-
ciated with the integrated density of gluons in the beam
gluon, GB�z;p

2. The new item in the expansion (99) is the
last term; one can readily verify that its contribution is
short of the logp2 and can be neglected compared to that
from ~K�p2;�2

1. Then, to the leading logp2 approximation,
d��g2
A

dzd2pdb
�
d�N�g� ! gg

dzd2p

��������res
�T�b �

2CF
CA

�
f�gA �b; xA;p2

f�xA;p2
�
d�N�g� ! gg

dzd2p

��������res
�T�b

�
1�

CA
2CF

�HT�b; xA;p
�
:

(100)
The dominant contribution to (97) comes from the last,
nonshadowed term in which the spectrum (100) is convo-
luted with *g�b; xA; .. The convolution effect has been
derived in Sec. VI D [see Eq. (69)]; the generalization to
our case gives the extra factor

!�g
A=N�p � 1�

CA
2CF

�HT�b; xA;p (101)

and
d��A�g�!gg

dzd2pd2b

��������z!1
�
d�N�g�!gg

dzd2p

��������res
�T�b

�
CA
CF

�HT�b;xA;p: (102)

A remarkable finding is that for this component of the
gluon spectrum the antishadowing Cronin effect does not
change from z� 1 to z! 1. One can attribute that to the
observation that although the nonlinear nuclear k? facto-
rization in the two limits is of quite distinct form, the
nonlinearity in both cases is the same—a quadratic one.
-18
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VIII. GLUON RADIATION OFF QUARKS AND THE
SPECTRUM OF QUARKS FROM q� ! gq

A. Linear k? factorization for gluon radiation off free
nucleons

For completeness we show here the spectrum of gluons
radiated from a fast quark that propagated the nucleus, as
well as the spectrum of quarks after having shaken off their
radiation cloud.
014023
Here a � q��b, b � g�bg, c � q�bq, where we
also indicated the corresponding impact parameters. The
lightcone momentum fraction carried by the gluon is zg.
Because the transverse momentum distributions of pro-
duced gluons and scattered quarks are different, for the
sake of clarity we denote them by pg and pq, respectively.

The relevant dipole distances are
b g � bq � r; b0 � bq � zgr0; bg � b0g � r� r0; b� b0 � zg�r� r0: (103)

Again we start from the free-nucleon case. The differential cross section is written as

2�22d�N�q� ! g�pgq�

dzgd
2pg

�
Z
d2rd2r0 exp�ipg�r� r0���zg; r�

��zg; r
0f�3�r; zgr

0 � �3�r
0; zgr

� �gg�r� r0 � �q �q�zg�r� r0�g; (104)

and, again, now in momentum space:

2�22d�N�q� ! g�pgq�

dzgd
2pg

�
Z
d2�f�xA;�

�
CA
2CF

�j��zg;pg ���zg;pg � �j2 � j��zg;pg � � ���zg;pg � zg�j
2

� j��zg;pg ���zg;pg � zg�j
2� � j��zg;pg ���zg;pg � zg�j

2

�
; (105)

which of course is nothing else but the QCD-’Bethe-Heitler’–Bremsstrahlung spectrum [8] albeit in a not so familiar
representation in terms of lightcone wave functions.

B. Nuclear case: nonlinear k? factorization for gluon radiation

We quote our result in the momentum space form:

�22d�A�q
�!g�pgq�

dzgd2pgd2b
�Sabs�b

Z
d2�*�b;xA;�fj��zg;pg���zg;pg��j2�j��zg;pg�����zg;pg�zg�j2g

�
Z
d2�1d2�2*�b;xA;�1*�b;xA;�2j��zg;pg�zg�1���zg;pg��1��2j

2: (106)

Note the by-now familiar decomposition into the absorbed linear and nonlinear—quadratic— terms.
Evidently, the spectrum of soft gluons does not depend on the spin of the beam parton. Indeed, for soft gluons, zg � 1,

the result (106) simplifies to

�22d�A�q
� ! g�pgq�

dzgd2pgd2b

��������zg�1
�

Z
d2�f2Sabs�b*�b; xA;� �*�2�b; xA;�gj��zg;pg ���zg;pg � �j2

�
Z
d2�*gg�b; xA;�j��zg;pg ���zg;pg � �j2; (107)
which is a precise counterpart of Eq. (88) for the g� ! gg
breakup. In the large-Nc approximation *g�b; xA;� �
*�b; xA;� and �* �*�b; xA;� � *gg�b; xA;�.

Consequently, the antishadowing Cronin effect for
slow gluons from q� ! qg will be identical to that from
g� ! gg,

�gq�zg � 1; xA;pg � �gg�zg � 1; xA;pg

� 2�Qg�zQ � 1; xA;pg: (108)

For the numerical estimates for pAu collisions one must
take �Cronin�xA;pg for j � 8 in Figs. 8 and 9. On the other
hand a comparison of Eqs. (31) and (106) shows that the
spectrum of leading gluons with zg ! 1 from q� ! qgwill
have precisely the same convolution form (35) as the
spectrum of leading quarks from g� ! Q �Q which in
view of the findings of Secs. VI D and VII B entails

�gq�zg ! 1; xA;pg � �Qg�zQ ! 1; xA;pg

� �gg�zg ! 1; xA;pg: (109)

This finding suggests that the equality of the antishadowing
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Cronin effect for leading and soft gluons does not depend
on the beam parton, be it a quark or a gluon.

C. pg spectrum of quarks from the breakup q� ! gq on
a free-nucleon

We now turn to our last application, the spectrum of
quarks from the excitation of the qg-Fock state of a fast
014023
quark. In the practically interesting case of forward quark
jets in pA collisions at RHIC the beam quarks q� have
small transverse momentum and the production of high-p
quarks is not affected by virtual radiative corrections; see
the discussion in Sec. VII B. Without further details we
quote again first the dipole representation:
2�22d�N�q
� ! q�pqg�

dzqd2pq
�

Z
d2rd2r0��zq; r���zq; r0 exp�ipq�r� r0�f�3�r; r� zqr0 � �3�r

0; r0 � zqr

� �q �q�r� r0 � �q �q�zq�r� r0�g; (110)

while the linear k?-factorization result reads

2�22d�N�q� ! q�pqg�

dzqd
2pq

�
Z
d2�f�xA;�

�
CA
2CF

�j��zq;pq ���zq;pq � �j2 � j��zq;pq ���zq;pq � zq�j
2

� j��zq;pq � � ���zq;pq � zq�j2� � j��zq;pq � � ���zq;pq � zq�j2
�
:

(111)

A closer comparison of the p spectra of gluons and quarks from g� ! gq reveals interesting differences which hold in both
the non-Abelian and Abelian, CA ! 0, cases. Evidently, in the p-integrated spectra we would obtain the longitudinal
spectrum of quarks simply by swapping zg ! 1� zg � zq in the formula for the gluon spectrum and vice versa. The
similar procedure for the p spectra, as advocated in [21], would be entirely wrong.

D. Quark spectrum from the breakup of the qg-Fock state of a fast quark on a nuclear target

Routine application of the above described technique yields

�22d�A�q� ! q�pqg�

dzqd2pqd2b
� Sabs�b

Z
d2�*�b; xA;�fj��zq;pq ���zq;pq � �j2 � j��zq;pq ���zq;pq � zq�j

2g

�
Z
d2�1d2�2*�b; xA;�1*�b; xA;�2j��zq;pq � �1 ���zq;pq � zq�2j

2: (112)

As usual, the absorbed linear k?-factorization term is the counterpart of the large-Nc free-nucleon spectrum (111). Note
also that the pq spectrum of slow quark jets from q� ! qg coincides with the spectrum (34) form g� ! Q �Q and the Cronin
effect for the two cases will be identical:

�qq�zq � 1; xA;pq � �Qg�zQ � 1; xA;pq: (113)

For the numerical estimates for pAu collisions one must take �Cronin�xA;pq for j � 4 in Figs. 8 and 9.
The spectrum of leading-quark jets, zq ! 1, equals

�22d�A�q
� ! q�pqg�

dzqd2pqd2b

��������zq!1
� 2Sabs�b

Z
d2�*�b; xA;�j��zq;pq ���zq;pq � �j2

�
Z
d2�1d

2�2*�b; xA;�1*�b; xA;�2j��zq;pq � �1 ���zq;pq � �2j
2; (114)
where the second term is similar to d��2g of Eq. (96)
which emerged in the discussion of the spectrum of leading
gluons from g� ! gg. Its antishadowing properties have
been studied in Sec. VII B and entail

�qq�zq ! 1; xA;pq � �qq�zq � 1; xA;pq: (115)

The antishadowing effect for leading quarks from q! qg
is one half of that for leading gluons from g! gg.
The above derived zq distribution quantifies the energy
loss for the radiation of gluons, i.e., gives a solution of the
LPM problem for finite transverse momentum p of the
observed quark jet. The case of quark jets is important for
its relevance to the large pseudorapidity, high-p hadron
production in deuteron-gold collisions at RHIC. The nu-
merical studies of the LPM effect contribution to nuclear
quenching of forward high-p hadrons observed experimen-
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tally by BRAHMS Collaboration [18] will be reported
elsewhere.

IX. DISCUSSION OF THE RESULTS

Extending the technique developed earlier [2] we eluci-
dated the pattern of k?-factorization breaking for the
single-gluon and quark-jet production from g� ! Q �Q,
g� ! gg, q� ! qg breakup on nuclear targets. In all the
cases we derived an explicit nonlinear, from quadratic to
cubic, k?-factorization representation for the inclusive
single-jet transverse and longitudinal momentum spectra
in terms of the collective nuclear unintegrated gluon den-
sity. The results are simple and elegant and have not been
presented in this form in the existing literature on the
subject. They also give a solution of the LPM problem
for finite transverse momentum p of the observed second-
ary quark and gluon jet. One of the evident future
applications will be to nuclear quenching of forward
high-p hadrons observed experimentally by BRAHMS
Collaboration [18].

The unintegrated collective nuclear gluon density which
defines the nuclear observables is shown to change from
the quark to gluon observables even within the same pro-
cess which exemplifies the point that an ultrarelativistic
nucleus cannot be described by a single-gluon density; the
collective nuclear density must rather be described by a
density matrix in color space [2]. The often used linear
k?-factorization description of particle production off nu-
clei (e.g., [23]; for the recent applications and more refer-
ences see also [24,25,29,30]) is definitely not borne out by
the multiple scattering theory. There is a striking contrast
to the single-quark-jet transverse momentum spectrum
from �� ! q �q breakup on a nucleus for which linear k?
factorization is fulfilled, and our analysis shows that the
linear k? factorization in �� ! q �q is rather an exception
due to the color-singlet nature of the photon by which the
single-jet spectrum accidentally becomes an Abelian prob-
lem [2].

Although the linear k? factorization for hard processes
in nuclei does not exist, for all breakup processes we
identified the Abelian regime in which the transverse mo-
mentum spectra of soft quark and gluon jets with zq;g � 1
take the process-dependent linear k?-factorization form.
Specifically, the production of quark jets is described by
the collective gluon density *�b; xA;� defined for the
triplet-antitriplet color dipole. The production of gluon
jets is described in terms of the collective gluon density
*gg�b; xA;� defined for the octet-octet color dipole. The
color-dipole representation for such a slow gluon limit
coincides with that derived before for the slow gluon
production by Kovchegov and Mueller [20]. The reason
behind the recovery of the Kovchegov-Mueller form for
slow jets is that in this limit the single-parton spectrum
becomes an Abelian problem [2]. Such a form is of limited
practical significance, though. Evidently, the limit of zq �
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1 is irrelevant to the open-charm production; in the gluon-
jet production too the dominant contribution to the ob-
served jet cross section will come from finite z to be
described by our nonlinear k? factorization. The full z
dependence is also mandatory for the evaluation of the
LPM quenching of forward high-p jets. The production of
gluons from g! g1g2 has been discussed also in [22];
their equation for the nuclear spectrum contradicts our
general result (17). The earlier work on q! qg in [21]
starts with the two-parton inclusive spectrum. When com-
pared to our general Eq. (17), in Ref. [21] the coupled-
channel S matrix S�4q �qgg has illegitimately been substituted
by a single-channel Glauber exponential. Despite this in-
consistency, the final color-dipole representation of
Ref. [21] for the single-parton spectrum agrees with ours.
Recently, the production of heavy quarks from the excita-
tion q! q0g, g! Q �Q has been discussed in the color-
dipole framework in Ref. [31]. We have however not been
able to reconcile the results given there with our findings
on the cancellation of spectator interactions. Very recent
works [29,32] start with the reference to the color glass
condensate model, but in actual applications the Glauber-
Gribov multiple scattering theory is used and a quantity
similar to the collective unintegrated glue of [2,12] is
introduced. Although no explicit formulas corresponding
to Eq. (31) for the heavy quark cross section are given,
the authors are aware in part of our criticism [2] of the
applicability of linear k? factorization in the saturation
regime.

Regarding the applicability domain of our formalism the
considered processes correspond to production of parton
pairs with xb;c & xA � 10�2, where xb;c are defined with
respect to the nucleus. In the pA collisions at RHIC this
requires that both partons were produced in the proton
hemisphere. The consistent discussion of higher-order pro-
cesses and of the emerging BFKL evolution of nuclear
spectra remains an open problem. Generally speaking,
one will have to address a situation in which the coherence
of more than two partons over the nucleus is important, and
the question is in how far the rescattering of partons faster/
slower than the measured jet is reabsorbed into the (non)-
linear evolution of the beam/target effective gluon den-
sities. Such evolution effects would perhaps not be featured
too prominently at RHIC energies, where the rapidity span
overlaps well with the applicability region of our approach.
Still such studies will be important to establish the viability
of our approach to higher energies such as LHC. They
would also sharpen our understanding of the similarities
and differences of our color-dipole formalism and the
color glass condensate approach (for recent explorations
of the energy dependence of the Cronin effect for slow
gluon production within those models see, e.g., [24–
27,32–34]).

The most obvious application of the derived nonlinear
nuclear k? factorization is to nuclear effects in the single-
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jet spectrum which are usually referred to as the Cronin
effect. Our derivation unambiguously relates it to the anti-
shadowing property of the collective nuclear gluon density
[2,12]. The Cronin effect was shown to exhibit interesting
variations across the phase space. Based on the numerical
studies of the antishadowing effect in the collective nuclear
gluon density [12] we presented numerical estimates for
the Cronin effect. One feature of these estimates is note-
worthy: The realistic models for the unintegrated gluon
density of the proton [14] suggest a somewhat small value
of the saturation scale, QA � 1 GeV, even for the heaviest
nuclei. Still, the Cronin effect is found to reach its peak
value at jpj � �2� 2:5 GeV, which is well within the
pQCD domain.

To summarize, our analysis establishes nonlinear k?
factorization as a universal feature of hard production off
nuclear targets. The presented formalism can readily be
extended to the nuclear dependence of jet-jet correlations
and nuclear quenching of forward quark jets; the corre-
sponding work is in progress.
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APPENDIX A: THE DERIVATION OF S�n

Here we expose some of the technicalities behind the
derivation of the master equation (10) and the reduction of
the four-parton S matrix to the two-body S matrices in
Eq. (14). The color-dipole properties of excitation ampli-
tudes are elucidated and the calculation of the S matrices
S�n is greatly simplified in the q �q representation of the
gluon interactions. We demonstrate the principal virtues of
this technique on an example of g� ! Q �Q on a free-
nucleon target; for the extension to a nuclear target see
[2]. In the color space the gaQ �Q vertex contains the
SU�Nc generator ta, so that in the quark color space the
contribution of the diagram of Fig. 3(b) is proportional to
S�bbt

aSy�bc, whereas the contribution of the diagram of
Fig. 3(c) is proportional to �tdSda�b. Here Sy�bc de-
scribes the interaction of the antiquark, and Sda�b �
hgdjSg�bjgai describes the transition between the two
gluons in color states a and d. Consequently, the properly
normalized excitation operator is

M a�bb; bc; b �
1������������
CFNc

p �S�bbt
aSy�bc � tdSda�b�

(A1)

where CFNc � Trtata. The above vertex operators ta have
been suppressed in the expansion (6).

Now we note that

Sda�b �
1

TF
Tr�tdS�btaSy�b� (A2)
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and, upon the Fierz transformation,

tdSda�b � S�btaSy�b; (A3)

which leads to a particularly simple form of the excitation
operator:

M a�bb;bc; b �
1������������
CFNc

p �S�bbt
aSy�bc � S�btaSy�b�:

(A4)

Note how Ma�bb; bc; b vanishes if bb � bc � b: in
this limit the Q �Q behaves as a pointlike color-octet state
indistinguishable from the gluon, and its Q �Q structure
cannot be resolved. What enters the integrand of (10) is
Tr�My

a �b0b; b
0
c;b0Ma�bb;bc; b�.

Before proceeding further we notice that the Smatrix for
the color-singlet q �q dipole equals

S2�bb � bc �
1

Nc
Tr�S�bbSy�bc� � 1� �2�B; bb � bc;

(A5)

where r � bb � bc is the relevant dipole size and
�2�B; bb � bc is the corresponding profile function.
Upon the integration over the dipole impact parameter,
B, one finds the color-dipole cross section

�q �q�x; r � 2
Z
d2B�2�B; r: (A6)

The excitation on a free-nucleon target is described to the
single-gluon exchange approximation. In this approxima-
tion

S22�bb � bc � 1� 2�2�B; bb � bc: (A7)

Now we can identify the S�n in the integrand of (10) and
give explicit expressions in terms of �2�B; r. Making use
of

T r�taAtaB �
1

2
�Tr�A � Tr�B �

1

Nc
Tr�AB� (A8)

and applying the unitarity condition (13) wherever appro-
priate one readily finds

S�2�b; b0 �
1

CFNc
Tr�S�b0taSy�b0S�btaSy�b�

� 1�
CA
CF

�2�B; b
0 � b; (A9)

S�3�bb; bc; b0 �
1

CFNc
Tr�S�bbtaSy�bcS�b0taSy�b0�

� 1�
�
CA
2CF

��2�B;b0 � bb � �2�B; b0

� bc� �
1

N2
c � 1

�2�B;bb � bc

�
;

(A10)
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S�3�b0b; b
0
c; b �

1

CFNc
Tr�S�b0bt

aSy�b0cS�btaSy�b�

� 1�
�
CA
2CF

��2�B; b� b0b � �2�B; b

� b0c� �
1

N2
c � 1

�2�B;b0b � b0c

�
:

(A11)

In the S�3 one readily identifies the profile functions of the
q �qg cross section as introduced in [37]. The case of S�4 is
more tricky:

S�4�bb;bc;b0b;b
0
c �

1

CFNc
Tr�S�bbtaSy�bcS�b0ctaSy�b0b�

�
1

N2
c�1

fN2
c�1��2�B;bc�b0c

��2�B;bb�b0b�

�
1

Nc
Tr�S�bbSy�bcS�b0cSy�b0b�g:

(A12)

The last term in (A12) is an operator in the q �q color space
and, in general, S�4 is the coupled-channel operator de-
rived in [2]. In the case of the single-particle particle
spectrum b0c � bc and the straightforward application of
the unitarity condition (13) yields

S�4�b b; bc;b
0
b; bc � S2�bb � b0b � 1� �2�B;bb � b0b:

(A13)

As quoted above the results are for the free-nucleon target;
for the nuclear target one must apply the Glauber-Gribov
exponentiation to the relevant S�n.
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In all the transverse momentum spectra the recurrent
quantity is j��z;p ���z;p� �j2. This quantity for the
incident photon is found in [2,5]. For transverse photons
and flavor f, i.e., for the �� ! Q �Q excitation,

j��z;p ���z;p� �j2 � 2Nce2Q'em

�
�z2 � �1� z2�

�



p

p2 � "2

�
p� �

�p� �2 � "2

�
2

�m2
Q



1

p2 � "2

�
1

�p� �2 � "2

�
2
�
:

(B1)
014023
The second term, / m2
Q, must be kept for heavy quarks

only. The same quantity for the g� ! Q �Q is obtained from
(B1) by the substitution Nce2Q'em ! TF'S�Q2

a and the
substitution in (B2) of the virtuality of the photonQ2 by the
virtuality of the beam gluon Q2

g� . For the general case a!

bc
"2 � zbzcQ2
a � zbm2

c � zcm2
b; (B2)
where Q2
a is the virtuality of parton a and the mass depen-

dent term is important for heavy flavors. Now note that the
factor TF�z2 � �1� z2� which emerges in the first term in
the right-hand side of (B1) is precisely the familiar splitting
function PQg�z. For all other cases j��z;p ���z;p�

�j2 is obtained from that for g� ! Q �Q by the substitution
of PQg�z by the real-emission part of the relevant splitting
function for z < 1 found in all textbooks [1]. Take for
instance the fragmentation of light quarks q! qg. The
j��zq;p ���zq;p� �j2 which enters the spectrum of
quarks must be evaluated with the splitting function

Pqq�zq � CF
1� z2q
�1� zq

: (B3)
The j��zg;p ���zg;p� �j2 which enters the spectrum
of gluons in the same process must be evaluated with

Pgq�zg � CF
1� �1� zg

2

zg
: (B4)
In the fragmentation of gluons g! gg one must take
j��z;p ���z;p� �j2 with the splitting function

Pgg�z � 2CA

�
1� z
z

�
z

1� z
� z�1� z

�
: (B5)
If "2 is negligibly small compared to p2, then one can
use the large-p approximation:



p

p2 �
p� �

�p� �2

�
2
�

�2

p2�p� �2
; (B6)
and it is worth recalling the emerging exact factorization of
longitudinal and transverse momentum dependencies
which is a well-known feature of the high-energy limit.
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