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We show that it is possible to construct �0=� to next-to-leading order (NLO) using partially quenched
chiral perturbation theory (PQChPT) from amplitudes that are computable on the lattice. We demonstrate
that none of the needed amplitudes require 3-momentum on the lattice for either the full theory or the
partially quenched theory; nondegenerate quark masses suffice. Furthermore, we find that the electro-
weak penguin (�I � 3=2 and 1=2) contributions to �0=� in PQChPT can be determined to NLO using
only degenerate (mK � m�) K ! � computations without momentum insertion. Issues pertaining to
power divergent contributions, originating from mixing with lower dimensional operators, are addressed.
Direct calculations of K ! �� at unphysical kinematics are plagued with enhanced finite volume effects
in the (partially) quenched theory, but in simulations when the sea quark mass is equal to the up and down
quark mass the enhanced finite volume effects vanish to NLO in PQChPT. In embedding the QCD penguin
left-right operator onto PQChPT an ambiguity arises, as first emphasized by Golterman and Pallante. With
one version [the ‘‘PQS’’ (patially quenched singlet)] of the QCD penguin, the inputs needed from the
lattice for constructing K ! �� at NLO in PQChPT coincide with those needed for the full theory.
Explicit expressions for the finite logarithms emerging from our NLO analysis to the above amplitudes
also are given.
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I. INTRODUCTION

There have been several recent lattice attempts to cal-
culate Re��0=��, the direct CP violating parameter in K !
�� decays. These include attempts with domain wall
fermions by the CP-PACS [1] and RBC [2] collaborations.
A notable feature of both of these calculations is that their
central values differ drastically from experiment. The ex-
periments at CERN [3] and Fermilab [4] have yielded an
experimental grand average of Re��0=�� � �1:8� 0:4� �
10�3 [5]. The lattice collaborations find a value 	� 0:5�
10�3, a negative value, though the groups have made rather
severe approximations. Such a disagreement between the-
ory and experiment should not be totally unexpected given
the serious approximations and resulting systematic errors,
which have so far been necessary in order to implement the
calculation on the lattice [6,7].

One of these uncontrolled approximations was the use of
the quenched approximation, where the fermion determi-
nant in the path integral is set to a constant in order to make
the problem more tractable on present day computers.
Another was the use of leading order chiral perturbation
theory to relate unphysical K ! � and K ! 0 amplitudes
to the physical K ! �� amplitudes, as first proposed by
[8]. Because of the difficulty of extracting multihadron
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decay amplitudes from the lattice, as expressed by the
Maiani-Testa theorem [9], it is much easier to compute
the two- and three-point functions (i.e., K ! 0 and K ! �,
respectively) and use ChPT to extrapolate to the physical
matrix elements.

It is likely that the next-to-leading order (NLO) correc-
tions to ChPT will be significant for the operators that
contribute to Re��0=�� and should not be neglected.
Unfortunately, at higher orders in ChPT the number of
free parameters that must be determined from first-
principles methods like the lattice proliferates rapidly. It
has been shown by Cirigliano and Golowich [10] that the
dominant electro-weak penguin contributions [(8,8)’s] to
K ! �� can be recovered at NLO from K ! � ampli-
tudes using 4-momentum insertion. Bijnens, et al. [11]
showed how to obtain most of the low-energy constants
(LEC’s) relevant for the case of the (8,1)’s and (27,1)’s
using off shell K ! � Green’s functions; not all LEC’s
could be determined using this method, though.

In [12], it was shown how to obtain physical K ! ��,
�I � 3=2 [(27,1)’s and (8,8)’s] at NLO from K ! �� at
unphysical (SPQcdR) kinematics accessible to the lattice.
This method requires 3-momentum insertion, and it is not
yet clear if it can be extended to the �I � 1=2, K ! ��
amplitudes. In our previous paper [13], an alternative
method was proposed for constructing the physical K !
�� amplitudes to NLO for all (�I � 1=2 and 3=2) opera-
tors of interest. For the �I � 3=2 amplitudes this requires
-1  2005 The American Physical Society



1Reference [16] found that the infrared problems do not vanish
for UK1 finite volume Euclidean correlation functions in the
partially quenched theory; for further details, see our note added
in revision.
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K ! K; K ! �, �I � 3=2; and K ! ��, �I � 3=2 at
one of (at least) two unphysical kinematics points where
the Maiani-Testa theorem can be bypassed. The two spe-
cial kinematics points where this is possible have been
discussed in the literature: (i) mlat

K � mlat
� , where the

weak operator inserts energy [14]; and (ii) mlat
K � 2mlat

� ,
i.e., at threshold [15]. As in [13], we refer to these two
cases as unphysical kinematics point one (UK1) and point
two (UK2), respectively. Finally, it was shown also in [13]
how to obtain the physical K ! �� at NLO for the �I �
1=2, (8,1) (e.g., Q4 and Q6) and the mixed �27; 1� 
 �8; 1�
case (e.g., Q2) using K ! � with 4-momentum insertion
and K ! �� at both UK1 and UK2. Note that the mixed
case also requires information obtainable from the ampli-
tudes needed to get K ! ��, �I � 3=2 for the (27,1)’s.
The main purpose of [13] was, in fact, to show that even for
the (8,1)’s all of the information needed to construct K !
�� to NLO in ChPT could be obtained from amplitudes
that can be computed on the lattice, at least in principle.

There are other unphysical kinematics values for the
K ! �� amplitudes where the initial and final state me-
sons are at rest that bypass the Maiani-Testa theorem.
These kinematics are similar to UK1 in that they require
energy insertion, but with mK � m�. We call this set of
kinematics UKX. This corresponds to the SPQcdR kine-
matics with both pions at rest [12]. Lattice calculations at
these values of the kinematics are important given that the
calculation at UK1 has difficulties [16] and also given that
it will be important to determine the NLO LEC’s in as
many ways as possible for additional redundancy. Even if it
is difficult or impossible to obtain the necessary NLO low-
energy constants for the (8,1)’s at UK1, one can obtain the
same information using UKX. Thus, all information for
the (8,1)’s can be determined to NLO without using UK1,
the difficulties of which are discussed in Sec. VIII and
in the note added in revision. Results at UKX are given also
in Sec. VIII.

In this work we show that where 4-momentum insertion
is required for any of the amplitudes needed according to
the prescription of [13], it suffices to allow only energy
insertion at the weak operator such that the initial and final
state mesons are at rest. This means that the K ! ��
amplitudes can be constructed to NLO using nondegener-
ate quarks, but without using 3-momentum insertion, mak-
ing the computation much more economical.

Another approach to K ! �� and �0=� amplitudes has
been proposed by Lellouch and Luscher [17] in which
finite volume correlation functions on the lattice are used
to extract physical amplitudes without recourse to ChPT, at
least in principle. This method is expected to be difficult
computationally, but a way of reducing the cost of the
Lellouch-Luscher method has been proposed [18]. An
alternative method to obtain K ! �� amplitudes to all
orders in ChPT has been proposed by [19]; this proposal
makes use of dispersion relations. Both of the above
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methods depend crucially on unitarity, so it is unclear if
they can be implemented with partially quenched lattice
simulations.

Although NLO ChPT may not be the final answer, it is
more reliable than leading order, and it is useful to have the
NLO expressions even to extract the leading order LEC’s
from the lattice data. Since the lattice data that will be
generated in the near term will be in the (partially)
quenched approximation, it is necessary to have the corre-
sponding amplitudes in partially quenched ChPT. There-
fore, in this paper, we present the partially quenched ex-
pressions for the quantities of greatest interest for
Re��0=��, namely, the amplitudes for the (8,1) and (8,8)
operators. For the partially quenched amplitudes we as-
sume that all relevant quark masses are small compared to
the 
0 mass, so that the 
0 can be integrated out, and the
LEC’s of the partially quenched theory coincide with
those of the full theory when the number of sea quarks is
three [20].

For the �I � 1=2 amplitudes there is an additional
complication involving eye diagrams having to do with
the sum over quarks in the penguin operators [21]. For
the left-right gluonic penguin operators the two
possible choices correspond to what we will call the
PQS (partially quenched singlet) method and the PQN
(partially quenched nonsinglet) method. They are dis-
cussed in detail in Sec. VI A. It is important to note that
only for the PQS method can the LEC’s sufficient to
construct �0=� to NLO be determined, whereas it is not
clear if the PQN method can be extended to NLO. Indeed, a
significant advantage of the PQS implementation is that the
ingredients needed from the lattice to obtain all K ! ��
amplitudes to NLO in PQChPT are the same as in the
full theory. Therefore, the PQS method is used to compute
the NLO amplitudes in this paper. Finally, it should be
mentioned that the �I � 1=2, K ! �� amplitudes
receive enhanced finite volume contributions in the par-
tially quenched theory [22,23]. However, when msea �
mu � md, the infrared divergences in the K ! ��
amplitudes (at UK1 and UK2) vanish in PQChPT in the
infinite volume Minkowski space amplitudes. In an earlier
version of this paper we had pointed out that it would be
important to study the finite volume effects of these am-
plitudes; the corresponding finite volume Euclidian
Green’s functions were calculated by [16] while this
work was in revision.1

In the partially quenched theory, it is possible to con-
struct the (8,8) K ! �� amplitudes to NLO using only
degenerate valence quark masses in K ! �, along with
K ! 0 in order to perform the power divergent subtraction
in the �I � 1=2 case. Additional redundancy is possible if
-2
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one uses nondegenerate valence quark masses in the K !
� calculation.

The content of the paper is as follows: Section II briefly
reviews the formalism of effective four-fermion operators
in a standard model calculation. Section III reviews ChPT
and the realization of the effective four-quark operators in
terms of ChPT operators for weak processes. Section IV
reviews partially quenched chiral perturbation theory and
how it can be extended to the electro-weak sector.
Section V presents results for the full theory, demonstrat-
ing that for all the amplitudes considered in [13], 3-
momentum insertion is not essential and nondegenerate
quark masses suffices to construct K ! �� to NLO. In
Sec. VI a discussion of the treatment of eye diagrams in the
partially quenched theory is given, as well as a comparison
of PQS and PQN results at leading order according to the
papers by Golterman and Pallante [21]. Sections VII and
VIII present the main results of this paper, showing how to
obtain the K ! �� amplitudes needed for Re��0=�� in the
partially quenched theory from quantities which can be
computed directly on the lattice. Section VII deals with the
(8,8) amplitudes, while Section VIII deals with the (8,1)’s.
Section IX discusses the checks done on the various one-
loop logarithmic expressions. Section X presents the con-
clusion. The finite logarithm contributions to the relevant
amplitudes are presented in a set of appendices. Errors in
Eqs. (31, D6) of [13] are corrected in Appendix F.
II. EFFECTIVE FOUR-QUARK OPERATORS

In the standard model, the nonleptonic interactions can
be expressed in terms of an effective �S � 1 Hamiltonian
using the operator product expansion [24,25],

h��jH �S�1jKi �
GF���
2

p
X

Vi
CKMci���h��jQijKi�; (1)

where Vi
CKM are the relevant combinations of Cabibbo-

Kobayashi-Maskawa quark-mixing matrix (CKM) ele-
ments, ci��� are the Wilson coefficients containing the
short distance perturbative physics, and the matrix ele-
ments h��jQijKi� must be calculated nonperturbatively.
The four-quark operators are

Q1 � sa���1� �5�daub���1� �5�ub; (2)

Q2 � sa���1� �5�dbub���1� �5�ua; (3)

Q3 � sa���1� �5�da

X
q

qb�
��1� �5�qb; (4)

Q4 � sa���1� �5�db

X
q

qb���1� �5�qa; (5)

Q5 � sa���1� �5�da

X
q

qb�
��1� �5�qb; (6)
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Q6 � sa���1� �5�db

X
q

qb�
��1� �5�qa; (7)

Q7 �
3

2
sa���1� �5�da

X
q

eqqb�
��1� �5�qb; (8)

Q8 �
3

2
sa���1� �5�db

X
q

eqqb�
��1� �5�qa; (9)

Q9 �
3

2
sa���1� �5�da

X
q

eqqb�
��1� �5�qb; (10)

Q10 �
3

2
sa���1� �5�db

X
q

eqqb�
��1� �5�qa: (11)

In the effective theory Q1 and Q2 are the current-current
weak operators, Q3 � Q6 are the operators arising from
QCD penguin diagrams, while Q7 � Q10 are the operators
arising from electro-weak penguin diagrams. Note that the
definitions of Q1 and Q2 are different from our previous
paper [13]. After a Fierz transformation, one can see that
the definitions of the two operators are switched. We have
changed the definitions of Q1 and Q2 to be consistent with
the basis used by RBC [2] and that of [24]; this does not, of
course, effect any of the results of our previous paper.

III. CHIRAL PERTURBATION THEORY

Chiral perturbation theory is an effective quantum field
theory where the quark and gluon degrees of freedom have
been integrated out, and is expressed only in terms of the
lowest mass pseudoscalar mesons [26]. It is a perturbative
expansion about small quark masses and small momentum
of the low mass pseudoscalars. The effective Lagrangian is
made up of complicated nonlinear functions of the pseu-
doscalar fields, and is nonrenormalizable, making it neces-
sary to introduce arbitrary constants at each order in
perturbation theory. In such an expansion, operators of
higher order in the momentum (terms with increasing
numbers of derivatives) or mass appear at higher order in
the perturbative expansion. The most general set of opera-
tors at a given order can be constructed out of the unitary
chiral matrix field �, given by

� � exp
�
2i�a�a

f

�
; (12)

where �a are proportional to the Gell-Mann matrices with
tr��a�b� � �ab, �a are the real pseudoscalar-meson fields,
and f is the meson decay constant in the chiral limit, with
f� equal to 130 MeV in our convention.

At leading order �O�p2�� in ChPT, the strong Lagrangian
is given by

L �2�
st �

f2

8
tr�@��@��� �

f2B0
4
tr�#y���y#�; (13)
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where # � �mu; md; ms�diag and

B0 �
m2

��

mu � md
�

m2
K�

mu � ms
�

m2
K0

md � ms
:

The leading order weak chiral Lagrangian is given by
[8,10]

L�2�
W � %88tr��6�Q�y� � %1tr��6@��@��y�

� %22B0tr��6�#y�� �y#��

� %27t
ij
kl��@��

y�ki ��@��y�lj � H:c:; (14)

where tijkl is symmetric in i; j and k; l, traceless on any pair
of upper and lower indices with nonzero elements t1312 � 1,
t2322 � 1=2, and t3332 � �3=2. Also, Q is the quark charge
matrix, Q � 1=3�2;�1;�1�diag and ��6�ij � �i3�j2. The
reason �6 enters these expressions is because it picks out
the s to d, �S � 1 transition.

The terms in the weak Lagrangian can be classified
according to their chiral transformation properties under
SU�3�L � SU�3�R. The first term in (14) transforms as
8L � 8R under chiral rotations and corresponds to the
electro-weak penguin operators Q7 and Q8. The next two
terms in (14) transform as 8L � 1R, while the last trans-
forms as 27L � 1R under chiral rotations. All ten of the
four-quark operators of the effective weak Lagrangian have
a realization in the chiral Lagrangian differing only in their
transformation properties and the values of the low-energy
014021
constants which contain the nonperturbative dynamics of
the theory.

For the transition of interest, K ! ��, the operators can
induce a change in isospin of 12 or 32 leading to a final isospin
state of the pions of 0 or 2, respectively. We can then
classify the isospin components of the four-quark operators
according to their transformation properties [1,2]:

Q1=2
1 ; Q1=2

2 ; Q1=2
9 ; Q1=2

10 : 8L � 1R 
 27L � 1R;

Q3=2
1 ; Q3=2

2 ; Q3=2
9 ; Q3=2

10 : 27L � 1R;

Q1=2
3 ; Q1=2

4 ; Q1=2
5 ; Q1=2

6 : 8L � 1R;

Q1=2
7 ; Q1=2

8 ; Q3=2
7 ; Q3=2

8 : 8L � 8R:

Note that Q3–Q6 are pure isospin 1
2 operators. At NLO

the strong Lagrangian involves 12 additional operators
with undetermined coefficients. These were introduced
by Gasser and Leutwyler in [27]. The complete basis of
counterterm operators for the weak interactions with�S �
1; 2 was treated by Kambor, Missimer, and Wyler in
[28,29]. A minimal set of counterterm operators contrib-
uting to K ! � and K ! �� for the �8L; 1R� and �27L; 1R�
cases is given by [30], with the effective Lagrangian

L �NLO�
W �

X
eiO

�8;1�
i �

X
diO

�27;1�
i �

X
ciO

�8;8�
i ; (15)
O�8;1�
1 � tr��6S2�; O�8;1�

2 � tr��6S�tr�S�; O�8;1�
3 � tr��6P2�; O�8;1�

4 � tr��6P�tr�P�;

O�8;1�
5 � tr��6�S; P��; O�8;1�

10 � tr��6fS; L2g�; O�8;1�
11 � tr��6L�SL��; O�8;1�

12 � tr��6L��tr�fL
�; Sg�;

O�8;1�
13 � tr��6S��L

2�; O�8;1�
15 � tr��6�P;L2��; O�8;1�

35 � tr��6fL�; @,W
�,g�; O�8;1�

39 � tr��6W�,W
�,�;

O�8;8�
1 � tr��6L��

yQ�L��; O�8;8�
2 � tr��6L��tr��

yQ�L��; O�8;8�
3 � tr��6f�yQ�; L2g�;

O�8;8�
4 � tr��6f�

yQ�; Sg�; O�8;8�
5 � tr��6��

yQ�; P��; O�8;8�
6 � tr��6�

yQ��tr�S�; O�27;1�
1 � tijkl�S�

k
i �S�

l
j;

O�27;1�
2 � tijkl�P�

k
i �P�

l
j; O�27;1�

4 � tijkl�L��
k
i �fL

�; Sg�lj; O�27;1�
5 � tijkl�L��

k
i ��L

�P��lj; O�27;1�
6 � tijkl�S�

k
i �L

2�lj;

O�27;1�
7 � tijkl�L��

k
i �L

��ljtr�S�; O�27;1�
20 � tijkl�L��

k
i �@,W

�,�lj; O�27;1�
24 � tijkl�W�,�

k
i �W

�,�lj; (16)
with S � 2B0�#
y�� �y#�, P � 2B0�#

y�� �y#�,
L� � i�y@��, and W�, � 2�@�L, � @,L��.

This list is identical to that of Bijnens et al. [11] for the
(27,1)’s and the (8,1)’s, except for the inclusion of O�8;1�

35;39

and O�27;1�
20;24 which contain surface terms and so cannot be

absorbed into the other constants for processes which do
not conserve 4-momentum at the weak vertex. Since we
must use 4-momentum insertion in a number of our am-
plitudes, these counterterms must be considered, and they
are left explicit even in the physical amplitudes. The list of
(8,8) operators is that of Cirigliano and Golowich [10].
The divergences associated with the counterterms have
been obtained in [10,11,28]. The subtraction procedure can
be defined as

ei � er
i �

1

16�2f2

�
1

d � 4
�
1

2
��E � 1� ln4��

�
2�%1"i

� %2"
0
i�; (17)

di � dr
i �

1

16�2f2

�
1

d � 4
�
1

2
��E � 1� ln4��

�
2%27�i;

(18)
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TABLE I. The divergences in the weak O�p4� counterterms,
ei’s and di’s, for the (8,1)’s and (27,1)’s, respectively, and the
divergences in the weak O�p2� counterterms, the ci’s for the
(8,8)’s.

ei "i "0
i di �i ci 
i

1 1=4 5=6 1 �1=6 1 0
2 �13=18 11=18 2 0 2 �2
3 5=12 0 4 3 3 �3=2
4 �5=36 0 5 1 4 3=2
5 0 5=12 6 �3=2 5 0
10 19=24 3=4 7 1 6 1
11 3=4 0 20 1=2
12 1=8 0 24 1=8
13 �7=8 1=2
15 23=24 �3=4
35 �3=8 0
39 �3=16 0
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ci � cr
i �

1

16�2f2

�
1

d � 4
�
1

2
��E � 1� ln4��

�
2%88
i;

(19)

with the divergent pieces, "i; "0
i; �i, 
i given in Table I.

It is also necessary for the method of this paper to
consider the O�p4� strong Lagrangian, which was first
given by Gasser and Leutwyler, L�4�

st �
P

LiO
�st�
i .

The strong O�p4� operators relevant for this calculation
are the following [27]:

O �st�
1 � tr�L2�2; O�st�

2 � tr�L�L,�tr�L�L,�;

O�st�
3 � tr�L2L2�; O�st�

4 � tr�L2�tr�S�;

O�st�
5 � tr�L2S�; O�st�

6 � tr�S�2;

O�st�
8 �

1

2
tr�S2 � P2�:

(20)

The Gasser-Leutwyler counterterms also contribute to
the cancellation of divergences in the expressions relevant
to this paper. The subtraction is defined similarly to that of
the weak counterterms,
TABLE II. The divergences in the strong O�p4� counterterms,
&i [27].

i &i

1 3=32
2 3=16
3 0
4 1=8
5 3=8
6 11=144
8 5=48

014021
Li � Lr
i �

1

16�2

�
1

d � 4
�
1

2
��E � 1� ln4��

�
&i; (21)

with the divergent parts of the counterterm coefficients
given in Table II [27].
IV. PARTIALLY QUENCHED CHIRAL
PERTURBATION THEORY

There are two approaches to (partially) quenched QCD,
the supersymmetric formulation [31] and the replica
method [32]. Damgaard and Splittorff claim that the two
methods are equivalent in the context of perturbation the-
ory in the strong sector. We choose to follow the original
method of Bernard and Golterman [31] for partially
quenched chiral perturbation theory (PQChPT). In this
method, the valence quarks are quenched by introducing
‘‘ghost’’ quarks which have the same mass and quantum
numbers as the valence quarks but opposite statistics. As in
[30], we consider a theory with n quarks and N sea quarks,
so that there are n � N valence and n � N ghost quarks.
The valence quarks have arbitrary mass, while the sea
quarks are all degenerate. The symmetry group of the
action is SU�njn � N�L � SU�njn � N�R.

In the partially quenched case, the chiral field

� � exp
�
2i�a�a

f

�
; (22)

has �a�a replaced by a �2n � N� � �2n � N� matrix,

' �
� #y

# e�
 !

; (23)

where � is a n � n matrix containing the pseudoscalar-
meson fields comprised of normal valence and sea quarks.e� is a �n � N� � �n � N� matrix comprised of ghost-
antighost quarks, while #y is an n � �n � N� matrix of
Goldstone fermions comprised of quarks and antighosts.
The most general set of operators can be constructed out of
�, and these operators can be written in block form as

U �
A B
C D

	 

; (24)

where the submatrices have the same dimension as the
elements of ', above. The transition to the partially
quenched theory is made by replacing �a�a by the above
�2n � N� � �2n � N� matrix, ', and replacing the traces
in the operators with supertraces, defined as

str�U� � tr�A� � tr�D�: (25)

As a practical matter, in almost all of the NLO diagram
calculations considered in this paper, the minus sign in the
-5



TABLE III. The N dependence of the divergences in the NLO
counterterms, ei’s and ci’s for the (8,1)’s and (8,8)’s, respec-
tively.

ei "i "0
i ci 
i

1 �N=4� 3=N N=2� 2=N 1 0
2 �1=2� 2=N2 1=2� 1=N2 2 �2
3 N=4� 1=N 0 3 �N=2
5 0 N=4� 1=N 4 N=2
10 N=8� 1=�2N� N=4 5 0
11 N=2� 3=N 0 6 1
13 �3=4 1=2
14 1/4 0
15 3N=8� 1=�2N� �N=4
35 �N=8 0
39 �N=16 0
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supertrace is cancelled by an additional minus sign coming
from anticommuting pseudofermion fields. The bare mass
of a pseudoscalar meson is given by

m2
ij � B0�mi � mj�; (26)

where mi and mj are the masses of the two quarks that form
the meson. We define m33 to be the tree-level meson mass
of two valence strange quarks, as in [30]

m2
33 � 2m2

K � m2
�: (27)

The tree-level mass of a meson made from the ith
valence quark and a sea quark is

m2
iS � B0�mi � mS� �

1

2
�m2

ii � m2
SS�; i � u; d; s:

(28)

In this paper we consider only the case where the 
0 has
been integrated out. Thus, the results are applicable to
lattice calculations only when both sea and valence quark
masses are small compared to m
0 . Although it may be
difficult computationally, this is precisely the case in which
the LEC’s of PQChPT are the same as those of full QCD
when the number of sea quarks is three [20]. This is
because the LEC’s are independent of quark mass even if
one varies sea and valence masses separately. In order that
the LEC’s of PQChPT be those of the real world, the sea
and valence quarks must be small enough that the 
0

decouples, and its effects are integrated out the same way
in both PQChPT and in full ChPT.

The Minkowski space propagators for the flavor diago-
nal elements of ' are given by analytically continuing the
Euclidean expression in [30]

�ij �
�ij�i

p2 � m2
ii � i"

�
1

N

	
1

p2 � m2
ii � i"

�
m2

jj � m2
SS

�p2 � m2
ii � i"��p2 � m2

jj � i"�



; (29)

where

�i �

�
�1; for 1 � i � n�valence and sea�;
�1; for n � 1 � i � 2n � N�ghost�:

(30)

At LO (NLO), the operators in PQChPT are still given
by Eqs. (13) and (14) [Eqs. (16) and (20)], but with tr! str
for all operators. In the extension to the partially quenched
case,

�6 !
�6 0
0 0

	 

; (31)

in block diagonal form, and the mass matrix,

# ! diag�mu; md; ms; msea; :::; mu; md; ms�: (32)
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There is a choice in how to embed the quark charge
matrix in the partially quenched theory and this will affect
the �I � 1=2, (8,8) amplitudes considered in this paper. If
one wants to partially quench the electro-weak penguin
operators, then the ghost quark charges should be the same
as the corresponding valence quark charges. If, on the other
hand, one wants to allow valence quarks to couple to
photons and Z’s, then the ghost quark charges should be
set to zero so they do not appear in, and therefore cancel,
the electro-weak valence quark loops. We present ampli-
tudes in this paper for both choices. Also, since we choose
the sea quarks to have degenerate mass, the sum of the sea
quark charges is the only quantity involving the sea quark
charge that contributes. This is zero for three flavors, and in
this paper we keep this true for arbitrary sea quark number
N by setting the sea quark charge to zero.

Also in the partially quenched case, the coefficient of the
counterterm divergence depends on the number of sea
quarks, N [23]. The N dependence of the necessary coef-
ficients for the (8,1)’s was calculated following [28,33],
and the results are presented in Table III. This paper uses a
different basis from [23] for the �8; 1�’s, and also several
more LEC’s appear here, so the calculation was redone for
this work. The usual method was employed, expanding the
action around the classical solution (background field
method) and using a heat kernel expansion. The N depen-
dence of the coefficients of the divergent parts of the (8,8)
counterterms was given in [10]. These values are also
presented in Table III.

It is necessary to include an additional (8,1) operator,
O�8;1�
14 � str��6L2�str�S�, in this analysis of the partially

quenched case since it can no longer be written as a linear
combination of the other operators via the Cayley-
Hamilton theorem. In the case of full ChPT, the operator
O�8;1�
14 is absorbed into the other operators, O�8;1�

10 , O�8;1�
11 ,

O�8;1�
12 , and O�8;1�

13 . Since e14 has a divergent part, the co-
efficients of the divergences of the other four operators are
-6



TABLE V. When the tadpole terms are subtracted via the*�3;3�

operator, the (8,1) NLO coefficients are transformed to new
linear combinations involving the Gasser-Leutwyler coefficients.
These new combinations no longer have power divergences.

Transformed Coefficients

er
1 ! er

1 � �4%2=f2��2Lr
8 � Hr

2�

er
2 ! er

2 � �16%2=f2�Lr
6

er
3 ! er

3 � �4%2=f2���2Lr
8 � Hr

2�

er
5 ! er

5 � �4%2=f2�Hr
2

er
10 ! er

10 � �4%2=f2�Lr
5

er
13 ! er

13 � �8%2=f2�Lr
4

er
15 ! er

15 � �4%2=f2�Lr
5

TABLE IV. N dependence of the divergences in the strong
O�p4� counterterms, &i [23].

i &i

1 1=16� N=96
2 1=8� N=48
3 0
4 1=8
5 N=8
6 1=16� 1=�8N2�

8 N=16� 1=�4N�

2The table is constructed using information given in [28].
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modified (for N � 3) from the values in Table I. Note that
e4 and e12 have been omitted in Table III. These LEC’s do
not appear in any of the amplitudes of interest in this paper.

The Gasser-Leutwyler counterterms also contribute to
the cancellation of divergences in this paper in the partially
quenched case. The N dependence of the coefficients &i is
given in Table IV.

When N is arbitrary, there is in general another operator
[27] tr�L�L,L�L,� which cannot be absorbed into the first
three Gasser-Leutwyler operators as it can for N � 3 using
trace relations. For the purposes of this paper, the addi-
tional operator and its divergent coefficient, L0, can be
absorbed into L1 through L3 for the only amplitudes of
interest to which it contributes, K ! �� for mK � m�,
and in general, for UKX. Thus, we absorb the N depen-
dence of L0 into L1; L2, and L3 in Table IV.

A. Role of the bilinear (3; 3) operator

The bilinear (3; 3) operator is useful in removing the
power divergent coefficients to all orders in ChPT. Recall
that the �I � 1=2 matrix elements of the four-quark op-
erators in general have a power divergent part. This power
divergence reduces to a quark bilinear times a momentum
independent coefficient [2]. The quark bilinear operator
can be defined as in [8],

*�3;3� � s�1� �5�d; (33)

which is equal to %�3;3�Tr��6�� to lowest order in chiral
perturbation theory, where in our conventions, %�3;3� �
�f2

2 B0. As illustrated in Sec. VI, the matrix elements of
this operator can be used to eliminate the power divergen-
ces in the effective four-quark operator matrix elements
[34]. This subtraction is to all orders in ChPT, and in
Sec. VI we demonstrate this explicitly to NLO in the
partially quenched theory, following the derivation in [2].
It is crucial that the subtraction be independent of ChPT,
since the higher order corrections of the power divergent
operator can far exceed the physical contributions that one
is trying to calculate. In order to carry out the argument to
NLO in (PQ)ChPT for the case of the (8,1)’s we need the
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NLO LEC contribution of the*�3;3� operator. The effect of
the subtraction involving this operator is to eliminate the
LEC, %2, at leading order, and to transform the NLO (8,1)
coefficients to a linear combination involving the Gasser-
Leutwyler coefficients. The chiral rotation eliminates the
power divergent scale dependence (proportional to %2) of
the LEC’s to NLO. The effect of this transformation on the
individual coefficients is given in Table V.2
V. K ! �� WITHOUT 3-MOMENTUM INSERTION

In [13] we have shown that all the amplitudes of interest
for the (8,1)’s and (27,1)’s can be obtained to NLO in ChPT
when one uses lattice computations from K0 ! ,K0, K !
j0i, K ! � with momentum and K ! �� at the two
unphysical kinematics points UK1 [14] ) mK � m� and
UK2 [15] ) mK � 2m�. Specifically, these two points
correspond to threshold, and, thereby, the Maiani-Testa
theorem is evaded [9]. Here we ask how far one can get
by not using 3-momentum insertion in K ! � and using
only nondegenerate quarks so that on the lattice mK � m�.
In this case one is using energy insertion with q2 � �mK �
m��

2. The motivation for this should be clear. Not only can
3-momentum insertion add to the computational cost, it
also tends to be noisy. On the other hand, in a typical weak
matrix element calculation, mK � m� is relatively inex-
pensive to implement, since light quarks with several
masses are needed anyway.

At O�p4� in K ! � one can see explicitly [13] that
different LEC’s appear in front of �pK � p��

2 than in front
of m2

Km2
�. In general pK � p� � mKm�, so it is not clear if

all of the LEC’s needed for constructing K ! �� to O�p4�
can be obtained if one restricts to no 3-momentum inser-
tion in K ! �. We find that for all cases of interest without
3-momentum insertion, although some low-energy con-
stants cannot be obtained, the linear combinations that
are needed for constructing the physical NLO amplitude
can always be obtained. This reduces the necessary com-
-7



3For the �I � 3=2 case there is no difficulty at UK1.
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putational effort considerably. This section will be re-
stricted to demonstrating this result for the full theory,
but in the next section we show that the same result holds
also for the partially quenched case in the PQS framework.
It is not known whether this continues to hold in the PQN
framework, which is considerably more complicated at
NLO.

In [13] we showed how to get physical K ! �� ampli-
tudes for both�I � 1=2 and 3=2 cases to NLO. Since K !
� amplitudes do not conserve 4-momentum for ms � md,
it is necessary to allow the weak operator to transfer a 4-
momentum, q � pK � p�, as in [10]. This also is neces-
sary for the case of K ! �� at mK � m� [14]. Our
method [13] requires computation of K ! �� at unphys-
ical kinematics because there are low-energy constants
which appear in K ! �� but do not appear in K ! � at
all [11,30].

There exist other unphysical kinematics values (besides
UK1 and UK2) for the K ! �� amplitudes where the
initial and final state mesons are at rest that are accessible
to lattice calculations. These values of the kinematics
bypass the Maiani-Testa theorem because the final state
pions are at threshold, but energy insertion (or removal) at
the weak operator has to take place in order to conserve 4-
momentum. These amplitudes have no imaginary parts as
long as mK � m� (ms � mu;d since then a two kaon inter-
mediate state cannot go on shell) and so bypass the Maiani-
Testa theorem. On the lattice, so long as one studies the
appropriate correlation function as a function of Euclidean
times and does not sum over the time index, the weak
operator can insert (or remove) the necessary amount of
energy. What we are calling UK1 (mK � m�) and UK2
(mK � 2m�) are just special examples of this more general
kinematics which we call UKX, which is itself a special
case of the SPQcdR kinematics (one pion at rest, the other
with 3-momentum inserted) [12] where both pion 3-
momenta are zero, and E�, the energy of each pion, is
equal to m�.

We point out that the UKX kinematics is at threshold
because of the ability of the weak operator to inject or
remove the necessary energy so that the Maiani-Testa
theorem is bypassed even for �I � 1=2 amplitudes. As
pointed out by [16], the case where mK � m� has a number
of difficulties, especially in the partially quenched theory.
It is, therefore, necessary to consider the more general
kinematics of UKX (with mK > m�) in order to bypass
this problem. Using UKX, one can then obtain all of the
LEC’s necessary to construct the (8,1), K ! �� ampli-
tudes in both the full theory and in the partially quenched
case, if a numerical calculation at UK1 is difficult or
impossible. We present NLO results for UKX in the par-
tially quenched theory in Sec. VIII.

Finally, it also is useful to emphasize that even when one
works to LO, K ! � with mK � m� (without 3-
momentum insertion) suffices to give K ! �� at that
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order, thus providing an alternate subtraction method to
the one that has been used recently [1,2,6,7] with K ! 0
[8,35].

A. (27,1), �I � 3=2

The expression for the physical K ! ��, including
only tree-level O�p2� and O�p4� weak counterterms, is [13]

h����jO�27;1�;�3=2�jK0ict � �
4i%27
fKf2�

�m2
K � m2

��

�
4i

fKf2�
�m2

K � m2
��

� ���dr
4 � dr

5 � 4dr
7�m

2
K

� �4dr
2 � 4dr

20 � 16dr
24 � 4dr

4

� 2dr
7�m

2
��: (34)

The counterterm expressions needed to construct this
physical amplitude are given in [13] Eqs. (22–24), and the
finite logarithmic contributions are given there in
Appendix C. Counterterms needed to construct the above
K ! �� amplitude can be obtained from K0 ! ,K0;
K� ! ��;�I � 3=2 (nondegenerate quarks); and K !
��;�I � 3=2 at only one value of the unphysical kine-
matics (e.g., UK13). Note that the expression for K� !
��;�I � 3=2 reduces, for the case of no 3-momentum
insertion, i.e., q2 � �mK � m��

2, to

h��jO�27;1�;�3=2�jK�ict � �
4

f2
%27mKm�

�
8

f2
��2dr

2 � 8dr
24�m

2
Km2

�

� �dr
20 � dr

4 � 2dr
7�m

3
Km�

� �dr
20 � dr

4 � dr
7�mKm3

��; (35)

The logarithmic corrections to this expression reduce to
the value given in Appendix C of this paper. Fits to the
K ! � data can therefore give dr

7, dr
20 � dr

4, and dr
2 �

4dr
24. Using these in the K ! �� amplitude at the unphys-

ical kinematics point (UK1) mK � m� � m (Eq. (23) of
[13]) gives dr

4 � dr
5. The four linear combinations �dr

2 �
4dr

24; d
r
7; d

r
4 � dr

5; d
r
4 � dr

20� are sufficient to determine
K ! ��, �I � 3=2 at the physical kinematics as given
in Eq. (34). Comparing Eq. (35) with the more general case
of 3-momentum insertion, Eq. (22) of [13], we see that the
latter allows for separate determinations of dr

2 and dr
24,

whereas the simpler case of mK � m� without 3-
momentum insertion, Eq. (35), gives only the linear com-
bination dr

2 � 4dr
24. Nevertheless, that suffices to get the

job done.
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B. �8; 1� � �27; 1�, �I � 1=2

Recall that this is the most complicated case. The coun-
terterms necessary to construct O�p4�, ��8; 1� � �27; 1��,
�I � 1=2, K ! �� amplitudes relevant for operators
such as Q1=2

2 , which are mixed, can be obtained from the
above values for dr

i ’s and from the following �I � 1=2
processes: K0 ! 0;K� ! ��;�I � 1=2 (nondegenerate
quarks) and K ! ��;�I � 1=2 at two unphysical kine-
014021
matics. All of the needed counterterm amplitudes appear in
Sec. IV.B of [13], and the corresponding logarithmic cor-
rections appear in Appendix D of that paper. Note that an
error was discovered since publication of that work in
Eq. (31) and in Appendix D, Eq. (D6). The correct ex-
pressions appear here in Appendix F. Again, it is sufficient
to allow q2 � �mK � m��

2 in the expression for K ! �,
[13] Eqs. (28) and (29). These equations become
h��jO�27;1�;�1=2�jK�ict � �
4

f2
%27mKm� �

8

f2
�6dr

1m
4
K � ��6dr

1 � 2dr
2 � 8dr

24�m
2
Km2

�

� ��dr
20 � dr

4 � 3dr
6 � 2dr

7�m
3
Km� � ��dr

20 � dr
4 � 3dr

6 � dr
7�mKm3

��; (36)

h��jO�8;1�jK�ict �
4

f2
%1mKm� �

4

f2
%2m2

K �
8

f2
�2�er

1 � er
2 � er

5�m
4
K � �er

2 � 2er
3 � 2er

5 � 8er
39�m

2
Km2

�

� �2er
35 � 2er

10�m
3
Km� � �2er

35 � er
11�mKm3

��; (37)
4Note that Eq. (31) of [13] is corrected in Appendix F, but this
does not change the conclusion here.

5Although [16] have pointed out that UK1 may be computa-
tionally demanding even for the full theory, it is not ruled out. In
any case, for extracting the LEC’s one can use the more general
kinematics which we call UKX, as discussed earlier in this
section.
The logarithmic corrections associated with the above
two amplitudes are given in Appendix C of this paper. In
evaluating, for example, h��jQ1=2

2 jK�i, the right-hand
sides of Eqs. (36) and (37) have to be added. In fitting to
lattice data, for example, the m4

K coefficient would give the
combination �6dr

1 � 2er
1 � 2er

2 � 2er
5�. Also, in comparing

Eq. (37) with Eq. (29) in [13] without 3-momentum in-
sertion, one can no longer separately obtain �er

2 � 2er
3 �

2er
5� and �8er

39 but only their sum; however, this is again
sufficient to obtain the physical K ! �� amplitudes ([13]
Eqs. (34), (35)) to NLO.

We point out that for the �I � 1=2 amplitudes there are
power divergences that must be subtracted using the *�3;3�

operator introduced at the end of Sec. IV. It is crucial that
the subtraction is to all orders in ChPT, since the higher
order corrections of the power divergent operator can far
exceed the physical contributions that one is trying to
determine. This is discussed in more detail in Secs. VII
and VIII for the partially quenched case, where we follow
the derivation in [2], given for the leading order case in the
full theory (although there the analysis was done with
quenched data). The result of the subtraction is to eliminate
the power divergent coefficient %2 and to transform the
(8,1) NLO LEC’s to the values given in Table V. Thus, fits
to the subtracted lattice data will give the transformed
coefficients, where their power divergences have been
eliminated. This is what we want, since only these finite
combinations appear in physical quantities. The process
described in the above discussion on the determination of
the NLO LEC’s, along with that in [13], is not invalidated.

One can determine, using the �I � 3=2 amplitudes, the
following constants: �dr

1; d
r
2 � 4dr

24; d
r
7; d

r
4 � dr

5; d
r
4 �

dr
20�. Here dr

1 and dr
7 can both be determined from K !

,K ([13], Eq. (21)), and the procedure for the others is given
in the previous section. Given these, one can obtain er

2;rot

and er
1;rot � er

5;rot from K0 ! 0. Note that the values of the
coefficients obtained are those of the subtracted ampli-
tudes, and that the subscript refers to the LEC after the
chiral rotation of Table V has been performed. Only after
the subtraction can one fit to the lattice data using ChPT.
Given the previous information one can obtain er

1;rot �

er
3;rot � 4er

39, er
10;rot � er

35 �
3
2d

r
6, and 2er

10;rot � er
11 � 6dr

6

from Eqs. (36) and (37), after the subtraction has been
performed. From Eqs. (30) and (31)4 of Ref. [13] for K !
��, mK � m� � m (UK15), one can then obtain er

11 �

2er
15;rot � 3dr

6. Making use of all of the input thus obtained
into Eqs. (32) and (33) of Ref. [13] for K ! ��, mK �
2m� (UK2), yields er

13;rot �
3
2d

r
6 (after the subtraction).

Thus, the 11 linear combinations necessary to construct
the physical K ! �� at NLO (without using 3-momentum
insertion but with nondegenerate quarks in K ! �) are�

dr
1; d

r
2 � 4dr

24; d
r
7; d

r
4 � dr

5; d
r
4 � dr

20; e
r
2;rot; e

r
1;rot � er

3;rot

� 4er
39; e

r
10;rot � er

35 �
3

2
dr
6; 2e

r
10;rot � er

11 � 6dr
6; e

r
11

� 2er
15;rot � 3dr

6; e
r
13;rot �

3

2
dr
6

�
:

C. (8,1)

The case of pure (8,1) operators, e.g., Q6, is simpler than
the previous case of mixed �I � 1=2 operators and is
phenomenologically the most important one as it gives
-9
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the dominant contribution to the CP-odd phase of �0=�
coming from QCD penguins. For this case the six needed
linear combinations are �er

2;rot; e
r
1;rot � er

3;rot � 4er
39; e

r
35 �

er
10;rot; 2e

r
35 � er

11; e
r
11 � 2er

15;rot; e
r
13;rot�. The first of these is

obtained from K ! 0. The second requires both K ! 0
and K ! � (mK � m�). The third and fourth are also
obtained from K ! �. K ! �� at UK1 then gives the
fifth, and K ! �� at UK2 gives the sixth coefficient.
Since it is likely that UK1 will prove to be particularly
difficult [16], it is possible to use another set of allowed
values of UKX in order to obtain the remaining coeffi-
cients. Of course, one will want to do such a calculation
using UKX anyway for the additional redundancy. All
LEC’s are those that would be obtained from a fit to lattice
data after the power divergent subtraction has been
performed.

D. (8,8)

Since the leading order (8,8) begins at O�p0�, the NLO
contribution comes at O�p2�. As an example, Eq. (36) from
[10] is given (with our normalization of f and our con-
vention for the ci’s),

h�0jO�8;8�jK0ict �
2
���
2

p

f2

�
�

	
1

3
c1 � c2 �

2

3
c3



pK � p�

�
2

3
c4m

2
K

�
: (38)

Now with mK � m�, even when both mesons are at rest,
and pK � p� � mKm�, there is no loss of information, and
all the coefficients can be obtained at NLO without 3-
momentum insertion.

VI. CALCULATING K ! �� AMPLITUDES IN
PQCHPT

In this section we discuss the ambiguity of PQChPT in
the �I � 1=2 case where eye diagrams appear. At least
two ways arise in the context of PQChPT for dealing with
the gluonic penguins, the PQS and the PQN methods.
These are described, and their predictions at leading order
are compared using formulas given by Golterman and
Pallante. In the following subsections we give NLO ex-
pressions in PQChPT for the ingredients necessary to
obtain K ! �� at O�p2� and O�p4� for the (8,8)’s and
(8,1)’s, respectively. For the (8,8)’s it is necessary to know
K ! �, �I � 3=2 and 1=2 in order to get all the coeffi-
cients at NLO, as shown in [10]. This remains true in
PQChPT. The important point to note is that one can
construct K ! �� amplitudes for the (8,8) operator to
NLO using only K ! � with degenerate quark masses
(mK � m�), along with K ! 0 to perform the �I � 1=2
power subtraction.

For the (8,1)’s, one needs K ! 0, K ! � with non-
degenerate quarks, and K ! �� at two values of unphys-
ical kinematics, e.g., mK � m� (UK1) and mK � 2m�
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(UK2), as shown in [13] in full ChPT to NLO. We also
have introduced in Sec. V the kinematics for K ! ��
accessible to the lattice which we have called UKX, of
which UK1 and UK2 are special cases. Reference [16] has
demonstrated that UK1 has difficulties in the full theory
and is not tractable in the partially quenched theory due to
enhanced finite volume effects. One can still obtain all of
the needed LEC’s to construct K ! �� to NLO for the
(8,1)’s from UKX, however. This remains true in PQChPT
only when one is working within the PQS framework. This
paper, therefore, follows the prescription of the PQS
method for the (8,1)’s. Note that in the PQN method it is
not clear if all the ingredients needed for constructing the
physical K ! �� amplitudes to NLO can be determined
from the lattice, except in the full theory (N � 3, msea �
mval) where the two methods coincide. Note, also, that the
(8,1), K ! �� amplitudes at UKX are afflicted by en-
hanced finite volume corrections except when msea �
mu � md for both the PQS and PQN methods.

In the PQChPT case (as in full ChPT) the K ! �
amplitudes require nondegenerate quarks, ms � mu �
md, in order to extract all of the necessary LEC’s from
them. Since this amplitude does not conserve 4-
momentum, for ms � md the weak operator must transfer
a 4-momentum q � pK � p�. The conclusion of the pre-
vious section that 3-momentum insertion is not essential
holds also in the case of PQChPT.

The diagrams to be evaluated for the NLO corrections
are shown in Fig. 1. The topologies are unchanged from
[13], although additional pseudofermion ghost and sea
meson fields propagate in the loops. The renormalization
of the external legs via the strong interaction must be taken
into account.

A. The treatment of eye-graphs

There is a subtlety concerning the �I � 1=2 amplitudes
in the partially quenched theory, and this has been dis-
cussed by Golterman and Pallante for the case of the
gluonic penguins [21,30,36]. What follows is a summary
of their work. To illustrate the subtlety, we discuss the
situation for the Q6 gluonic penguin operator, given by

Q6 � sa���1� �5�db

X
q

qb���1� �5�qa: (39)

The right part of this operator is a sum over light flavors
q � u; d; s so in the full theory the right-hand part is a
flavor singlet under the symmetry group SU�3�R. In the
partially quenched theory one has at least two options. One
may choose to sum over all the quarks, including sea and
ghost in which case the right component of the operator
transforms as a singlet under the extended symmetry
group; therefore, this is called the PQS (partially quenched
singlet) option. In the second option, one may choose to
sum in Eq. (39) over only the valence quarks. In this case
the operator is a linear combination of two terms, one of
-10
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FIG. 2. The quark contractions needed for K ! �, �I � 1=2
matrix elements include the above eye diagrams. A connected
line represents a trace over color indices, so (a) represents a
product of two color traces, whereas (b) represents a single color
trace.

A1 A2 B1 B2

B3 C1 C2 C3

C4 C5 C6 D1

D2 D3 D4 D5

D6

FIG. 1. Diagrams needed to evaluate the NLO amplitudes in
(PQ)ChPT. NLO corrections include tree-level diagrams with
insertion of the NLO weak vertices (crossed circles), tree-level
diagrams with insertion of O�p4� strong vertices (lightly shaded
circles), one-loop diagrams with insertions of the LO weak
vertices (small filled circles) and the O�p2� strong vertices
(big filled circles). The lines represent the propagators of mesons
comprised of valence, ghost, and sea quarks. (A1–A2) are for
K ! 0. (B1–B3) are for K ! �. (C1–C6) and (D1–D6) are for
K ! ��.
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which transforms as a singlet under the extended symmetry
group, while the other does not transform as a singlet under
the irreducible representation of the extended symmetry
group (rather, for Q6, it transforms in the adjoint represen-
tation); therefore, we choose to call this the PQN method.

Given that the flavor blind, vector character of the quark-
quark-gluon elementary interaction in QCD plays a crucial
role in leading to the explicit singlet form [Eq. (39)] of the
right-hand part of the penguin operator, it seems reason-
able to preserve this basic character in generalization to the
partially quenched case which contains additional quarks.
This provides the rationale for the PQS option.

The origin of the PQN option is quite different; it is, in
fact, the straightforward implementation of the quenched
approximation to a lattice calculation of the necessary
Green’s functions. The usual practice leads one to use
only the valence quarks in the necessary Wick contractions
for, say h�jQ6jKi, which then lead to valence quark loops
(see Fig. 2(a) and 2(b)), the so-called eye graphs. In such an
implementation all other quark loops are computed when
the fermion determinant is evaluated in the generation of
the gauge configurations. When one partially quenches in
the PQN method, the gauge configurations are generated
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using the number and mass of the sea quarks, but the
propagators for the loops of the eye graphs (Fig. 2(a) and
2(b)) are still computed with those of the valence quarks. In
the partially quenched case where the sum in Eq. (39) is
over the valence quarks only, as mentioned above, the
operator is a linear combination of two terms, only one
of which transforms as a singlet under the extended sym-
metry group.

Figure 2 shows the Green’s function relevant for a lattice
evaluation of h�jQ6jKi consisting of the two eye graphs
originating from the Wick contractions. Any number of
gluon lines from the background gauge configurations (not
explicitly shown) are understood in such a pictorial repre-
sentation of these nonperturbative graphs. As usual, one of
the Wick contractions is a product of two color traces
(Fig. 2(a)), while the second is a single trace over color
indices. In the PQS implementation of the Q6 penguin
operator, in the quenched case where qq loops in the gluon
propagation are not included, the eye graph (Fig. 2(b)) with
a single color trace should also be excluded, for consis-
tency [21,36].

In the PQN option of calculating h�jQ6jKi, one uses
valence quarks for the propagators of the eye graphs in the
corresponding Green’s function, as this appears analogous
to the usual practice in lattice computations. However, the
situation at hand demands caution. Lattice calculation of
h�jQ6jKi is qualitatively different in important aspects
from (say) spectrum, decay-constant or form-factor
calculations.

To trace the potential inconsistency we show the weak
operator with a magnified view in the nonperturbative eye
graph (Fig. 3). Inside the dashed lines is the magnified
short distance effective penguin operator; outside of these
dashed lines any number of soft gluon lines from the
background gauge configurations are understood, just as
in Fig. 2. For h�jQ6jKi, Fig. 3(a) and 3(b) correspond to
the product of two color traces (Fig. 2(a)) and Fig. 3(c)
corresponds to the single trace over color indices
(Fig. 2(b)). Figure 3(c) shows clearly that the correspond-
ing Wick contraction (single trace over color indices for
Q6, i.e., Fig. 2(b)) in a lattice evaluation of h�jQ6jKi
contains a qq loop in the propagation of the gluon, and
since in the quenched case these are being dropped from
-11
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FIG. 3. The quark contractions needed for K ! �, �I � 1=2
matrix elements include the above eye diagrams. The weak
operator is shown with a magnified view inside the dashed lines
so that one can see how it arises in perturbation theory for the
gluonic penguins. (a) corresponds to q being contracted with d,
while (b) corresponds to q being contracted with s.
(c) corresponds to q being contracted with q. For the electro-
weak penguins, one would replace the gluon lines with those of
photons or Z’s.

6Note that [16] have shown that there are difficulties at what
we call UK1 (K ! �� with mK � m�). There is, however, an
additional set of kinematics points that bypass the Maiani-Testa
theorem, creating the two pion state at threshold with energy
carried by the weak operator which we call UKX. If UK1 proves
difficult or impossible one must supplement the other ingredients
with a calculation of K ! �� at UKX with mK > m�.
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the background gauge configurations one may wish to
exclude Fig. 2(b) (for Q6) in the quenched approximation.
In a similar vein, for the partially quenched case one may,
for consistency, take the quark loop in the eye graph of
Fig. 2(b) (Fig. 3(c)) to be that of sea quarks only [21,36], as
in the PQS method. This lack of consistent (partial)
quenching causes the low-energy dynamics of (P)QChPT
to change between PQS and PQN methods. It is not clear if
the additional (partially) quenched nonsinglet terms that
modify the low-energy dynamics correctly account for the
otherwise neglected loop contractions, or if the (partially)
quenched low-energy constants from the singlet operator
alone substituted into the full ChPT formulas for K ! ��
provide a better estimate for the physical amplitudes. Thus,
the appearance of eye diagrams has created an ambiguity
because the contraction of Fig. 3(c) yields a quark vacuum
bubble, and it is not obvious whether the propagators to be
contracted should be the sea or the valence; again, the first
choice corresponds to PQS and the second to PQN.

The correspondence between the traditional form of the
nonperturbative eye graphs as shown in Fig. 2 and the
nonperturbative eye graphs with the magnified view of
the penguin operator as shown in Fig. 3 for all penguin
operators is as follows: For the Q3 and Q5 operators, the
color contraction of Fig. 2(a) corresponds to Fig. 3(c),
while the color contraction of Fig. 2(b) corresponds to
Figs. 3(a) and 3(b). For the Q4 and Q6 operators, the color
contraction of Fig. 2(a) corresponds to Figs. 3(a) and 3(b),
while the color contraction of Fig. 2(b) corresponds to
Fig. 3(c). For the electro-weak penguins, the picture in
Fig. 3 carries over, but with the gluons replaced by a
photon or a Z. In that case, for Q7 the color contraction
of Fig. 2(a) corresponds to Fig. 3(c), while the color con-
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traction of Fig. 2(b) corresponds to Figs. 3(a) and 3(b). For
Q8, the color contraction of Fig. 2(a) corresponds to
Figs. 3(a) and 3(b), while the color contraction of
Fig. 2(b) corresponds to Fig. 3(c). In short, Fig. 2(a) cor-
responds to Fig. 3(c) for the operator Qi, i � 3� 8, i odd,
while Fig. 2(b) corresponds to Fig. 3(c) for i even.

The treatment of ChPT for the case when only valence
quarks are contracted in the eye diagrams was first dis-
cussed by [21], for the case of the gluonic penguins. When
one includes only the valence propagators in the eye dia-
grams (no partial quenching of the effective operator) for
the case of the gluonic penguins the right-hand part of the
(8,1)’s is no longer a singlet, and there is a contribution
from a nonsinglet operator. For the left-left gluonic pen-
guins, Q3 and Q4, these nonsinglet contributions do not
occur until next-to-leading order [36]. For the left-right
gluonic penguins, Q5 and Q6, the nonsinglet operator
transforms under the same irreducible representation as
the (8,8) electro-weak penguins. Since the (8,8)’s are
NLO at O�p2�, even the leading order gluonic penguins
can have logarithmic contributions from the one-loop in-
sertions of the lowest order (8,8) operator. These were
calculated in [36] for the left-right gluonic penguins, Q5

and Q6. Since the amplitudes in this case no longer trans-
form as pure (8,1)’s, but pick up a contribution from the
(8,8)’s, this calculation corresponds to the PQN method. It
is useful to compare the (PQ)ChPTexpressions for the PQS
and PQN methods, and the next section compares the two
methods at leading order for the left-right gluonic pen-
guins, using expressions derived by Golterman and
Pallante [21,30,36].

We choose to work within the framework of [30], where
the PQS method was (implicitly) used. In this case there is
the possibility of determining the LEC’s to NLO. For the
left-right gluonic penguins, for example, at NLO in the
PQN method there are many more LEC’s that appear in the
amplitudes we are considering than in the PQS method.
These are the O�p4� LEC’s of the (8,8) NNLO local
operators, and it is not even clear whether one can deter-
mine the correct linear combinations of the new LEC’s
necessary to construct K ! �� at NLO in ChPT from the
PQN method, except when N � 3 and msea � mval (i.e.,
full QCD), as in that special situation the two options
coincide. On the other hand, for the PQS method, no new
ingredients are needed over the ones listed in our previous
work [13] which were needed for the case of full ChPT.6

The PQS method can also be applied to obtain all of the
needed LEC’s to construct K ! �� to NLO for the case
-12
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N � 2 (using the same ingredients as for the full theory),
though in this case the LEC’s are not necessarily the same
as in the N � 3 physical case.

To reiterate, in general, the PQN method is complicated
by the contributions of many more LEC’s, and it is not
known whether this method can be used to NLO. Such a
determination would require a two-loop calculation. The
PQS method gives us everything we need and is the only
method where we have demonstrated that it is possible to
obtain K ! �� to NLO in ChPT. Thus, we use the PQS
prescription.

As discussed in [21], the NLO (8,8) LEC’s that appear in
linear combinations with the LO (8,1) LEC’s in the PQN
expressions for the amplitudes of the left-right gluonic
penguins are not present for the PQS method. For the
case where N � 3, there is no ambiguity, and one must
extract the (8,1) LEC’s separately since these LEC’s take
the same values as in the full theory. However, when N is
not equal to 3, it may be that the additional (8,8) LEC’s
appearing in linear combinations with the (8,1) LEC’s
bring the N � 3 values of the (8,1) LEC’s to closer agree-
ment with the N � 3 values of the real world. As long as an
explicit N � 3 lattice calculation is lacking, it may be
useful to compare the determinations of both PQN and
PQS leading order LEC’s at other values of N in order to
learn something of the size of the systematic error due to
partial quenching [21,36]. This is discussed further for
Q5;6, LO K ! �� amplitudes in the next subsection.

This paper requires K ! 0, K ! �, ms � md � mu,
and K ! �� at two unphysical kinematics in order to
construct the physical (8,1), K ! �� amplitude for any
gluonic penguin operator (Q3;4;5;6) using the PQS prescrip-
tion. Reference [30] presented K ! 0, and K ! �, ms �
mu � md, and we agree with those calculations in the case
we consider, namely, the partially quenched case with
mval; msea � m
0 . We extend these calculations to include
all amplitudes needed to obtain the (8,1) LEC’s necessary
to construct K ! �� to NLO.

In the case of the (8,8), �I � 1=2 amplitudes, one also
must make this choice of whether to (partially) quench the
right side of the penguin operator. In this case, however, the
difference comes in the choice of the quark charge matrix,
Q. If we choose the ghost quark charges to be equal to the
valence quark charges, then we quench the electro-weak
penguins, and one should ignore the valence contributions
to Fig. 3(c) (with the gluon replaced by a photon or Z,
Fig. 3(c) corresponds to Fig. 2(a) for Q7 and to Fig. 2(b) for
Q8) in the lattice calculation. However, if one chooses the
ghost quarks to have zero charge then the electro-weak
interaction remains unquenched, and one must include the
valence quarks in Fig. 3(c) in the lattice calculation. In both
cases the sea quark loop contributions to Fig. 3(c) vanish if
we assume degenerate sea quark masses and that the sum
of the sea quark charges is zero. The logarithmic expres-
sions resulting from either choice for the (8,8)’s are pre-
sented in Appendix D.
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To summarize, our calculation for the (8,1) gluonic
penguin matrix elements corresponds to the PQS method.
In the corresponding lattice calculation, the eye contrac-
tions of Fig. 3(c) (corresponding to Fig. 2(a) for Q3, Q5,
and Q7, and to Fig. 2(b) for Q4, Q6, and Q8) include only
the sea quarks. That is, the propagator of the internal loop
of Fig. 3(c) is calculated with the masses of the sea quarks,
not the valence quarks. As discussed above, when N � 3,
this, the PQS method, allows for the only known imple-
mentation of the reduction method for the gluonic pen-
guins. It greatly simplifies the LO analysis [36] and makes
possible a NLO determination of all of the necessary
LEC’s, as demonstrated in this paper. For the (8,8)
electro-weak penguin matrix elements, for degenerate sea
quark masses the eye graph of Fig. 3(c) (with the gluon
replaced by a photon) vanishes for any number of dynami-
cal flavors by construction (see Sec. IV). Whether one
chooses to include valence quarks in the loop of Fig. 3(c)
does not significantly alter the situation in PQChPT, and
formulas for both implementations are given in this
paper.
B. PQS vs PQN at leading order

This section is a review of Golterman and Pallante’s
[21,30,36] results for the leading order, left-right gluonic
penguins, Q5 and Q6. Table VI compares the results of the
PQS method versus those of the PQN method. The results
are for the subtracted K ! � matrix elements, where the
(large) subtraction is performed using K ! 0. For details
on how this subtraction is performed, see [2]. The end
result of this subtraction in the case of full QCD (no
quenching) is just %N�3

1 , which is the physical LO LEC
that contributes to K ! ��. In this case, the two methods,
PQS and PQN, are procedurally the same, and they there-
fore give the same answer.

When N � 3, but msea � mval, the LEC’s in the ampli-
tudes are still those of the full theory, but an additional
LEC, the leading order (8,8) electro-weak penguin LEC
%88 contributes in the PQN case to K ! 0 multiplied by
some logarithmic terms [21]. Thus, a subtraction that is
performed without taking this into account has a contami-
nation. That is, there is an extra term appearing at leading
order that must be accounted for in fits used to obtain the
subtraction coefficient from K ! 0. Looking in Table VI at
the PQS result, we see that this method is simpler. At NLO
the difference is even more severe, so that PQS is the only
method shown to be feasible. In this case the difference in
practice between the two methods is whether one uses the
sea mass or the valence mass in the propagator of the loop
in Fig. 3(c). (See the preceding section for the correspon-
dence between Fig. 3(c) and the traditional form of the eye
diagrams in Fig. 2 for the various operators.)

When N � 2 the LEC’s are no longer those of the full
theory, and an ambiguity results. In this case the calcula-
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TABLE VI. The leading order LEC’s as determined in
PQChPT from K ! � after using the K ! 0 subtraction de-
scribed in [2] are presented. They are compared for the PQS and
PQN methods in the case of the left-right gluonic penguins. The
two methods agree for the full QCD case. For the N � 3, msea �

mval case there is a logarithmic contamination for the case of
PQN. That is, there is an extra term appearing at leading order
that must be accounted for in fits used to obtain the subtraction
coefficient from K ! 0. For N � 2, the LEC’s are not those of
the full theory, and additional terms appear for the PQN case. For
N � 0, the quenched case, there also are additional terms that
contribute in the PQN case. See [21,36] for the derivations of
these results and the values of the logarithmic corrections
abbreviated here.

N � 3, msea � mval (Full QCD)
PQS PQN

%N�3
1 %N�3

1

N � 3, msea � mval

PQS PQN

%N�3
1 %N�3

1 � %N�3
�8;8� (log terms)
N � 2

PQS PQN

%N�2
1

3
2%

N�2
1 � 1

�4��2
�9�8;8�

1 � 1
29

�8;8�
2 � � %�8;8�

N�2 (log terms)
N � 0

PQS PQN

%N�0
1

1
2%

N�0
1 � 1

�4��2
�9NS

1 � 1
29

NS
2 � � %NS

Q (log terms)
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tions differ in that for the loop of Fig. 3(c) for PQS one uses
two flavors with the dynamical mass, while for PQN one
uses three flavors with the valence masses. Here, %N�2

88

appears multiplied by logarithmic terms, and these must be
removed in the fits to K ! 0 before the subtraction can be
performed. Notice also the presence of the 9 terms in
linear combination with the %N�2

1 term. These 9 terms
always appear in the same linear combination with %N�2

1 ,
including in the expression for K ! ��. Thus, it is not
obvious whether they represent a correction to the %N�2

1

term or a contamination. Clearly, it will be important to
compare the results of both methods. Note also that the 9
terms that appear with %N�2

1 have a scale dependence
proportional to %N�2

88 , and that if %N�2
88 is not so far from

%N�0
88 , as determined in [2], then this scale dependence

would be large. It would then be necessary to include the
partially quenched chiral logs proportional to %N�2

88 in K !

�� in order to cancel the scale dependence and obtain a
consistent answer. It would be extremely useful to have (at
least so long as an N � 3 calculation is not available) a
study of the subtracted LO constants for the PQS and PQN
methods as a function of N, so that one could try to
extrapolate each result to N � 3 and compare the two.

Note that the 9 terms are related to the (8,8) LEC’s, ci in
the terminology of this paper. The correspondence to our
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notation is

9�8;8�
1 � �4��22c3; 9�8;8�

2 � �4��22c1;

9�8;8�
3 � �4��22c4:

(40)

Finally, when N � 0 the theory is completely quenched.
This corresponds to ignoring all contractions of the kind in
Fig. 3(c) for the PQS method and keeping them with the
valence quarks for PQN. In the quenched case, the addi-
tional LEC’s for PQN, the %NS

Q and 9NS
i , are coefficients of

nonsinglet operators, but they have no relation to the (8,8)
electro-weak penguins. Golterman and Pallante [21] pro-
vide a possible recipe for determining %NS

Q on the lattice.
Analogous to the partially quenched case, if %NS

Q is large, it
would imply a large scale dependence on the subtracted
combination of LEC’s in the PQN method, which would
have to be cancelled by the quenched logs proportional to
%NS

Q in K ! �� in order to obtain a consistent, scale
independent answer. There are indications from the large
Nc (Nc is the number of colors) approximation that the
LEC %NS

Q is indeed large compared to %N�0
1 [37]. Again, it

is not clear if the nonsinglet terms represent a correction or
a contamination, and results for both methods should be
compared as part of an extrapolation in N.
VII. (PARTIALLY) QUENCHED (8,8)’S TO NLO

In this section we present the results for the partially
quenched K ! � and K ! 0 amplitudes needed to con-
struct the K ! �� amplitudes to NLO for the (8,8)’s. The
power divergent subtraction is discussed for the �I � 1=2,
K ! � amplitude. Formulas are presented for K ! 0 and
K ! � for nondegenerate quark masses, as well as K ! �
for degenerate quark masses. It is demonstrated that K !
� with degenerate masses is sufficient to construct K !
�� to NLO in the partially quenched theory, while K ! �
with nondegenerate quark masses gives additional redun-
dancy in determining the NLO LEC’s.

We show that in the case of K ! � with degenerate
quark mass, the N � 0 limit of our expressions produces
the quenched result, which will be useful for fits to already
existing lattice data. It is important to notice that not all
LEC’s needed for NLO K ! �� can be determined from
the quenched K ! � data, since cr

6, which is needed in the
physical K ! �� expressions, does not appear in the
quenched K ! � formulas. One can see the scale depen-
dence of the LEC’s from the formula,

cr
i ��2� � cr

i ��1� �
2%88
i

�4�f�2
ln

�1

�2
; (41)

which can be obtained from Eq. (19), the definition of the
renormalized LEC’s. The coefficients 
i are given in
Table III. Since the scale dependence of the cr

6 coefficient
in the physical K ! �� amplitude is significant (where it
is needed to cancel the corresponding scale dependence in
-14



LATTICE EXTRACTION OF K ! �� AMPLITUDES TO . . . PHYSICAL REVIEW D 71, 014021 (2005)
the NLO log terms), it is crucial to do dynamical simulations of the (8,8) K ! � amplitudes in order to bring under control
the systematic errors due to the chiral expansion.

A. Partially quenched (8,8)’s with nondegenerate quark masses

The LEC’s needed to construct the K ! ��, �I � 1=2 and 3=2 (8,8)’s can be obtained from the K ! � amplitudes
with energy insertion and ms � md � mu. The (8,8) K ! �� counterterm contributions for both the �I � 3=2 and 1=2
amplitudes are given by

h����jO�8;8�;�3=2�jK0ict � �
4i%88
fKf2�

�
4i

fKf2�
���cr

2 � cr
3 � 2cr

4 � 2cr
5 � 4cr

6�m
2
K � ��cr

1 � cr
2 � 4cr

4 � 4cr
5 � 2cr

6�m
2
��;

(42)

h����jO�8;8�;�1=2�jK0ict � �
8i%88
fKf2�

�
4i

fKf2�
���cr

1 � cr
2 � 4cr

4 � 4cr
5 � 8cr

6�m
2
K � ��cr

1 � cr
2 � 2cr

3 � 8cr
4 � 8cr

5

� 4cr
6�m

2
��: (43)

These are the expressions in the full theory and were given by [10], where they showed that one can obtain the necessary
linear combinations of LEC’s from K ! � with momentum, �I � 1=2, 3=2. We demonstrate this holds also for the
partially quenched case (without the need for 3-momentum insertion, as explained in Sec. V). In Eqs. (42) and (43) as well
as all the following amplitudes, we include only the tree-level weak counterterm contributions. For clarity, the logarithmic
terms and the Gasser-Leutwyler Li counterterms have been omitted from this section but are included in Appendix D.

The K ! � counterterm amplitudes are given by

h��jO�8;8�;�3=2�jK�ict �
4%88
f2

�
4

f2
�2�cr

4 � cr
5�m

2
K � 2�cr

4 � cr
5�m

2
� � �cr

1 � cr
2�mKm� � 2cr

6Nm2
SS�; (44)

h��jO�8;8�;�1=2�jK�ict �
8%88
f2

�
4

f2
��6cr

4 � 4cr
5�m

2
K � 4�cr

4 � cr
5�m

2
� � �cr

1 � cr
2 � 2cr

3�mKm� � 4cr
6Nm2

SS�: (45)

At this point, a practical issue in the extraction of the LEC’s should be mentioned. There is a power divergence in the
NLO coefficient cr

4 due to mixing with unphysical lower dimensional operators that must be removed if one is to have any
hope of numerically extracting any of the LEC’s. This is a problem for K ! �, �I � 1=2, but not K ! �, �I � 3=2,
since the combination cr

4 � cr
5 is finite in the continuum limit. For the �I � 1=2 amplitude the power subtraction method

of RBC [2] can be used, and this requires the K ! 0 amplitude. At NLO, this amplitude is

h0jO�8;8�jK0i �
4i%88

f
�2A0�m2

K� � A0�m2
�� � A0�m2

33� � NA0�m2
sS� � NA0�m2

uS�� �
8i
f

cr
4�m

2
K � m2

��; (46)
where A0�m2� is defined in Appendix A. We also mention
that the (8,8), K ! 0 calculation has an eye diagram, and
one must make a decision whether to keep the valence
quarks in the eye contractions or not. The above formula,
Eq. (46), corresponds to keeping the valence quarks in the
eye contraction. If one neglects the type of contraction
associated with Fig. 3(c), then one obtains

h0jO�8;8�jK0i �
4i%88

f
�NA0�m

2
sS� � NA0�m

2
uS��

�
8i
f

cr
4�m

2
K � m2

��: (47)

Unlike the case of Q6, the chiral perturbation theory is
not substantially changed, and one can use either method,
as long as one is consistent. The K ! 0 subtraction works
014021
as follows: We make use of the subtraction operator intro-
duced in Sec. IV,
*�3;3� � s�1� �5�d � %�3;3�Tr��6��; (48)
to lowest order in chiral perturbation theory. The mass
dependence of the above quark bilinear operator *�3;3� is
the same as that of the power divergent part of the four-
quark operators, so one can use the matrix elements of this
bilinear operator to subtract out power divergences to all
orders in ChPT. In order to perform the subtraction at NLO
for the (8,8)’s we need the following leading order expres-
sions of the *�3;3� amplitudes,
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h��j*�3;3�jK�i �
�2

f2
%�3;3�; (49)

h0j*�3;3�jK0i �
2i
f

%�3;3�: (50)

When we take the ratio of h0jO�8;8�jK0i to h0j*�3;3�jK0i
we get

h0jO�8;8�jK0i

h0j*�3;3�jK0i
� �4

cr
4

%�3;3�
�m2

K � m2
�� � 2

%88

%�3;3�
�logs� � :::

(51)
014021
where we have omitted terms of higher order in the chiral
expansion. Note, however, that all higher order terms
proportional to cr

4 cancel in the ratio. Fitting to this ex-
pression allows one to obtain cr

4=%�3;3�, which one can then
use in the subtraction of the power divergences of K ! �.
Notice that cr

4 has a scale dependence that must cancel the
scale dependence of the %88 log term in K ! 0. Thus, one
must ensure the value of � in a chiral fit to K ! � is the
same as the value of � used in the power subtraction. After
the subtraction, the following expression no longer has
power divergences:
h��jO�8;8�;�1=2�jK�i � 4
cr
4m

2
K

%�3;3�
h��j*�3;3�jK�i �

8%88
f2

�1� logs� �
4

f2
�4�cr

4 � cr
5�m

2
K � 4�cr

4 � cr
5�m

2
�

� �cr
1 � cr

2 � 2cr
3�mKm� � 4Ncr

6m
2
SS�: (52)
Here, cr
4 appears only in the linear combination cr

4 � cr
5,

which does not contain power divergences. Thus, the K !
0 subtraction has removed the power divergences from the
�I � 1=2, K ! � expression, including all of the higher
order power divergent contributions, an important point,
since the subtraction does not require (PQ)ChPT for its
implementation. The expression, Eq. (52), is the one which
should be fitted for the NLO LEC’s. Thus, fitting to (44)
and the power subtracted amplitude, (52), one can obtain
all of the linear combinations needed for K ! �� at NLO.

In principle, one can obtain %88 from either leading
order term. In practice, it is safer to use the 3=2 amplitude
since the 1=2 amplitude could receive some residual chiral
symmetry breaking contribution unless one uses a discre-
tization that has exact chiral symmetry. The �I � 3=2
expression does not involve power divergent subtractions,
and is, therefore, the best way to get the leading order
coefficient. One can get cr

6 from the term that depends on
the sea meson mass. From fits to the other mass combina-
tions, one obtains cr

4 � cr
5, cr

1 � cr
2, and cr

1 � cr
2 � 2cr

3.
Along with %88, the four linear combinations: �cr

1 �
cr
2; c

r
1 � cr

2 � 2cr
3; c

r
4 � cr

5; c
r
6� are sufficient to determine

K ! �� at the physical kinematics, as one can verify with
some simple algebra from Eqs. (42) and (43). When N �
3, the values of the LEC’s determined from PQChPT are
the same as in the full theory. We point out in the next
subsection that one can get all of the needed information to
construct the EWP matrix element for K ! �� to NLO
even with K ! � using degenerate valence quark masses,
along with K ! 0 to perform the power subtraction in the
�I � 1=2 case. The nondegenerate case remains useful,
however, in that it provides additional redundancy in de-
termining the NLO LEC’s.

Note that for the cases of physical K ! �� (8,8) am-
plitudes (42), (43), and (58) for the corresponding (8,1)’s,
the pseudoscalar decay constants and masses are the physi-
cal (renormalized to one-loop order) ones. For all other
amplitudes given in this paper except K ! �� at physical
kinematics, the formulas are in terms of the bare constants.
The distinction between bare and renormalized constants is
made only in tree-level amplitudes, since making this
distinction in the NLO expressions introduces corrections
at higher order (NNLO) than is considered here.

The logarithmic and Gasser-Leutwyler counterterm con-
tributions to the amplitudes in this section are given in
Appendix D.

B. Partially Quenched (8,8)’s with degenerate quark
masses for K ! �

For the case of degenerate quark masses, Eqs. (44) and
(52) become

h��jO�8;8�;�3=2�jK�ict �
4%88
f2

�
4

f2
���cr

1 � cr
2 � 4cr

4

� 4cr
5�m

2 � 2cr
6Nm2

SS�; (53)

h��jO�8;8�;�1=2�
sub jK�ict �

8%88
f2

�
4

f2
���cr

1 � cr
2 � 2cr

3

� 8cr
4 � 8cr

5�m
2 � 4cr

6Nm2
SS�;

(54)

where the logarithmic parts of the above expressions are
given in Appendix D. The K ! 0 subtraction is performed
exactly as in the nondegenerate case, yielding the above
result, Eq. (54). Again, simple algebra will verify that the
above linear combinations of LEC’s are sufficient to de-
termine the LEC combinations in Eqs. (42) and (43) for the
physical (8,8) K ! �� amplitudes to NLO. For example,
if one subtracts the m2 coefficient in Eq. (54) from the m2

coefficient in Eq. (53), one gets the same linear combina-
tion as the first four terms in Eq. (42). If one wants to obtain
-16
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all the needed information in the full theory, one must do an N � 3 simulation, varying the sea quark mass with respect to
the valence quark mass in order to determine cr

6. That is, one must still vary the sea quark mass independently of the
valence quark mass.

C. Quenched (8,8)’s with degenerate quark masses for K ! �

One can obtain results in the quenched theory by taking the N � 0 limit of the K ! 0 and degenerate K ! � formulas.
One then obtains, for K ! 0,

h0jO�8;8�jK0i �
4i%88

f
�2A0�m

2
K� � A0�m

2
�� � A0�m

2
33�� �

8i
f

cr
4�m

2
K � m2

��: (55)

In the quenched theory, the scale dependence of cr
4 vanishes, as one can verify from Table III. Therefore, the scale

dependence of the logarithms in quenched K ! 0 must also vanish; the fact that it does can be seen from Eq. (55). The
subtraction is performed the same way as in the partially quenched theory, and the expressions for K ! � are

h��jO�8;8�;�3=2�jK�ict �
4%88
f2

�
1�

2

16�2f2

	
m2 ln

m2

�2 � m2


�
�
4m2

f2

	
�16%88

f2
LQ
5 � cr

1 � cr
2 � 4cr

4 � 4cr
5



; (56)

h��jO�8;8�;�1=2�
sub jK�ict �

8%88
f2

�
1�

1

16�2f2

	
m2 ln

m2

�2 � m2


�
�
4m2

f2

	
�32%88

f2
LQ
5 � cr

1 � cr
2 � 2cr

3 � 8cr
4 � 8cr

5



:

(57)

Here, LQ
5 is the quenched Gasser-Leutwyler coefficient that appears in f�. Notice that cr

6 does not appear in the quenched
theory, though it does appear in K ! ��, where, as one can see from Table III it has a nonvanishing scale dependence.
This dependence on the chiral scale leads to a large uncertainty in the NLO K ! �� amplitudes, since the scale
dependence of the LEC’s must cancel against those of the chiral logarithms. Thus, it is essential to compute K ! �
with dynamical quarks in order to reduce the uncertainty due to the chiral expansion.

VIII. PARTIALLY QUENCHED (8,1)’S TO NLO

The amplitudes necessary to construct the physical K ! �� matrix elements are K ! 0; K ! �, ms � md � mu; and
K ! �� at the unphysical kinematics points of UKX, of which UK1 and UK2 are special cases. The counterterm part of
the physical (8,1) amplitude is

h����jO�8;1�jK0ict �
4i%1
fKf2�

�m2
K � m2

���1�loop� �
8i

fKf2�
�m2

K � m2
��f�er

10 � 2er
13 � 2er

14 � er
15�m

2
K

� ��2er
1 � 2er

10 � er
11 � 4er

13 � er
14 � 4er

2 � 2er
3 � 4er

35 � 8er
39�m

2
�

�
8%2
f2

�2m2
KL4 � ��4L4 � L5 � 8L6 � 4L8�m2

��g: (58)

This differs from our previous expression [13], Eq. (35) in the appearance of a new LEC, er
14, and in the inclusion of the

Gasser-Leutwyler coefficients of the amplitude previously given separately as part of the log terms in D10 of [13]. The
Gasser-Leutwyler coefficients are included here with the rest of the LEC’s for clarity. In the full theory the operator
corresponding to this LEC can be absorbed into the other operators O�8;1�

10 , O�8;1�
11 , O�8;1�

12 , and O�8;1�
13 via the Cayley-Hamilton

theorem, as discussed in Sec. IV. Since this is no longer true in the partially quenched theory, one must obtain the constant
separately. Therefore, it is left explicit in the physical amplitude.

For K0 ! 0, we have

h0jO�8;1�jK0ict �
4i%2

f
�m2

K � m2
�� �

8i
f
�m2

K � m2
����2er

1 � 2er
5�m

2
K � er

2Nm2
SS�: (59)
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The expression for K ! � is

h��jO�8;1�jK�ict �
4

f2
%1mKm� �

4

f2
%2m

2
K

�
8

f2
�2�er

1 � er
5�m

4
K � 2�er

10 � er
35�

� m3
Km� � �2er

3 � 2er
5 � 8er

39�m
2
Km2

�

� �2er
35 � er

11�mKm3
� � Ner

2m
2
Km2

SS

� Ner
14mKm�m2

SS�: (60)

The (8,1) amplitudes have power divergent parts that
must be subtracted, just as in the case of the �I � 1=2,
(8,8)’s. The subtraction is performed in the same way, but
014021
in this case the power divergent coefficient %2 is present
already at leading order. Thus, we must consider the effects
of the power subtraction at NLO if we are interested in
obtaining the LEC’s to this order. As we will see, the effect
is to modify the NLO, (8,1) LEC’s by adding terms pro-
portional to the Gasser-Leutwyler coefficients. The LEC’s
modified in this way are just those that have a scale
dependent part proportional to %2, and the new constants
so obtained are given in Table V. The power subtraction
eliminates the tadpole contributions from the amplitudes,
and the new combinations of LEC’s in Table V are free of
power divergences and can be obtained in numerical fits to
lattice data.

The ratio of the K ! 0 amplitude to the *�3;3� K ! 0
amplitude to NLO in PQChPT is
h0jO�8;1�jK0i

h0j*�3;3�jK0i
� 2

%2

%�3;3�
�m2

K � m2
�� � 2

%1

%�3;3�
�logs� �

4

%�3;3�
�m2

K � m2
��

�
2
	
er
1 �

8%2
f2

Lr
8 � er

5



m2

K

�

	
er
2 �

16%2
f2

Lr
6



Nm2

SS

�
: (61)

In this case, %2 appears multiplied by m2
K � m2

� (these are the tree-level masses, directly proportional to ms � md), but
all higher order logarithmic terms proportional to %2 are subtracted in the ratio. Also, the NLO terms from the *�3;3�

operator appear in just the combinations given in Table V. As we will show, the effect of the subtraction on K ! � and
K ! �� is to eliminate the %2 term, including all higher order corrections proportional to %2, and the NLO LEC’s are
modified to the values in Table V, just as in the ratio for K ! 0. After the subtraction of K ! �, at NLO one is left with

h��jO�8;1�jK�i � 2
%2m

2
K

%�3;3�
h��j*�3;3�jK�i �

4%1
f2

mKm��1� logs� �
8

f2
�2�er

1;rot � er
5;rot�m

4
K � 2�er

10;rot � er
35�m

3
Km�

� �2er
3;rot � 2er

5;rot � 8er
39�m

2
Km2

� � �2er
35 � er

11�mKm3
�

� Ner
2;rotm

2
Km2

SS � Ner
14mKm�m2

SS�: (62)

where we have indicated the coefficients that have undergone a chiral rotation to the form of Table V with a subscript, for
brevity. As expected, the dependence on %2 vanishes.

The amplitudes in the partially quenched theory for K ! �� at UK1 and UK2 are

h����jO�8;1�jK0ict � 8i
%1
f3

m2 � 8i
m2

f3
��4er

10 � 2er
11 � 4er

15 � 4er
35�m

2 � 2Nm2
SSe

r
14�; (63)

for K ! ��; mK � m� � m (UK1), and

h����jO�8;1�jK0ict � 4i
%1
f3

�m2
K � m2

�� �
3i
2

m2
K

f3
���2er

1 � 6er
10 � er

11 � 4er
13 � 4er

15 � 4er
2 � 2er

3

� 4er
35 � 8er

39�m
2
K � 4er

14Nm2
SS� � 12i

%2
f5

m4
K�4L4 � L5 � 8L6 � 4L8�; (64)
for K ! ��; mK�1�loop� � 2m��1�loop� (UK2).
In the partially quenched case there are, in general,

additional complications in the calculation of the �I �
1=2, K ! �� amplitudes due to threshold divergences
leading to enhanced finite volume effects [23,38] which
require special care. We present the logarithmic terms for
the infinite volume Minkowski space amplitudes at these
kinematics in Appendix E. The threshold divergences are
imaginary and vanish at NLO when the sea meson mass
becomes equal to the pion mass (or in terms of quarks,
msea � mu � md) for any N � 1, see Eqs. (E3) and (E5).
In infinite volume Euclidean space one might expect
the imaginary part should vanish since MEuclid �
1=2�Mjin �Mjout�, but in lattice calculations the imagi-
nary part shows up in the form of enhanced finite volume
effects. In finite volume Euclidean correlation functions,
unless the sea masses are chosen as stated (msea � mu �
md), these enhanced finite volume effects are present, and
-18
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they diverge as a power of the lattice volume. See [22,38]
for relevant calculations and discussions.7

As pointed out in Sec. V, there exists a set of kinematics
for K ! �� where the kaon and both pions are at rest,
bypassing the Maiani-Testa theorem on the lattice. The
quark masses (ms and mu � md) can be varied indepen-
dently, where the weak operator inserts/removes energy to
7Reference [16] states that in partially quenched lattice calcu-
lations, unless the unphysical degrees of freedom are above the
two pion threshold, one may have serious problems with the
enhanced finite volume effects. Again, see the note added in
revision.

014021
enforce 4-momentum conservation. We call this set of
kinematics UKX, of which UK1 and UK2 are special
cases. As pointed out by [39], there is a subtlety involved
in calculating the UK1 kinematics, and the � prescription
must be applied. One must take the � ! 0 limit only after
setting mK � m�. Given below is the most general expres-
sion for the LEC contribution to UKX,
h����jO�8;1�jK0ict �
4i

f3
%1m��mK � m�� �

8i

3f3
%2�m

2
K � m2

��
3m��2m� � mK� � i�
4m��mK � m�� � i�

�
16i�m2

K � m2
��

3f3�4m��mK � m�� � i��
f��4m2

� � 4mKm� � i���2m2
K � 3m2

��

� 2m2
Km��mK � 2m���e

r
1 � m2

SS�3�2N � 8�m2
� � 3�N � 8�mKm� � �N � 6�i��er

2

� 2m2
K�6m

2
� � 3mKm� � i��er

5g �
8i

f3
��2er

10 � 2er
35�m

3
Km� � ��2er

3 � 4er
13 � 2er

15 � 2er
35

� 8er
39�m

2
Km2

� � �er
11 � 2er

15�mKm3
� � �2er

3 � 2er
10 � er

11 � 4er
13 � 4er

35 � 8er
39�m

4
�

� Ner
14mKm�m2

SS�: (65)

When mK � m�, and the limit � ! 0 is taken in Eq. (65), we recover the special case of UK1, given by Eq. (63). One
can only use UKX within the range mK > m� [16], though we show that all LEC’s can still be determined. The LEC
contribution to UKX reduces to Eq. (66) at the special kinematics mK > m� and msea � mu � md (mSS � m�), where the
imaginary threshold divergences vanish,

h����jO�8;1�jK0ict �
4i

f3
%1m��mK � m�� �

2i

f3
%2�mK � m���2m� � mK� �

8i

f3
���er

1 � er
5�m

4
K

� �er
1 � er

5 � 2er
10 � 2er

35�m
3
Km� � ���4� N=2�er

2 � 2er
3 � 2er

5 � 4er
13 � 2er

15 � 2er
35 � 8er

39�

� m2
Km2

� � ��N=2�er
2 � er

11 � Ner
14 � 2er

15�mKm3
� � �2er

1 � �4� N�er
2 � 2er

3 � 2er
10 � er

11

� 4er
13 � Ner

14 � 4er
35 � 8er

39�m
4
��: (66)
The logarithmic part of this expression is given by
Eq. (E10).

The power divergent subtraction must also be performed
on K ! �� amplitudes, and this requires the computation
of the matrix element, h����j*�3;3�jK0i. The subtraction
to be performed is

h����jO�8;1�
sub jK0i � h����jO�8;1�jK0i

� 2
%2

%�3;3�
�m2

K � m2
��

� h����j*�3;3�jK0i; (67)

and the result of this subtraction at NLO is to eliminate the
%2 term and to transform the NLO coefficients to the form
of Table V, just as in the case of the K ! � subtraction.
This is exactly what is required, since the NLO coefficients
that appear in Table V always appear in the transformed
(finite) combinations in physical quantities, such as K !
�� at physical kinematics.

There is a subtlety in computing K ! �� at the kine-
matics where mK � m� (UK1) that must be considered
when the matrix element of the*�3;3� operator is computed.
One expects the power divergence in h����jO�8;1�jK0i to
vanish at mK � m� by CPS arguments, as discussed in
[14]. However, a naive calculation of h����j*�3;3�jK0i in
Minkowski space shows that a factor of mK � m� appears
in the denominator, potentially cancelling the mK � m� in
the coefficient multiplying h����j*�3;3�jK0i in Eq. (67).
This point was clarified in [39]. As they point out, it is
crucial to use the � prescription in order to have a well-
defined Minkowski space amplitude. The � ! 0 limit must
be taken after the mK ! m� limit. Thus, at leading order in
ChPT, the K ! �� amplitude for the *�3;3� operator at
UK1 is

h����j*�3;3�jK0i � lim
�!0

�
lim

mK!m�

4i%�3;3�

3f3

�
3m��2m� � mK� � i�
4m��mK � m�� � i�

�
: (68)
-19



JACK LAIHO AND AMARJIT SONI PHYSICAL REVIEW D 71, 014021 (2005)
As one can see from Eq. (68) after taking the first limit,
there is a pole at this kinematics. This pole in the denomi-
nator comes about from the graph of Fig. 1(C)2, where the
kaon is annihilated by the tadpole operator. As discussed
by [39], it is useful to consider the corresponding ampli-
tude in finite volume Euclidean space. In this case, the
divergence is regulated by the finite time extent of the
lattice, and the amplitude becomes proportional to t� (to
LO in ChPT), which is the difference in time between the
weak operator insertion and the two pion sink. When one
multiplies h����j*�3;3�jK0i by m2

K � m2
� at exactly

mK � m�, then the contribution from the *�3;3� term in
Eq. (67) is identically zero, and the power divergence
vanishes at mK � m�, as expected from CPS symmetry.
In the previous version of this paper, as well as in [13], we
did not properly appreciate this subtlety; we correct
Eqs. (31) and (D6) of [13] in Appendix F.

The subtraction is necessary in UKX at all accessible
values of the meson masses except UK1, as discussed
above,8 and at mK � 2m� (UK2) because then there is
no 4-momentum insertion at the weak vertex. To the extent
that one cannot set mK exactly equal to 2m� on the lattice,
it becomes necessary to perform a small subtraction at this
kinematics. Since the power divergences in UKX are pro-
portional to mK � 2m� [Eqs. (65) and (E10)], the best
place to investigate UKX numerically is in the vicinity of
mK � 2m�, where we hope the power divergences will not
be intractable.

The NLO LEC’s for the (8,1) case can be obtained as
follows: From the subtracted K ! � amplitude, Eq. (62),
one can obtain the leading order LEC, %1. If one uses the
LEC combinations obtainable from Eq. (61) for K ! 0,
er
2;rot and er

1;rot � er
5;rot, one can also obtain from Eq. (62):

er
1;rot � er

3;rot � 4er
39, er

10;rot � er
35, 2e

r
10;rot � er

11, and er
14.

Using this information along with the linear combinations
one can get from Eq. (66) (after the subtraction) it is
possible to obtain e11 � 2e15;rot and e13;rot. Notice that
UKX provides additional redundancy over that of UK1
and UK2 alone. For the construction of the physical K !
�� amplitude we need these seven linear combinations:
�e2;rot; e1;rot � e3;rot � 4e39; e10;rot � e35; 2e10;rot �
e11; e11 � 2e15;rot; e13;rot; e14�. One can verify that with
these linear combinations it is possible to obtain the linear
combinations in Eq. (58).

The logarithmic and Gasser-Leutwyler counterterm con-
tributions to the amplitudes presented in this section are
given in Appendix E.
9By studying finite volume Euclidean Green’s functions in
PQChPT, [16] confirmed that one can use the partially quenched
theory for �I � 1=2, K ! �� amplitudes for N � 2, and our
choice for the sea quark mass, msea � mu;d. However, enhanced
IX. CHECKS OF THE CALCULATIONS

The logarithmic terms in the appendices of this paper are
rather lengthy, and so checks are important. The first check
these expressions must pass is that the divergences from
8Note that UK1 is only accessible in the full theory [16].
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the one-loop insertions cancel those of the divergent coun-
terterms. This was checked for all expressions in this paper.
Another check is that an expression reduces to some other
in the appropriate limit. For example, in the SU(3) limit,
the equations in Appendix C reduce to those of [11] in the
same limit, as well as those of [30], modulo renormaliza-
tion scheme dependent constants. That is, the logarithmic
terms agree, but the scheme dependent m4 coefficients
differ.

The K ! �� amplitudes in the full theory for the (8,8)’s
in Appendix D agree with Pallante, et al. [40], as well as
with [10] (where only numerical values were given). Also,
the PQ, K ! � amplitudes of Appendix D for the (8,8)’s
agree with [10] when they reduce to those of the full theory,
in the SU(3) limit with msea � mval. In the partially
quenched theory, [21] has done K� ! �� in the SU(3)
limit. By taking the appropriate linear combinations of the
�I � 3=2 and 1=2 amplitudes given in Appendix D we can
compare to this special case, where we find agreement. In
Appendix E, Eq. (E1) [PQ K ! 0 for the (8,1)’s] can be
compared directly with [30], where it agrees to within
renormalization scheme dependent constants. Equa-
tion (E2) [PQ K ! � for the (8,1)’s] also agrees with
[30] in the SU(3) limit modulo the renormalization scheme
dependent constants. Equation (E3), K ! �� at UK1,
reduces to that of the full theory for mSS � m, N � 3
and can be compared with our previous paper [13]. Note,
however, there is an error in this quantity in [13] which has
been corrected in Appendix F of this paper. Equation (E5),
K ! �� at UK2, does not reduce to that of the full theory
since ms � md � mu, but the sea quarks were taken to be
degenerate. Note that the logarithmic parts of the %2 term
vanish for this on shell quantity just as in the full theory.

X. CONCLUSION

This paper demonstrates that all of the ingredients nec-
essary to construct all of the K ! �� amplitudes to NLO
in the full theory can be obtained without 3-momentum
insertion on the lattice, which reduces the computational
cost of obtaining the NLO LEC’s; all that is necessary in
the needed K ! � amplitudes is the use of nondegenerate
quark masses such that mlat

K � mlat
� . It was also demon-

strated that all of the ingredients needed to produce �0=� to
NLO are obtainable from partially quenched ChPT. In the
case that N � 3, the LEC’s are those of the full theory
[20].9 The partially quenched amplitudes were calculated
under the assumption that both the valence and sea quark
masses are small compared to the 
0 mass so that the 
0 can
finite volume effects are present in the N � 3 case unless the sea
quark masses are pairwise equal to the valence quark masses,
such that one is in the full theory.
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be integrated out. This means that the N � 0 limit of our
amplitudes are not those of the quenched approximation,
and this has been discussed elsewhere [30]. (The terms
inversely proportional to powers of N become quenched
chiral logs.) We point out that we are using the PQS
method [36], where only the sea quarks propagate in the
loops of Fig. 3(c) (see Sec. VI A for the correspondence
between Fig. 3(c) and the traditional form of the eye
diagrams in Fig. 2 for the various operators), and that the
necessary ingredients to obtain the (8,1)’s are essentially
unchanged from [13] in this prescription.10 The PQN
method, however, may not be adequate to determine the
LEC’s to NLO using only the ingredients needed of the full
theory, except in the case where it becomes the full theory
(N � 3, msea � mval).

The PQChPT formulas in this paper are valid for N � 2,
however, and this should be useful for the work in progress
by RBC with N � 2 dynamical flavors of domain wall
quarks [41], though the values of the LEC’s determined
from these calculations will not necessarily be those of the
full theory. One would hope, of course, that the N depen-
dence will not be so severe, and that this calculation will
not be so far from the full theory. Ultimately, one would
like to check this with a full N � 3 calculation.

We show how the bilinear �3; 3� operator is used to
eliminate the power divergences due to mixing with lower
dimensional operators to all orders in (PQ)ChPT for the
�I � 1=2 amplitudes. The subtraction is performed to all
orders in ChPT [2]. This is important, because the higher
order power divergent parts can overwhelm the physical
terms one is trying to calculate.

We have pointed out that the (8,8) K ! �� amplitudes
can be constructed to NLO using only partially quenched
K ! � amplitudes with degenerate valence quark masses
and without momentum insertion. Also, we showed how
K ! 0 can be used to perform the �I � 1=2 power diver-
gent subtraction. K ! � calculations with nondegenerate
valence quark masses would provide additional redun-
dancy in obtaining the needed NLO LEC’s.

Finally, we point out that the threshold divergences that
lead to enhanced finite volume corrections to the lattice
calculations of �I � 1=2, K ! �� amplitudes at NLO
vanish in the Minkowski space amplitudes considered in
this paper when the sea quark mass is equal to the up and
down quark masses (msea � mu � md). This conclusion
remains true in the N � 2 case for the finite volume
Euclidean correlation functions that are relevant for lattice
simulations, as demonstrated by [16]. The N � 3 case had
been shown to be problematic due to the presence of
enhanced finite volume effects unless one is working in
the full theory, with all sea quark masses equal to the
10The only change is that instead of UK1, one may need to use
UKX, as the former has difficulties which were pointed out by
[16]. See also our note added in revision.
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corresponding valence quark masses [16]. See the note
added in revision for further discussion of this issue.
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Noted added in revision.—Since the original posting of
version one of this paper on the preprint archive, Lin, et al.
[16] have submitted a paper motivated at least in part by
our version one. They have done a calculation of the
relevant finite volume Euclidean correlation functions,
and they have made several important observations regard-
ing our attempts to obtain K ! �� amplitudes at NLO,
which we briefly review, and then we make some com-
ments. They point out that the case of the �I � 1=2 K !
�� amplitudes at degenerate quark masses (what we call
UK1), has difficulties in the full theory, and is intractable in
the partially quenched theory, even at our special kinemat-
ics, msea � mu;d.

The difficulty with UK1 in the full theory is that one
must disentangle various two meson final states in order to
obtain the two pion final state. These two meson states
have different energies, and since they appear in the corre-
lation function with different exponentials in time, they
will be difficult to obtain. See [16] for further details. They
have also discovered that when unphysical degrees of free-
dom propagating in the meson re-scattering diagram are
light enough to go on shell, they cause enhanced finite
volume effects, which cannot be eliminated by going to
larger lattices, and they make the extraction of such am-
plitudes impossible in the infinite volume limit. This prob-
lem afflicts the �I � 1=2 K ! �� amplitudes for
degenerate quark masses (UK1) in the partially quenched
theory, and so it cannot be used in our attempts to get the
LEC’s to NLO.

However, it also was pointed out in [16] that the en-
hanced finite volume effects do vanish when the unphysical
degrees of freedom are heavier than the light quark mass.
This leads to the conclusion that when one is working at
UKX (initial and final mesons at rest) if mK is strictly
greater than m�, assuming also msea � mu;d and N � 2,
the enhanced finite volume effects vanish. Thus UK2
(mK � 2m�), and the kinematics points of UKX (with
mK > m�) are useable in the partially quenched theory.
Also, they point out that since the unphysical degrees of
freedom cannot be lighter than the light quark mass, if one
is working in the N � 3 theory, one must use full QCD.
That is, the idea of varying the sea and valence quark
masses independently [20] will not work for �I � 1=2,
K ! �� amplitudes without introducing enhanced finite
volume effects.

As discussed in [16], it is not possible to use UK1 in
order to obtain some of the NLO LEC’s in the partially
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quenched case. We suggest that there may be a window
where the quark masses are light enough and the lattice
size is small enough so that the formulas of finite volume
partially quenched ChPT can be used to extract LEC’s
from numerical data. Whether or not this proves feasible,
we have found that we do not need the information from
UK1 if we use the K ! �� kinematics accessible to the
lattice that we call UKX. We have presented results at
UKX (all three mesons at rest, in general, requiring energy
insertion with mK � m�) in Sec. VIII, of which UK1 and
UK2 are special cases. According to [16], there will not be
enhanced finite volume effects at this kinematics (when
N � 2, msea � mu;d and mK > m�), though, in general,
one will need to do the power divergent subtractions, as
in the K ! � case. We demonstrated in Sec. VIII that one
can obtain all of the LEC’s needed for the (8,1), K ! ��
amplitudes using the UKX kinematics points, along with
the LEC’s obtainable from K ! 0 and K ! �. We con-
clude that it is possible to obtain all of the needed LEC’s in
the partially quenched theory for N � 2, though, as noted
by [16], a N � 3 determination will require the full theory
014021
for the information needed from lattice (8,1), K ! ��
amplitudes in order to avoid the enhanced finite volume
effects.
APPENDIX A

Appendices B, C, D, and E contain the finite logarithm
and Gasser-Leutwyler counterterm contributions to the
amplitudes presented in this paper. They were calculated
using the FEYNCALC package [42] written for the
Mathematica [43] system. These expressions involve the
regularized Veltman-Passarino basis integrals A0, B0, and
C0 [44]:

A0�m2� �
1

16�2f2
m2 ln

m2

�2 ; (A1)

B0�q2; m2
1; m

2
2� �

Z 1

0
dx

1

�4�f�2
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� xm2
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2�� ln�2�; (A2)
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2
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2
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1

�4�f�2
Z 1

0
dx

x

�x�1� x�q2 � xm2
1 � �1� x�m2

2

: (A3)

Note that the original Veltman-Passarino integrals did not involve ChPT, and so the pseudoscalar decay-constant f is not
part of the original definitions of the integrals but is inserted here for convenience.

APPENDIX B

At one-loop order in the partially quenched theory the pseudoscalar decay constants and masses are renormalized such

that f�;K � f�1� �f�;K
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For degenerate quark masses at one-loop order, m2
K�1�loop� � m2

��1�loop� � m2�1� �m2

m2 �, f� � fK � f�1� �f
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with m2
vS � 1

2 �m
2 � m2

SS�.

APPENDIX C: LOG CORRECTIONS TO FULL CHPT

The logarithmic corrections to the K ! � amplitudes in the full theory when 3-momentum insertion vanishes are
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These are the simplified versions of [13], Eqs. (C2), (D3), and (D4), respectively, when q2 � �mK � m��
2.

APPENDIX D: PQ LOG CORRECTIONS TO (8,8)’S

The logarithmic corrections for the (8,8) amplitudes relevant for the determination of K ! �� are given in this section.
The logarithmic corrections to K ! �� in the full theory were calculated first in [10,40] and are included here for
completeness:
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The �I � 3=2, K ! � logarithmic corrections are given by
014021-23



JACK LAIHO AND AMARJIT SONI PHYSICAL REVIEW D 71, 014021 (2005)
h��jO�8;8�;�3=2�jK�ilog �
4%88
f2

�
�2mKm�B0�q

2;m2
K;m2

�� �N�A0�m
2
sS� � 3A0�m

2
uS���

m4
� �m2

K�m
2
SS � 2m

2
��

N�2m4
K � 3m2

Km2
� �m4

��
A0�m

2
33�

�
m4

� �m2
K�m

2
SS � 2m

2
��

Nm2
��m2

� �m2
K�

A0�m
2
�� �

2

N16�2f2
�m2

K �m2
SS� �

�fK

f
�
�f�

f

�
: (D3)

For the �I � 1=2, K ! � corrections there are (at least) two possibilities, when the electro-weak operator is partially
quenched and when it is not. The following amplitude corresponds to quenching the short distance electro-weak operator,
neglecting the type of contraction in Fig. 3(c) (with a photon or Z replacing the gluon),
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while the next corresponds to where the short distance electro-weak operator is not quenched, and valence quarks do
propagate in the loops of Fig. 3(c) (again with a photon or Z replacing the gluon)
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In the case of degenerate valence quarks the above expressions reduce to
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Note that the two �I � 1=2 expressions reduce to the same thing in the SU(3) limit.

APPENDIX E: PQ LOG CORRECTIONS TO (8,1)’S

The logarithmic corrections for the quantities relevant for the determination of the (8,1), K ! �� amplitudes are given
here. The logarithmic corrections to the physical K ! �� amplitude have been done by [28,29], and we refer to [13],
Eq. D10, for the amplitude in our conventions.

The logarithmic corrections to K ! 0 and K ! � are given by
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In the case of degenerate valence quarks, the above expression becomes
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The K ! �� amplitude at UK1 in infinite volume Minkowski space is given by
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for mK � m� � m, where
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Expression (E5) is real for m2
SS � m2. When m2

SS < m2, (E5) has an imaginary part. The K ! �� amplitude at UK2 in
infinite volume Minkowski space is
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for mK�one-loop� � 2m��one-loop�, where
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Note the imaginary threshold divergences in both (E4) and (E6). On the lattice they are expected to contribute in the
form of enhanced finite volume effects. See, for example, [38]. When mSS < mK=2 � m�, Eqs. (E7) and (E8) have
imaginary parts.

Equation (E6) is most useful in fits to lattice data at the special kinematics msea � mu;d (mSS � m�), N � 2. In this case
it reduces to
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The logarithmic contribution to UKX (kaon, pions at rest) in the special case of msea � mu � md (mSS � m�) and
mK > m� is given below. In this expression, as in all others in this set of appendices, q2 � �mK � m��

2,
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APPENDIX F

The absence of the %2 terms in K ! �� at UK1 requires some corrections to [13], presented here. Equation (31) of [13]
should be
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In Appendix D, Eq. (D6) of [13], the correct equation should read
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