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Inclusive D�� production in p �p collisions with massive charm quarks
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We calculate the next-to-leading-order cross section for the inclusive production of D�� mesons in p �p
collisions as a function of the transverse momentum and the rapidity in two approaches using massive or
massless charm quarks. For the inclusive cross section, we derive the massless limit from the massive
theory. We find that this limit differs from the genuine massless version with MS (minimal-subtraction)
factorization by finite corrections. By adjusting subtraction terms, we establish a massive theory with MS
subtraction which approaches the massless theory with increasing transverse momentum. With these
results and including the contributions due to the charm and anticharm content of the proton and
antiproton, we calculate the inclusive D�� cross section in p �p collisions using realistic evolved non-
perturbative fragmentation functions and compare with recent data from the CDF Collaboration at the
Fermilab Tevatron at center-of-mass energy

���
S

p
� 1:96 TeV. We find reasonable, though not perfect,

agreement with the measured cross sections.
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I. INTRODUCTION

Recently, there has been quite some interest in the study
of charm production in proton-antiproton collisions at high
energies, both experimentally and theoretically. The CDF
Collaboration at the Fermilab Tevatron presented results
for prompt charm meson production cross sections at
center-of-mass energy

���
S

p
� 1:96 TeV. The differential

cross section d�=dpT was measured as a function of
transverse momentum (pT) in the central rapidity (y) re-
gion jyj � 1 for inclusive production of D0, D�, D�� and
D�
s mesons and their charge conjugates [1]. For definite-

ness, we shall concentrate here on D�� mesons. However,
our results readily carry over to any other heavy-flavored
hadrons.

On the theoretical side, various approaches for next-to-
leading-order (NLO) calculations in perturbative QCD
have been applied for comparison with experimental
data. In the so-called massless scheme [2,3], also known
as zero-mass variable-flavor-number (ZM-VFN) scheme,
which is the conventional parton model approach imple-
mented in the modified minimal-subtraction (MS) scheme,
the zero-mass parton approximation is applied also to the
charm quark, although its mass m is certainly much larger
than the asymptotic scale parameter �QCD. In this ap-
proach, the charm quark is also an incoming parton orig-
inating from the proton or antiproton, leading to additional
contributions, besides those from the gluon g and the u, d
and s quarks. The charm quark fragments into the D��

meson similarly as the gluon and the light quarks with a
fragmentation function (FF) known from other processes.
The well-known factorization theorem then provides a
straightforward procedure for order-by-order perturbative
calculations. Although this approach can be used as soon as
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the factorization scales of the initial and final states are
above the starting scale of the parton distribution functions
(PDFs) of the (anti)proton and of the FFs of the D��

meson, the predictions are reliable only in the region of
large transverse momenta pT � m, where terms of the
order of m2=p2

T can safely be neglected.
Another calculational scheme for heavy-flavor produc-

tion which could be applied to the process p� �p !
D�� � X [4–7] is the so-called massive scheme, also
called fixed flavor-number (FFN) scheme, in which the
number of active quark flavors in the initial state is limited
to nf � 3 and the charm quark appears only in the final
state. In this case, the charm quark is always treated as a
heavy particle and never as a parton. The actual mass
parameter m is explicitly taken into account along with
the variable pT as if they were of the same order, irrespec-
tive of their actual relative magnitudes. In this scheme, the
charm mass acts as a cutoff for the initial- and final-state
collinear singularities and sets the scale for the perturbative
calculations. However, in NLO, terms proportional to
�s
�R� ln
p2

T=m
2�, where �R is the renormalization scale,

arise from collinear emissions of a gluon by the charm
quark at large transverse momenta or from almost collinear
branchings of gluons into c �c pairs. These terms are of order
unity for large values of pT and, with the choice �R � pT ,
they spoil the convergence of the perturbation series. The
FFN approach with nf � 3 should thus be limited to a
rather narrow range of pT values, reaching up to a few
times m.

There are also interpolating schemes, which smoothly
interpolate between the FFN scheme at low values of pT
and the ZM-VFN scheme at large values of pT , with some
freedom concerning the detailed implementation. The
Aivazis-Collins-Olness-Tung [8] scheme, also known as
-1  2005 The American Physical Society
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general-mass variable-flavor-number (GM-VFN) scheme,
is one of them. This scheme was applied to the hadropro-
duction of heavy flavors in Ref. [9] taking into account the
FFN part at NLO and the leading logarithms of the ZM-
VFN part.

Another interpolating scheme which has been applied to
inclusive D�� production in the Tevatron region is the so-
called fixed-order next-to-leading-logarithmic (FONLL)
scheme, in which the traditional cross section in the FFN
scheme and a suitably modified cross section in the ZM-
VFN scheme with perturbative FFs are linearly combined
[10,11]. The combination is done in such a way, that the
ZM-VFN term is weighted with an ad hoc coefficient
function of the form p2

T=
p
2
T � 25m2� to enforce its sup-

pression in the low-pT range. In both finite-charm-mass
approaches, the FFN and the FONLL, the theoretically
calculated FFN cross sections are convoluted with a non-
perturbative FF extracted from e�e data. This assumes
universality of the FF which is not supported by a factori-
zation theorem as in the ZM-VFN approach.

As has been explained at many places in the literature,
mainly in the context of charm production in deep-inelastic
ep scattering (for a recent review, see Ref. [12]), the
correct approach for pT � m is to absorb the potentially
large logarithms into the charm PDF of the (anti)proton
and the FF of the c! D�� transition. Then, large loga-
rithms of the type ln
�2

F=m
2�, defined with the factoriza-

tion scale �F, determine the evolution to higher scales and
can be resummed by virtue of the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) [13] evolution equa-
tions. The unsubtracted terms of the form ln
p2

T=�
2
F� are

of order unity for the appropriate choice of �F of order pT .
After factorizing the lnm2 terms, the hard cross section is
infrared safe, and nf � 4 is taken in the formula for �s and
the DGLAP evolution equations. The remaining depen-
dence on m, i.e., the terms proportional to m2=p2

T , can be
kept in the hard cross section to achieve better accuracy in
the intermediate region pT * m. The factorization of
mass-divergent terms can be extended consistently to
higher orders in �s, as has been shown by Collins in the
context of heavy-flavor production in high-Q2 ep colli-
sions [14].

It is well known that the subtraction of just the colli-
nearly (mass) singular terms does not define a unique
factorization prescription. Also finite terms must be speci-
fied. In the conventional ZM-VFN calculation, the mass m
is put to zero from the beginning and the collinearly
divergent terms are defined with the help of dimensional
regularization. This fixes the finite terms in a specific way,
and their form is inherent to the chosen regularization
procedure. If one starts with m � 0 and performs the limit
m ! 0 afterwards, the finite terms can be different. These
terms have to be removed by subtraction together with the
lnm2 terms in such a way that, in the limit pT ! 1, the
known ZM-VFN expressions are recovered. This require-
014018
ment is actually unavoidable, since almost all existing
PDFs and FFs, including those for heavy flavors, are
defined in this particular scheme (or sometimes in the
deep-inelastic-scattering scheme, which can be derived
from the MS scheme). It is clear that a subtraction scheme
defined in this way is a correct extension of the conven-
tional ZM-VFN scheme to include charm-quark mass ef-
fects in a consistent way. In the following, we shall refer to
it as the GM-VFN scheme, since it is conceptually similar
to the framework of Ref. [9]. For a fully consistent analysis
of heavy-flavor production in p �p collisions, it will even-
tually be necessary to use dedicated PDFs and FFs with
heavy-quark mass effects included, determined by global
fits utilizing massive hard-scattering cross sections.
Needless to say that it is, therefore, important to work
out massive hard-scattering coefficients in one particular
scheme for all relevant processes. Actually, just recently
PDFs of the proton with heavy-quark mass effects included
have been constructed by members of the CTEQ
Collaboration [15] in a scheme very similar to ours as
outlined above. If these were used in a calculation of charm
production in p �p collisions, the treatment of the corre-
sponding hard-scattering cross sections would have to be
adjusted to these PDFs. However, we think that this would
be premature as long as similar constructions of the FF for
c! D�� do not exist.

In a recent work, two of us applied the GM-VFN scheme
to the calculation of the cross sections for �� � ! D�� �
X [16,17] and �� p! D�� � X [18]. In Ref. [17], we
considered only the direct and the single-resolved cross
sections with m � 0. In the calculation of the full cross
section for �� � ! D�� � X, needed for the comparison
with experimental data, i.e., in the sum of the direct, single-
resolved and double-resolved parts, the double-resolved
contribution was still treated in the ZM-VFN scheme
with nf � 4. It is the purpose of this work to apply the
GM-VFN approach to the p �p cross section. The results of
this calculation can then also be applied to the cross
sections of double-resolved �� and resolved �p collisions.
These cross sections play an important role due to the
partonic subprocesses g� g ! c� �c and q� �q ! c� �c
with charm quarks in the final state and due to the sub-
process g� q
 �q� ! c� �c� q
 �q�, where q is one of the
light (massless) quarks u, d and s. These contributions and
their NLO corrections should be computed with massive
charm quarks. Although FFs for various charm mesons
have been constructed from e�e data [19], we shall
restrict ourselves to inclusive D�� production and study
the mass-dependent corrections for this special final state
only. Results for the inclusive production of other charm
mesons will be presented in a future publication.

Starting with g� g ! c� �c, the NLO corrections for
this subprocess can be split into an Abelian and two non-
Abelian parts. The Abelian part is, up to an overall constant
factor, identical to the NLO corrections to �� � ! c� �c.
-2
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For this part, the terms in the massive theory surviving in
the limit m! 0, which are not present in the ZM-VFN
approach, have been identified in our earlier work [16].
Therefore, only the two non-Abelian parts of the NLO
corrections to the gluon-gluon fusion cross section have
to be investigated in addition to the cross sections for q�
�q ! c� �c� g and g� q
 �q� ! c� �c� q
 �q�.

The NLO corrections with nonzero quark mass m were
calculated by several groups [4–7]. In none of these refer-
ences, complete formulas for the NLO corrections were
published. Fortunately, Bojak supplied us with the com-
puter code which was used in Ref. [7]. From this code, we
were able to read off the complete NLO squared matrix
elements needed for the computation of the mass-
dependent cross section. The authors of Ref. [7] compared
their results with those of Refs. [5,6] and found complete
agreement. Therefore, we use these expressions to derive
the limit m ! 0 and establish the subtraction terms by
comparing to the MS-factorized cross section derived in
Ref. [20]. The latter is available to us in the form of a
FORTRAN program [3,21]. Since, in the work of Ref. [7], the
FFN cross section was derived with a method different
from the one used in Ref. [16], namely, with the phase-
space slicing method for separating the infrared-divergent
part from the hard part of the cross section, we also derive
the massless limit of the Abelian part for consistency. With
this knowledge, we can compute the finite-mass correc-
tions for the full NLO cross section with MS factorization.

The outline of our work is as follows. In Sec. II, we
describe the formulas which we use to calculate the cross
section for g� g ! c
 �c� � X, q� �q ! c
 �c� � X, g�
q ! c
 �c� � X and g� �q ! c
 �c� � X with nonzero
charm-quark mass. For these cross sections, we perform
the limit m! 0 and compare the results with the ZM-VFN
theory of Ref. [20]. The results are collected in Sec. III and
three appendices. In Sec. III, we also present numerical
results to test the validity of the subtraction terms and show
how the various terms in the NLO cross section approach
their corresponding massless limits for large values of pT .
After adding the contributions with (anti)charm quarks in
the initial state, which are present in the ZM-VFN scheme
with nf � 4, as well as the contributions due to the frag-
mentation of gluons and light (anti)quarks, we compare our
results to recent experimental data from the CDF
Collaboration [1] in Sec. IV. A summary and conclusions
are given in Sec. V.

II. LO AND NLO DIFFERENTIAL CROSS
SECTIONS

The differential inclusive cross section for the process
p� �p ! D�� � X has many contributions. In this section,
we consider those contributions where the charm quark
appears only in the final state. We study the charm-quark
mass dependence to obtain the massless limit, which is
then compared with the ZM-VFN theory, and to establish
014018
the influence of the m2=p2
T terms in the GM-VFN theory

defined in the same MS factorization scheme as the ZM-
VFN theory.

There are only two leading-order (LO) partonic subpro-
cesses, g� g ! c� �c and q� �q ! c� �c. The NLO cor-
rections to these two channels comprise the virtual
corrections and gluonic bremsstrahlung contributions, g�
g ! c� �c� g and q� �q ! c� �c� g. In addition, the
subprocesses g� q ! c� �c� q and g� �q ! c� �c� �q
appear for the first time at NLO. In the following subsec-
tions, we present the LO cross sections in order to fix the
notation. Then, we explain how we calculate the NLO
corrections to g� g ! c� �c and q� �q ! c� �c and the
cross sections for g� q
 �q� ! c� �c� q
 �q�.

A. LO cross section

We start with the subprocess

g
k1� � g
k2� ! c
p1� � �c
p2� � �g
p3��; (1)

where k1, k2 and pi (i � 1; 2; 3) denote the four-momenta
of the incoming gluons, the outgoing charm and anticharm
quarks and a possible gluon in the final state (in square
brackets). We have the following invariants:

s � 
k1 � k2�
2; t1 � tm2 � 
k1  p1�

2 m2;

u1 � um2 � 
k2  p1�
2 m2;

s2 � 
k1 � k2  p1�
2 m2 � s� t1 � u1:

(2)

Here t1 and u1 are determined by the four-momentum of
the observed charm quark. As usual, we define the dimen-
sionless variables v and w by

v � 1�
t1
s
; w � 

u1
s� t1

; (3)

so that t1 � s
1 v�, u1 � svw and s2 � sv
1 w�.
For p3 � 0, i.e., at LO, we have s2 � 0 and w � 1.

The LO cross section for g� g ! c� �c is

d2�gg
LO

dvdw
� c
s� 
1 w�

�
CF  CA

t1u1
s2

�

�

�
t1
u1

�
u1
t1

�
4m2s
t1u1

�
1

m2s
t1u1

��
; (4)

where

c
s� �
#�2

s


N2  1�s
; (5)

and all color factors have been expressed in terms of the
Casimir operators CF � 
N2  1�=
2N� and CA � N,
where N denotes the number of colors.

The LO cross section for q� �q ! c� �c reads

d2�q �q
LO

dvdw
� cq
s� 
1 w�CF

�
t21 � u21
s2

�
2m2

s

�
; (6)
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where

cq
s� �
#�2

s

Ns
: (7)
B. NLO cross section

Following the notation of Ref. [7], the color decompo-
sition of the NLO squared matrix element for g� g !
c� �c� g can be written as

jMggj
2 � g6E2

'
2

N2  1

�
C2
FDQED �

1

4
C2
ADOQ

�
1

4
CA
CA  2CF�DKQ

�
; (8)

where g2 � 4#�s is the strong coupling and E' � 1=
1
'� originates from averaging over the gluon spins in n �
4 2' space-time dimensions. The squared matrix ele-
ment for the virtual corrections to g� g ! c� �c can be
written in a similar fashion; there is, however, an additional
contribution from quark loops which comes with a color
factor CA=4. The Abelian contribution DQED is identical to
the QED part of �g ! c �cg in Ref. [22]. In addition, we
have two non-Abelian parts DOQ and DKQ. For isolating
the divergences in the soft limit, Bojak and Stratmann [7]
used the same method as in Ref. [5]. They slice the 2 ! 3
contributions into a soft-gluon and a hard-gluon part by
introducing a small auxiliary quantity �. In the limit � !
0, the kinematics of the soft-gluon cross section is that of
the 2 ! 2 process, so that the phase-space integrations can
be performed analytically. After combination with the
virtual cross section, the infrared 1=' and the combined
infrared-collinear 1='2 singularities, all proportional to the
n-dimensional LO cross section, cancel. In this way, the
soft plus virtual cross section becomes finite, except for the
remaining collinear 1=' singularities, which cancel against
the subtraction terms in the collinear factorization proce-
dure of the gluon PDF of the (anti)proton. The integration
over the phase space of the two unobserved partons in the
hard part is done analytically as far as possible, using the
methods of Refs. [5,6].

The same steps are taken to calculate the NLO correc-
tions to the subprocess q� �q ! c� �c. The squared matrix
element for the real corrections is color-decomposed in the
following way:

jMqqj
2 � g6

1

2N

�
C2
FNQED �

1

2
CFCANOK

�
; (9)

where NQED is again the Abelian and NOK the non-Abelian
part, which are also obtained from Ref. [7]. A similar
decomposition is used for the virtual corrections, which
014018
receive an additional contribution from one diagram with a
quark loop in the gluon propagator, proportional to the
color factor CF=2.

The subprocess

g
k1� � q
k2� ! c
p1� � �c
p2� � q
p3�; (10)
which occurs only in NLO, has two pieces in color space.
The squared matrix element is split up according to

jMgqj
2 � g6E'

1

4N

�
CFJQED �

1

2
CAJOK

�
: (11)
The Abelian part JQED is, up to a factor, equal to the
corresponding squared matrix element for the subprocess
�� q ! c� �c� q. The squared matrix element for the
crossed subprocess g� �q ! c� �c� �q, i.e., Eq. (10) with
the quark replaced by an antiquark, has the same structure
as in Eq. (11), but with slightly different coefficients.
III. ZERO-MASS LIMIT OF THE MASSIVE CROSS
SECTIONS

In this section, we collect our results for the cross
sections in the limit m! 0. We consider the following
contributions: (i) the NLO corrections to g� g ! c� �c,
(ii) the NLO corrections to q� �q ! c� �c and (iii) the
process g� q ! c� �c� q and the corresponding chan-
nel with q ! �q, where q denotes any of the light (massless)
quarks u, d and s. The result for the limit m! 0 will in
general be different from the cross section obtained in the
ZM-VFN approach, where the mass of the charm quark is
neglected from the beginning. In the genuine ZM-VFN
calculation, originally performed by Aversa et al. [20],
the collinear singularities connected with the charm quark
appear as 1=' poles in dimensional regularization. In the
FFN theory, they appear as terms proportional to ln
m2=s�,
instead. So, in this theory, the collinear singularities are
regularized with a finite charm mass. Because of this
different procedure for regularizing the collinearly diver-
gent contributions, different finite terms appear. The oc-
currence of different finite terms in these two
regularization schemes is due to the fact that the two limits,
m! 0 and ' ! 0, are not interchangeable. If one wants to
implement the factorization of these collinearly singular
terms in the MS scheme, as is done in the ZM-VFN scheme
from the start, the different finite terms, which turn up in
the limit m! 0, must be subtracted. Such finite terms have
already been found for the case of the NLO corrections to
�� � ! c� �c [16] and �� g ! c� �c and for the cross
section of �� q ! c� �c� q [17].

As in Refs. [16,17], we decompose the NLO contribu-
tions to the cross section in the limit m ! 0 as follows:
-4
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lim
m!0

d2�NLO

dvdw
�

�
c1 � ~c1 ln

m2

s

�
 
1 w� �

�
c2 � ~c2 ln

m2

s

��
1

1 w

�
�
� c3

�
ln
1 w�
1 w

�
�
� c5 lnv� c6 ln
1 vw�

� c7 ln
1 v� vw� � c8 ln
1 v� � c9 lnw� c10 ln
1 w� � c11 � ~c11 ln
m2

s

� c12
ln
1 v� vw�

1 w
� c13

lnw
1 w

� c14
ln
 1v

1vw�

1 w
: (12)
The coefficients ci are mass-independent; the dependence
on the heavy-quark mass enters only through the loga-
rithms ln
m2=s� and the choice �R � �F � m.

In the following subsections, we shall present the com-
plete expressions for the coefficients ci. The massless limit
of the cross sections from Ref. [7] will be compared with
the results of Ref. [20] obtained in the ZM-VFN theory.

A. Massless limit of NLO corrections to g� g ! c� �c

Before we write down the coefficients ci, we give the LO
cross section for g� g ! c� �c with m � 0. It has the
simple form

lim
m!0

d2�gg
LO

dvdw
� c
s� 
1 w�)
v��CF  CAv
1 v��;

(13)

with

)
v� �
v

1 v
�

1 v
v

: (14)

The results for the various coefficients ci are written in the
form

ci � ĉi � �ci; (15)

where ĉi are the results of Ref. [20] in the ZM-VFN
scheme and �ci are the subtraction terms needed to con-
vert the cross section of Ref. [7] to the GM-VFN scheme.
The coefficients are decomposed into one Abelian part,
two non-Abelian parts and a quark-loop contribution
(which only occurs for c1) in the following way:

ci � C
s�
�
C2
Fc

qed
i �

1

4
C2
Ac

oq
i �

1

4
CA
CA  2CF�c

kq
i

�  i1
CA

4
cql1

�
; (16)

with

C
s� �
�3
s

2
N2  1�s
�
�s

2#
c
s�: (17)

The expressions for the ci are lengthy and, therefore,
delegated to Appendix A.

The coefficients ĉi, which agree with results obtained
from Ref. [20], refer to the version where every incoming-
gluon spin is averaged with the factor 1=�2
1 '�� and
where the factorization of singularities due to collinear
quarks and gluons is performed in the customary MS
014018
subtraction scheme. Furthermore, deviating from
Ref. [20], in the expressions for ĉi in Appendix A, the
renormalization scale �R and the initial- and final-state
factorization scales �F and �0

F are identified with m, i.e.,
�R � �F � �0

F � m. The nonvanishing subtraction terms
in the massless limit of the FFN theory of Ref. [7] are
found in Appendix A. They are �c1, �c2, �c3, �c5, �c10
and �c11. For all three contributions cqedi , coqi and ckqi , we
have the relation

�c5 � �c10 � 2�c11: (18)

Denoting the ZM-NLO result of Ref. [20] by
d2�ZM=dvdw, we can thus write

lim
m!0

d2�NLO

dvdw
�
d2�ZM

dvdw

�R � �F � �0

F � m� �
d2�sub

dvdw
;

(19)

where

d2�sub

dvdw
��c1 
1w���c2

�
1

1w

�
�
��c3

�
ln
1w�
1w

�
�

��c5

�
lnv� ln
1w��

1

2

�
: (20)

For the first three subtraction terms proportional to �c1,
�c2 and �c3, one obtains simple expressions, if the three
contributions in Eq. (16) proportional to the color factors
C2
F, C2

A and CA
CA  2CF� are added. From the results in
Appendix A, we obtain

�c1�
1 lnv ln2v��2C
s�CF)
v��CFCAv
1v��;

(21)

�c2 � 
2 lnv� 1� � 2C
s�CF)
v��CF  CAv
1 v��;

(22)

�c3 � 2� 2C
s�CF)
v��CF  CAv
1 v��; (23)

and

�c5 � C
s�CF
CF�c
qed
5 � 1

2CA�c
oq
5 �: (24)

In the last equation, we have used �ckq5 � �coq5 ; the
explicit expressions for these coefficients are given in
Appendices A 2 and A 3. Note that the last factors in
Eqs. (21)–(23) are proportional to the LO cross section.
Finally, we have to subtract the quark-loop contribution,
-5
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FIG. 1. Sample Feynman diagrams showing the origin of mass
singularities due to internal lines becoming on-shell (marked by
a double line). Parts (a) and (b) correspond to singularities for
m ! 0 which are factorized into the final-state FF; parts (c) and
(d) are examples for singular configurations which are factorized
into the initial-state PDFs.

KNIEHL, KRAMER, SCHIENBEIN, AND SPIESBERGER PHYSICAL REVIEW D 71, 014018 (2005)
which is absent in the ZM-VFN scheme, via [23]

�c1 ! �c1 � C
s�
CA

4
�cql1 � �c1  C
s�CA

1

9
v
1 v�:

(25)

The FFN theory for g� g ! c� X in the limit m! 0
approaches the ZM-VFN theory with scales �R � �F �
�0
F � m if the finite terms �c1, �c2, �c3 and �c5 �

�c10 � 2�c11 as given in Eqs. (21)–(24) are subtracted.
As already mentioned above, the necessity for such a
subtraction is to be expected, since the regularization of
collinear singularities with a mass parameter m does not
give the same result as the one with dimensional regulari-
zation and m � 0 from the start.

In Ref. [16], it was shown that the finite subtraction
terms for the subprocess �� � ! c� X can be obtained
by a convolution of the LO cross section with a perturba-
tive partonic FF dcc
x;�� for the transition from a massless
to a massive charm quark of the following form [24]:

dcc
x;�� � CF
�s

2#

�
1� x2

1 x

�
ln
�2

m2  2 ln
1 x�  1
��

�
:

(26)

Therefore, all Abelian terms proportional to C2
F in

Eqs. (21)–(24) can also be generated in this way. Our
explicit calculations show that also all terms proportional
to CFCA in the equations above can be obtained as final-
state interaction contributions with dcc
x;�� in Eq. (26)
[without the term proportional to ln
�2=m2�, of course].

It is important to understand that the terms containing
logarithms ln
m2=s�, i.e., the coefficients ~c1, ~c2 and ~c11,
have two different origins. On the one hand, these terms are
due to on-shell internal charm-quark lines in the Feynman
diagrams which become singular for m! 0 [see Figs. 1(a)
and 1(c)]. A part of these terms [see Fig. 1(a)] is contained
in the perturbative FFs dcc
x;��. Also internal gluon and
light-quark lines give rise to singular contributions for
m ! 0 [see Fig. 1(b)], which have to be factorized into
corresponding perturbative FFs describing the transition
from a gluon or a light quark to the heavy charm quark. In
the ZM-VFN calculation, these contributions have been
factorized as final-state singularities and are recovered by
setting �0

F � m. Another part of these singular terms can
be assigned to the initial state [see Fig. 1(c)], and is found
in the ZM-VFN calculation if one sets �F � m. On the
other hand, in both the FFN and ZM-VFN calculations,
there are singularities due to internal gluon lines which are,
in both approaches, factorized as initial-state singularities
[see Fig. 1(d)]. Finally, there are logarithms due to the
renormalization of �s. In Appendix A, these terms are
written down for the choice �R � �F � �0

F � m.
For our application, choosing the scales equal to the

heavy-quark mass is not appropriate. For the case of large
pT values, a common choice is �R � �F � �0

F � +mT ,
014018
where mT �
�������������������
m2 � p2

T

q
is the transverse mass of the D��

meson and + � O
1�. Therefore, we have to rescale all
terms proportional to lnm2. In the following, we shall give
the necessary terms for the conversion to arbitrary scales.

First, we present the contributions related to renormal-
ization and initial-state factorization of singularities due to
internal on-shell gluon lines. These terms are present in the
FFN calculation and can, therefore, be obtained from
Ref. [7] in the limit m! 0. The rescaling is obtained by
adding the following terms to the cross section in Eq. (12):
�
d2�
dvdw

�
rescal

�

�
d̂1 ln

�2
R

m2 �
~d1 ln

�2
F

m2 �
~~d1 ln

�02
F

m2

�

� 
1w��
�
~d2 ln

�2
F

m2 �
~~d2 ln

�02
F

m2

�

�

�
1

1w

�
�
� ~d11 ln

�2
F

m2 �
~~d11 ln

�02
F

m2 : (27)

The nonzero coefficients read

d̂ 1 � C
s�)
v�2,

nf1�
0 �CF  CAv
1 v��; (28)

~d 1 � C
s�)
v��CF  CAv
1 v��f2CA�ln
1 v�

 ln
v��  2,

nf1�
0 g; (29)

~d 2 � C
s�)
v�4CA�CF  CAv
1 v��; (30)

~d 11 � C
s�
�
C2
A

4
~doq11 �

CA
CA  2CF�

4
~dkq11

�
; (31)

with ,

nf�
0 � 11N=6 nf=3 and
-6
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~d oq
11 �

4
1� 5v 12v2 � 20v3  12v4 � 4v5�

v2
1v


4
1 4v� 8v2  8v3 � 4v4�

v1vw
2


4
3 9v� 14v2  11v3 � 4v4�

v2
1w


4
1� 5v 12v2 � 28v3  24v4 � 12v5�w

v2
1v

�
16v3
1� v�w2

v2
1


16v4w3

v2
1

�
4v1v

X3 �
4v
4� 3v�

X2 �
4v
10 13v� 5v2�

v1X
; (32)

~dkq11 �
4
1� 3v 4v2 � 4v3�

v2
1v

�
4
1 2v� 2v2�

v1vw2 �
4
1 v� v3�

v2
1w

�
4
1� 3v 4v2 � 4v3�w

v2
1v


4v1v

X3 �
4v2v

X2 
4v
4 3v� v2�

v1X
; (33)
where we have used the abbreviations X � 1 vw and
vi � i v. We repeat that the expressions above are given
in the limit m! 0 and will be used in our ZM-VFN
calculation with rescaling. In the GM-VFN calculation,
we shall use instead the corresponding terms as given in
Ref. [7] including their full mass dependence.

Finally, the remaining logarithms emerging in the limit
m ! 0 due to internal charm-quark lines becoming mass-
less are again found by comparing the massless limit of the
FFN cross section with the ZM-VFN cross section. These
terms are associated with a rescaling of the subtraction
terms in Eq. (20), and, therefore, we write them in the
following form:
�
d2�
dvdw

�
�rescal

�

�
�d̂1 ln

�2
R

m2 ��~d1 ln
�2
F

m2 ��~~d1 ln
�02
F

m2

�

�  
1 w� �
�
�~d2 ln

�2
F

m2 � �~~d2 ln
�02
F

m2

�

�

�
1

1 w

�
�
� �~d11 ln

�2
F

m2 ��~~d11 ln
�02
F

m2 :

(34)

These terms must be added to Eq. (20), i.e., subtracted
from Eq. (12), to rescale to the appropriate renormalization
and factorization scales if one wants to use the FF for the
transition c ! D�� and the charm PDF of the (anti)proton.
Since, at present, we have at our disposal only PDFs and
FFs, which are based on a ZM-VFN calculation, we shall
take the corresponding coefficients form � 0 as well. Note
that this does not entail any loss of accuracy, as has been
discussed in Ref. [25] in the context of deep-inelastic
scattering. Moreover, this fact is of great practical impor-
tance, since the known coefficients of the ZM-VFN
scheme, e.g., those of Ref. [20], can simply be used,
whereas their massive counterparts are unknown and can
only be obtained through a dedicated calculation. The
nonzero coefficients are given by

�d̂1 �
2
3C
s�)
v��CF  CAv
1 v��; (35)
014018
�~d1 � 2
3C
s�)
v��CF  CAv
1 v��; (36)

�~~d1 � C
s�)
v�CF
2 lnv� 3
2��CF  CAv
1 v��; (37)

�~~d2 � 2C
s�)
v�CF�CF  CAv
1 v��; (38)

�~~d11�C
s�
�
C2
F�

~~d
qed
11 �

C2
A

4
�~~d

oq
11�

CA
CA2CF�

4
�~~d

kq
11

�
;

(39)

�~d11�C
s�
�
C2
F�~dqed11 �

C2
A

4
�~doq11�

CA
CA2CF�

4
�~dkq11

�
;

(40)

with

�~~d
qed
11 � 

v
v1

�
2 2v� v2

vw

v2w
v1


2v
Y
; (41)

�~~d
oq
11 � 2v
1 24v� �

8v1
1 2v� 2v2�

vw2

�
16
1 3v� 2v2�

w
�

8v2
7 14v� 8v2�w

v2
1


16v3
1� 2v�w2

v2
1

�
16v4w3

v2
1

�
4vv2

1

Y3


4v
6 11v� 5v2�

Y2 �
2v
25 18v� 4v2�

Y
;

(42)

�~~d
kq
11 � 2v�

4vv2
1

Y3 
4v2v1

Y2 �
2v
3 6v� 4v2�

Y
;

(43)
-7
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�~dqed11 � 
2 2v� 3v2  4v3

v1v
�

1� v2

vw



2� 2v 2v2 � 3v3�w

v1v
�

2vv1

X3


2v

X2 
v
3� 4v 2v2�

v1X
; (44)

�~doq11 � 
2
2 v� 3v2�

v2
1

�
4
1 2v� 2v2�

v1vw2


2
3� 10v 13v2 � 4v3�

v2
1w

�
4
1� v2�w

v2
1

�
4v1v

X2 
4v
1� 2v�

X
; (45)

�~dkq11 � �~doq11; (46)

where Y � 1 v� vw.
Comparing with the results for �� � ! c� X [16], we

see that the Abelian parts of Eqs. (37) and (38) agree with
~~c1 and ~~c2 in Ref. [16] [if the C
s� factors are set to

unity]. Furthermore, �~~d
qed
11 agrees with ~~c11 and �~dqed11

with ~c11 in Ref. [16], as one would expect. The minus
sign is due to the different convention for the logarithms in
Eq. (42) in Ref. [16] as compared to Eq. (34). We note that

�~~d
qed
11 � �cqed11 and �~~d

kq
11 � �ckq11 (see Appendices A 1

and A 3, respectively). Finally, we emphasize again that the
rescaling of the lnm2 terms to arbitrary scales �R, �F and
�0
F is achieved by adding Eq. (27) to and subtracting

Eq. (34) from the cross section in Eq. (12), where all
coefficients of Eqs. (28)–(40) have to be taken into ac-
count. Note also that �d̂1 and �~d1 cancel if �R � �F.

B. Massless limit of NLO corrections to q� �q ! c� �c

In this section, we give the results for the massless limit
of the hard-scattering cross sections for the NLO correc-
tions to the subprocess q� �q ! c� �c, where q is any of
the light quarks assumed to be massless. The LO cross
section of this process for m � 0 is

lim
m!0

d2�q �q
LO

dvdw
� cq
s�CF)q
v� 
1 w�; (47)

where

)q
v� � 
1 v�2 � v2: (48)

The NLO cross section is again decomposed as indicated in
Eq. (12) with coefficients ci which receive contributions
from two color factors and from virtual-quark loops (which
only appear for c1 and ~c1). Specifically, we have

ci � Cq
s�
CF

2

CFc

cf
i � CAc

ca
i �  i1c

ql
1 �; (49)
014018
where

Cq
s� �
�3
s

2Ns
�

�s

2#
cq
s�: (50)

The expressions for ccfi , ccai and cql1 may be found in
Appendix B. According to these results, finite subtraction
terms in the massless limit of Ref. [7] are present in c1, c2,
c3, c5, c10 and c11, and we have �c5 � �c10 � 2�c11 as in
the preceding subsection. The first three �ci terms have the
following simple form:

�c1 � 
1 lnv ln2v� � 2Cq
s�)q
v�C2
F; (51)

�c2 � 
1� 2 lnv� � 2Cq
s�)q
v�C2
F; (52)

�c3 � 2� 2Cq
s�)q
v�C2
F; (53)

and

�c5�2Cq
s�C
2
F

�
v

2vv2
1

Y3 �
2v2v1

Y2 
3v6v2�4v3

Y

�
:

(54)

The complete subtraction contribution for the q �q cross
section has the form of Eq. (20) with the �ci terms given
in Eqs. (51)–(54) and Appendix B. Again, the subtraction
terms agree with the convolution of the perturbative FF of
Eq. (26) with the LO q �q cross section. We remark that the
�ci terms only appear in the QED part.

As in the gg channel, the results in Appendix B are given
for the choice �R � �F � �0

F � m. For our application,
we need the cross section for arbitrary scales. To make the
transition, we use Eq. (27), where the nonzero contribu-

tions to the coefficients d̂i, ~di and ~~di have the following
form:

d̂ 1 � Cq
s�
CF

2
)q
v�4,


nf1�
0 ; (55)

~d 1 � Cq
s�)q
v�C
2
F�3� 2 lnv 2 ln
1 v��; (56)

~d 2 � 4Cq
s�)q
v�C
2
F; (57)

~d11 � Cq
s�C2
F

�
1 8v� 12v2  6v3

v1


1 2v� 2v2

w

�
2v2v

2w
v1


2v3w2

v1
�
v
X

�
: (58)

Of course, for the calculation of the GM-VFN cross sec-
tion, the corresponding mass-dependent contributions are
used as given in Ref. [7]. These terms rescale all the lnm2

contributions due to the renormalization and the factoriza-
tion of internal light-quark lines. Therefore, the shift from
renormalization due to internal quark loops is proportional

to ,

nf1�
0 .

To eliminate all lnm2 terms, we must also take into
account the contribution from charm-quark loops and the
one from internal charm-quark lines that is factorized into
-8
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the FF. These terms are taken into account by using
Eq. (34), and the corresponding coefficients are given by

�d̂1 � Cq
s�)q
v�
2
3CF; (59)

�~~d1 � Cq
s�)q
v�
C2
F

2

3� 4 lnv�; (60)

�~~d2 � Cq
s�)q
v�2C
2
F; (61)

�~~d11 � Cq
s�
�
C2
F

2
�~~d

cf
11 �

CFCA

2
�~~d

ca
11

�
; (62)

where

�~~d
cf
11 �

2v
2 3v� 2v2�

v1
�

2
1 2v� 2v2�

w


4v3w
v1

�
4v3w2

v1
�

4vv2
1

Y3 
4v2v1

Y2 �
2v
1 6v� 4v2�

Y
;

(63)

�~~d
ca
11 � 4v2v 4v2w

4vv2
1

Y3 �
4v
3 5v� 2v2�

Y2


2v
9 12v� 4v2�

Y
: (64)

In the general case, the contributions written down in
Eqs. (55)–(58) have to be added and the contributions in
Eqs. (59)–(62) have to be subtracted.

C. Massless limit of g� q ! c� �c� q and
g� �q ! c� �c� �q

The processes g� q ! c� �c� q and g� �q !
c� �c� �q appear for the first time at NLO. In the massless
limit, the corresponding cross sections are decomposed as
explained in Eq. (12). Since there is no LO part, one has
c1 � c2 � c3 � 0. The remaining coefficients are decom-
posed with respect to the color factors CF and CA as

ci � Cq
s�
CFc
cf
i � CAc

ca
i �: (65)

The resulting coefficients ccfi and ccai are given in
Appendix C for the case that the observed transverse
momentum is due to the charm quark. If the anticharm
quark is observed with a given value of pT , the coefficients
are different. The differences c �cci � ci
 �cobserved� 
ci
cobserved� are listed in Appendix D. Charge conjugation
invariance relates the cross sections for quarks and anti-
quarks in the initial state as d�=dpT
g� q ! cobserved �
�c� q� � d�=dpT
g� �q ! �cobserved � c� �q�.

We find that, for all gq and g �q channels, there are no
extra finite subtraction terms, i.e., we have �ci � 0 in all
cases. Comparing the coefficients ccfi and ccf; �cci with the
results for �� q ! c� �c� q given in Ref. [17], we find
agreement, except for �c11, which was found to be non-
zero for �� q ! c� �c� q. The subtraction terms in
Ref. [17] were obtained by matching the FFN result of
Ref. [26] with the ZM-VFN result of Ref. [27]. In order to
014018
clarify this mismatch, we compare the formula for ��
q ! c� �c� q of Ref. [27] with the one from Ref. [28],
which we extracted from the FORTRAN program used in that
paper, to find that the two disagree. On the other hand, the
result in Ref. [28] agrees with the Abelian part of the result
for g� q ! c� �c� q in Ref. [20]. Relying on Ref. [28],
we then conclude that we also have �c11 � 0 for �� q !
c� �c� q in Ref. [17].

As in the previous cases, the formulas written down in
Appendix C are for the scale choice �R � �F � �0

R � m.
The transition to arbitrary scales �R, �F and �0

F is ob-
tained, as above, using Eq. (27) with the appropriate co-
efficients. In the present case, ~d1 and ~d2 do not contribute,
only ~d11 is nonzero. If we factor out Cq
s�, CF and CA as in
Eq. (65), we obtain the coefficients ~dcfi and ~dcai , which
correspond to the initial-state factorization of singularities
due to internal gluons, in the following form:

~dcf11 �
1 4v� 9v2  6v3 � 2v4

v2
1

�
1� 2v 4v2 � 3v3  v4

v2
1w



1 4v� 9v2  6v3 � 2v4�w

v2
1


v

2X2 �
v
3 v�
2v1X

; (66)

~d ca
11�

v2

v2
1


v2
2�v2�w

v2
1

�
2v3
1�v�w2

v2
1


2v4w3

v2
1

�
v
2X

:

(67)

In addition, we need the rescaling terms associated with
initial-state singularities of internal charm-quark lines and
of final-state singularities of gluon lines splitting into c �c
pairs. These contributions vanish for the choice �F �
�0
F � m, which is used in Appendix C. To convert the

cross sections to arbitrary factorization scales �F and �0
F,

we have to take into account the additional rescaling terms

denoted as �~di and �~~di,

�~dcf11 �
1� v2

2v2
1w


1 2w� 2w2�; (68)

�~~d
cf
11 � 2v2
1 w� �

1 2v� 2v2

2w

v1v

2Y2

�
v
3 2v�

2Y
; (69)

�~~d
ca
11 � v2 �

v2
2 4v� 3v2�w

v2
1


2v3
1� 2v�w2

v2
1

�
2v4w3

v2
1

�
v
2Y

: (70)
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D. Numerical test of subtraction terms and study of
mass-dependent corrections

The calculation of the subtraction terms, in particular,
those in Secs. III A and III B, was rather involved. Special
care had to be exercised in order to recover all the terms
proportional to  
1 w�, 1=
1 w��, �ln
1 w�=
1
w��� and the remaining terms in the decomposition of
Eq. (12). In particular, the delta-function terms were diffi-
cult to calculate, since they received contributions from
several places, the virtual corrections and both the soft and
hard parts of the real corrections. Some of these contribu-
tions contained a dependence on the slicing parameter. The
cancellation of these contributions in the final results pro-
vided a partial check of our analytical calculations, in
particular, for the coefficients of the two plus-distributions.

In order to check that the �ci terms presented in
Secs. III A and III B are correct, and also to see how the
various contributions to d2�ab=dvdw (where ab stands for
the channels gg, q �q, gq and g �q) written down in Sec. II B
behave as functions of the transverse momentum pT of the
D�� meson, we calculate the NLO corrections in four
different ways:
(1) U
sing the results of Ref. [7], we calculate the cross
sections for the channels gg (g� g ! c� X), q �q
(q� �q ! c� X) and gq [g� q
 �q� ! c� X] in the
FFN scheme. The corresponding results will be
labeled by �m (massive calculation).
(2) W
e calculate the same cross sections in the limit
m! 0, using Eq. (12) with the corresponding co-
efficients as given in Sec. III and the appendices.
Notice that m is kept at its physical value whenever
it appears logarithmically in Eq. (12). The results
will be denoted �0 (massless limit of the massive
calculation).
For both the massive calculation and its massless limit, we
shall then consider the effect of the subtraction terms
described by the coefficients �ci:
(3) T
he subtracted massive calculation, denoted by ��
m,

is obtained by subtracting Eq. (20) with the corre-
sponding coefficients written down in the appendi-
ces from �m. This corresponds to the GM-VFN
scheme.
(4) T
he subtracted massless cross sections are calcu-
lated by subtracting Eq. (20) from �0 and will be
denoted by ��

0 . This prescription is identical to the
ZM-VFN scheme.
In all cases, we start from a calculation using �R � �F �
�0
F � m and take into account the rescaling to other re-

normalization and factorization scales in two steps:

(i) W
e rescale to �R � �F � �0

F � 2mT . This scale
choice is to prevent the value of �0

F from falling
below the starting scale 2m for the �0

F evolution of
the FF for low values of pT . Firstly, we add the
terms due to renormalization and initial-state facto-
rization of singularities related to internal gluon
lines, according to Eq. (27).
014018
(ii) F
-10
inally, we subtract the remaining rescaling terms
of Eq. (34) related to internal charm-quark lines
which become singular in the limit m! 0.
In the following, we always normalize the cross sections
to the LO ZM-VFN cross sections calculated from Eqs. (4)
and (6), i.e., we consider the cross section ratios Rab given
by

Rab �
d�ab=dpT

d�ab
LO=dpT
m � 0�

: (71)

For the gq and g �q channels, we normalize to the LO ZM-
VFN gg cross section, since, for the gq channel, there is no
LO contribution. All results are given at the hadron level,
i.e., the partonic cross sections are convoluted with the
(anti)proton PDFs and the FF for c ! D��. We average
over D�� and D� mesons. We use the PDF set CTEQ6M
[29] and the FF set obtained in Ref. [3] by fitting data from
the OPAL Collaboration at NLO. Although the CTEQ6M
PDFs were determined in the ZM-VFN scheme with nf �
5, for the time being, we only include three light-quark
flavors along with the gluon as incoming partons for all
values of �F. Since, at this point, we wish to focus on
effects related to the hard-scattering cross sections, the LO
cross sections are evaluated using the same conventions
concerning �s
�R�, proton PDFs and D�� FF as in NLO.
We consider d�=dpT at

���
S

p
� 1:96 TeV as a function of

pT with y integrated over the range 1:0< y< 1:0. As for
the QCD input parameters, we take the charm-quark mass

to be m � 1:5 GeV and evaluate �

nf�
s 
�R� with nf � 4

and asymptotic scale parameter �
4�
QCD � 328 MeV, which

corresponds to �
5�
s 
mZ� � 0:1181. The renormalization

scale �R and the factorization scales �F and �0
F are set

equal, �R � �F � �0
F. Details for the calculation of

d�=dpT from d2�=dvdw have been given for direct ��
scattering in Eq. (45) of Ref. [16]. In this equation, the
photon distribution functions must be replaced by the
(anti)proton PDFs of the gluon and the light (anti)quarks.

The results for the gg channel are shown in Fig. 2. In
Fig. 2(a), the renormalization and factorization scales are
�R � �F � �0

F � m, but the scales in �s, the PDFs and
the FF are fixed at 2:1m, to stay above the starting scale of
the FF. The full line in Fig. 2(a) corresponds to the massless
limit of the FFN calculation as derived in Sec. III A (�0),
and the dashed curve is the result of the massive calculation
(�m). We see that the massive cross section approaches the
massless one very slowly at large values of pT . At pT �
20 GeV, the difference between the massive and massless
cross sections is still of the order of 6%. The ratio Rgg for
the massive cross section is always larger than its massless
limit in the pT range between 5 and 100 GeV. From this
comparison, we conclude that, in the gg channel, the terms
proportional to m2=p2

T are particularly large and lead to an
increase of the massive cross section as compared to the
massless approximation. Similar observations were made
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in Ref. [10], where the massive and massless calculations
were compared as functions of the mass m for fixed value
of pT . For our application, we are interested in the massive
and massless cross sections, where the finite �ci terms
derived in Sec. III A are subtracted. This leads to the
dashed-dotted (��

m) and the dotted (��
0 ) curves in

Fig. 2(a). We have checked that our result for the massless
calculation after subtraction, i.e., the dotted curve, is in
perfect agreement with the results in the ZM-VFN scheme
obtained using the FORTRAN program of Refs. [3,21]. This
comparison demonstrates that the finite �ci terms, which,
if subtracted, should produce the ZM-VFN cross section,
are correct. Their subtraction from the FFN result will give
the GM-VFN result, which approaches the ZM-VFN result
at large values of pT . We see that the contribution of these
finite terms is by no means negligible.

The ratios plotted in Fig. 2(a) show that, in the low- to
medium-pT range, the NLO cross section is up to a factor
of about 5 larger than the LO one (note that the numerator
of Rgg is the sum of the LO result and the NLO correc-
tions). This is not surprising, since we have chosen very
low values for the renormalization and factorization scales.
Since we are interested in the region where pT * m, a
better choice of scales is � � pT . As usual, we choose
FIG. 2. gg contribution to p� �p ! D�� � X including
Abelian and non-Abelian parts, normalized to the LO cross
section with m � 0. (a) Renormalization and factorization scales
are �R � �F � �0

F � m (but fixed at 2:1m in �s, PDFs and
FF). (b) Same as in part (a), but for �R � �F � �0

F � 2mT

including rescaling due to renormalization and initial-state fac-
torization of singularities originating from internal gluons.
(c) Same as in part (a), but including full rescaling to �R �
�F � �0

F � 2mT .
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�R � �F � �0
F � 2mT , which can be used for both small

and large values of pT . To obtain the cross sections at this
scale, we must add the terms proportional to ln
m2=�2� as
described in Sec. III A in the massless limit and the corre-
sponding terms for the FFN scheme contained in Ref. [7].
In Fig. 2(b), we first show the results for the cross section
ratios including the rescaling due to renormalization and
initial-state factorization, i.e., adding Eq. (27) using the
coefficients of Eqs. (28)–(31) for the massless calculation
and the corresponding mass-dependent terms of Ref. [7]
for the massive calculation. As in Fig. 2(a), we show four
curves corresponding to the massive and massless calcu-
lations, in either case without and with finite terms sub-
tracted. In this case, the cross section ratios exhibit a much
weaker pT dependence. The QCD correction (K) factor is
somewhat smaller now, but it is still large, showing that the
perturbative expansion for the gg channel is not converg-
ing very well. We observe that the massive cross sections
converge to the corresponding massless cross sections with
increasing value of pT as in Fig. 2(a). The effect of the
subtraction of the finite terms is slightly smaller, since the
added ln
�2=m2� terms apparently have smaller m2=p2

T
corrections. The curves for the massive theory lie always
above the massless approximation, as in Fig. 2(a).

If it were not for the choice nf � 4 in�s and the fact that
the CTEQ6M proton PDFs are evolved according to the
ZM-VFN scheme, so that the charm and bottom PDFs
participate in the DGLAP evolution for sufficiently high
values of �F, the unsubtracted result �m in Fig. 2(b) would
correspond to the cross section in the genuine FFN scheme.
We have seen that this theory is characterized by large
NLO corrections. This has its origin in the fact that the
contributions of the would-be collinear divergences related
to incoming and outgoing charm-quark lines are not yet
subtracted, i.e., they are still left at the factorization scales
�F � �0

F � m. It is clear that these contributions must be
also evaluated at the factorization scales�F � �0

F � 2mT ,
since our FF for c! D�� is evolved to this scale and we
want to include the contributions from the charm content of
the incoming (anti)proton. To do this, we must include the
additional contributions proportional to ln
�2

R=m
2�,

ln
�2
F=m

2� and ln
�02
F=m

2� in Eqs. (35)–(40). The result
is shown in Fig. 2(c). The subtracted massive calculation
(��

m) is represented by the dashed-dotted curve and the
result of the subtracted massless calculation (��

0 ) by the
dotted one. The latter curve again agrees with the ZM-VFN
result calculated on the basis of Ref. [20]. For comparison,
we also show the results for �0 and �m from Fig. 2(b)
before the additional logarithmic terms from Eqs. (35)–
(40) are subtracted, and also without subtraction of the
finite �ci terms. The lower two curves are our final results
for the gg channel. The cross section ratios are negative for
pT & 30 GeV and rise up to approximately 0.6 at pT �
100 GeV. The massive cross section approaches its mass-
less limit with increasing value of pT . As we shall see later,
-11



FIG. 3. p
q� � �p
 �q� contribution to p� �p! D�� � X in-
cluding Abelian and non-Abelian parts, normalized to the LO
cross section with m � 0. (a) Renormalization and factorization
scales are �R � �F � �0

F � m (but fixed at 2:1m in �s, PDFs
and FF). (b) Same as in part (a), but for �R � �F � �0

F � 2mT

including rescaling due to renormalization and initial-state fac-
torization. (c) Same as in part (a), but including full rescaling to
�R � �F � �0

F � 2mT .
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the gg channel is only important at small values of pT ; at
higher values of pT , the total cross section is dominated by
the contribution due to the charm content of the (anti)pro-
ton. Since this dominating contribution does not contain
finite-m corrections, the effect of mass-dependent terms in
the gg channel will be suppressed in the final result.

In Fig. 3, we present results for the q �q channel. The
cross section ratios shown here are normalized to the
corresponding LO cross section for the q �q initial states.
Since this normalization differs from the LO gg cross
section, the ratios in Figs. 2 and 3 should not be added.
In Fig. 3(a), the ratios with the renormalization and facto-
rization scales equal to m are shown. The massless and
massive cross sections, i.e., the full (�0) and the dashed
(�m) curves with no subtraction of finite terms and the
dotted (��

0 ) and dashed-dotted (��
m) curves with �ci terms

subtracted, almost coincide. This means that, for the q �q
channel, the m2=p2

T terms are negligibly small in the
considered pT range. We notice that the NLO cross section
for this channel is negative, except for small values of pT .
The subtraction terms are non-negligible over the whole pT
range. In Fig. 3(b), the cross section ratio at the scale �R �
�F � �0

F � 2mT including the rescaling due to renormal-
ization and initial-state factorization according to Eqs. (27)
and (55)–(58) is shown. At this scale, the cross section is
positive for all pT values. The influence of the m2=p2

T
terms is somewhat larger now due to additional mass-
dependent contributions in the terms proportional to
ln
�2=m2�. Also the difference due to the subtraction of
the finite �ci terms is larger, since the PDFs and the FF are
evaluated at much larger scales. We note that the massive
ratio is smaller than the massless one. If the logarithmic
rescaling terms due to internal charm-quark lines in
Eqs. (34) and (59)–(62) are subtracted, we obtain the cross
section ratios presented in Fig. 3(c). These results are
needed in our final analysis. The dashed-dotted (��

m) and
dotted (��

0 ) curves lie very near to each other showing that
the m2=p2

T terms are much smaller in this channel. Also in
this case, we checked that our result for the massless
calculation with subtraction and rescaling included agrees
perfectly with the ZM-VFN result of Ref. [20]. For com-
parison, the unsubtracted massive (�m) and massless (�0)
results from Fig. 3(b) are again shown in Fig. 3(c). In
contrast to the gg channel, the last rescaling due to singular
internal charm-quark lines leads to an increased ratio.

Finally, we discuss the m2=p2
T contributions for the gq

and g �q channels. For definiteness, we consider the p
q� �
�p
g� contributions to p� �p! D�� � X separately for the
cases where the D�� meson originates from a charm or an
anticharm quark. We normalize the cross sections to the
LO gg-channel cross section. Using as scales m in the
same way as in Fig. 2(a), we obtain the full and dashed
curves in Fig. 4(a) corresponding to massless (�0) and
massive (�m) cross sections, respectively. The upper
curves are for observed anticharm and the lower ones for
014018
observed charm. These two sets of curves differ only little.
The m2 power corrections are small over the whole pT
range. If we rescale to the scale 2mT using Eqs. (27), (66)
and (67), we obtain the massless (full curves) and massive
(dashed curves) results for observed charm in Fig. 4(b) and
those for observed anticharm in Fig. 4(c). Here, the ratio of
cross sections is positive. We observe that the massive
cross section is slightly larger than the massless one. If
we include the full rescaling of logarithmic terms due to
charm or anticharm exchange using Eqs. (27) and (34) with
Eqs. (66)–(70), we obtain the lower curves in Fig. 4(b) and
4(c), respectively, for the massive (dashed-dotted curves)
and massless (dotted curves) cross sections. The latter ones
are again in perfect agreement with the ZM-VFN results of
Ref. [20]. These results will be used for the final cross
section.

So far, we have only considered the channels with gluon
or light (anti)quarks in the initial state and (anti)charm
quarks in the final state. To these contributions, we must
add the cross sections with (anti)charm quarks in the initial
state. Such results will be shown in the next three figures.
From Figs. 2(c), 4(b) and 4(c), we see that the gg and gq
channels yield negative contributions (for pT < 30 GeV in
the gg case and for all values of pT in the gq case), while
only the q �q channel gives a positive contribution every-
-12



FIG. 4. (a) p
q� � �p
g� contribution to p� �p ! D�� � X
including Abelian and non-Abelian parts, normalized to the
LO cross section of the gg channel with m � 0.
Renormalization and factorization scales are �R � �F � �0

F �
m (but fixed at 2:1m in �s, PDFs and FF). Lower curves:
observed charm, upper curves: observed anticharm. (b) Same
as in part (a) for observed charm, but with renormalization and
factorization scales chosen as �R � �F � �0

F � 2mT . (c) Same
as in part (b), but for observed anticharm.

FIG. 5. Partial cross sections for p� �p ! D�� � X, averaged
over D�� and D� mesons, in the ZM-VFN scheme.
Renormalization and factorization scales are �R � �F � �0

F �
2mT . The sum of the gg, q �q, gq and g �q channels is labeled tot,
the total cross section including incoming (anti)charm quarks
tot� c �c.
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where. Their sum is still negative for pT < 65 GeV, as can
be seen in Fig. 5, where we have plotted the sum of these
three channels as the solid curve labeled tot. Only when the
contributions from incoming (anti)charm quarks are added,
we obtain, as a meaningful result, a positive cross section,
which is shown in Fig. 5 as the dashed-dotted curve labeled
tot� c �c. These results are for the subtracted massless
approach (��

0 ) and represent the cross section for inclusive
D�� production, including only the contribution due to the
fragmentation of a (anti)charm quark, but not the ones due
to the fragmentation of a gluon or a light (anti)quark. In
addition to these results, we also show in Fig. 5 the partial
cross sections for the gg, q �q and g
q� �q� channels. The
latter channel contains all contributions with a gluon and a
light (anti)quark coming from the (anti)proton. We see that
the sum of all components yields a cross section with a
smooth, steeply falling pT dependence. The comparison
with the equivalent results with massive (anti)charm
quarks is made in Fig. 6, where we show for each partial
result the ratio with respect to the full result including the
contribution from c ( �c) initial states. The upper and lower
curves correspond to the subtracted massive (��

m) and
massless (��

0 ) calculations, respectively. As we can see,
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the m2=p2
T corrections in the sum of all contributions with

gluons or light (anti)quarks in the initial state labeled tot
are modest, except at small values of pT . At the smallest pT
value considered, pT � 5 GeV, the massless cross section
is only increased by roughly 20% when these corrections
are included, although the contribution labeled tot is sub-
stantially increased, from 773 nbGeV1 for the massless
calculation to 386 nbGeV1 for the massive one. We
emphasize that all results in Figs. 5 and 6 refer to the scale
choice �R � �F � �0

F � 2mT .
IV. COMPARISON WITH CDF DATA

Before we can compare our final results with experi-
mental data, we have to add another contribution, which
was not yet discussed, but is non-negligible for the experi-
mental situation at the Tevatron: in fact, the observed D��

meson may also be produced through the fragmentation of
a gluon or a light (anti)quark. Appropriate g; q; �q ! D��

FFs are contained in the OPAL set of Ref. [3], where they
are generated via NLO evolution assuming that they vanish
at the starting scale. In the ZM-VFN scheme, gluon and
light (anti)quark fragmentation already contributes at LO.
By contrast, these types of contribution do not exist in the
FFN scheme, where the collinear g ! c �c splitting is
treated perturbatively instead, starting only in NLO.
Since the GM-VFN scheme is to be constructed in such a
way that it merges with the ZM-VFN scheme at large
-13



FIG. 6. Partial cross sections normalized to the result for all
contributions including the c �c initial state. Lower and upper
curves correspond to the massless and massive calculations,
respectively.

FIG. 7. pT spectrum for p� �p ! D�� � X, averaged over
D�� and D� mesons, including all contributions.
Renormalization and factorization scales are �R � �F � �0

F �
2mT . Dashed-dotted lines: the (negative) contributions with
gluons and light (anti)quarks in the initial state; dashed lines:
including (anti)charm quarks in the initial state; full lines:
including the contribution from g; q; �q ! D�� fragmentation.
Upper and lower curves correspond to the massive and massless
calculations, respectively.
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values of pT , it is clear that the gluon and light (anti)quark
fragmentation contributions must be accommodated in the
GM-VFN framework as well. A certain part of these con-
tributions carries mass dependence, because of internal
charm-quark lines and external ones that do not lead to
fragmentation. In the FFN scheme, the analogous mass
dependence only comes in beyond NLO. Therefore, we
ignore this mass dependence for the time being and adopt
the gluon and light (anti)quark fragmentation contributions
from the ZM-VFN analysis [20]. These contributions
amount to slightly more than 30%, almost independent of
pT , as can be seen in Fig. 7. The bulk is due to gluon
fragmentation. For photoproduction in ep and �� colli-
sions, this contribution was found to be negligible [16–18].

The effect of mass-dependent terms is very much re-
duced in the final cross section, since the parts which have
to be calculated with m � 0 are large. Therefore, one
cannot expect that mass terms would increase the theoreti-
cal predictions towards cross sections as high as observed
in the CDF experiment [1]. The size of the mass-dependent
terms is visualized in Fig. 8, where we show the ratios of
cross sections calculated with m � 0 to those with m � 0.
For the (negative) contributions due to incoming gluons
and light (anti)quarks, mass-dependent terms lead to a
reduction in size by 50% at pT � 5 GeV. At this value
of pT , the ratio of massive over massless results is reduced
to 1:19 and 1:13 when the contributions from incoming
(anti)charm quarks and from g ! D�� fragmentation, re-
spectively, are included.
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Since the effect of mass-dependent terms is very much
reduced in the final cross section, it is clear that a variation
of the value of the charm-quark mass does not contribute
much to the theoretical uncertainty. Whereas the sum of the
contributions due to gluons and light (anti)quarks in the
initial state varies by 20:5% ( � 17:8%) at pT � 5 GeV
if m is changed from our default value of 1.5 to 1.2
(1.8) GeV, the cross section also including those terms
which can be calculated in the massless approach only
[i.e., those with (anti)charm quarks in the initial state and
from g; q; �q ! D�� fragmentation] varies by only 2:5%
( � 1:8%). The theoretical uncertainty is, therefore, domi-
nated by the choice of the renormalization and factoriza-
tion scales. The results presented in Fig. 7 were obtained
for �R � �F � �0

F � 2mT . A conservative mode of scale
variation frequently encountered in the literature is to
independently vary the values of �R=mT , �F=mT and
�0
F=mT between 1=2 and 2 about the default value 1. We

will adopt this prescription for the comparison with ex-
perimental data from the CDF Collaboration [1]. This leads
to large changes at pT � 5 GeV (for the massless calcu-
lation in the range between 41% and �30%, and for the
massive calculation between 46% and �56%). At pT �
25 GeV, the variations are smaller and cover the range
�20%. Minimal values for d�=dpT are obtained for maxi-
-14



FIG. 8. Ratios of the subtracted massive and massless differ-
ential cross sections d�=pT for p� �p ! D�� � X with jyj � 1
including (a) all contributions (full line), (b) all contributions
with incoming gluons, light (anti)quarks and (anti)charm quarks,
but without the g; q; �q ! D�� fragmentation contributions
(dashed line), and (c) the sum of the contributions with only
gluons and light (anti)quarks in the initial state (dashed-dotted
line). Renormalization and factorization scales are �R � �F �
�0
F � 2mT .

FIG. 9. Variation of the pT spectrum of p� �p! D�� � X,
averaged over D�� and D� mesons, with the renormalization
and factorization scales in the GM-VFN scheme. The central
solid curve is for �R � �F � �0

F � mT , the upper and lower
dashed curves represent the maximum and minimum cross
sections found by varying �R, �F and �0

F independently within
a factor of 2 up and down relative to the central values. The
contributions from (anti)charm quarks in the initial state and
from g; q; �q ! D�� fragmentation are included. The data points
are from the CDF Collaboration [1].
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mal values of �R and �0
F and minimal value of �F, and

maximum values are reached for minimal values of�R and
�0
F and maximal value of �F. These results are presented

in Fig. 9 as a band of predicted values. A comparison with
experimental data from CDF [1], also shown in this figure,
shows that the data prefer a small renormalization scale
and a large initial-state factorization scale. However, even
for the choice �R � mT=2 and �F � 2mT , the theoretical
results in the GM-VFN scheme still undershoot the mea-
sured cross sections by 20% to 34%.

Residual sources of theoretical uncertainty include the
variations in the available PDF and FF sets. The new
generation of NLO proton PDF sets exhibit only minor
differences. Similarly, the two NLO FF sets that were
determined in Ref. [3] by fitting slightly incompatible
data from the ALEPH and OPAL Collaborations yield
rather similar predictions, the difference being of order
10% or less in the kinematic range of the CDF data [1].
The inclusion of these additional errors would broaden the
theoretical error band in Fig. 9 only insignificantly.

We stress that our results do not include a contribution
due to bottom-quark production. This part can be identified
in the experimental analysis and was, in fact, removed
from the CDF data shown in Fig. 9.
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V. SUMMARY AND CONCLUSIONS

In this work, we calculated the NLO corrections to
inclusive charm production in p �p collisions in two ap-
proaches using massive or massless charm quarks. By
deriving the massless limit from the massive theory (FFN
scheme), we could show that this limit differs from the
genuine massless version with MS factorization (ZM-VFN
scheme) by finite corrections. We adjusted subtraction
terms and thus managed to establish a massive theory
with MS subtraction (GM-VFN scheme) which approaches
the massless theory (ZM-VFN scheme) with increasing
transverse momentum. With these results and including
the contributions where a (anti)charm quark occurs as an
incoming parton and those where a gluon or light (anti)-
quark fragments, we calculated the inclusive D�� cross
section in p �p collisions at

���
S

p
� 1:96 TeV using realistic

nonperturbative FFs, which are subject to proper DGLAP
evolution [13] and manifestly universal [14]. Our central
prediction somewhat undershoots a recent measurement by
the CDF Collaboration [1], but reasonable agreement can
be reached by adjusting the renormalization and factoriza-
tion scales within a plausible range of tolerance.
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We made the observation that, in contrast to other ex-
perimental situations such as �� or �p collisions, the
contribution from g ! D�� fragmentation is large. The
FFs which we used here had been obtained from fits to
data from the CERN LEP. One may speculate, therefore,
whether these data leave enough room to adjust the g !
D�� FF and improve the agreement with the Tevatron data.
We plan to come back to this question in a future
publication.
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APPENDIX A: COEFFICIENTS FOR SUBPROCESS
g� g ! c� X

In this appendix, we list the coefficients ci needed for the
calculation of the cross section for the inclusive production
of charm in gg collisions. They are obtained by taking the
limit m! 0 of the cross sections calculated in Ref. [7].
These limits are compared with the results from Ref. [20]
in order to obtain the subtraction terms �ci. To shorten the
expressions, we make use of the abbreviations
X�1vw; Y�1v�vw; vi� iv; (A1)
and write down only nonzero contributions. The coeffi-
cients given below have to be used together with Eqs. (12)
and (20); their color decomposition is defined in Eq. (16).
We start with the Abelian coefficients cqedi .
1. cqedi coefficients

cqed1 �
216lnv�9ln2v�3lnv1�3ln2v1�4#2

6
)
v��

5lnv1� ln2v1 lnv�3ln2v
2v1

�
5lnv� ln2v lnv1�3ln2v1

2v
��cqed1 ; �cqed1 �2
1 lnv ln2v�)
v�; ~cqed1 �

1

2

3�4lnv�)
v�;

cqed2 �
1

2

4lnv3�)
v���cqed2 ; �cqed2 �2
1�2lnv�)
v�; ~cqed2 �2)
v�; cqed3 �2)
v���cqed3 ;

�cqed3 �4)
v�; cqed5 �
2
1�2v2�

v
�
32v�2v2

vw

2
1�vv2�2v3�w

v1v

2
v�v2�

X3 
2v

X2�
3v4v2�2v3

v1X


2v
Y
��cqed5 ; �cqed5 �

2v
v1


2
22v�v2�

vw
�
2v2w
v1

�
4v
Y
; cqed6 �

4v2

v1
�
2
2�5v3v2�2v3�

v1vw
�
2v2w
v1

;

cqed7 �
2

vw

4v
Y
; cqed8 �

2
22v�v2�

vw
; cqed9 �
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�
2
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cqed10 �
2
1�v2v2�4v3�
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2v

X2�
3v4v2�2v3
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v
; cqed14 �2�

2
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�
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v
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(A2)

We note that these results for the Abelian part agree with the coefficients for �� � ! c� X in Ref. [16], if the
normalization factor C
s� in Ref. [16] is replaced by C
s� � 1. In that work, the zero-mass limit was derived from the FFN
cross sections of Ref. [30] and compared with the ZM-VFN ones of Ref. [27].
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2. coqi coefficients

coq1 �

�
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3. ckqi coefficients
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4. Coefficient for the quark-loop contribution
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APPENDIX B: COEFFICIENTS FOR SUBPROCESS q� �q ! c� �c

In the following, we list the coefficients ci needed for the calculation of the cross section for the inclusive production of
charm in q �q collisions. As before, the coefficients ci are obtained from the cross sections of Ref. [7] by taking the limit
m ! 0, whereas the subtraction terms �ci are deduced by a comparison with the results of Ref. [20]. The coefficients given
in this appendix determine the cross section according to Eqs. (12) and (20) and using the color decomposition of Eq. (49).
We start with the Abelian coefficients ccfi .

1. ccfi coefficients
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2. ccai coefficients
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3. Coefficient for the quark-loop contribution
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APPENDIX C: COEFFICIENTS FOR SUBPROCESS g� q ! c� �c� q

This appendix contains the coefficients needed for the calculation of the cross section for g� q ! c� �c� q with an
observed charm quark in the final state according to Eq. (12). We note that there are no subtraction terms for the gq
channel. In the following, again only nonzero coefficients are written down. According to the color decomposition defined
in Eq. (65), we present the Abelian and non-Abelian coefficients ccfi and ccai separately.
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1. ccfi coefficients
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We have checked that the following relations between these results for the CF part and the coefficients for the
subprocess �� q ! c� �c� q in Ref. [17] are satisfied, if the normalization factors C
s�, Cq
s�, Ccq
s� and CF are

replaced by unity: ccfi � cQ1
i � cQ2

i  2cQ3
i . Furthermore, our results in Appendix D 1 fulfill the relations ccf; �cci � 4cQ3

i

and ccfi � ccf; �cci =2 � cQ1
i � cQ2

i .
The decomposition of the form e2cQ1 � e2qQ2  eceqQ3 for �� q ! Q turns into one of the form Q1 �Q2  2Q3 for

g� q ! Q. The interference part Q3 is antisymmetric and changes sign in the analogous subprocesses with an antiquark
�q, i.e., we have e2cQ1 � e2qQ2 � eceqQ3 for �� �q ! Q and Q1 �Q2 � 2Q3 for g� �q ! Q.
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APPENDIX D: COEFFICIENTS FOR SUBPROCESS
g� �q ! c� �c� �q

The cross sections for the subprocesses g� q ! c�
�c� q and g� �q ! c� �c� �q, where the quark in the
initial state is replaced by an antiquark, are related, but
not identical. The differences between the corresponding
coefficients, c �cci , will be presented below. They have to be
014018
combined with the coefficients for g� q ! c� �c� q
given in Appendix C to give those for g� �q ! c� �c�
�q, according to ci
g� �q ! c� �c� �q� � ci
g� q ! c�
�c� q� � c �cci , to be inserted in Eqs. (12) and (65). Again,
there are no subtraction terms, and we present only the
nonzero coefficients. Note, in particular, that for both color
factors c �cc15 and c �cc1214 are zero.
1. ccfi coefficients
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2. ccai coefficients

cca; �cc6 �
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2X


3v
2Y

:

(D2)
[1] CDF Collaboration, D. Acosta et al., Phys. Rev. Lett. 91,
241804 (2003).

[2] M. Cacciari and M. Greco, Nucl. Phys. B421, 530 (1994).
[3] J. Binnewies, B. A. Kniehl, and G. Kramer, Phys. Rev. D

58, 014014 (1998).
[4] P. Nason, S. Dawson, and R. K. Ellis, Nucl. Phys. B303,

607 (1988); B327, 49 (1988); B335, 260(E) (1990).
[5] W. Beenakker, H. Kuijf, W. L. van Neerven, and J. Smith,

Phys. Rev. D 40, 54 (1989).
[6] W. Beenakker, W. L. van Neerven, R. Meng, G. A.

Schuler, and J. Smith, Nucl. Phys. B351, 507 (1991).
[7] I. Bojak and M. Stratmann, Phys. Rev. D 67, 034010

(2003).
[8] M. A. G. Aivazis, J. C. Collins, F. I. Olness, and W.-K.

Tung, Phys. Rev. D 50, 3102 (1994).
[9] F. I. Olness, R. J. Scalise, and W.-K. Tung, Phys. Rev. D

59, 014506 (1999).
[10] M. Cacciari, M. Greco, and P. Nason, J. High Energy

Phys. 05 (1998) 007.
[11] M. Cacciari and P. Nason, J. High Energy Phys. 09 (2003)

006.
[12] W. K. Tung, S. Kretzer, and C. Schmidt, J. Phys. G 28, 983

(2002), and references therein.
[13] V. N. Gribov and L. N. Lipatov, Yad. Fiz. 15, 781 (1972)
[Sov. J. Nucl. Phys. 15, 438 (1972)]; G. Altarelli and G.
Parisi, Nucl. Phys. B126, 298 (1977); Yu. L. Dokshitser,
Zh. Eksp. Teor. Fiz. 73, 1216 (1977) [Sov. Phys. JETP 46,
641 (1977)].

[14] J. C. Collins, Phys. Rev. D 58, 094002 (1998).
[15] S. Kretzer, H. L. Lai, F. I. Olness, and W. K. Tung, Phys.

Rev. D 69, 114005 (2004).
[16] G. Kramer and H. Spiesberger, Eur. Phys. J. C 22, 289

(2001).
[17] G. Kramer and H. Spiesberger, Eur. Phys. J. C 28, 495

(2003).
[18] G. Kramer and H. Spiesberger, Report No. DESY 04-196,

MZ-TH/03-18 (hep-ph/0311062).
[19] B. A. Kniehl and G. Kramer (to be published).
[20] F. Aversa, P. Chiappetta, M. Greco, and J. Ph. Guillet,

Phys. Lett. B 210, 225 (1988); 211, 465 (1988); Nucl.
Phys. B327, 105 (1989).

[21] B. A. Kniehl and G. Kramer, Z. Phys. C 62, 53 (1994); J.
Binnewies, B. A. Kniehl, and G. Kramer, Z. Phys. C 76,
677 (1997); B. A. Kniehl, G. Kramer, and M. Spira, Z.
Phys. C 76, 689 (1997).
-22



INCLUSIVE D�� PRODUCTION IN p �p COLLISIONS WITH . . . PHYSICAL REVIEW D 71, 014018 (2005)
[22] I. Bojak and M. Stratmann, Phys. Lett. B 433, 411 (1998);
Nucl. Phys. B540, 345 (1999); B569, 694(E) (2000); I.
Bojak, Ph.D. thesis, University of Dortmund, 2000, Report
No. DO-TH 2000/09 (hep-ph/0005120).

[23] It should be noted that there is no such contribution in the
massless limit of the calculation of Ref. [5], i.e., cql1 �
�cql1 � 0. On the other hand, we found nonzero coeffi-
cients cql1 and �cql1 in the massless limit of Ref. [7] listed in
Appendix A 4, which are numerically irrelevant, however.

[24] B. Mele and P. Nason, Nucl. Phys. B361, 626 (1991); J. P.
Ma, Nucl. Phys. B506, 329 (1997); S. Kretzer and I.
Schienbein, Phys. Rev. D 58, 094035 (1998); 59,
054004 (1999); K. Melnikov and A. Mitov, Phys. Rev.
D 70, 034027 (2004); A. Mitov, Report No. UH-511-1059-
2004 (hep-ph/0410205).
014018
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