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J= plus prompt-photon associated production in two-photon collisions at next-to-leading order

Michael Klasen
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble I, 53 Avenue des Martyrs, 38026 Grenoble, France
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We calculate the cross section of J= plus prompt-photon inclusive production in �� collisions at next-
to-leading order within the factorization formalism of nonrelativistic quantum chromodynamics
(NRQCD) focusing on direct photoproduction. Apart from direct J= production, we also include the
feed-down from directly produced �cJ and  0 mesons. We discuss the analytical calculation, in particular
the treatment of the various types of singularities and the NRQCD operator renormalization, in some
detail. We present theoretical predictions for the future e�e� linear collider TESLA, taking into account
both brems- and beamstrahlung.
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I. INTRODUCTION

Since the discovery of the J= meson in 1974, charmo-
nium has provided a useful laboratory for quantitative tests
of quantum chromodynamics (QCD) and, in particular, of
the interplay of perturbative and nonperturbative phe-
nomena. The factorization formalism of nonrelativistic
QCD (NRQCD) [1,2] provides a rigorous theoretical
framework for the description of heavy-quarkonium pro-
duction and decay. This formalism implies a separation of
short-distance coefficients, which can be calculated pertur-
batively as expansions in the strong-coupling constant �s,
from long-distance matrix elements (MEs), which must be
extracted from experiment. The relative importance of the
latter can be estimated by means of velocity-scaling rules;
i.e., the MEs are predicted to scale with a definite power of
the heavy-quark (Q) velocity v in the limit v� 1. In this
way, the theoretical predictions are organized as double
expansions in �s and v. A crucial feature of this formalism
is that it takes into account the complete structure of the
QQ Fock space, which is spanned by the states n �
2S�1L�a�

J with definite spin S, orbital angular momentum
L, total angular momentum J, and color multiplicity a �
1; 8. In particular, this formalism predicts the existence of
color-octet (CO) processes in nature. This means that QQ
pairs are produced at short distances in CO states and
subsequently evolve into physical, color-singlet (CS) quar-
konia by the nonperturbative emission of soft gluons. In the
limit v! 0, the traditional CS model (CSM) [3] is recov-
ered. The greatest triumph of this formalism was that it was
able to correctly describe [4,5] the cross section of inclu-
sive charmonium hadroproduction measured in pp colli-
sions at the Fermilab Tevatron [6], which had turned out to
be more than 1 order of magnitude in excess of the theo-
retical prediction based on the CSM. Apart from this
phenomenological drawback, the CSM also suffers from
severe conceptual problems indicating that it is incom-
plete. These include the presence of logarithmic infrared
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(IR) singularities in the O��s� corrections to P-wave de-
cays to light hadrons and in the relativistic corrections to
S-wave annihilation [7], and the lack of a general argument
for its validity in higher orders of perturbation theory.

In order to convincingly establish the phenomenological
significance of the CO processes, it is indispensable to
identify them in other kinds of high-energy experiments
as well. Studies of charmonium production in ep photo-
production, ep and �N deep-inelastic scattering (DIS),
e�e� annihilation in the continuum, Z-boson decays, ��
collisions, and b-hadron decays may be found in the lit-
erature; for reviews, see Refs. [8,9]. Furthermore, the
polarization of  0 mesons produced directly and of J= 
mesons produced promptly, i.e., either directly or via the
feed-down from heavier charmonia, which also provides a
sensitive probe of CO processes, was investigated. Until
recently, none of these studies was able to prove or dis-
prove the NRQCD factorization hypothesis. However, H1
data of ep! e� J= � X in DIS at the DESY Hadron
Electron Ring Accelerator (HERA) [10] and DELPHI data
of ��! J= � X at the CERN Large Electron Positron
Collider (LEP2) [11] provide first independent evidence
for it by agreeing with the respective NRQCD predictions
[12–14].

The verification of the NRQCD factorization hypothesis
is presently hampered both from the theoretical and ex-
perimental sides. On the one hand, the theoretical predic-
tions to be compared with existing experimental data are,
apart from very few exceptions [15–18], of lowest order
(LO) and thus suffer from considerable uncertainties,
mostly from the dependences on the renormalization and
factorization scales and from the lack of information on the
nonperturbative MEs. On the other hand, the experi-
mental errors are still rather sizable. The latter will be
dramatically reduced with the upgrades of HERA
(HERA II) and the Tevatron (Run II) and with the advent
of CERN Large Hadron Collider (LHC) and hopefully a
future e�e� linear collider (LC) such as the TeV-Energy
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Superconducting Linear Accelerator (TESLA), which is
presently being designed and planned at DESYand has just
been endorsed by the International Committee for Future
Accelerators (ICFA). On the theoretical side, it is necessary
to calculate the next-to-leading order (NLO) corrections to
the hard-scattering cross sections and to include the effec-
tive operators which are suppressed by higher powers in v.

In this paper, we concentrate on the inclusive production
of J= mesons in high-energy �� collisions. As mentioned
above, this process was studied at LEP2 [11], where the
photons originated from hard initial-state bremsstrahlung.
At high-energy e�e� LCs, an additional source of hard
photons is provided by beamstrahlung, the synchrotron
radiation emitted by one of the colliding bunches in the
field of the opposite bunch. The highest possible photon
energies with large enough luminosity may be achieved by
converting the e�e� LC into a �� collider via backscat-
tering of high-energetic laser light off the electron and
positron beams.

In order for a J= meson to acquire finite transverse
momentum (pT), it must be produced together with another
particle or a hadron jet (j). Recently, we studied the process
�� ! J= � j� X, where X denotes the hadronic rem-
nant possibly including a second jet, at NLO [18]. In this
paper, we perform a similar analysis for the process �� !
J= � �� X, where � represents a prompt photon. This
process leads to a spectacular signal. On the one hand, J= 
mesons can be easily identified through their decays to
e�e� or ���� pairs, with a combined branching fraction
of B�J= ! l�l�� � �11:81 	 0:14�% [19]. On the other
hand, isolated energetic photons can be detected with high
efficiency through the distinctive showers they produce in
the electromagnetic calorimeter, which can be distin-
guished from those due to �0 mesons on a statistical basis,
or through their conversion to e�e� pairs.

The incoming photons can interact either directly with
the quarks participating in the hard-scattering process (di-
rect photoproduction) or via their quark and gluon content
(resolved photoproduction). Thus, the process ��!
J= � �� X receives contributions from the direct,
single-resolved, and double-resolved channels. All three
contributions are formally of the same order in the pertur-
bative expansion. This may be understood by observing
that the parton density functions (PDFs) of the photon have
a leading behavior proportional to � ln�M2=	2

QCD� /

�=�s, where � is the fine-structure constant, M is the
factorization scale, and 	QCD is the asymptotic scale pa-
rameter of QCD.

In the following, we focus our attention on the direct
channel, for which there is a phenomenological and a
theoretical argument. The former is exposed already at
LO. In fact, �� ! J= � �� X almost exclusively pro-
ceeds through direct photoproduction because it is then a
CS process [20,21]. By contrast, the single-resolved con-
tribution is strongly suppressed, by the ratio
014016
hOJ= �3S�8�1 i=hOJ= �3S�1�1 i / v4. There is also a CS pro-
cess in the double-resolved channel. However, it is medi-
ated at the parton level via gluon fusion and thus
suppressed by the smallness of the gluon PDF of the
photon. The theoretical argument is related to the obser-
vation that ��! J= � �� X via direct photoproduc-
tion does not yet require mass factorization at NLO.
Therefore, this contribution does not suffer from an artifi-
cial M dependence, so that it is justified to consider it
separately. By the same token, the M dependence of the
single-resolved contribution at LO is relatively feeble and
to be compensated by the direct contribution at next-to-
next-to-leading order (NNLO), which is beyond the scope
of our analysis. The NLO treatments of the single-resolved
and double-resolved channels are left for future work.

In the parton model, prompt photons can also be pro-
duced through the fragmentation of quarks and gluons,
which necessitates the introduction of photon fragmenta-
tion functions. From arguments similar to those regarding
the photon PDFs mentioned above, it follows that also the
photon fragmentation functions are formally of order
�=�s. Thus, consistency requires that their contribution
be taken into account in the theoretical description of
prompt-photon inclusive production. However, if the
prompt-photon momentum is integrated over, then the
enhancement factor ln�M2=	2

QCD� / 1=�s disappears, so
that, in direct photoproduction, photon fragmentation is
degraded to a NNLO contribution. Strictly speaking, we
consider the process �� ! J= � X�, where X� is a had-
ronic system containing a prompt photon, rather than the
process �� ! J= � �� X.

In order to distinguish prompt photons from bremsstrah-
lung photons, some hardness condition must be introduced,
e.g., by requiring that the transverse momentum of the
photon (p�T) be in excess of some minimum value
(p�T;min). From the theoretical point of view, this is essential
because soft-photon bremsstrahlung generates an IR catas-
trophe, which must be removed by including also the
corresponding virtual-photon contribution. However, this
would then be equivalent to calculating the O��� correc-
tion to the process �� ! J= � j, which is suppressed
against the O��s� one already provided in Ref. [18], and
this is not our intention here.

The J= mesons can be produced directly; or via radia-
tive or hadronic decays of heavier charmonia, such as �cJ
and  0 mesons; or via weak decays of b hadrons. The
respective decay branching fractions are B��c0 ! J= �
�� � �1:18 	 0:14�%, B��c1 !J= ���� �31:6	3:3�%,
B��c2 ! J= � �� � �20:2 	 1:7�%, B� 0 !J= �X��
�57:6	2:0�%, and B�B! J= �X� � �1:094	 0:032�%
[19]. The b hadrons can be detected by looking for dis-
placed decay vertices with dedicated vertex detectors, and
the J= mesons originating from their decays can thus be
treated separately. Therefore and because of the smallness
of B�B! J= � X�, J= production through b-hadron
-2
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decay is not considered here. The cross sections of the four
residual indirect production channels may be approxi-
mated by multiplying the direct-production cross sections
of the respective intermediate charmonia with their decay
branching fractions to J= mesons.

To summarize, the goal of the present analysis is to
calculate the inclusive cross section of ��! J= � X�
in direct photoproduction for finite values of pT at NLO
within NRQCD allowing for the J= meson to be promptly
produced. The partonic subprocesses contributing at LO
and NLO are listed in Eqs. (2) and (10), respectively. The
pertinent tree-level diagrams are depicted in Figs. 1 and 4,
respectively, while the one-loop diagrams are displayed in
Figs. 2 and 3. The LO result, also including the single- and
double-resolved contributions, may be found in
Refs. [14,20–22]. The leading relativistic correction,
which originates from the cc Fock state n � 1P�1�

1 and is
of O�v4� relative to the LO result, may be extracted from
Ref. [20]. Apart from being of general phenomenological
relevance, the analyses reported here and in Ref. [18]
should also be of conceptual interest for the theoretical
heavy-quarkonium community because this is the first time
that the full NLO corrections are evaluated for inclusive
2 ! 2 processes within the NRQCD framework. Here, the
cc bound state is considered as one particle. Several theo-
retical problems that need to be tackled in our present
analysis were encountered in similar form in Ref. [18]
and do not need to be explained again in detail. However,
there are also qualitatively new features, especially in
connection with the operator renormalization and the can-
cellation of IR singularities, which need to be discussed
carefully.

This paper is organized as follows. In Sec. II, we de-
scribe our analytical calculation in some detail, focusing
on the qualitatively new features. In Sec. III, we present our
numerical results appropriate for the e�e� mode of
TESLA, and discuss their phenomenological implications.
Our conclusions are summarized in Sec. IV.

II. ANALYTICAL RESULTS

We start this section with a few general remarks. In our
analytic calculation, we take the color gauge group to be
SU�Nc� with a generic value of Nc, which is put equal to
three in our numerical analysis. Color factors appearing in
our formulas include TF � 1=2, CF � �N2

c � 1�=�2Nc�,
and CA � Nc. We work in the fixed-flavor-number scheme,
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FIG. 1. Tree-level diagrams pertine
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with nf � 3 active quark flavors q � u; d; s, which we
treat as massless. The charm-quark c and antiquark c,
with mass m, only appear in the final state. We denote
the fractional electric charge of quark q by eq.

The cc Fock states contributing at LO in v are specified
for H � J= ; �cJ;  

0 in Table I. Their MEs satisfy the
multiplicity relations

hO �nS��3P�8�
J i � �2J� 1�hO �nS��3P�8�

0 i;

hO�cJ �3P�1�
J i � �2J� 1�hO�c0�3P�1�

0 i;

hO�cJ �3S�8�1 i � �2J� 1�hO�c0�3S�8�1 i;

(1)

which follow to LO in v from heavy-quark spin symmetry.
We employ dimensional regularization with d � 4 � 2)

space-time dimensions to handle the ultraviolet (UV) and
IR singularities, and we introduce unphysical ’t Hooft mass
scales � and * to ensure that the renormalized strong-
coupling constant and NRQCD MEs have the same mass
dimension as their LO counterparts. We formally distin-
guish between UVand IR poles, which we denote as 1=)UV

and 1=)IR, respectively. We apply the projection method of
Refs. [17,23], which is equivalent to the d-dimensional
matching procedure of Ref. [24], in order to extract the
short-distance coefficients that multiply the MEs.
However, in order to conform with common standards,
we adopt the normalizations of the MEs from Ref. [2]
rather than from Refs. [16,17]; i.e., the MEs include spin
and color average factors.

There is only one partonic subprocess at LO, i.e., at
O��0

s�, namely

��k1� � ��k2� ! cc�3S�1�1 �p� � ��p��; (2)

where the four-momentum assignments are indicated
within the parentheses. The corresponding Feynman dia-
grams are depicted in Fig. 1. In the NLO analysis, i.e., at
O��s�, we need to evaluate the cross section of process (2)
in d space-time dimensions and retain terms of O�)�
because UV counterterms appear in multiplicative renor-
malization. The final result is listed in Eqs. (1) and (2) of
Ref. [20].

The analogous process with n � 1P�1�
1 yields a relativ-

istic correction of O�v4�, and its cross section may be
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nt to the partonic subprocess (2).
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FIG. 2. One-loop (a) self-energy, (b) triangle, (c) box, and (d) pentagon diagrams pertinent to the partonic subprocess (2).
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obtained from Eq. (3) of Ref. [20] by substituting

2NcCF�s
hOH�1P�8�

1 i

N2
c � 1

! e2
c�hO

H�1P�1�
1 i: (3)

A. Virtual corrections

The diagrams that generate the virtual corrections to the
cross section of process (2) are obtained by attaching one
virtual gluon line in all possible ways to the tree-level seed
diagrams of Fig. 1. They include the self-energy, triangle,
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box, and pentagon diagrams which are depicted in
Figs. 2(a)–2(d), respectively. Loop insertions in external
charm-quark lines are accommodated in the corresponding
wave-function renormalization constant and are not dis-
played in Fig. 2. The self-energy and (nonvanishing) tri-
angle diagrams are UV divergent; the box diagrams are
finite; and the pentagon diagrams are IR divergent. The
latter also contain Coulomb singularities, which are can-
celed after taking into account the corresponding correc-
tions to the operator hOH�3S�1�1 i. In the practical
calculation, the Coulomb singularities are first regularized
by an infinitesimal gluon mass. This regularization pre-
scription is then transformed into one implemented with a
small relative velocity v between the c and c quarks
[15,25]. In contrast to the case of �� ! J= � j� X
considered in Ref. [18], diagrams containing a massless-
quark loop vanish by color conservation. Notice that, at
NLO, virtual corrections only occur in connection with the
cc Fock state n � 3S�1�1 .

We apply two independent approaches to calculate the
one-loop diagrams. The first one uses FEYNARTS [26] to
generate the diagrams and self-written MATHEMATICA co-
des to apply the projectors and provide expressions, which
are afterwards treated with a FORM program to perform the
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t to the partonic subprocess (10).
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TABLE I. Values of k in the velocity-scaling rule hOH�ni /
vk for the leading cc Fock states n pertinent to H �
J= ; �cJ;  

0.

k J= ,  0 �cJ

3 3S�1�1

5 3P�1�
J , 3S�8�1

7 1S�8�0 , 3S�8�1 , 3P�8�
J
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tensor reduction and the extraction of the UV and IR
singularities. The result is then transformed into a
FORTRAN code to be used for the numerical evaluation.
The second approach utilizes QGRAF [27] for the genera-
tion of the diagrams, FEYNCALC [28] for the tensor reduc-
tion, and LOOPTOOLS [29] for the numerical evaluation of
the IR-safe integrals. These packages are surrounded by
self-written interface programs, which allow for a com-
pletely automated computation [30]. Our analytic result is
too lengthy to be presented here.

The self-energy and triangle diagrams of the type in-
dicated in Fig. 2 contain UV singularities, which are re-
moved by renormalizing the charm-quark mass m and
wave-function  in the LO diagrams of Fig. 1. We renor-
malize m and  in the on-mass-shell scheme. The relevant
renormalization transformations may be found in Ref. [18].

A crucial feature of effective field theories, such as
NRQCD, is that the composite operators are generally
subject to renormalization. In the case of NRQCD, this is
essential in order to ensure the complete cancellation of IR
and Coulomb singularities at NLO and so to overcome the
conceptual problems of the CSM mentioned in Sec. I
[2,17,24]. To be consistent with the rest of our calculation,
we also employ dimensional regularization here. We adopt
the technique described in Refs. [2,17,24] to directly evalu-
ate the NLO corrections to the NRQCD operators. In this
way, we avoid having to match partonic cross sections
evaluated in NRQCD with their counterparts in full QCD.

In the case under consideration, we have to renormalize
the CS ME hOH�3S�1�1 i, which appears at LO. In d space-
time dimensions, this ME has mass dimension d� 1. The
’t Hooft mass scale of NRQCD, *, is introduced to keep its
renormalized version, which we wish to extract from ex-
perimental data, at mass dimension 3.

The four-quark operator OH�3S�1�1  is related to the am-
plitude for the elastic scattering of a cc pair. The corre-
sponding tree-level diagram is depicted in Fig. 3(a). The
one-loop corrections to this amplitude are obtained by
attaching a virtual gluon line in all possible ways to the
external heavy-quark legs, and they involve self-energy
and vertex corrections [see Figs. 3(b)–3(e)]. Using the
NRQCD Feynman rules in the quarkonium rest frame,
expanding the one-loop integrands as Taylor series in
1=m, and performing the integration over the loop momen-
tum, we obtain the unrenormalized one-loop result
014016
hOH�3S�1�1 i1 � hOH�3S�1�1 i0

�
1 �

�CF�s
2v

�

�
2�CA � 2CF��s

3�m2

�
4��2

*2

�
)

exp��)�E�

�

�
1

)UV
�

1

)IR

� X2
J�0

hOH�3P�8�
J i; (4)

where the subscript 0 labels the tree-level quantity,� is the
’t Hooft mass scale of QCD that enters through the
d-dimensional loop integration, and �E is Euler’s constant.
The term proportional to 1=v represents the Coulomb
singularity, which arises from the exchange of a longitudi-
nal gluon between the outgoing c and c quarks [see
Fig. 3(c)]. Obviously, NRQCD operators of different cc
Fock states n start to mix at one loop. Furthermore, the
presence of UV singularities indicates that they need re-
normalization. In the following, we choose the MS scheme
for that. We thus write

hOH�3S�1�1 i1 � hOH�3S�1�1 ir�*� �
2�CA � 2CF��s

3�m2

�

�
4��2

*2

�
)

exp��)�E�
1

)UV

�
X2
J�0

hOH�3P�8�
J i; (5)

where the subscript r labels the renormalized quantity and
we identify * with the NRQCD renormalization scale.
Inserting Eq. (5) into Eq. (4), we obtain

hOH�3S�1�1 i0 � hOH�3S�1�1 ir�*�
�
1�

�CF�s
2v

�

�
2�CA� 2CF��s

3�m2

�
4��2

*2

�
)
exp��)�E�

1

)IR

�
X2
J�0

hOH�3P�8�
J i: (6)

Substituting Eq. (6) into the LO result generates an IR
counterterm at O��s� that is indispensible to render the
total NLO result finite. The Coulomb singularity present in
Eq. (6) is necessary to cancel similar terms in the virtual
corrections.

The renormalization group equation that determines the
* dependence of hOH�3S�1�1 ir�*� may be derived by differ-
entiating Eq. (5) with respect to * and then taking the
physical limit )! 0. It reads

*2d

d*2
hOH�3S�1�1 ir�*� �

2�CA � 2CF��s���

3�m2

�
X2
J�0

hOH�3P�8�
J i: (7)

There is no obvious physical reason to distinguish between
-6
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the scales� and *, which refer to the ccg and cccc vertices
in the one-loop diagrams of Figs. 3(b)–3(e), respectively.
Both scales should essentially be of O�m�. In the follow-
ing, we thus identify � � *. Integration of Eq. (7) then
yields

hOH�3S�1�1 ir�*� � hOH�3S�1�1 ir�*0� �
8�CA � 2CF�

3m2

1

/0

� ln
�s�*0�

�s�*�

X2
J�0

hOH�3P�8�
J i; (8)

where *0 is a reference scale for which the value of
hOH�3S�1�1 ir�*0� is assumed to be known and /0 �

�11=3�CA � �4=3�TFnf is the one-loop coefficient of the
QCD beta function. In want of a genuine NLO determi-
nation of the MEs hOH�nir�*0� from a fit to experimental
data, we choose *0 � m and identify hOH�nir�m� with
their *-independent LO values, which are known from the
literature [31]. Since the LO cross section is of O��0

s�, we
have to employ in Eq. (8) the one-loop formula for �s�*�,
which reads

�s�*� �
4�

/0 ln�*2=	2
QCD�

: (9)
B. Real corrections

The real corrections to the cross section of process (2)
arise from the partonic subprocess

��k1� � ��k2� ! cc�n�p� � g�k3� � ��p��; (10)

where n � 1S�8�0 ;
3P�8�

J . The corresponding diagrams
emerge by attaching one real gluon line in all possible
ways to the tree-level seed diagrams of Fig. 1 and are
presented in Fig. 4. Process (10) with n � 3S�1�1 ;

3P�1�
J is

prohibited by color conservation, since the c �c pair must be
in a CO state to neutralize the color of the gluon. On the
other hand, process (10) with n � 3S�8�1 is forbidden by
Furry’s theorem [32], as may be understood by observing
that the 3S�8�1 projector effectively closes the charm-quark
line and acts like a vector coupling, so that we are dealing
with a closed fermion loop containing five vector cou-
plings. This was also verified by explicit calculation.

Generically denoting the transition matrix (T) elements
of process (10) by T r, its cross sections may be evaluated
as

d0r �
1

2s
dPS3�k1 � k2;p; k3; p

��jT rj
2; (11)

where s � �k1 � k2�
2 is the square of the center-of-mass

energy. Here and in the following, we denote the Lorentz-
invariant N-particle phase-space element in d dimensions
as
014016
dPSN�P;p1; . . . ; pN� � ��N�1��4�d��2��d1�d�

 
P�

XN
i�1

pi

!

�
YN
i�1

ddpi
�2��d�1

1�p2
i �m2

i �3�p
0
i �;

(12)

where pi and mi are the four-momenta and masses of the
outgoing particles and P is the total four-momentum of the
incoming particles.

Integrating Eq. (11) over the three-particle phase-space
while keeping the value of pT finite and constraining the
final-state photon to be hard, we encounter IR singularities
of the soft type in the case of n � 3P�8�

J . In fact, in the soft-

gluon limit, k3 ! 0, jT rj
2 factorizes as

jT rj
2 � jT 0j

2F3; (13)

where T 0 is the T-matrix element of process (2) and

F3 �
8��CA � 2CF��s

3�p � k3�
2

�
1 �

)
3
�O�)2�

�
(14)

is the appropriate Eikonal factor. Since the soft gluon does
not affect the kinematics of the hard process involving the
residual particles, the three-particle phase-space can be
decomposed as

dPS3�k1 � k2;p; k3; p
�� � dPS2�k1 � k2;p; p��dPS3

s ;

(15)

where

dPS3
s � �4�d dd�1k3

�2��d�12k0
3

: (16)

The integration of the Eikonal factor over the soft part of
the phase-space, can be performed analytically and yields
[33]

I3
s �

Z
k0

3<1



s

p
=2
dPS3

sF3

� �
�CA � 2CF��s

3�m2

�
4��2

12s

�
)

exp��)�E�

�

�
1

)
�

1

/
ln

1 � /
1 � /

�
1

3
�O�)�

�
; (17)

where 1 is an infinitesimal dimensionless phase-space-
slicing parameter and / � �s� 4m2�=�s� 4m2�.

Since, in the diagrams of Fig. 4, all photons and gluons
are coupled to the massive c-quark line, IR singularities of
the collinear type do not occur. The integration of Eq. (11)
over the complementary region of phase-space can be
performed numerically in d � 4 space-time dimensions
because there are no UV or IR singularities.
-7
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C. Assembly of the NLO cross section

The NLO result for the cross section of process (2) is
obtained by adding the virtual and real corrections to the
LO result. Collecting the various contributions discussed
above, arising from the virtual corrections (vi), the parame-
ter and wave-function renormalization (ct), the operator
redefinition (op), the soft-gluon radiation (so), and the
hard-gluon emission (ha), we can schematically write the
resulting differential cross section of �� ! H� X�, in-
cluding the MEs, as

d0��; *� � d00�*��1 � 1vi��; )UV; )IR; v�

� 1ct��; )UV; )IR� � 1op��; *; )IR; v�

� d0so��; *; )IR; 1� � d0ha��;*;1�; (18)

where the dependences on the unphysical mass scales �
and *, and the regulators )UV, )IR, v, and 1 are indicated in
parentheses for each term. Everywhere in Eq. (18), �s���
is evaluated in the MS scheme using the one-loop formula
(9), m is defined in the OS scheme, and the MEs are
understood as their MS values hOH�nir�*�. This is neces-
sary to ensure the exact cancellation of the singularities.

The right-hand side of Eq. (18) is manifestly finite. The
UV divergences cancel between 1vi and 1ct; the IR singu-
larities among 1vi, 1ct, 1op, and d0so; and the Coulomb
singularities between 1vi and 1op. Note that 1op is UV finite
upon operator renormalization; therefore, 1op in Eq. (18)
does not depend any more on )UV. The full details about
the cancellation of the IR and Coulomb singularities in the
various cc Fock states n are presented in Table II.

The right-hand side of Eq. (18) is independent of the
cutoff parameter 1. The 1 dependence cancels between
d0so and d0ha. While d0so is known in analytic form, the
phase-space integrals occurring in the evaluation of d0ha

are rather cumbersome and are thus solved numerically.
Consequently, the cancellation of 1 has to be established
numerically. Our NLO result turns out to be stable against
variations of 1 in the range 10�4 < 1< 10�2.

The right-hand side of Eq. (18) exhibits an unscreened
dependence on the renormalization scale�, since d00 is of
O��0

s�. However, it is independent of the renormalization
scale * up to terms that are formally beyond NLO; this
cancellation is not exact because the running of
TABLE II. Compilation of the IR- and Coulomb-singular term
subprocesses.

Subprocess Source

�� �! c �c�3S�1�1  � � Virtual

Operator

�� �! cc�3P�8�
J  � g� � Operator

Soft

014016
hOH�nir�*� is determined by the renormalization group
Eq. (7), which resums logarithmic corrections to all orders.

III. NUMERICAL RESULTS

We are now in a position to present our numerical
analysis of the inclusive production of prompt J= mesons
in association with prompt photons in two-photon colli-
sions with direct photon interactions at NLO in the
NRQCD factorization framework. We consider TESLA
in its e�e� mode with





s

p
� 500 GeV, where the photons

are produced via bremsstrahlung and beamstrahlung.
The discussion of the numerical analysis proceeds in

three steps. We first specify our input parameters and
explain our acceptance cuts. We then assess the depen-
dence of our numerical evaluation on the renormalization
scales � and *. Finally, we explore the phenomenological
consequences of our analysis by studying the size and
impact of the NLO corrections on the p�T;min, pT , and y
distributions of the cross section.

A. Input parameters

We first specify our input parameters. We use m �
1:5 GeV, � � 1=137:036 [19], and the one-loop formula

for �
�nf�
s ��� given in Eq. (9), with nf � 3 active quark

flavors and 	�3�
QCD � 204 MeV [34,35]. Our default choice

of renormalization scales is � � mT , where mT �





















p2
T � 4m2

q
is the transverse mass of the J= meson, and

* � m. For the LO evaluation of the single- and double-
resolved contributions, we use the LO set of photon PDFs
from Glück, Reya, and Schienbein (GRS) [34], which are
the only available ones that are implemented in the fixed-
flavor-number scheme, with nf � 3, and identify the fac-
torization scale with �. In want of NLO sets of J= , �cJ,
and  0 MEs, we adopt the LO sets determined in Ref. [31]
using the LO set of proton PDFs from Martin, Roberts,
Stirling, and Thorne (MRST98LO) [35]. Specifically,
hO �nS��3S�1�1 i and hO�c0�3P�1�

0 i were extracted from the
measured partial decay widths of  �nS� ! l�l� and
�c2 ! �� [19], respectively, while hO �nS��1S�8�0 i,
hO �nS��3S�8�1 i, hO �nS��3P�8�

0 i, and hO�c0�3S�8�1 i were fit-
ted to the transverse-momentum distributions of  �nS� and
�cJ inclusive hadroproduction [6] and the cross-section
s arising from the various sources in the various partonic

IR- or Coulomb-singular term

��CF�s=2v��4��
2=m2�) exp��)�E�jT 0j

2

���CF�s=2v�hO
H�3S�1�1 i

�2�CA � 2CF��s=3�m
2 1
) �4��

2=*2�) exp��)�E�hO
H�3P�8�

J i

��2�CA � 2CF��s=3�m
2 1
) �4��

2=m2�) exp��)�E�jT 0j
2
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ratio 0�c2=0�c1 [36] measured at the Tevatron. The fit

results for hO �nS��1S�8�0 i and hO �nS��3P�8�
0 i are strongly

correlated, so that the linear combination

M �nS�
r � hO �nS��1S�8�0 i �

r

m2 hO
 �nS��3P�8�

0 i; (19)

with a suitable value of r, is quoted. Unfortunately, Eq. (18)
is sensitive to a linear combination of hO �nS��1S�8�0 i and
014016
hO �nS��3P�8�
0 i that is different from the one appearing in

Eq. (19). In want of more specific information, we thus
make the democratic choice hO �nS��1S�8�0 i � �r=m2��

hO �nS��3P�8�
0 i � M �nS�

r =2. The contributions due to the
feed-down from the heavier charmonia, which enter the
prompt-J= production cross section, are conveniently
incorporated by using the following effective MEs in con-
nection with the corresponding direct-production cross
sections:
hOJ= prompt �3S�1�1 i � hOJ= �3S�1�1 i � hO 0
�3S�1�1 iB� 0 ! J= � X�;

hOJ= prompt �3P�1�
J i � �2J� 1�hO�c0�3P�1�

0 iB��cJ ! J= � ��;

hOJ= prompt �1S�8�0 i � hOJ= �1S�8�0 i � hO 0
�1S�8�0 iB� 0 ! J= � X�;

hOJ= prompt �3S�8�1 i � hOJ= �3S�8�1 i � hO 0
�3S�8�1 iB� 0 ! J= � X� � hO�c0�3S�8�1 i

X2
J�0

�2J� 1�B��cJ ! J= � ��;

hOJ= prompt �3P�8�
J i � �2J� 1��hOJ= �3P�8�

0 �i � hO 0
�3P�8�

0 �iB� 0 ! J= � X�;

(20)

where Eq. (1) has been employed. Inserting into Eq. (20) the input values for the MEs [31] and decay branching fractions
[19] specified above, we obtain the following numerical values:

hOJ= prompt �3S�1�1 i � 1:7 GeV3; hOJ= prompt �3P�1�
0 i � 1:1 � 10�3 GeV5;

hOJ= prompt �3P�1�
1 i � 8:4 � 10�2 GeV5; hOJ= prompt �3P�1�

2 i � 9:0 � 10�2 GeV5;

hOJ= prompt �1S�8�0 i � 4:7 � 10�2 GeV3; hOJ= prompt �3S�8�1 i � 1:1 � 10�2 GeV3;

hOJ= prompt �3P�8�
J i � �2J� 1� � 3:1 � 10�2 GeV5:

(21)
A compilation of alternative LO sets of J= , �cJ, and  0

MEs fitted to the transverse-momentum distributions mea-
sured in the hadroproduction of these charmonia at the
Tevatron [6] may be found in Ref. [9]. These references
include Refs. [5,31,37].

We now discuss the photon flux functions that enter our
predictions for photoproduction in the e�e� mode of
TESLA. The energy spectrum of the bremsstrahlung pho-
tons is well described in the Weizsäcker-Williams approxi-
mation (WWA) [38] by Eq. (27) of Ref. [39]. We assume
that the scattered electrons and positrons will be anti-
tagged, as was usually the case at LEP2, and take the
maximum scattering angle to be 3max � 25 mrad [40].
The energy spectrum of the beamstrahlung photons is
approximately described by Eq. (2.14) of Ref. [41]. It is
controlled by the effective beamstrahlung parameter +,
which is given by Eq. (2.10) of that reference. Inserting
the relevant TESLA parameters for the





s

p
� 500 GeV

baseline design specified in Table 1.3.1 of Ref. [42] into
that formula, we obtain + � 0:053. We coherently super-
impose the WWA and beamstrahlung spectra.

At TESLA, prompt photons with scattering angles 7� <
3< 173� are expected to be detectable, as can be read off
from Fig. 2.4.2(a) in Ref. [43]. This corresponds to the
pseudorapidity window jy�j< 2:79. As a typical discrimi-
nation criterion against bremsstrahlung photons, we en-
force the hardness condition p�T > p�T;min with
p�T;min � 2m � 3 GeV. This choice can be justified by
studying the p�T;min variation (see Fig. 7 below). Unless
otherwise stated, we always impose these acceptance cuts
on p�T and y� in the following.

B. Academic study

With the NLO corrections to single- and double-
resolved photoproduction yet to be evaluated, we are not
in a position to present a complete phenomenological
prediction that could be confronted with experimental
data as it stands. Therefore, we refrain from presenting a
full-fledged quantitative estimate of the theoretical uncer-
tainties. However, a first indication of their size may be
obtained by investigating the dependences of our numeri-
cal evaluation on the renormalization scales � and *. For
this purpose, it is sufficient to consider a typical kinematic
situation. We thus choose as our reference quantity the
differential cross section d20=dpTdy at pT � 5 GeV and
y � 0.

In Fig. 5, the NLO result (solid line) is shown as a
function of � for mT=4<�< 4mT , while * is kept fixed
at its reference value. For comparison, the LO result
-9
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e�e� ! e�e�J= � X� in direct photoproduction at TESLA
with
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and y � 0 accompanied by a prompt photon with p�T > 3 GeV
and jy�j< 2:79. The LO (dashed line) and NLO (solid line)
results are shown as functions of �.
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FIG. 6. Differential cross section d20=dpTdy in pb=GeV of
e�e� ! e�e�J= � X� in direct photoproduction at TESLA
with





s

p
� 500 GeV for a prompt J= meson with pT � 5 GeV

and y � 0 accompanied by a prompt photon with p�T > 3 GeV
and jy�j< 2:79. The NLO result is shown as a function of *, (i)
keeping * in the partonic cross sections fixed (dashed line), (ii)
keeping * in hOH�3S�1�1 ir�*� fixed (dotted line), and (iii) varying
all occurrences of * simultaneously (solid line).
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(dashed line), which is of course � independent, is also
shown. As expected, we observe that the � dependence of
the NLO result is rather sizeable, reflecting the unscreened
appearance of �s��� as an overall factor of the radiative
correction. A partial compensation of this � dependence
can only occur at NNLO, which is, however, beyond the
scope of this work. On the other hand, it is commonly
believed that the size of unknown higher-order corrections
can be estimated by scale variations over judiciously
chosen ranges of values. In this sense, we read off from
Fig. 5 that the NLO result varies by �20

�32 % over the interval
mT=2<�< 2mT . We also observe that the QCD correc-
tion is negative for all values of � considered here. This
feature is scrutinized below, in connection with Figs. 8 and
9.

In Fig. 6, the NLO result (solid line) is shown as
a function of * for m=2< *< 4m, while � is kept
fixed at its reference value. Since hOH�1S�8�0 ir�*� and
hOH�3P�8�

0 ir�*� only enter Eq. (18) at NLO, through
d0so and d0ha, we keep them at * � m. Then, the
*-dependent terms in Eq. (18) are just d00 and 1op. In
order to exhibit the partial compensation in * dependence
between these two terms, we also include in Fig. 6 the
results that are obtained by only varying * in d00 (dashed
line) or 1op (dotted line) at a time. The dotted line is
straight, reflecting the fact that 1op depends on * through
a single logarithm. The theoretical uncertainty related to
014016
the * variation in the interval m=2< *< 2m amounts to
�2:1
�0:4 %.

C. Phenomenological study

We are now in a position to explore the phenomenologi-
cal consequences of our analysis by studying the size and
impact of the NLO corrections on the p�T;min, pT , and y
distributions of the cross section. In Fig. 7, we examine
d20=dpTdy for pT � 5 GeV, y � 0, and jy�j< 2:79 as a
function of p�T;min at LO (dashed line) and NLO (solid line).
At LO, the prompt photon balances the transverse momen-
tum of the J= meson, so that we integrate over a delta
function located at p�T � pT as long as p�T;min < pT , which
explains the step-function shape of the p�T;min distribution.
On the other hand, at NLO, there are events with an addi-
tional gluon-initiated hadron jet (j) to share the recoil
transverse momentum of the J= with the prompt photon,
so that, in particular, the latter attains access to the phase-
space region where p�T > pT . Of course, such events are
suppressed by the smallness of �s and, for p�T � pT , also
by phase-space limitation. This explains the size and shape
of the tail in the NLO result for p�T > pT .

In Fig. 8, we study d20=dpTdy (a) for y � 0 as a
function of pT and (b) for pT � 5 GeV as a function of
-10
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y. In each case, the LO (dashed line) and NLO (solid line)
results of direct photoproduction are shown. In Fig. 8(a),
the LO results of single-resolved (dotted line) and double-
resolved (dot-dashed line) photoproduction are displayed
as well. Notice that our analysis is only valid for finite
values of pT ; in the limit pT ! 0, additional IR singular-
ities occur, which require a more sophisticated scheme of
phase-space slicing. Therefore, we do not consider pT
values below 2 GeV in Fig. 8(a).

As explained in the context of Fig. 7, we have pT � p�T
at LO, which explains the sharp threshold at pT � p�T;min in
the dashed, dotted, and dot-dashed curves in Fig. 8(a). By
contrast, the corresponding threshold in the solid curve in
Fig. 8(a) is washed out by J= �j events. Comparing the
LO results in Fig. 8(a), we observe that the direct-
photoproduction contribution is overwhelming. It exceeds
the single-resolved one, which is exclusively generated by
the CO partonic subprocess �� g! cc�3S�8�1  � �, by
more than 3 orders of magnitude, essentially reflecting
the ME ratio hOJ= �3S�8�1 i=hOJ= �3S�1�1 i � 3 � 10�3. For
pT & 6 GeV, the double-resolved contribution is chiefly
produced by the CS partonic subprocess g� g!

cc�3S�1�1  � �, but it is nevertheless substantially sup-
pressed by two factors of the gluon PDF of the photon
and thus significantly undershoots the direct one, by ap-
proximately 3 orders of magnitude. At large values of pT ,
the CO partonic subprocess q� q! cc�3S�8�1  � � takes
over the lead. This is typical for fragmentation-prone
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FIG. 9. QCD correction factor K of the differential cross section d20=dpTdy of e�e� ! e�e�J= � X� at TESLA with
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�
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lines) are shown separately.
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partonic subprocesses [21], which contain a gluon with
small virtuality, q2 � 4m2, that splits into a cc pair in the
Fock state n � 3S�8�1 and thus generally generate dominant
contributions at pT � 2m due to the presence of a large
gluon propagator. The relative importance of the three
photoproduction modes is likely to be subject to change,
at least at large values of pT , once the as-yet unknown NLO
corrections for the single- and double-resolved contribu-
tions will be included. In particular, the NLO correction to
the single-resolved contribution is expected to be sizable
because fragmentation-prone partonic subprocesses, which
are absent at LO, start to contribute. In fact, a similar
situation was encountered in Ref. [18].

From Figs. 8(a) and 8(b), we observe that the NLO result
of direct photoproduction undershoots the LO one wher-
ever the latter is nonzero, except at some edges of phase
space. The magnitude of this reduction increases with the
value of pT and decreases towards the forward and back-
ward directions. This is nicely illustrated in Fig. 9, where
the NLO to LO ratioK (solid line) is shown (a) for y � 0 as
a function of pT and (b) for pT � 5 GeV as a function of y,
respectively. We observe from Figs. 9(a) and 9(b) that, in
the kinematic range considered, the K factor always under-
shoots 0.6 and may assume rather small values, especially
towards large values of pT and in the central region of the y
range. In fact, it even falls below 0.1 for pT * 14 GeV.

At first sight, the steady falloff of the K factor as a
function of pT in Fig. 9(a) is surprising, and it is interesting
to identify its origin. To this end, we break up the K factor
014016
into the contributions related to the cc Fock states n �
3S�1�1 ;

1S�8�0 ;
3P�8�

J as

K � 1 � 1�3S�1�1  � 1�1S�8�0  � 1�3P�8�
J ; (22)

where 1�3S�1�1  is due to the virtual correction, and 1�1S�8�0 

and 1�3P�8�
J  stem from the real correction. Since the parts

of the NLO correction that enter 1�3S�1�1 , 1�1S�8�0 , and
1�3P�8�

J  stem from different cc Fock states, they are sepa-
rately gauge-parameter independent. However, the first and
third of them are IR divergent, so that we are led to
consider their MS-subtracted finite remainders. In order
not to artificially introduce large logarithms, we choose the
subtraction points to be � � mT and * � m, respectively.
In order to illustrate how the K factor in Eq. (22) is
gradually built up, the results for 1 � 1�3S�1�1  and 1 �

1�3S�1�1  � 1�1S�8�0  are also shown in Figs. 9(a) and 9(b),
as the dashed and dotted curves, respectively. We observe
from Figs. 9(a) and 9(b) that the K factor is dominated by
1�3S�1�1 , while 1�1S�8�0  and 1�3P�8�

J  are of minor impor-
tance, which reflects the proportion of the respective MEs,
hOJ= �3S�1�1 i, hOJ= �1S�8�0 i, hOJ= �3P�8�

J i, appearing as
overall factors. In fact, we have hOJ= �3S�1�1 i=MJ= 

3:4 � 15

[31]. We also notice that 1�1S�8�0  is always positive, while
the MS-subtracted quantity 1�3P�8�

J  is negative for pT &

8 GeV. We conclude that 1�3S�1�1  is responsible for the
striking falloff of theK factor with increasing values of pT .
-12
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One might be tempted to decompose 1�3S�1�1  into self-
energy, triangle, box, and pentagon contributions, so as to
further close in on the source of the smallness of the K
factor. However, one should bear in mind that these con-
tributions are gauge-parameter dependent, so that their
relative sizes are bare of any physical meaning.
Therefore, we refrain from performing such a study.
IV. CONCLUSIONS

We calculated the inclusive cross section of �� !

J= � X�, where the system X� contains a prompt photon,
in direct photoproduction for finite values of pT at NLO
within NRQCD allowing for the J= meson to be promptly
produced, and presented phenomenological predictions for
TESLA in the e�e� mode of operation. At LO, �� !

J= � X� proceeds almost exclusively though direct pho-
toproduction because this is a CS process. Its cross section
is sizeable and its signal spectacular. These observations
provided a solid motivation for our work.

As for the real corrections, we employed the phase-
space slicing method to demarcate the regions of phase-
space containing soft singularities from the hard regions,
where the phase-space integrations were carried out nu-
merically. We verified that the combined result is, to very
good approximation, independent of the choice of the cut-
off parameter 1, over an extended range of values. We
worked in dimensional regularization in connection with
the MS renormalization scheme, so that our NLO result
depends on the QCD and NRQCD renormalization scales
� and *, respectively. While the * dependence is formally
canceled up to terms beyond NLO, the � dependence is
unscreened and introduces an appreciable theoretical un-
certainty. Our NLO result does not involve any factoriza-
014016
tion scale and is thus formally independent of single-
resolved photoproduction and photon fragmentation.

We found that the inclusion of the NLO correction leads
to a substantial reduction in cross section, especially to-
wards large values of pT and in the central region of the y
range. In fact, the K factor falls below 0.1 for pT *

14 GeV. These features could be traced to the
(MS-subtracted) virtual correction, which makes up the
bulk of the NLO correction. At this point, it is premature
to conclude that the perturbative expansion runs the risk of
breaking down, since the NLO treatment of ��! J= �

X� is not yet formally complete. In order to complete the
latter, we still need to evaluate the NLO corrections to
single- and double-resolved photoproduction. Because of
the occurrence of fragmentation-prone partonic subpro-
cesses, these are expected to lead to a substantial enhance-
ment in the case of single-resolved photoproduction.
Nevertheless, it is unlikely that the dominance of direct
photoproduction will be challenged at NLO. Then, also
J= � X� production in photoproduction at HERA and
hadroproduction at the Tevatron can be described at
NLO. This will help to provide a solid basis for an ultimate
test of the NRQCD factorization framework.
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