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We present an improved calculation of B! light pseudoscalar form factors from light-cone sum
rules, including one-loop radiative corrections to twist-2 and twist-3 contributions, and leading-order
twist-4 corrections. The total theoretical uncertainty of our results at zero momentum transfer is 10 to
13% and can be improved, at least in part, by reducing the uncertainty of hadronic input parameters, in
particular, those describing the twist-2 distribution amplitudes of the �, K, and �. We present our
results in a way which details the dependence of the form factors on these parameters and facilitates the
incorporation of future updates of their values from, e.g., lattice calculations.
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I. INTRODUCTION

This paper aims to give a new and more precise deter-
mination of the decay form factors of B mesons into light
pseudoscalar mesons, i.e. �, K, and �. We do not include
the �0 which is too heavy to be treated in this framework.
The calculation uses the method of QCD sum rules on the
light-cone, which in the past has been rather successfully
applied to various problems in heavy-meson physics cf.
Refs. [1–5]1; an outline of the method will be given below.
Our calculation improves on our previous papers [3,4] by
(i) i
ncluding radiative corrections to twist-3 contri-
butions to one-loop accuracy, for all form factors;
(ii) a
 precisely defined method for fixing the sum rule
specific parameters;
(iii) u
sing updated values for input parameters;

(iv) a
 careful analysis of the uncertainties of the form

factors at zero momentum transfer;

(v) a
 new parametrization of the dependence of the

form factors on momentum transfer, which is
consistent with the constraints from analyticity
and heavy-quark expansion;
(vi) d
etailing the dependence of form factors on non-
perturbative hadronic parameters describing the
�, K, � mesons, the so-called Gegenbauer mo-
ments, which facilitates the incorporation of fu-
ture updates of their numerical values and also
allows a consistent treatment of their effect on
nonleptonic decays treated in QCD factorization.
The motivation for this study is twofold and related to the
overall aim of B physics to provide precision determina-
tions of quark flavor mixing parameters in the standard
model. Quark flavor mixing is governed by the unitary
Cabibbo-Kobayashi-Maskawa (CKM) matrix which de-
pends on four parameters: three angles and one phase.
The constraints from unitarity can be visualized by the
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so-called unitarity triangles (UT); the one that is relevant
for B physics is under intense experimental study.
The over-determination of the sides and angles of this
triangle from a multitude of processes will answer the
question whether there is new physics in flavor-changing
processes and where it manifests itself. One of the sides of
the UT is given by the ratio of CKM matrix elements
jVub=Vcbj:jVcbj is known to about 2% accuracy from both
inclusive and exclusive b! c‘� transitions [7], whereas
the present error on jVubj is much larger and around 15%.
Its reduction requires an improvement of experimental
statistics, which is underway at the B factories BABAR
and Belle, but also and, in particular, an improvement of
the theoretical prediction for associated semileptonic
spectra and decay rates. This is the first motivation for
our study of the B! � decay form factor fB!�� , which,
in conjunction with alternative calculations, in particular,
from lattice [8], will help to reduce the uncertainty from
exclusive semileptonic determinations of jVubj. Second,
form factors of general B! light meson transitions are
also needed as ingredients in the analysis of nonleptonic
two-body B decays, e.g., B! K�, in the framework of
QCD factorization [9], again with the objective to extract
CKM parameters. One issue calling for particular atten-
tion in this context is the effect of SU(3) breaking, which
enters both the form factors and the K and � meson
distribution amplitudes figuring in the factorization
analysis. We would like to stress here that the implemen-
tation of SU(3) breaking in the light-cone sum rules
approach to form factors is precisely the same as in
QCD factorization and is encoded in the difference be-
tween �, K, and � distribution amplitudes, so that the use
of form factors calculated from light-cone sum rules
together with the corresponding meson distribution am-
plitudes in factorization formulas allows a unified and
controlled approach to the assessment of SU(3) breaking
effects in nonleptonic B decays.

As we shall detail below, QCD sum rules on the light-
cone allow the calculation of form factors in a kinematic
-1  2005 The American Physical Society
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regime where the final-state meson has large energy in the
rest-system of the decaying B, E� �QCD. This is in
contrast to lattice calculations which presently are avail-
able only for B! � and q2 > 15 GeV2, due to the re-
striction to � energies smaller than the inverse lattice
spacing.2 First unquenched results are underway [10,11],
which, once published, will allow one to exploit the
complementarity of lattice simulations and light-cone
sum rules in more detail.

The physics underlying B decays into light mesons at
large momentum transfer can be understood qualitatively
in the framework of hard exclusive QCD processes, pio-
neered by Brodsky and Lepage et al. [12]. The hard scale
in B decays is mb and one can show that to leading order
in 1=mb the decay is described by two different parton
configurations: one where all quarks have large momenta
and the momentum transfer happens via the exchange of a
hard gluon, the so-called hard-gluon exchange, and a
second one where one quark is soft and does interact
with the other partons only via soft-gluon exchange, the
so-called soft or Feynman-mechanism. The consistent
treatment of both effects in a framework based on facto-
rization, i.e., the clean separation of perturbatively cal-
culable hard contributions from nonperturbative ‘‘wave
functions,’’ is highly nontrivial and has spurred the de-
velopment of SCET, an effective field theory which aims
to separate the two relevant large mass scales mb and������������������
mb�QCD

q
in a systematic way [13]. In this approach form

factors can indeed be split into a calculable factorizable
part which roughly corresponds to the hard-gluon ex-
change contributions, and a nonfactorizable one, which
includes the soft contributions and cannot be calculated
within the SCET framework [14]. Predictions obtained in
this approach then typically aim to eliminate the soft part
and take the form of relations between two or more form
factors whose difference is expressed in terms of factor-
izable contributions.

The above discussion highlights the need for a calcula-
tional method that allows numerical predictions while
treating both hard and soft contributions on the same
footing. It is precisely QCD sum rules on the light-cone
(LCSRs) that accomplish this task. LCSRs can be viewed
as an extension of the original method of QCD sum rules
devised by Shifman, Vainshtein and Zakharov (SVZ)
[15], which was designed to determine properties of
ground-state hadrons at zero or low momentum transfer,
to the regime of large momentum transfer. QCD sum
rules combine the concepts of operator product expan-
sion, dispersive representations of correlation functions,
and quark-hadron duality in an ingenuous way that al-
2This situation may change in the future with the successful
implementation of ‘‘moving NRQCD’’ [10], where the B de-
cays while moving ‘‘backwards,’’ which gives access to smaller
values of q2 without increasing the discretization error.
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lows the calculation of the properties of nonexcited
hadron-states with a very reasonable theoretical uncer-
tainty. In the context of weak-decay form factors, the
basic quantity is the correlation function of the weak
current and a current with the quantum numbers of the
B meson, evaluated between the vacuum and a light
meson. For large (negative) virtualities of these currents,
the correlation function is, in coordinate-space, domi-
nated by distances close to the light-cone and can be
discussed in the framework of light-cone expansion. In
contrast to the short-distance expansion employed by
conventional QCD sum rules à la SVZ where nonpertur-
bative effects are encoded in vacuum expectation values
of local operators with vacuum quantum numbers, the
condensates, LCSRs rely on the factorization of the
underlying correlation function into genuinely nonpertur-
bative and universal hadron distribution amplitudes
(DAs) � which are convoluted with process-dependent
amplitudes T. The latter are the analogues of the Wilson-
coefficients in the short-distance expansion and can be
calculated in perturbation theory. The light-cone expan-
sion then reads, schematically:

correlation function �
X
n

T�n� 	��n�: (1)

The sum runs over contributions with increasing twist,
labeled by n, which are suppressed by increasing powers
of, roughly speaking, the virtualities of the involved
currents. The same correlation function can, on the other
hand, be written as a dispersion relation, in the virtuality
of the current coupling to the B meson. Equating
dispersion-representation and the light-cone expansion,
and separating the B meson contribution from that of
higher one- and multiparticle states using quark-hadron
duality, one obtains a relation for the form factor describ-
ing the decay B! light meson.

One crucial question is the accuracy of the resulting
predictions for form factors. Evidently light-cone sum
rules depend on a number of input parameters, notably
quark masses and distribution amplitudes, which induce a
(reducible) theoretical uncertainty. In addition, the ap-
proximations inherent in the method, in particular, the
modeling of the contribution of higher-mass states to the
correlation function, also induce a systematic (irreduc-
ible) uncertainty. For the form factors calculated in this
paper, we find that the total theoretical uncertainty at
q2 
 0 is 10 to 13%, and could be reduced to less than
10% with improved input parameters.

Our paper is organized as follows: in Sec. II we define
all relevant quantities, in particular, correlation functions
and meson distribution amplitudes. In Sec. III we outline
our calculations and derive the light-cone sum rules. In
Sec. IV we present our numerical results and give a de-
tailed discussion of their uncertainty. Section V contains
a summary and conclusions. Detailed expressions for
-2
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distribution amplitudes and explicit formulas for the
light-cone sum rules are given in the appendices.
4

II. DEFINITIONS

The form factors fP�, fP0 , and fPT which are relevant for
the B! P transition, where P stands for �, K, or �, are
defined as follows:3

hP�p�jVP�jB�pB�i 

�
�p� pB�� 


m2
B 
m2

P

q2 q�

�
fP��q

2�

�

�
m2
B 
m2

P

q2 q�

�
fP0 �q

2�; (2)

hP�p�jJP;�� jB�pB�i 

i

mB �mP
fq2�p� pB��


�m2
B 
m2

P�q�gf
P
T �q

2; ��; (3)

where V�;�� 
 �u��b is the standard weak current, VK� is

given by VK� 
 �s��b, and J����;�� 
 �d���q
�b, JK;�� 


�s���q�b are penguin currents. The momentum transfer
is given by q 
 pB 
 p and the physical range in q2 is
0 � q2 � �mB 
mP�

2. The form factors fP� and fP0 are
independent of the renormalization scale � since V� is a
physical current, in contrast to the penguin current J�� .
Note that fP��0� 
 fP0 �0� which is a consequence of the
parametrization chosen in Eq. (2). We assume SU(2)
isospin symmetry throughout this work, i.e., we do not
distinguish �B0 ! �� and B
 ! �0 form factors, etc.

In the semileptonic decay B! �l�l the form factor f�0
enters proportional to the lepton mass m2

l and hence is
irrelevant for light leptons (l 
 e;�), where only f��
matters. The semileptonic decay can be used to determine
the size of the CKM matrix element jVubj from the
spectrum

d


dq2 �B! �l�l� 

G2
FjVubj

2

192�3m3
B

#�q2�3=2jf���q
2�j2; (4)

where #�x� 
 �x�m2
B 
m2

��
2 
 4xm2

B. The form factor
f�0 will be relevant in and can be measured from the
decay B! �%�%. f�T is relevant for the rare decay B!
�l�l
, where the penguin current features in the effective
Hamiltonian of the process.

Our starting point for calculating the form factors f��;0
is the correlation function

���q; pB� 
 i
Z
d4xeiq�xh��p�jTV��x�j

y
B�0�j0i


 ���q2; p2
B��p� pB�� � �
�q2; p2

B�q�;

(5)
3The following notations are frequently used in the litera-
ture: f� 
 F1 and f0 
 F0.
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where jB 
 mb
�di�5b is the interpolating field for the B

meson. For the calculation of f�T , V� has to be replaced by
J��. For virtualities

m2
b 
 p2

B � O��QCDmb�; m2
b 
 q2 � O��QCDmb�;

(6)

the correlation function (5) is dominated by lightlike
distances and therefore accessible to an expansion around
the light-cone. The above conditions can be understood by
demanding that the exponential factor in (5) vary only
slowly. The light-cone expansion is performed by inte-
grating out the transverse and ‘‘minus’’ degrees of free-
dom and leaving only the longitudinal momenta of the
partons as relevant degrees of freedom. The integration
over transverse momenta is done up to a cutoff, �IR, all
momenta below which are included in a so-called hadron
distribution amplitude �, whereas larger transverse mo-
menta are calculated in perturbation theory. The correla-
tion function is hence decomposed, or factorized, in
perturbative contributions T and nonperturbative contri-
butions �, which both depend on the longitudinal parton
momenta and the factorization scale �IR. If the � is an
effective quark-antiquark bound state, as is the case to
leading order in the light-cone expansion, we can write
the corresponding longitudinal momenta as up and �1 

u�p, p being the momentum of the �. The schematic
relation (1) can then be written in more explicit form as

���q2; p2
B� 


X
n

Z 1

0
duT�n��u; q2; p2

B;�IR���n��u;�IR�:

(7)

As �� itself is independent of the arbitrary scale�IR, the
scale dependence of T�n� and��n� must cancel each other.4

If ��n� describes the meson in a two-parton state, it is
called a two-particle distribution amplitude (DA), if it
describes a three-parton, i.e., quark-antiquark-gluon
state, it is called three-particle DA. In the latter case the
integration over u gets replaced by an integration over
two independent momentum fractions, say (1 and (2.
Equation (7) is called a ‘‘collinear’’ factorization for-
mula, as the momenta of the partons in the� are collinear
with the�’s momentum, and its validity actually has to be
verified. We will come back to that issue in the next
section.

Let us now define the distribution amplitudes to be used
in this paper. Again we only quote formulas for the �
meson, those for the K and � are analogous. All defini-
tions and formulas are well-known and can be found in
Ref. [16]. In general, the distribution amplitudes we are
interested in are related to nonlocal matrix elements of
If there is more than one contribution of a given twist, they
will mix under a change of the factorization scale �IR and it is
only in the sum of all such contributions that the residual �IR
dependence cancels.

-3
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FIG. 1. Perturbative contributions to the correlation function
�. The external quarks are on-shell with momenta up and �1 

u�p, respectively.
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type

h0j �u�x�
�x;
x�d�
x�j��p�i or

h0j �u�x��x; vx�
Ga
���vx�#a=2�vx;
x�d�
x�j��p�i:

x is lightlike or close to lightlike and the light-cone
expansion is an expansion in x2; v is a number between
0 and 1 and 
 a combination of Dirac matrices. The
expressions �x;
x�, etc. denote Wilson lines that are
needed to render the matrix elements, and hence the
DAs, gauge-invariant. One usually works in the conve-
nient Fock-Schwinger gauge x�Aa��x�#a=2 
 0, where all
Wilson lines are just 1; we will suppress them from now
on. The DAs are ordered by twist, i.e., the difference
between spin and dimension of the corresponding opera-
tors. We will include DAs of twist-2 (the leading twist), -
3, and -4. The leading-twist DA �� is defined as

h0j �u�x����5d�
x�j�
�p�i 
 if�p�
Z 1

0
duei,p�x

�

�
���u� �

1

4
m2
�x2A�u�

�

�if�
m2
�

px
x�

Z 1

0
duei,p�x

�g��u� �O�x�x2� (8)

with , � 2u
 1 and p2 
 0. The above matrix element
also contains two twist-4 DAs, g� and A. The variable u
can be interpreted as the momentum fraction carried by
the quark (as opposed to the antiquark) in the meson.

There are two two-particle twist-3 DAs, �p and ��,
which are defined as

h0j �u�x�i�5d�
x�j��p�i 
 �2
�

Z 1

0
duei,p�x�p�u�; (9)

h0j �u�x�i����5d�
x�j��p�i 
 

i
3
�2
��1 
 .2

��

��p�x� 
 x�p��

�
Z 1

0
duei,p�x���u�; (10)

where �2
� � f�m

2
�=�mu �md� and .2

� � �mu�
md�

2=m2
�.

The precise definitions of three-particle DAs are a bit
cumbersome and given in App. B. The salient feature is
that there is one three-particle DA of twist-3 and four of
twist-4.

Although we have introduced not less than ten different
DAs, which are all nonperturbative quantities, it may
seem, at first glance, that light-cone sum rules do not
retain much predictive power. Fortunately, however, it
turns out that the DAs are highly constrained functions
which can be analyzed in the framework of conformal
expansion, a topic being discussed in App. B. The main
014015
result is that, to next-to-leading-order in conformal ex-
pansion, which is sufficient for the accuracy we are aim-
ing at, all ten DAs can be expressed in terms of seven
independent hadronic parameters.

This completes the definitions necessary for the calcu-
lation of form factors.
III. THE SUM RULES

The diagrams to be calculated to O�(s� for two-
particle DAs are shown in Fig. 1. The quark (antiquark)
is collinear with the light meson and carries momentum
up (�1 
 u�p). Quarks are projected onto the correspond-
ing distribution amplitudes using the completeness rela-
tion

�uadb 

1

4
�1�ba� �ud� 


1

4
�i�5�ba� �ui�5d� �

1

4
����ba� �u��d�
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����5�ba� �u���5d� �

1
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�����ba� �u���d�|
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�
1
8����i�5�ba� �u���i�5d�

:

The diagrams are calculated in momentum space. The
terms in x� in the contribution of ��, Eq. (10), are
rewritten in terms of derivatives

x� ! 
i
@

@�up��
:

In the previous section we mentioned that the fact that �
can be written in factorized form cannot be taken for
granted, but requires proof. We do not attempt to give a
proof to all orders in (s, although that should be possible
using the techniques of SCET, but restrict ourselves to
O�(s� in twist-2, to all orders in the conformal expansion,
and to O�(s� and leading order in the conformal expan-
sion for twist-3. The proof essentially relies on the can-
cellation of singularities, of which there are several
possible types: infrared and ultraviolet singularities aris-
ing from loop calculations and so-called soft singular-
ities which occur when the integral over u in Eq. (7) does
diverge at the endpoints. The latter divergences have
actually posed a severe problem in early attempts to treat
f�� in QCD factorization: in Ref. [17] only the hard-gluon
exchange was included, which yields a logarithmic diver-
gence for the parton configuration where the u quark
emerging from the weak decay carries essentially all
-4
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pion momentum. As we understand now, this divergence
disappears when contributions from the Feynman-
mechanism are added. In our case, it turns out that all
T are regular at the endpoints u 
 0; 1, so there are no soft
divergences, independent of the end point behavior of the
distribution amplitudes. As for infrared and ultraviolet
singularities, they can be treated in dimensional regulari-
zation. Using the lowest-order expression of the Brodsky-
Lepage evolution kernel for �� derived in [12], we have
followed the strategy outlined in [18] to check that the
infrared divergences precisely cancel those contained in
the bare DA �bare

� . As for twist-3, the evolution kernel is
not known, so we have only checked the cancellation of
infrared divergences of the lowest-order term in the
conformal expansion, whose divergent behavior is well-
known—in fact, only the one-loop renormalization of
the quark condensate is needed. The ultraviolet divergen-
ces cancel for f� and f0, which are physical form factors
and hence do not depend on the ultraviolet renormaliza-
tion scale; for fT , we reproduce the well-known one-loop
anomalous dimension.

We then have used the explicit expressions for the
twist-2 and three two-particle DAs given in App. B to
perform the integration over u analytically. Actually it is
not the correlation function � itself that is needed, but its
imaginary part, see below. � has a cut in p2

B starting at
m2
b and taking the imaginary part after integration over u

is straightforward. The strategy outlined here is different
from the procedure we followed in our previous papers
[3,4], where we took the imaginary part before integrat-
ing over u. This latter procedure resulted in expressions
with a very complicated analytical structure which made
it impossible to give explicit formulas for the imaginary
parts. With our new procedure we obtain lengthy, but not
very complicated expressions; the complete set of spec-
tral densities . 
 �Im��=� for the sum rule for the form
factor f� is given in App. C.

Armed with the spectral densities, we can derive the
LCSR for, e.g., the form factor f�. The basic quantity is
��, which is calculated in two ways. In light-cone ex-
pansion, it can be written in dispersive representation as

�LC
� �p2

B; q
2� 


Z 1

m2
b

ds
.LC
� �s; q2�

s
 p2
B

(11)

with the explicit expression for the spectral density
.LC
� �s� given in App. C. This expression has to be com-

pared to the physical correlation function, which also
features a cut in p2

B, starting at m2
B:

�phys
� �p2

B; q
2� 


Z 1

m2
B

ds
.phys
� �s; q2�

s
 p2
B

; (12)

the spectral density is given by hadronic contributions
and reads
014015
.phys
� �s; q2� 
 fBm

2
Bf��q

2�0�s
m2
B�

�.higher
mass states
� �s; q2�: (13)

Here fB is the B meson decay constant defined as

h0j �q���5bjBi 
 ifBp� or

�mb �mq�h0j �qi�5bjBi 
 m2
BfB: (14)

To obtain a light-cone sum rule for f�, one equates the
two expressions for �� and uses quark-hadron duality to
approximate

.higher
mass states
� �s; q2� � .LC

� �s; q2�#�s
 s0�; (15)

where s0, the so-called continuum threshold is a parame-
ter to be determined within the sum rule approach itself.
In principle one could now write a sum rule

�phys
� �p2

B; q
2� 
 �LC

� �p2
B; q

2�

and determine f� from it. However, in order to suppress
the impact of the approximation (15), one subjects both
sides of the equation to a Borel transformation

1

s
 p2
B

! B̂
1

s
 p2
B



1

M2 exp�
s=M2�

which ensures that contributions from higher-mass states
be sufficiently suppressed and improves the convergence
of the OPE. We then obtain

e
m
2
B=M

2
m2
BfBf��q

2� 

Z s0

m2
b

dse
s=M
2
.LC
� �s; q2�: (16)

This is the final sum rule for f�; expressions for the other
form factors are obtained analogously. The task now is to
find sets of parameters M2 (the Borel parameter) and s0

(the continuum threshold) such that the resulting form
factor does not depend too much on the precise values of
these parameters; in addition the continuum contribution,
that is the part of the dispersive integral from s0 to 1 that
has been subtracted from both sides of (16), should not be
too large, say less than 30% of the total dispersive
integral.
IV. NUMERICS

In this section we obtain numerical results from the
sum rules (16). The section is organized as follows: in
Sec. IVA we explain how we determine the sum rule
specific parameters, i.e., the Borel parameter M2 and
the continuum threshold s0. We also determine fB, which
is a necessary ingredient in (16). In Sec. IV B we explain
in more detail how we fix the hadronic input parameters,
in particular, the Gegenbauer moments a1;2;4 that describe
the final-state mesons. In Sec. IV C we calculate the form
factors at q2 
 0 and discuss their uncertainties. In
Sec. IV D we present the form factors for central input
values of the parameters and provide a simple parametri-
-5



TABLE I. Final central values of the form factors at q2 
 0
for the parameter sets of Table III. f0�0� � f��0�. The errors
*as, *a2;a4

, and *a1
are described in the text. * is defined as

* 
 �*2
as � *2

a2 ;a4
�1=2 and 0a1

as 0a1

 a1�1 GeV� 
 0:17.

Note that 0a1
carries information on the sign of a1 and can

become negative.

set 1 set 2 set 3 set 4 *as *a2 ;a4
* *a1

f���0� 0.250 0.258 0.263 0.274 0.023 0.019 0.030 —

f�T �0� 0.244 0.253 0.260 0.273 0.013 0.022 0.026 —

fK��0� 0.324 0.331 0.335 0.339 0.033 0.023 0.040 0:250a1

fKT �0� 0.347 0.358 0.367 0.381 0.022 0.027 0.035 0:310a1

f���0� 0.269 0.275 0.278 0.286 0.029 0.019 0.035 —

f�T �0� 0.277 0.285 0.292 0.305 0.018 0.022 0.028 —
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zation valid in the full kinematical regime of q2. The
results for q2 
 0 are collected in Table I and Eq. (27),
central results for arbitrary q2 in Table II. More detailed
results that allow one to determine the form factors for
arbitrary values ofmb and the Gegenbauer moments a1;2;4

are collected in App. A.

A. Fixing the Borel Parameter and the Continuum
Threshold

We illustrate our procedure to determine M2 and s0

with the comparatively simple example of fB, the B decay
constant defined in (14). This example is actually of
immediate practical use, as fB enters our determination
of the form factors from Eq. (16). Since it is not known
from experiment, its value has to be taken from theoreti-
cal calculations—which basically means either lattice
determinations [19] or (local) QCD sum rules [20,21].
To ensure consistency of our calculations, we use the
values of fB as determined from QCD sum rules to
TABLE II. Fit parameters for Eq. (30) for set 2 in Table III
and central values of the input parameters of the DAs, Eqs. (24)
and (25) and Table IV. m1 is the vector-meson mass in the
corresponding channel: m�;�

1 
 mB� 
 5:32 GeV and mK
1 


mB�
s

 5:41 GeV. The scale of fT is � 
 4:8 GeV.

r1 r2 �m1�
2 m2

fit

f�� 0.744 
 0:486 �m�
1 �

2 40.73

f�0 0 0.258 — 33.81

f�T 1.387 
 1:134 �m�
1 �

2 32.22

fK� 0.162 0.173 �mK
1 �

2 —

fK0 0 0.330 — 37.46

fKT 0.161 0.198 �mK
1 �

2 —

f�� 0.122 0.155 �m�
1 �

2 —

f�0 0 0.273 — 31.03

f�T 0.111 0.175 �m�
1 �

2 —
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O�(s� accuracy [20]. The reason for this choice is two-
fold: first, it is well-known that the use of fB from sum
rules reduces the dependence of the form factors on input
parameters, in particular mb [1]; second, O�(2

s� correc-
tions to fB turn out to be rather large [21], which was
anticipated in the second reference in [20], where it was
argued that these corrections are dominated by
Coulombic corrections. Precisely the same corrections
also enter the light-cone expansion of the correlation
function �, but will largely cancel in the ratio f� �
�=fB. In conclusion, we expect a cancellation of both
large radiative corrections and parameter dependence in
the form factors when fB is replaced by its sum rule to
O�(s� accuracy; we do not expect the resulting numerical
values of fB to be ‘‘good’’ predictions for that quantity.

The sum rule for fB reads [20]5

f2
Bm

2
Be


�m2
B=M

2� 

Z s0

m2
b

ds.pert�s�e
�s=M2� � C �qqh �qqi

�C �qGqh �q�gGqi

�
Z s0

m2
b

ds.tot�s�e
�s=M2�: (17)

The C are the Wilson-coefficients multiplying the con-
densates, for which we use the following numerical val-
ues at � 
 1 GeV:

h �qqi 
 
�0:24 � 0:01�3 GeV3 and

h �q�gGqi 
 0:8 GeV2h �qqi: (18)

The condensates (and (s) are actually evaluated at the
scale �2

IR. The criteria for determining M2 and s0 are
often not stated very precisely. In the present context,
with many different form factors to calculate, which
entails the need for a well-defined procedure to determine
the input parameters for each of them, we decide to opt
for a precisely defined method to fix the pair �M2; s0� and
impose the following criteria on the sum rule for fB (and,
later on, the form factors):
(i) t
5The
we the

-6
he derivative of the logarithm of Eq. (17) with
respect to 1=M2 gives a sum rule for the B meson
mass mB:

m2
B 


Z s0

m2
b

dss.tot�s�=
Z s0

m2
b

ds.tot�s�;

we require this sum rule to be fullfilled to high
accuracy �0:1%.
(ii) t
he sum rule for fB is required to exhibit an
extremum for a given pair �M2; s0�.
These criteria define a set of parameters for each value of
mb, which are collected in Table III, together with the
resulting fB. For all these parameter sets the continuum
contribution of the gluon condensate is not sizable and
refore neglect it.



TABLE III. Parameter sets for fB and f�0�; we use the same
values of cc and s0 for �, K, and �. mb and fB are given in GeV,
s0 and M2 in GeV2.

mb s0 M2 fB s�0 � s0
0 c�c sT0 cTc

set 1 4.85 33.8 3.8 0.150 33.3 2.00 33.6 2.4
set 2 4.80 34.2 4.1 0.162 33.9 2.25 34.3 2.5
set 3 4.75 34.6 4.4 0.174 34.5 2.50 35.1 2.6
set 4 4.60 35.7 5.1 0.210 36.8 3.00 37.8 2.9

TABLE IV. Input parameters for twist-3 and -4 DAs, calcu-
lated from QCD sum rules. The accuracy is about 50%.
Renormalization scale is 1 GeV.

� K �

�3 0.015 0.015 0.013
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contribution (i.e., the integral
R
1
s0

) is between 25% and
30% of the B contribution and hence well under control.

For the form factors f��, f�0 , and f�T we follow the same
procedure which results in different values of M2 and s0

for form factors and fB. For K and � we use the same
values for the Borel parameter and the continuum thresh-
old. From the explicit formulas of the tree-level sum rules
for the form factors quoted in, e.g., the Ref. 3 in [1], one
finds that the effective Borel parameter is uM2

LC rather
than M2

LC.6 In order to keep this product constant, we
rescale the Borel parameter by hui
1 by

hui�q2� �
Z 1

u0

duu
���u�
u

e
�m2
b
�1
u�q2�=uM2

�Z 1

u0

du
���u�
u

e
�m2
b
�1
u�q2�=uM2

;

u0 

m2
b 
 q2

s0 
 q2 ;

resulting in the approximate values hui�0 GeV2� 
 0:86
and hui�14 GeV2� 
 0:77. Parametrizing the relation be-
tween the Borel parameters by

M2
LC � ccM2=hui; (19)

we obtain the values and continuum thresholds given in
Table III.

B. Hadronic Input Parameters

The hadronic parameters needed are, for each meson,
seven parameters characterizing the twist-2, -3, and -4
distribution amplitudes to next-to-leading-order (NLO)
in the conformal expansion, cf. App. B, the decay con-
stants of the �, K and � and B, the factorization scale
�IR, the b quark massmb, and the strong coupling (s. As
for the latter, we fix (s�mZ� 
 0:118 and use NLO evo-
lution down to the required scale. The quark mass pa-
rameter entering our formulas is the one-loop pole mass
mb for which we use mb 
 �4:80 � 0:05� GeV (cf. Table 6
in the recent review [6] and references therein). We also
include results for mb 
 4:6 GeV. The infrared factori-
zation scale separating contributions to be included in
6We denote the Borel parameter of the LCSR (16) byM2
LC and

the Borel parameter of the SR (17) by M2.
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DAs and perturbatively calculable terms is chosen to be
�2

IR 
 m2
B 
m2

b, which also sets the scale of (s; we will
discuss the residual scale dependence of our results below.
The decay constants for the� andK are very well-known
experimentally; for the � the situation is complicated due
to �–�0 mixing. We use the following values:

f� 
 131 MeV; fK 
 160 MeV;

f� 
 130 MeV: (20)

fB has been discussed in the previous subsection.
As for the meson DAs, we quote the preferred values

for the twist-3 and -4 parameters in Table IV; the form
factors are not too sensitive to their precise values. The
situation is different, however, for the Gegenbauer mo-
ments a1;2;4��� parametrizing the twist-2 DAs ��;K;�,
and so we shall discuss in a bit more detail what is
presently known about these parameters.

Both theoretical calculations and experimental deter-
minations focus mainly on the � DA (for which all odd
Gegenbauer moments vanish due to G-parity; in particu-
lar a�1 
 0). The probably earliest calculation of the low-
est Gegenbauer moment a2 was done by Chernyak and
Zhitnitsky (CZ), yielding [22]

aCZ
2 �0:5 GeV� 
 2=3:

This result was obtained from local QCD sum rules,
where an is extracted from the correlation function of
the (local) interpolating field �u���5�D

$
� x�nd, where x

defines the light-cone, x2 
 0, and the usual interpolating
current for the �, �u���5d. The price to pay for the
expansion of an intrinsically nonlocal quantity like ��
in contributions of local operators is an increasing sensi-
tivity to nonperturbative effects, i.e., the precise values of
the condensates. As the coefficients of the condensates in
the sum rule for an increase with powers of n and, for
sufficiently large n, dominate over the perturbative con-
tributions, it is clear that this method is inappropriate for
calculating high moments, but one might expect it to be
reliable at least for the lowest moment with n 
 2.

The DA obtained by CZ has the remarkable feature that
���1=2; 0:5 GeV� 
 0, which is of course an artifact of
neglecting all contributions from an�4. It was subse-
quently shown by Braun and Filyanov (BF) [23] that
both the pion-nucleon-nucleon coupling g�NN and its
!3 
3 
3 
3
�4 10 0.6 0.5
!4 0.2 0.2 0.2
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mesonic equivalent g.!�, when calculated from LCSRs,
require a value of ���1=2� significantly different from
zero (albeit at a slightly different scale):

���1=2; 1 GeV� 
 1:2 � 0:3



3

2



9

4
a2�1 GeV�

�
45

16
a4�1 GeV� � . . . ; (21)

where the dots denote neglected terms in an�6. The large
error is due to a large sensitivity of this result to twist-4
corrections to the sum rules. BF also redetermined a2,
using the same procedure as CZ, and combining their
result, which is consistent with aCZ

2 , with the above con-
straint from ���1=2�, they obtained

aBF
2 �1 GeV� 
 0:44; aBF

4 �1 GeV� 
 0:25:

An alternative calculation aims to cure the problem of
increasing condensate contributions by resumming them
into nonlocal condensates [24]. The Gegenbauer moments
in this approach are mostly sensitive to the ratio

#2
q 
 h �q�gGqi=�2h �qqi� 
 �0:4 � 0:1� GeV2

�� 
 1 GeV�

and have moderate to small values. The most recent paper
on that topic, Ref. [25], quotes

a2�1:16 GeV� 
 0:19; a4�1:16 GeV� 
 
0:13;

a6;8;10 � 10
3: (22)

There are not too many lattice calculations of moments
of the � DA. The fairly old values quoted in [26] for the
2nd moment suffer from large uncertainties. This quan-
tity has been investigated again recently [27], but the
results, obtained in quenched approximation, are still
preliminary.

Alternative determinations of Gegenbauer moments
rely on the analysis of experimental data, in particular,
the pion-photon transition form factor �� �� ! �, mea-
sured at CLEO and Cello, and the electromagnetic form
factor of the pion. The results of these analyses are typi-
cally either determinations of a2 (setting an�4 to 0) or
constraints on a linear combination of a2 and a4 (setting
an�6 to 0).7 These determinations are limited by mainly
two problems: large experimental errors and the contami-
nation by poorly known twist-4 and higher effects, which
are usually estimated from QCD sum rules. As for the
pion-photon transition form factor, which has been mea-
7In principle it is possible to determine a2, a4 and even
higher moments separately from the Q2 dependence of their
respective contributions. However, such an analysis requires
accurate measurements of the form factors over a large enough
range of Q2, which are presently not available. See also
Ref. [28], in particular, Fig. 4.

014015
sured by CLEO and Cello, the technique used to extract
a2 and a4 has been pioneered by Khodjamirian [29],
refined by Schmedding and Yakovlev [30], with subse-
quent further refinements by Bakulev, Mikhailov, and
Stefanis [31]. The upshot is that for not too small Q2 the
pion-photon transition is mostly sensitive to a like-sign
combination of a2 and a4. Summarizing the analyses of
this process, we conclude from Table I in [25] that

a2�1 GeV� � a4�1 GeV� 
 0:1 � 0:1 (23)

is a fair reflection of the current state of knowledge of
a2;4 from that process.

As for the pion electromagnetic form factor, the authors
of Ref. [32] unfortunately only obtain a value for a2 and
set a4 to 0. A very recent analysis of that form factor,
Ref. [25], concludes that calculations using the nonlocal-
condensate model are in good agreement with data.

So what then do we actually know about a2 and a4? It
seems to us that, taking everything together, and with due
consideration of the respective strengths and weaknesses
of different approaches, the most reliable constraints for
these quantities are (21) and (23). These two constraints
contain opposite-sign combinations of a2 and a4 and
hence are about equally sensitive to both parameters.
The resulting allowed area for a2 and a4 is shown in
Fig. 2; its center is at

a2�1 GeV� 
 0:115; a4�1 GeV� 
 
0:015;

a2�2:2 GeV� 
 0:080; a4�2:2 GeV� 
 
0:0089:
(24)

These are the central values we will use in our calculation
of form factors. The figure also shows that the remaining
uncertainties are still considerable. Anticipating a future
better determination of these parameters, from lattice or
else, we will present our final results in such a way as to
facilitate the inclusion of any shift in these values. Since
much less is known about the Gegenbauer moments of the
FIG. 2. a2�1 GeV� and a4�1 GeV� as determined from the
constraints (21) and (23). Solid lines: central values; dashed
lines: uncertainties. The black square labeled BZ denotes the
central values used in this paper, Eq. (24), BMS is the pre-
diction of the nonlocal-condensate model, Eq. (22), rescaled to
� 
 1 GeV, and BF is the central value obtained in Ref. [16].
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other pseudoscalar mesons K and �, we resort to SU(3)
symmetry and use the same Gegenbauer moments.

Equation (24) and Fig. 2 confirm the findings of pre-
vious analyses that the CZ DA is strongly disfavored; the
same applies to the values obtained by BF and to the local
QCD sum rule for a2, which favors a large positive a2 �
0:4. One explanation for the failure of the corresponding
QCD sum rule could be that already the case n 
 2 may
be too ‘‘nonlocal’’ for sum rules to work. Another one
could be that the treatment of a1 and other resonances
contributing to that sum rule may be insufficient.We leave
a further discussion of that question to future work. The
result from sum rules with nonlocal condensates
[24,25,31], shown as a black square in Fig. 2, is also
outside the favored area in Fig. 2, which is mainly due
to the large value of ja4j. It would definitely be very
interesting to see all these results and constraints on a2;4

be supplemented by lattice determinations.
The only parameter left to discuss is a1 for the K

meson (by which we understand an s �q bound state), which
is a G-parity breaking parameter. Here the situation is
even worse than for a2;4, as neither size nor even sign of
that quantity are reliably known. The facts at hand are the
following: the intuitive expectation is that a1 (i.e., the
moment with a weight function proportional to 2u
 1)
should be positive, as the DA is expected to be slightly
tilted towards larger values of u which is the momentum
fraction carried by the (heavier) s quark in the meson—
the heavier the quark, the more the DA is expected to
peak at large u, the extreme case being a b �q bound state
whose DA should be close to 0�1 
 u�. The (tree-level)
QCD sum rule calculation in [22] seemed to confirm
intuition, but was challenged, when Ref. [33] found a
sign mistake in that calculation and, including two-loop
radiative corrections, obtained a negative sign for aK1 . For
this paper, we first decided to stick to that result and use
the central value aK1 �1 GeV� 
 
0:18. It turned out,
however, that this value tends to produce form factors
with an unfavorable q2 dependence.8 We therefore de-
cided to revert to the original result by CZ [22] and use

aK1 �1 GeV� 
 0:17 $ aK1 �2:2 GeV� 
 0:135: (25)
The conclusion from that inconclusive situation can only
be that a second opinion has to be sought, and we urge our
colleagues from the lattice community to take up the
challenge and provide the first-ever lattice determination
of aK1 . For the time being, we will present our results in a
way that makes it possible to obtain the form factors also
for different values of aK1 .
8That is, the form factors are not very compatible with the
parametrization discussed in Sec. IV D, which is based on
generic analytic properties of the form factors.
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C. Results for q2 
 0

Let us first discuss the sum rule results for q2 
 0. They
are collected in Table I, for all four parameter sets from
Table III.9 Including the uncertainty of mb, mb 
 �4:80 �
0:05� GeV, the final central values and uncertainties of
the form factors are given in Eq. (27).

The form factors are calculated from Eq. (16) using the
parameter sets given in Table III and the hadronic input
parameters given in Eqs. (24) and (25) and Table IV. The
dependence of the form factors on mb, i.e., the set, is
shown in Fig. 3. It is evident that the residual dependence
of f�0� on mb is much smaller than the one of fB in
Table I, which confirms our expectation that the calcula-
tion of fB from a sum rule reduces the parameter depen-
dence of the form factors. f���0� depends sensitively on a2

and a4 as illustrated in Fig. 4. The form factors show
moderate SU(3) breaking between � and �, which is due
to terms in the LCSRs proportional to the meson mass.
For K, the situation is different, and we observe a strong
enhancement of the form factor due to the combination of
two effects: the fact that fK is larger than f� and the
positive contribution of the Gegenbauer moment a1 to the
form factor. As discussed in the previous subsection, the
numerical value of a1, and even its sign, is not precisely
known. Figure 5(a) illustrates the dependence of fK��0� on
a1, which is quite strong. Figure 5(b) shows the depen-
dence of fK��q

2� on q2 for different values of a1. It is
evident that a1 mainly determines the normalization of
the form factor, but has only minor impact on its shape.
The uncertainty of fK��0� induced by a1 will be discussed
below. The dependence of f���0� on the sum rule parame-
ters M2 and s0 is illustrated in Fig. 6 and is very mild,
thanks to the optimized criteria for choosing M2 and s0

outlined in Sec. IVA. The behavior of the other form
factors is very similar. In Fig. 7 we show the variation
of f���0� with a change of the factorization scale �IR in
the large range 1 GeV � �IR � mb. The curve is remark-
ably flat which can be understood from the fact that
radiative corrections cancel to a certain extent between
�� and fB and that large logarithms of type lnmb=�IR

occur only at subleading order in the conformal expan-
sion of the DAs, which is numerically suppressed with
respect to the leading (�IR-independent) term, and at
subleading twist, which is also suppressed.

Let us now turn to the uncertainties of the form factors
induced by a variation of the input parameters. It is
convenient to split the form factors into contributions
from different Gegenbauer moments,

f�q2� 
 fas�q2� � a1fa1�q2� � fa2fa2�q2� � a4fa4�q2�g;

(26)

where fas contains the contributions to the form factors
from the asymptotic DA and also all higher-twist effects
9f0�0� is not included as f0�0� � f��0�.
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FIG. 3. Central values of the form factors f�0� and uncertainties *. Numbers are from Table I.
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+ (0) (a)
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from three-particle quark-quark-gluon matrix elements.
Explicit expressions for the functions fas;a1;a2;a4 can be
obtained from TableV; in particular fai�0� is just given by
the parameters a in that table. We calculate separately the
uncertainties *as;a1

of the first and second term and the
combined uncertainty *a2;a4

of the term in curly brackets.
We start with *as. To estimate its value we vary the
following quantities:
(i) t
-0.2

-0.1

0.1

0.2

a
4

FIG. 4.
parame
dot labe
values f
from th
he threshold s0 by �0:5 GeV2;

0.34
(ii) t
he Borel parameter M2 in Eq. (19) by

�1:2 GeV2;

0.32
(iii) t
he infrared factorization scale �2

IR 
 m2
B 
m2

b
by �2 GeV2;
-0.2 -0.1 0.1 0.2
(iv) t

0.28 a1(µIR)
he quark condensate and the mixed condensate as
indicated in Eq. (18);
(v) t
he twist-3 matrix element �3 by �50%.
0.1 0.2 0.3 0.4 0.5

BZ

BMS

BF

0.24
0.28

0.30

0.26

a2

fπ
+(0) =

.
. .

Dependence of f���0� on a2��IR� and a4��IR�, for
ter set 2. The lines are lines of constant f���0�. The
led BZ denotes our preferred values of a2;4, BMS the
rom the nonlocal-condensate model, and BF the values
e sum rule calculations of Ref. [16].
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mb is kept fixed and we calculate the uncertainty sepa-
rately for each parameter set; for a given form factor, *as
is then the largest uncertainty of the four sets. The errors
are correlated and we therefore scan the five-parameter
0.24

0.26

2 4 6 8 10 12 14
q2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f for K (b)+

FIG. 5. (a) Dependence of fK��0� on the Gegenbauer moment
a1��IR�. (b) fK��q

2� as function of q2 for different values of a1.
Solid line: aK1 �1 GeV� 
 0:17; short dashes: aK1 �1 GeV� 
 0;
long dashes: aK1 �1 GeV� 
 
0:18. Input parameters: set 2.
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0.264

f 0 GeV2 (a)

33.4 33.6 33.8 34 34.2 34.4
s0

0.256

0.258

0.26

0.262

f 0 for (b)

+

+ π

FIG. 6. Dependence of f���0� on (a) the Borel parameter M2

and (b) the continuum threshold s0. Input parameters: set 2 in
Table III.
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space for the largest deviations from the central values.
The resulting *as are given in Table I.

The uncertainty of fK�0� induced by a1 is dominated
by a1 itself, so we do not attempt to determine the
uncertainty of fa1 arising from varying M2, s0, etc., but
just take the maximum value of fa1�0� � a from Table V
and multiply it by 01 
 a1�1 GeV� 
 0:17 and the
5 10 15 20
2

0.25

0.26

0.27

0.28
f 0GeV2 for+ π

µ

FIG. 7. Dependence of f���0� on the factorization scale �IR.
Same input parameters as in Fig. 6.
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leading-order scaling factor from 1 GeV to �IR, which
gives the entry labeled *a1

in Table I.
As the allowed input values of a2 and a4 are correlated

and given by the rhomboid shown in Fig. 2, we only
determine the combined uncertainty *a2;a4

arising from
the corresponding variation of the Gegenbauer moments,
separately for each parameter set. The resulting uncer-
tainties depend strongly on the precise values of M2 and
s0, so for a conservative estimate of the uncertainty we
scan the full seven-parameter space in a2, a4,M2, etc. and
quote the largest deviation from the central value as
uncertainty, which yields the *a2;a4

quoted in Table I.
Taking everything together, and including the variation
of mb 
 �4:80 � 0:05� GeV in the error estimate, adding
errors in quadrature, we find (0a1

is defined in Table I):

f���0� 
 0:258 � 0:031; f�T �0� 
 0:253 � 0:028;

fK��0� 
 0:331 � 0:041 � 0:250a1
;

fKT �0� 
 0:358 � 0:037 � 0:310a1
;

f���0� 
 0:275 � 0:036; f�T �0� 
 0:285 � 0:029:

(27)

These are our final results for the form factors at q2 
 0.
For f�;� the total theoretical uncertainty is 10% to 13%,
for fK it is 12%, plus the uncertainty in a1, which hope-
fully will be clarified through an independent calculation
in the not too far future. These uncertainties include a
variation of both the external input parameters and the
sum rule specific parameters, but they do not include an
additional ‘‘systematic’’ uncertainty of the sum rule
method itself. To a certain extent, this intrinsic sum
rule uncertainty is included by the variation of the sum
rule specific parameters M2 and s0, which sets the mini-
mum uncertainty of the result: all external hadronic
parameters fixed, this variation induces a �7% uncer-
tainty of f���0� quoted in Eq. (27). Realistically, one may
hope to reduce the �12% uncertainty quoted to �10% by
reducing the errors on the Gegenbauer moments a2;4 by a
factor of 2. Further improvement will then have to come
from a better control over higher-twist matrix elements,
dominated by the quark condensate and the quark-quark-
gluon matrix element �3 discussed in App. B.

D. Results for q2 � 0, Fits and Extrapolations

In this subsection we calculate the q2 dependence of
the form factors for central values of the input parameters
and cast them into a three-parameter parametrization
that is valid for all q2. The results are given in Table II
which is to be used together with Eq. (30). The fit pa-
rameters for other sets of input parameters are given in
App. A. We refrain from a complete analysis of the
uncertainty of the q2 dependence of the form factors,
but just mention that it is likely to be smaller than that
at q2 
 0, which is indicated by a decrease of the spread
between the form factors calculated from the different
parameter sets in Table III cf. Fig. 8.
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TABLE V. Fit parameters for Eq. (A6) for the functions fai defined in (A5). 0 is a measure of the quality of the fit and is defined
in (A7).

set 2, mb 
 4:8 GeV set 4, mb 
 4:6 GeV
a b� 102 c� 102 d� 103 0 a b� 102 c� 102 d� 103 0

fK��a1� 0.310 0.930 0.139 
0:083 0.3 0.276 0.060 0.151 
0:157 0.7

fK0 �a1� 0.308 0.106 0.026 
0:048 0.2 0.273 
0:433 0.0001 
0:051 0.2

fKT �a1� 0.381 1.056 0.167 
0:108 0.3 0.354 0.027 0.178 
0:194 0.7

f���a2� 0.187 
0:517 0.014 
0:117 0.5 0.040 
0:762 
0:201 0.050 1.5

f�0 �a2� 0.185 
0:841 
 0:075 
0:005 0.4 0.041 
1:078 
0:123 0.068 1.2

f�T �a2� 0.203 
0:659 
 0:008 
0:118 0.3 0.038 
0:944 
0:244 0.073 1.5

fK��a2� 0.228 
0:632 0.017 -0.143 0.5 0.049 
0:931 
0:245 0.061 1.5

fK0 �a2� 0.226 
1:031 
 0:092 
0:005 0.4 0.050 
 1:32 
0:150 0.083 1.2

fKT �a2� 0.264 
0:858 
 0:011 
0:153 0.3 0.049 
1:228 
0:318 0.095 1.5

f���a2� 0.185 
0:514 0.014 
0:116 0.5 0.039 
0:757 
0:199 0.049 1.5

f�0 �a2� 0.183 
0:829 
 0:076 
0:002 0.4 0.041 
1:068 -0.122 0.069 1.2

f�T �a2� 0.216 
0:722 
 0:007 
0:128 0.3 0.040 
1:019 
0:259 0.076 1.4

f���a4� 
 0:141 
0:775 0.004 0.161 0.7 
0:054 
0:506 0.621 
0:326 5.2

f�0 �a4� 
 0:139 
0:687 0.170 0.002 1.5 
0:061 0.703 0.323 
0:209 2.9

f�T �a4� 
 0:167 
0:895 0.077 0.143 1.1 
0:047 
0:327 0.698 
0:394 4.9

fK��a4� 
 0:173 
0:947 0.005 0.196 0.7 
0:067 
0:618 0.759 
0:398 5.2

fK0 �a4� 
 0:170 
0:838 0.209 0.001 1.5 
0:075 0.871 0.392 -0.254 2.9

fKT �a4� 
 0:217 
1:165 0.101 0.187 1.1 
0:061 
0:426 0.909 
0:513 4.9

f���a4� 
 0:140 
0:770 0.004 0.159 0.7 
0:054 
0:502 0.616 
0:323 5.2

f�0 �a4� 
 0:138 
0:681 0.170 0.0005 1.5 
0:061 0.710 0.318 
0:206 2.9

f�T �a4� 
 0:178 
0:955 0.083 0.153 1.1 
0:050 
0:349 0.745 
0:421 4.9
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The validity of the LCSR approach is restricted to the
kinematical regime of large meson energies, EP �

�QCD, which via the relation

q2 
 m2
B 
 2mBEP

implies a restriction to small and moderate q2; specifi-
cally, we evaluate the sum rules only for 0 � q2 �
14 GeV2. The resulting form factors are plotted in
2 4 6 8 10 12 14

0.96

0.98

1.02

1.04

1.06

FIG. 8. Ratio of f��seti�
� �q2�=f��set2�

� �q2� as function of q2.
Solid line: set 1; long dashes: set 3; short dashes: set 4.
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Fig. 9, using the parameter set 2 in Table III and the
hadronic input parameters given in Eqs. (24) and (25)
and Table IV. As expected from LEET [34], f� and fT
nearly coincide. Although this agreement is expected to
be best for small q2, i.e., large energies of the light meson,
it is seen to hold for all q2. From the LCSR point of view,
this agreement is due to the fact that the leading twist-2
contributions to the corresponding correlation functions
coincide at tree level. The figure also shows that the q2

dependence of f0 is weaker than that of the other form
factors. This can be understood from the fact that, if f� is
represented as a dispersion relation over hadronic states,
these states have quantum numbers JP 
 1
 and hence
zero orbital angular momentum, whereas for f0 the quan-
tum number is JP 
 0� and thus the coupling of these
states or, in the language of potential models, their wave
function at the origin, is suppressed as it corresponds to a
state with orbital angular momentum L 
 1. Figure 9
also shows sizable SU(3) breaking for the K, but a mod-
erate one for �, which is due to the same effects discussed
for the form factors at q2 
 0. In Fig. 8 we show f���q

2� as
function of q2, calculated for sets 1, 3, and 4 and normal-
ized to set 2. It is evident that the uncertainties induced by
mb, which amount to 6% at q2 
 0, become less impor-
-12
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FIG. 9. f� (solid lines), f0 (short dashes) and fT (long dashes) as functions of q2 for �, K, and �. The renormalization scale of fT
is chosen to be mb. Input parameters: set 2 in Table III.
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tant for larger q2, so that for instance the branching ratio
of the semileptonic decay B! �e� will be less depen-
dent on the precise value of mb than f���0�.

One of the main goals of this paper is to give simple
expressions for the form factors in the full physical re-
gime 0 � q2 � �mB 
mP�

2 � 23 GeV2. We thus have to
find a parametrization that
(i) r
10For
the two
not exp
eproduces the data below 14 GeV2 with good
accuracy;
(ii) p
rovides an extrapolation to q2 > 14 GeV2 that
is consistent with the expected analytical proper-
ties of the form factors and reproduces the lowest-
lying resonance (pole) with JP 
 1
 for f� and
fT .10
It is actually not very difficult to find good fits: the
parametrization

f�q2� 

f�0�

1 
 aFq2=m2
B 
 bF�q2=m2

B�
2 (28)
f0, the lowest pole with quantum numbers 0� lies above
-particle threshold starting at �mB �mP�

2 and hence is
ected to feature prominently.

014015
advocated in previous works, e.g. [4], is one example for
an excellent fit to the results of the sum rules for q2 <
14 GeV2. In the present context, however, it turns out to
be unsuitable as it produces, for f��, a pole at q2 �
23 GeV2, which is below the physical pole at q2 
 m2

B� 


�5:32 GeV�2. In our previous paper [4] we argued that the
above parametrization should be matched to a simple
pole-dominance formula f� � 1=�m2

B� 
 q2� for q2 above
a certain threshold q2

0 � 15 GeV2, defined as the value of
q2 that would allow a smooth transition11 from one pa-
rametrization to the other. This procedure unfortunately
does not work for our new form factors, as the optimum
q2

0 turns out to be far outside the physical regime. We
therefore decide to follow, as far as possible, the proce-
dure advocated by Becirevic and Kaidalov [35], who
suggested to write the form factor f� as a dispersion
relation in q2 with a lowest-lying pole plus a contribution
from multiparticle states, which in turn is to be replaced
by an effective pole at higher mass:
11That is equality of both the parametrization formulas and
their first derivatives in q2

0.

-13



PATRICIA BALL AND ROMAN ZWICKY PHYSICAL REVIEW D 71, 014015 (2005)
f��q2� 

r1

1 
 q2=m2
1

�
Z 1

�mB�mP�
2
ds

.�s�

s
 q2 (29)

!
r1

1 
 q2=m2
1

�
r2

1 
 q2=m2
fit

: (30)

The lowest-lying resonance in the b �u channel is well-
known experimentally: it is the B��1
� vector meson with
mass 5.32 GeV; this is also the mass to be used for the �,
as the B! � form factors calculated in this paper refer to
a b! u transition. For the K we have calculated the mass
of the B�

s resonance in the heavy-quark limit and find

m2
B�
s

m2

Bs

 m2

B� 
m2
B ! mK

1 
 mB�
s

 5:41 GeV:

For Eq. (30) to describe all f� and also fT , which
feature the same 1
 resonance, in terms of three fit
parameters, r1, r2, and mfit, it is crucial that the position
of the lowest pole is sufficiently below the two-particle
cut starting at �mB �mP�

2. We find that indeed most f��;T
form factors, with the exception of f��set 4�

T , are described
very well by (30). For f��set 4�

T , however, and all fK;��;T , mfit

gets too close to m1, so that the fit becomes numerically
unstable. In this case, it is appropriate to expand (30) to
first order in mfit 
m1, which yields

fK;��;T�q
2� 


r1

1 
 q2=m2
1

�
r2

�1 
 q2=m2
1�

2 (31)

with fit parameters r1 and r2, and m1 
 mB�;B�
s

fixed.
For f0, one can write a decomposition similar to (29),

but here the lowest-lying pole with quantum numbers 0�

lies either above the two-particle threshold (for � and �)
or is very close to it (for K cf. TableVI), so that the pole is
effectively hidden under the cut and only the dispersive
term survives in (29). We again follow the suggestion of
Becirevic and Kaidalov and replace this term by an
effective pole, i.e., we set

f0�q
2� 


r2

1 
 q2=m2
fit

: (32)

The accuracy of the fits of the LCSR results to the
above parametrizations is generally very high and best for
sets 1 to 3 of Table III withmb 
 �4:80 � 0:05� GeV, with
a maximum 1.2% deviation; set 4 fares slightly worse
TABLE VI. Masses of 1
 and 0� resonances in the b �u and b �s
channels. The 1
 masses are obtained from experiment and
heavy-quark relations, the 0� masses from a potential model
[36]. All numbers are in units GeV2.

m2
1 �1
� m2

1� �0�� q2
max

���� 5:322 
 28:4 5:632 
 31:7 26.4 (22.8)
K 5:412 
 29:3 5:722 
 32:7 23.8
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with an accuracy of 2% or better. The quality of the fits is
discussed in more detail in App. A. The uncertainty
introduced by fitting is much smaller than the actual
uncertainty of the sum rule calculation, which we have
found to be around 10% at q2 
 0, and also much smaller
than the intrinsic and irreducible sum rule uncertainty,
which we have estimated to be �7%. Nevertheless it is
legitimate to ask whether the extrapolation of the fits to
q2 > 14 GeV2, or the variation of the ‘‘cutoff ’’ q2

max 

14 GeV2, introduce an additional uncertainty. In answer-
ing this question, we first would like to recall that for
most applications it is actually sufficient to know the form
factors for q2 < 14 GeV2 only—these include, in par-
ticular, nonleptonic B decays treated in QCD factoriza-
tion, and also the rare decays B! ��;K; ��‘�‘
, as the
spectrum for invariant lepton masses above the c �c
threshold, i.e., q2 � m2

J= � 10 GeV2, is dominated by
long-distance processes unrelated to B! ��;K; �� form
factors. The only, but very important case where the form
factor is needed over the full range of q2 is the semi-
leptonic decay B! �‘�, which depends on f�� and (for
decays into %) on f�0 . We discuss the effect of the ex-
trapolation on this decay by studying three different
parametrizations of f��:

fit 1 E
TABL
maliz
trizat

fit 1
fit 2
fit 3

-14
quation (30), our standard parametrization;

fit 2 a
 modified version of (28), with one zero of the

denominator fixed at m2
1 
 m2

B� :

f���q
2� 


f���0�

�1 
 q2=m2
1��1 
 q2=m2

fit�
;

fit 3 a
 parametrization similar to (31), but with the pole
mass as fit parameter:

f���q
2� 


r1

1 
 q2=m2
fit

�
r2

�1 
 q2=m2
fit�

2 :
We quantify the difference between these parametriza-
tions by calculating the semileptonic decay rate, the
integral of Eq. (4) over q2 from 0 to �mB 
m��

2, normal-
izing to our central values, set 2 and fit 1. The results are
collected in TableVII. It is evident that the dependence of
the rate on the fit is rather mild, despite the double-pole of
fit 3, which is however sufficiently far away from the end
point of the spectrum,mfit 
 �5:6 � 0:1� GeV, and hence
E VII. Total semileptonic decay rates 
�B! �e�� nor-
ed to 1 for set 2, fit 1, for different form factor parame-
ions and input parameter sets.

set 1 set 2 set 3 set 4

0.97 1 1.01 1.05
0.97 0.98 0.99 1.00
0.95 0.98 1.00 1.04



q
max
28 10 12 14

0.92

0.94

0.96

0.98

FIG. 10. Variation of the total semileptonic rate 
�B! �e��
as function of q2

max, the maximum q2 for which LCSR results
are included in the fits. The rate is normalized to 1 for q2

max 

14 GeV2 and fit 1. Solid line: fit 1; long dashes: fit 2; short
dashes: fit 3. Input parameters: set 2.

NEW RESULTS ON B! �;K;� DECAY FORM FACTORS . . . PHYSICAL REVIEW D 71, 014015 (2005)
has only moderate impact on the rate. We conclude that
the extrapolation of f�� causes an uncertainty in the total
semileptonic decay rate 
�B! �e�� which is consider-
ably less than the expected intrinsic sum rule uncertainty
of �14%.

We conclude the discussion of the uncertainty of the
extrapolations by studying the effect of changing the
maximum value of q2 for which the sum rules results
are included in the fits. Our default value q2

max is 14 GeV2;
lowering q2

max changes the fit parameters of all three
parametrizations and hence the predictions for the total
semileptonic decay rate. Figure 10 shows the correspond-
ing change in the rate, normalized to our central values
fit 1 and q2

max 
 14 GeV2. Again the dependence of the
rate on q2

max is mild, which corroborates our conclusion
that the precise shape of the form factor is not that
relevant, as long as it does not exhibit too strong a
singularity at q2 
 �5:32 GeV�2.

There are also other tests and checks for the validity of
the extrapolation of (30) to the full physical regime q2 <
�mB 
mP�

2: first, the coefficient r1 for f�� is related to the
coupling gBB�� as

r1 

fB�gBB��

2mB�

: (33)

At the upper end of the physical range in q2 we can expect
vector-meson dominance to be effective and therefore the
fit parameter should be close to the above value. In fact
lattice [37] and meson-loop calculations (cf. Ref. 1 in [6])
yield r1 � 0:8, but are at variance with a determination of
gBB�� from LCSRs which yields r1 � 0:44 [5]. The lattice
and meson-loop calculations are further supported by the
agreement of their predictions for gDD�� with experimen-
tal measurements, whereas LCSRs again give a value that
is too low by almost a factor of 2. The author of Ref. [38]
speculates that this discrepancy might be due to a failure
of the simple quark-hadron duality ansatz used for the
contribution of higher resonances and the continuum to
the sum rules. Ref. [39] demonstrates that this suggestion
does indeed point into the right direction: the inclusion of
a radial excitation with negative residue in the hadronic
parametrization of the correlation function does increase
the value of r1.12 If we interpret our fit results as deter-
minations of gBB��, we get the following values of r1 for
the sets 1 to 4: (0.73,0.74,0.77,0.94) (cf. TableVIII), which
is in reasonable agreement with lattice and meson-loop
calculations.

Second, there is one further constraint on the form
factor f0. As first pointed out in Ref. [40], in the soft-
pion limit p! 0 and m2

� ! 0 (i.e., q2 
 m2
B) f�0 �m

2
B� is

related to the decay constants of the B and � as
12Note that the corresponding spectral function is not positive
definite.
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f�0 �m
2
B� 


fB
f�
: (34)

We can compare this relation with our parametrization by
solving it for fB. For the four parameter sets of Table III,
we get from Eq. (34) fset1

B 
 201 MeV, fset2
B 
 193 MeV,

fset3
B 
 190 MeV, and fset4

B 
 207 MeV, which is in good
agreement with lattice and sum rule calculations.

Let us conclude with one more remark. In LEET, f�
and f0 are related as [34]:

f0 

2E
mB

f�; (35)

which is valid in the combined limits mB ! 1 and E!
1. This constraint was used in Ref. [35] to reduce
the number of fit parameters to two as necessitated by
the limited accuracy of the lattice form factors. We do
not impose this constraint explicitly, but find that it is
valid to 4% accuracy for our form factors, for not too
large q2.

Summarizing, we conclude that, for all form factors,
the three-parameter formula (30) provides both an ex-
cellent fit to the LCSR results for q2 < 14 GeV2 and a
smooth extrapolation to 14 GeV2 < q2 < �mB 
mP�

2,
and is consistent with all known constraints.
V. SUMMARY & CONCLUSIONS

In this paper we have given a thorough and careful
examination of the predictions of QCD sum rules on the
light-cone for the form factors f�, f0, and fT for the
decays B! �;K;�. We have not discussed B! �0,
which is not accessible within the method due to its large
mass.

The main improvements of our results with respect to
our previous publications [3,4] are:
-15



TABLE VIII. Fit parameters for the � Eq. (A1) for both the full form factors and the asymptotic ones, fas, Eq. (A5), using the
sets 2 and 4 in Table III. The form factor f0 is fitted to the parametrization (A3). The mass parameters mx

1 are given in TableVI. * is
a measure of the quality of the fit and is defined in (A4).

set 2, mb 
 4:8 GeV set 4, mb 
 4:6 GeV
r1 m2

1 r2 m2
fit * r1 m1 r2 m2

fit *

f�� 0.744 �m�
1 �

2 -0.486 40.73 0.3 0.944 �m�
1 �

2 
 0:669 34.27 0.3

f�0 0 — 0.258 33.81 0.1 0 — 0.270 33.63 1.2

f�T 1.387 �m�
1 �

2 
 1:134 32.22 0.5 use (A2) with r1 
 0:152,

r2 
 0:122; m1 
 m�
1 ;* 
 0:4

f�;as� 0.918 �m�
1 �

2 
 0:675 38.20 0.1 0.711 �m�
1 �

2 
 0:441 44.31 0.1

f�;as0 0 — 0.244 30.46 0.8 0 — 0.270 31.93 0.1

f�;asT 1.556 �m�
1 �

2 
 1:321 32.56 0.2 1.331 �m�
1 �

2 
 1:061 33.43 0.4

PATRICIA BALL AND ROMAN ZWICKY PHYSICAL REVIEW D 71, 014015 (2005)
(i) p
redictions for all form factors of B! �;K; �
transitions to O�(s� accuracy for twist-2 and -3
two-particle contributions;
(ii) a
 well-defined and precise method for fixing sum
rule specific parameters (cf. Sec. IVA);
(iii) a
 careful assessment of uncertainties at zero mo-
mentum transfer (cf. Sec. IV B and IV C);
(iv) a
 detailed breakdown of the contributions of dif-
ferent Gegenbauer moments ai to the form factors
(cf. App. A), which

(a) renders straightforward the implementation
of future updates of these parameters;

(b) allows the assessment of the impact of non-
asymptotic twist-2 distribution amplitudes
on QCD factorized nonleptonic B decays in
a coherent way, to 4th order in the confor-
mal expansion;
(v) a
 parametrization of the q2 dependence of form
factors valid in the full physical regime of mo-
mentum transfer that reproduces all relevant ana-
lytical properties of the form factors (cf.
Sec. IV D).
Our main results for q2 
 0 are collected in Table I and
Eq. (27). They depend crucially on the values of the
Gegenbauer moments describing the twist-2 distribution
amplitudes of�,K, and � cf. App. B.We have determined
these parameters as discussed in Sec. IVA, but a better
determination from an independent source, e.g., lattice
calculations, would be extremely useful. This applies, in
particular, to the SU(3) breaking parameter aK1 , whose
size and even sign is under discussion (cf. Ref. [33]). Once
more precise values for these parameters will be avail-
able, it is straightforward to obtain the corresponding
form factors from the data collected in App. A. Setting
aside a1, the total theoretical uncertainty of the form
factors at q2 
 0 is 10% to 13%, which includes a varia-
tion of all input parameters. It can be further improved by
reducing the uncertainties of, in particular, a2, a4, the
014015
quark condensate, and �3, the dominant quark-quark-
gluon matrix element. A reduction of the uncertainty of
a2;4 by a factor of 2 will give a �2% gain in accuracy,
reducing the uncertainty of the quark condensate and
�3 by the same factor will give another 2%. The uncer-
tainty due to the variation of only the sum rule specific
parameters is 7%, which cannot be reduced any further
and hence sets the minimum theoretical uncertainty that
can be achieved within this method. Comparing with the
uncertainties quoted in our previous publications, we
have achieved a reduction of the global estimate �15%
quoted in [3] and also of the 20% uncertainty for f���0�
quoted in [4]. This is partially due to a reduction of the
uncertainties of the hadronic input parameters, in par-
ticular mb, and partially due to a refinement of the as-
sessment of sum rule specific uncertainties as discussed
in Sec. IVA.

We have also calculated all form factors for 0 � q2 �
14 GeV2; the upper bound on q2 is due to the limitations
of the light-cone expansion which requires the final-state
meson to have energies E� �QCD: for q2

max 
 14 GeV2

the meson energy is E 
 1:3 GeV. In order to allow a
simple implementation of our results, we have given a
parametrization that includes the main features of the
analytical properties of the form factors and is valid in
the full physical regime 0 � q2 � �mB 
mP�

2. The cor-
responding results for our preferred set of input parame-
ters are given in Table II; a detailed breakdown of the
contributions of different parameters to the full form
factors is given in App. A. The main features of the results
are that the form factors f� and fT are nearly equal as
predicted by LEETand that f0 is very well described by a
single-pole formula. The uncertainty induced by the ex-
trapolation of the parametrization to larger momentum
transfers is an issue only for the semileptonic decay B!
�e�; we have checked that the change of the total rate is
at most 5% for three different extrapolations of the light-
cone sum rule results.

Our approach is complementary to standard lattice
calculations, in the sense that it works best for large
-16



TABLE IX. Fit parameters for K and � for Eq. (A2), for both
the full form factors and the asymptotic ones, fas, Eq. (A5),
using the sets 2 and 4 in Table III. The form factor f0 is fitted to
the parametrization (A3). The mass parameters m1 are given in
Table VI. * is a measure of the quality of the fit and is defined
in (A4).

set 2, mb 
 4:8 GeV set 4, mb 
 4:6 GeV
r1 r2 mfit�m1� * r1 r2 mfit�m1� *

fK� 0.1616 0.1730 �mK
1 �

2 1.2 0.1903 0.1478 �mK
1 �

2 1.0

fK0 0 0.3302 37.46 1.0 0 0.3338 38.98 1.9

fKT 0.1614 0.1981 �mK
1 �

2 0.5 0.1851 0.1905 �mK
1 �

2 1.7

f�� 0.1220 0.1553 �m�
1 �

2 1.0 0.1380 0.1462 �m�
1 �

2 0.9

f�0 0 0.2734 31.03 0.5 0 0.2799 30.46 2.0

f�T 0.1108 0.1752 �m�
1 �

2 0.5 0.1160 0.1841 �m�
1 �

2 1.6

fK;as� 0.0541 0.2166 �mK
1 �

2 0.2 0.0991 0.2002 �mK
1 �

2 0.6

fK;as0 0 0.2719 30.33 0.7 0 0.2984 31.99 0.5

fK;asT 0.0244 0.2590 �mK
1 �

2 0.8 0.0660 0.2621 �mK
1 �

2 1.3

f�;as� 0.0802 0.1814 �m�
1 �

2 1.0 0.1201 0.1636 �m�
1 �

2 0.6

f�;as0 0 0.2604 28.80 0.5 0 0.2803 29.59 0.8

f�;asT 0.0570 0.2115 �m�
1 �

2 0.3 0.0914 0.2096 �m�
1 �

2 1.0
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energies of the final-state meson (i.e., small q2), whereas
lattice calculations work best for small energies—a situ-
ation that may change in the future with the implementa-
tion of moving NRQCD [10]. Previously, the LCSR
results for f��;0 at small and moderate q2 were found to
nicely match the lattice results obtained for large q2 [41].
The situation will have to be reassessed in view of our
new results and it will be very interesting to see if and
how it will develop with further progress in both lattice
and LCSR calculations.
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APPENDIX A: FIT PARAMETERS AND
COMMENTS

This appendix extends the discussion of Sec. IV D.

1. Full form factors

As discussed in Sec. IV D, we fit the LCSR results to
the following parametrizations:
(i) f
13Apar
fK;��;T and
A 2.
or f��;T :13

f�q2� 

r1

1 
 q2=m2
1

�
r2

1 
 q2=m2
fit

; (A1)

where m�
1 is the mass of B��1
�, m�

1 
 5:32 GeV;
the fit parameters are r1, r2, and mfit;
(ii) f
or fK;��;T and f�T (set 4):

f�q2� 

r1

1 
 q2=m2
1

�
r2

�1 
 q2=m2
1�

2 ; (A2)

where m1 is the mass of the 1
 meson in the
corresponding channel cf. Table VI; the fit pa-
rameters are r1 and r2;
(iii) f
or f0:

f0�q2� 

r2

1 
 q2=m2
fit

; (A3)

the fit parameters are r2 and mfit.

The fit parameters are collected in the upper halves of
TablesVIII and IX. * is a measure of the quality of the fit
and defined as
t from f�T for set 4, which shows the same behavior as
hence is parametrized the same way, i.e., according to

014015
* 
 100max
t

��������f�t� 
 ffit�t�
f�t�

��������;
t 2 f0; 1

2; . . . ; 27
2 ; 14g GeV2;

(A4)

i.e., it gives, in percent, the maximum deviation of the
fitted form factors from the original LCSR result for q2 <
14 GeV2. From the * given in the table we conclude that
the overall quality of the fits is very good and best for the
pion and also that they work better for our preferred set 2
than for set 4.

2. Split form factors

As discussed in Sec. IV B, the values of the Gegenbauer
moments a1;2;4 are not very well-known. In Sec. IV D and
Tables VIII and IX we have presented results only for our
preferred choice of these parameters, i.e.,

aK1 �1 GeV� 
 0:17; a�;K;�2 �1 GeV� 
 0:115;

a�;K;�4 �1 GeV� 
 
0:015; aK1 �2:2 GeV� 
 0:135;

a�;K;�2 �2:2 GeV� 
 0:080;

a�;K;�4 �2:2 GeV� 
 
0:0089;

for set 4, the ai are scaled up to �IR 
 2:6 GeV. In order
to allow the inclusion of future updates of these values,
we split the form factors into contributions from different
Gegenbauer moments. We define14
14Note that this splitting is exact and valid for arbitrarily
large ai—there are no nonlinear terms in ai.
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f�q2� 
 fas�q2� � a1��IR�f
a1�q2� � a2��IR�f

a2�q2�

�a4��IR�fa4�q2�; (A5)

where fas contains twist-2 contributions from the asymp-
totic DA and also all higher-twist contributions not pro-
portional to a1;2;4. The task is now to fit all functions
fas;a1;a2;a4 , in the interval 0< q2 < 14GeV2, to appropri-
ate parametrizations.

For fas, which gives the dominant contribution to all
form factors, we use the same parametrization as for the
full form factors. The results are collected in the lower
halves of TablesVIII and IX. Again, the fits are very good
and best for the pion and set 2.

The fai turn out to be slowly varying functions of q2,
which can be fitted by a polynomial of 3rd degree:

fai�q2� 
 a� b�q2� � c�q2�2 � d�q2�3: (A6)

The measure of the quality of the fit has now to be defined
in a slightly different way, as the fai have zeros in the fit
interval. We define the fit quality 0 as

0 
 100

P
t
jf�t� 
 ffit�t�jP

t
jf�t�j

;

t 2 f0; 1
2; . . . ; 27

2 ; 14g GeV2;

(A7)

i.e., as the average deviation of the fit from the true value,
in percent. The fit parameters are given in TableV. As one
can read off from the 0’s, the fits are best for fa1 , still
good for fa2 , and worst for fa4 . The limited quality of the
fits for fa4 is due to a change of sign of its derivative at the
upper end of the fit interval, which cannot be reliably
reproduced by a polynomial of 3rd degree.

We would like to stress that none of the split form
factor parametrizations must be used for q2 larger than
14 GeV2. For calculating the full form factors for arbi-
trary a1;2;4, the following procedure should be followed:
(i) d
etermine a1;2;4 at the scale �2
IR 
 m2

B 
m2
b; the

scaling factors from � 
 1 GeV up to 2.2 GeV
(i.e., mb 
 4:8 GeV) are �0:793; 0:696; 0:590� for
�a1; a2; a4�;
(ii) c
hoose set 2 (preferred) or set 4;

(iii) c
TABLE X. Overview of the contributions included in the
alculate fas from the appropriate formula (A1)
and (A2) or (A3), using the fit parameters from
Table VIII or IX;
calculations. For the K we also include conformal spin j 
 3
(iv) c

for twist-2 which explicitly parametrizes SU(3) flavor break-
alculate fa1;2;4 from (A6), using the fit parameters
from Table V;
ing.
(v) c
alculate the total form factor from (A5);

(vi) e
tree O�(s�

xtend the form factor to the full kinematical

regime by fitting it to (A1) and (A2) or (A3).

twist 2 3 4 2 3 4
x-particle 2 2 3 2 3 2 2 3 2 3

jL 2 3
2

7
2 1 3 2 3

2 — — —

jNL 4 7
2

9
2 3 5 4 7

2 — — —

jNNL 6 9
2 — 5 — 6 — — — —
APPENDIX B: DISTRIBUTION AMPLITUDES

In this appendix we collect explicit expressions for all
the DAs that enter the form factors. These expressions are
well-known and have been taken from Ref. [16].
014015
The key point is that, to leading order in QCD, DAs can
be expressed as a partial wave expansion in terms of
contributions of increasing conformal spin, the so-called
conformal expansion. The coefficients of different partial
waves renormalize multiplicatively to LO in QCD, but
mix at NLO, the reason being that the symmetry under-
lying the conformal expansion, the conformal symmetry
of massless QCD, is anomalous and broken by radiative
corrections.

The two-particle twist-2 amplitude (8) is expanded as

��u;�� 
 �as�u�
X
n�0

an���C
3=2
n �,� (B1)

with , � 2u
 1 and a0 
 1 from normalization:Z 1

0
du��u;�� 
 1:

The C3=2
n �,� are Gegenbauer polynomials. The conformal

spin of the term in C3=2
n is j 
 n� 2. For the � and � one

has a2n�1 
 0 due to G-parity, but aK1 � �ms 
mq� for
the K [33], which is one source of SU(3) breaking for the
form factors.

As only the first few Gegenbauer moments an are
known numerically, we truncate the series at n 
 4; the
values of the conformal spins included are listed in
Table X, whereas the numerical values of the ai are
discussed in Sec. IV. The truncation is justified as long
as the perturbative kernels T with which the DAs are
convoluted are slowly varying functions of u, so that
the rapidly oscillating Gegenbauers suppress terms with
high n. In our case the T are nonsingular for all u,
including the end points u 
 0; 1, so the truncation of
the series is justified. The term labeled �as in (B1) is the
asymptotic DA which is reached for large scales �! 1;
it is completely determined by perturbation theory and
given by

�as�u� 
 6u�1 
 u�;

it is the same for all mesons. The Gegenbauer moments an
become relevant at moderate scales and depend on the
hadron in question.
-18



TABLE XI. One-loop anomalous dimensions of hadronic parameters in DAs.

�an ��3
�!3

��4
�!4

CF�1 
 2
�n�1��n�2� � 4

Pn�1
m
2

1
m�

16
3 CF � CA 
 7

6CF � 7
3CA

8
3CF 
 8

3CF � 10
3 CA

17At first glance it seems that �p is taken to a higher order in
conformal expansion than ��, but as discussed in the first

NEW RESULTS ON B! �;K;� DECAY FORM FACTORS . . . PHYSICAL REVIEW D 71, 014015 (2005)
Let us now define the three-particle DAs. To twist-3
accuracy, there is only one:

h0j �u�x�����5gG(=�vx�d�
x�j�
�p�i


 i
f�m

2
�

mu �md
�p(p�g�= 
 p(p�g�= 
 p=p�g�(

� p=p�g(��T �v; p � x� � . . . ; (B2)

where the ellipses stand for Lorentz structures of twist-5
and higher and where we used the following short-hand
notation for the integral defining the three-particle DA:

T �v; p � x� 

Z

D(e
ip�x�(u
(d�v(g�T �(d; (u; (g�:

(B3)

Here ( is the set of three momentum fractions (d (d
quark), (u (u quark), and (g (gluon). The integration
measure is defined asZ

D( 

Z 1

0
d(dd(ud(g0�1 
 (u 
 (d 
 (g�:

There are also four three-particle DAs of twist-4, defined
as
h0j �u�x����5gG(=�vx�d�
x�j�
�p�i


 p��p(x= 
 p=x(�
1

p � x
f�m

2
�Ak�v; p � x�

� �p=g
?
(� 
 p(g

?
=��f�m

2
�A?�v; p � x�; (B4)

h0j �u�x���ig eG(=�vx�d�
x�j�

�p�i


 p��p(x= 
 p=x(�
1

p � x
f�m2

�V k�v; p � x�

� �p=g
?
(� 
 p(g

?
=��f�m

2
�V?�v; p � x�; (B5)

g?�� is defined as

g?�� 
 g�� 

1

p � x
�p�x� � p�x��:

To next-to-leading conformal spin (j 
 7=2; 9=2), the
twist-3 three-particle distribution amplitude T is given
by15

T �(u; (d; (g� 
 360�3(u(d(
2
g

�
1 �!3

1

2
�7(g 
 3�

�
:

The two-particle twist-3 distribution amplitudes �p and
�� in Eqs. (9) and (10) depend on T through the equa-
tions of motions [16],16 which implies that their coeffi-
15In the literature the notation f3� 
 f��3 is also widely
used.

16An explicit expression for �p in terms of T is given in
Ref. [42], Eq. (16).

014015
cients are not independent from each other. The expansion
up to NNL order (j 
 3=2; 7=2; 9=2) reads17

�p�u� 
 1 �

�
30�3 


5

2
.2
�

�
C1=2

2 �,� �
�

3�3!3



27

20
.2
� 


81

10
.2
�a2

�
C1=2

4 �,�;

���u� 
 6u�1 
 u�
�
1 �

�
5�3 


1

2
�3!3 


7

20
.2
�



3

5
.2
�a2

��
C3=2

2 �,�:

The two-particle twist-4 corrections g� and A in Eq. (8)
are given to NNL conformal spin (j 
 1; 3; 5) by18

g��u� 
 1 �

�
1 �

18

7
a2 � 60�3 �

20

3
�4

�
C1=2

2 �,�

�

�



9

28
a2 
 6�3!3

�
C1=2

4 �,�;

A�u� 
 6u �u
�
16

15
�

24

35
a2 � 20�3 �

20

9
�4 �

�



1

15
�

1

16



7

27
�3!3 


10

27
�4

�
C3=2

2 �>� �
�



11

210
a2



4

135
�3!3

�
C3=2

4 �>�
�
�

�



18

5
a2 � 21�4!4

�
�f2u3�10 
 15u� 6u2� lnu� 2 �u3�10 
 15 �u

� 6 �u2� ln �u� u �u�2 � 13u �u�g:

Finally the three-particle twist-4 DAs are to NL spin
(j 
 3; 5) given by

Ak�(� 
 120(u(d(g�a10�(d 
 (u�g;

V k�(� 
 120(u(d(g�v00 � v10�3(g 
 1�g;

A?�(� 
 30(2
g�(u 
 (d��h00 � h01(g � h10�5(g


 3�=2g;

V?�(� 
 
30(2
gfh00(g � h01�(g(g 
 6(u(d�

� h10�(g(g 
 3=2�(2
u � (2

d��g;

where ( 
 1 
 ( and the aij, vij, and hij are related to
hadronic matrix elements �4, !4, and a2 as
reference of [16], �p and �� are not pure spin projections,
which means that the coefficients of a given Gegenbauer
polynomial contain contributions from different partial waves.

18Note that, contrary to appearances, the contributions of g�
and A to (8) do not vanish for zero meson mass: �4 implicitly
contains a factor 1=m2

� and survives in the limit m2
� ! 0.
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a10 

21

8
�4!4 


9

20
a2; v10 


21

8
�4!4;

v00 
 

1

3
�4; h01 


7

4
�4!4 


3

20
a2;

h10 

7

2
�4!4 �

3

20
a2; v00 
 


1

3
�4:

Taking everything together, we have seven hadronic pa-
rameters fcig 
 fa1; a2; a4; �3; !3; �4; !4g which parame-
trize all DAs to twist-4 and NLO in conformal spin. The
ci are scale dependent and are usually given at the scale
1 GeV. To LO in QCD, they do not mix under renormal-

ization, so that the scaling up to �IR 

��������������������
m2
B 
m2

b

q
is

given by

ci��IR� 
 L�ci==0ci�1 GeV�;

with L 
 (s��IR�=(s�1 GeV�, =0 
 11 
 2=3Nf. The
one-loop anomalous dimensions �ci are given in
Table XI. Note that the anomalous dimension increases
with increasing conformal spin, �� logj, which implies
that the truncation of the conformal expansion becomes
better the higher the scale. The numerical values for all

PATRICIA BALL AND ROMAN ZWICKY
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these parameters at the scale � 
 1 GeV are collected in
Table IV, taken from Ref. [16].
APPENDIX C: SPECTRAL DENSITIES FOR f�

The total spectral density of �� is obtained as sum of
all the contributions listed below, i.e.,

.��

 .T2 � .T3 � .� � .p � .2p

T4 � .3p
T4:

.T2 is the contribution from the twist-2 DA, .T3 from the
twist-3 three-particle DA, .��p� from the twist-3 two-

particle DA���p�, and .2�3�p
T4 from the two(three)-particle

DAs of twist-4. There is also one constant term, T4c,
which is due to twist-4 corrections that cannot be ex-
pressed via a dispersion relation, so that the total Borel-
transformed �� is given as

B̂�� 

Z 1

m2
b

ds.��
�s�e
s=M

2
� T4c:

We use as 
 CF
(s
4�
.T2 

3f�mb

�q2 
 s�7
�m2

b 
 q2��m2
b 
 s��15a4�42m8

b � q8 � 10q6s� 20q4s2 � 10q2s3 � s4


84m6
b�q

2 � s� � 28m4
b�2q

2 � s��q2 � 2s� 
 14m2
b�q

2 � s��q4 � 4q2s� s2��

��q2 
 s�2�6a2�5m
4
b � q4 � 3q2s� s2 
 5m2

b�q
2 � s�� � �q2 
 s��a0�q

2 
 s�

�3a1�
2m2
b � q2 � s���� � as

�
3a0f�mb

s�q2 
 s�3

�
�m2

b 
 s��
2m2
bq

2 � 2q4 �m2
b�4 � �2�s


�1 � �2�q2s
 3s2� � �m2
b 
 q2�

�
s�s
m2

b� log
�
1 


q2

m2
b

�
2
� s log

�
s

m2
b

��

2s� �m2

b 
 s� log
�
s

m2
b

��

�2�m2
b 
 s�

�
2m2

b 
 5s� s log
�
s

m2
b

��
12m4

b�q
2 � s� � 14q2s�q2 � s� 
 2m2

b�4q
4 � 19q2s� 7s2�


3�m2
b 
 q2��m2

b 
 s��2m2
b 
 q2 
 s� log

�
s

m2
b

��

 2�m2

b 
 q2��s
m2
b��
2m2

b � q2 � s�

�

�
6m2

b 
 23s� 6s log
�
s

m2
b

��
log

�
s

m2
b


 1
�
� 6�m2

b 
 q2�s�s
m2
b��
2m2

b � q2 � s� log
�
s

m2
b


 1
�

2

�6�m2
b 
 q2��m2

b 
 s��2m2
b 
 q2 
 s� log

�
1 


q2

m2
b

��
m2
b 
 s� s log

�
s

m2
b

�

 2s log

�
s

m2
b


 1
���


18�m2
b 
 q2��m2

b 
 s��2m2
b 
 q2 
 s�

�
Li2

�
q2

q2 
m2
b

�
� Li2

�
1 


m2
b

s

�
� 4Li2

�
1 


s

m2
b

���

�
a2f�mb

4s�q2 
 s�5
��m2

b 
 s��
24�m2
b 
 q2�q2�30m4

b 
 15m2
bq

2 � q4� � �5m6
b�1183 � 72�2�


20m4
b�407 � 36�2�q2 � 12�5 
 6�2�q6 � 216m2

b�11 � 2�2�q4�s
 �5m4
b�1525 � 72�2�


16m2
b�575 � 36�2�q2 � 36�73 � 6�2�q4�s2 � �m2

b�2083 � 72�2�


8�260 � 9�2�q2�s3 
 61s4� � 12�25�m2
b 
 q2��m2

b 
 s�s�5m4
b � q4 � 3q2s� s2
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 5m2
b�q

2 � s�� log
�
�2

m2
b

�

 6�m2

b 
 q2��m2
b 
 s�s�5m4

b � q4 � 3q2s� s2


 5m2
b�q

2 � s�� log
�
1 


q2

m2
b

�
2
� s log

�
s

m2
b

��

60m6

b�q
2 � s�

� 37q2s�q4 � 3q2s� s2� � 30m4
b�3q

4 � 8q2s� 3s2� 
m2
b�25q6 � 237q4s

� 261q2s2 � 37s3� � 6�m2
b 
 q2��m2

b 
 s��5m4
b � q4 � 3q2s� s2


 5m2
b�q

2 � s�� log
�
s

m2
b

��
� 2�m2

b 
 q2��m2
b 
 s��5m4

b � q4 � 3q2s� s2


 5m2
b�q

2 � s��
�
12m2

b 
 55s� 12s log
�
s

m2
b

��
log

�
s

m2
b


 1
�

� 12s�m2
b 
 q2��s
m2

b��5m
4
b � q4 � 3q2s� s2 
 5m2

b�q
2 � s�� log

�
s

m2
b


 1
�

2


 12�m2
b 
 q2��m2

b 
 s��5m4
b � q4 � 3q2s� s2 
 5m2

b�q
2 � s�� log

�
1 


q2

m2
b

�

�

�
m2
b 
 s� s log

�
s

m2
b

�

 2s log

�
s

m2
b


 1
��

� � 144�m2
b 
 q2��m2

b 
 s��5m4
b � q4

� 3q2s� s2 
 5m2
b�q

2 � s��
�
Li2

�
q2

q2 
m2
b

�
� Li2

�
1 


m2
b

s

�
� 4Li2

�
1 


s

m2
b

��
�

�
a4f�mb

10s�q2 
 s�7
�
��m2

b 
 s��30�m2
b 
 q2�q2�1260m8

b 
 1890m6
bq

2 
 105m2
bq

6 � 2q8

� 840m4
bq

4� 
 �21m10
b �23207 � 900�2� 
 63m8

b�18827 � 900�2�q2 
 700m4
b�439 � 45�2�q6

� 150m2
b�176 � 45�2�q8 � 30�19 
 15�2�q10 � 175m6

b�5603 � 360�2�q4�s

� 84�m8
b�13051 � 450�2� 
 112m6

b�22157 � 900�2�q2 
 800m2
b�616 � 45�2�q6

� 150�283 � 30�2�q8 � 525m4
b�3523 � 180�2�q4�s2�
7m6

b�119363 � 3600�2�

� 756m4
b�2131 � 75�2�q2 � 200�848 � 45�2�q6 
 10125m2

b�89 � 4�2�q4�s3

� �7m4
b�34967 � 900�2� 
 6m2

b�57989 � 1800�2�q2 � 125�1075 � 36�2�q4�s4

� �
2m2
b�10553 � 225�2� � �21461 � 450�2�q2�s5 � 181s6��
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�
91�m2

b 
 q2��m2
b 
 s�s�42m8

b � q8 � 10q6s� 20q4s2 � 10q2s3 � s4 
 84m6
b�q

2 � s�

� 28m4
b�2q

2 � s��q2 � 2s� 
 14m2
b�q

2 � s��q4 � 4q2s� s2�� log
�
�2

m2
b

�

 15�m2

b 
 q2��m2
b 
 s�s�42m8

b � q8 � 10q6s� 20q4s2 � 10q2s3 � s4 
 84m6
b��q

2 � s�

� 28m4
b�2q

2 � s��q2 � 2s� 
 14m2
b�q

2 � s��q4 � 4q2s� s2�

�
log

�
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q2

m2
b

�
2

� s log
�
s

m2
b

��

1260m10
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b�5q

4 � 12q2s� 5s2� 
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b�q

2 � s��13q4

� 48q2s� 13s2� � 121q2s�q8 � 10q6s� 20q4s2 � 10q2s3 � s4� � 105m4
b�9q

8 � 82q6s

� 160q4s2 � 82q2s3 � 9s4� 
m2
b�91q10 � 2305q8s� 9400q6s2 � 9700q4s3

� 2575q2s4 � 121s5� � 15�m2
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 q2��m2

b 
 s��42m8
b � q8 � 10q6s� 20q4s2

� 10q2s3 � s4 
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b�q
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b�2q
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 14m2
b�q

2 � s��q4
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