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We study a class of nonperturbative corrections to single-inclusive photon cross sections at measured
transverse momentum pT , in the large-xT limit. We develop an extension of the joint (threshold and
transverse momentum) resummation formalism, appropriate for large xT , in which there are no kinematic
singularities associated with recoil, and for which matching to fixed-order and to threshold resummation at
next-to-leading logarithm (NLL) is straightforward. Beyond NLL, we find contributions that can be
attributed to recoil from initial-state radiation. Associated power corrections occur as inverse powers of p2T
and are identified from the infrared structure of integrals over the running coupling. They have significant
energy-dependence and decrease from typical fixed-target to collider energies. Energy conservation,
which is incorporated into joint resummation, moderates the effects of perturbative recoil and power
corrections for large xT .
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I. INTRODUCTION

To study the interplay of perturbative and nonperturba-
tive dynamics in processes involving hadronic states it is
natural to begin with observables whose perturbative
analysis is well understood. For certain observables, per-
turbation theory not only provides predictions at leading
power in a large momentum scale, but also characterizes
power corrections in that scale. This can come about, for
example, through nonconvergent perturbative expansions
that exhibit sensitivity to the strong-coupling and/or vac-
uum structure of the theory [1].

Relying on perturbative resummations, this approach
has had phenomenological successes in the description of
a variety of inclusive and semi-inclusive cross sections.
These include average and differential event shapes, pri-
marily but not exclusively in e�e� annihilation [2–9], and
electroweak annihilation cross sections at measured trans-
verse momentum [10–13]. The value of the event shape or
lepton pair transverse momentum provides a second scale
in the cross section, and varying this scale changes the
relative importance of perturbative and nonperturbative
dynamics. Thus, the transition between perturbative and
nonperturbative QCD is in principle available for study in
these observables.

In this paper, we adopt this general philosophy and
employ the joint resummation [14,15] of threshold [16]
and transverse momentum [12] enhancements to study
power corrections in the hard-scattering scale pT for
single-particle inclusive (1PI) cross sections in the large
x2T � 4p2T=S region. Using direct photon production as an
example, we will show that these corrections exhibit sig-
nificant xT dependence, which moderates both perturbative
and nonperturbative recoil at large xT compared to esti-
mates based on transverse momentum resummation alone.
These conclusions are made possible by a simplification of
the joint resummation formalism that is specific to the
xT ! 1 limit.
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Direct photon production was originally envisioned as a
relatively straightforward process with which to test fixed-
order perturbative calculations and to determine the gluon
distribution [17–19]. The extensive data on direct photon
production [20–24], however, has turned out to be more
complex than was perhaps expected. Presumably for this
reason it has inspired varied theoretical and phenomeno-
logical studies [25–37]. Nevertheless, for this benchmark
process important questions remain unresolved. In particu-
lar, it has been argued that fixed-target data for direct
photon production in the lower pT range (roughly below
5 GeV) are difficult to reconcile with collinear-factorized
NLO cross sections [30,32]. Additionally, threshold resum-
mation [34–36] appears to explain the data only for larger
pT .

This difficulty has motivated the use of kT-dependent, or
unintegrated, parton distributions combined with recoiling
partonic 2! 2 subprocesses [31]. Information on the par-
tonic transverse momenta in such distributions may come
from resummed perturbation theory [12,13,31], and/or
from comparisons to data [11,30,38,39], including Drell-
Yan, photon and hadron pair cross sections. Probably the
simplest approach is to assume a Gaussian dependence
exp��k2T=hk

2
Ti� [18]. As we review below, perturbative

resummations predict logarithmic pT dependence for the
parameter hk2Ti. They also imply that hk2Ti depends on the
parton flavor.

The use of unintegrated distributions requires an exten-
sion of collinear factorization [40]. In particular, a techni-
cal challenge in the case of light particle production is the
potential for an artificial infrared singularity when the total
transverse momentum of the initial-state partons is com-
parable to the observed pT [18]. One way to avoid this
singularity is to impose strong ordering in transverse mo-
menta, as in [31], a procedure which requires definition
beyond leading logarithm. A related approach is described
in detail in Ref. [33], based on a specific implementation of
-1  2005 The American Physical Society
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kT-resummation. As presented in [33], however, fits in this
formalism favor fixed hk2Ti, with no indication of the
pT-dependence implied by kT resummation. Other studies,
however, seem to imply that hk2Ti is S-dependent [30]. In
summary, it remains unclear how much of what we inter-
pret as recoil, or parton transverse momentum, is perturba-
tive and how much nonperturbative. Here we come back to
this question in the context of a generalized resummation
formalism.

Resummed perturbation theory for 1PI cross sections
was extended in [14,15,41] using joint resummation. Joint
resummation systematically combines singular behavior at
zero transverse momentum for initial-state partons with
that at partonic threshold, where the initial state partonic
invariant mass ŝ � xaxbS is just large enough to produce
the observed final-state. This method was applied to Z and
Higgs production in [42,43], where no kinematic singular-
ities arise, because the produced electroweak state is mas-
sive and the transverse momentum of the lepton pair is
directly observed. In [42], some implications for the spe-
cific forms of power corrections were also pointed out.
Although the joint formalism was applied to high-pT pho-
ton production in [41], its application was hampered by the
same infrared singularity mentioned above, associated
with the production of a massless particle. As noted in
[41], the complexity of a simultaneous resummation in
transverse momentum and energy above threshold appears
to make impractical a matching of the sort developed for
transverse momentum resummation alone in [33].

In this paper, we extend this work, and revisit logarith-
mic and power corrections to the direct photon cross
section in the joint resummation formalism. Compared to
previous work, however, we use the kinematics of the
large-xT limit to reformulate joint resummation, taking
into account recoil effects in the partonic subprocess while
avoiding a kinematic singularity. The resulting resummed
cross section reduces to threshold resummation at next-to-
leading logarithm (NLL) and can be matched to finite-
order and threshold-resummed cross sections in a straight-
forward fashion. Beginning at NNLL, the cross section
also includes a contribution that can be identified as the
finite residue left from the cancellation of the transverse
momentum singularities of real and virtual gluons radiated
in the initial state. Enhancements to the cross section
associated with final state interactions are treated only to
leading power in this paper, and appear in the same manner
as in threshold resummation. In another paper we will
argue that the results found here are not changed qualita-
tively by these effects.

The parameters that control power corrections associ-
ated with joint resummation at partonic threshold are found
to be related to parameters familiar from the transverse
momentum distributions in electroweak annihilation. The
power corrections also inherit significant energy depen-
dence. For large xT , both perturbative recoil and nonper-
014013
turbative power corrections to the predictions of threshold
resummation are suppressed by the phase space restrictions
built into joint resummation. This effect is important,
however, only for xT near one, or equivalently for large
values of its conjugate Mellin moment variable N. For
smaller xT or N of order unity an analysis based on kT
resummation alone may be appropriate, but should be
matched to the results of joint resummation in the large
xT region.

We begin Sec. II with a brief summary of the joint
resummation formula as developed for direct photon cross
sections, and exhibit the kinematic singularity. In the next
subsection, the cross section is expressed as a double
inverse transform. This is followed by a simple reformu-
lation that eliminates the kinematic singularity and reduces
the jointly resummed cross section to a single transform
that extends threshold resummation for the direct photon
cross section. The resulting Sudakov exponents of joint
resummation are analyzed in Sec. III, where we identify
the form of the recoil and power corrections to the direct
photon cross section that are implied by joint resummation.
We explore the phenomenology of these corrections in
Sec. IV, exhibit the suppression of power corrections for
large S at fixed pT , and briefly discuss possible subdomi-
nant corrections not directly associated with partonic
threshold. We conclude with a summary, and a brief dis-
cussion of possible implications for an eventual global
treatment of single-photon and single-hadron cross
sections.

II. SELF-CONSISTENT RECOIL IN JOINT
RESUMMATION

A. Partonic recoil in direct photon production

Joint resummation [14,41] is an extension of threshold
[16] and transverse momentum resummations [12,13] that
unifies these two formalisms. So far, at the phenomeno-
logical level it has been applied primarily to the single
electroweak boson (mass Q) production cross sections at
low transverse momentum, QT 	 Q [42,43]. In this case,
threshold resummation is associated with corrections of the
form ��n

s=
1� z��ln2n�1
1� z�, with z � Q2=ŝ, where
���̂
s

p

is the invariant mass of the partonic pair that annihilates
into the observed boson. Such corrections are ‘‘implicit’’ in
the sense that they contribute to the hadronic cross section
only after convolution with the parton distribution func-
tions, and hence give nonlogarithmic, although potentially
significant, contributions to the cross section. Singular
corrections in QT , on the other hand, are explicit in the
cross sections themselves, appearing as terms like
�n
s=Q2

Tln
2n�1
QT=Q� directly for the measured spectrum.

For single-particle inclusive cross sections such as direct
photon production at measured pT  
QCD the situation is
slightly different. To leading order in the hard-scattering,
incoming partons produce a photon-parton system, which
subsequently evolves into a photon-jet pair. At higher
-2
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orders in �s, the pair recoils against unobserved soft gluon
radiation with total transverse momentum QT , in much the
same way as for a single electroweak boson. When only the
photon is observed, QT is integrated and singularities at
QT=pT � 0 cancel, analogously to singularities at 1� z �
0 in threshold resummation. Thus in the direct photon cross
section at measured pT , both transverse momentum and
threshold singularities are implicit rather than explicit.
Nevertheless, small-QT gluon radiation can play a signifi-
cant role in the cross section. Applied to direct photon
production, joint resummation attempts to estimate the
effects of these soft emissions systematically [14,41].

For an observed photon of momentum pT , the photon
transverse momentum in the pair center-of-mass is

p 0
T � pT �QT=2: (1)

In the limit that QT=pT 	 1 the cross section is a con-
volution [41] of the resummed distribution in QT with a
hard-scattering function evaluated at photon momentum
p0
T . Nonzero pair momentum QT , if in the direction of the

observed photon, decreases the scale of the hard-scattering,
and can thus enhance the cross section. As emphasized in
Ref. [41], however, when QT grows to the order of pT , this
approximation generates kinematic singularities. Their ef-
fect is non-negligible because the fall-off in soft gluon
transverse momenta has a powerlike perturbative tail. In
[41], we dealt with the kinematic singularity in a rather
crude way by cutting off the resummed QT spectrum at a
convenient scale QT � ��:

p3T
d�resAB!�X

dpT
�

Z
dQ2d2QTp

3
T

d�resAB!�X

dQ2d2QTdpT
�
 ���QT�;

(2)

where Q is the invariant mass of the photon-parton pair. At
threshold, the latter is fixed by

Q � 2pT: (3)

The scale �� in Eq. (2) may be regarded as a matching
scale. Ideally, at QT � ��< pT , one would replace the
resummed cross section p3Td�

res
AB!�X=dQ

2d2QTdpT by
the fixed-order (NLO) one, which does not have the kine-
matic singularity. In practice, this becomes a very compli-
cated procedure, and it is more convenient to derive a
jointly resummed cross section that does not require a
cutoff. We will show below that this may be achieved by
applying an additional, self-consistent approximation that
is exact at partonic threshold. To do so, we must recall the
explicit form of the cross section derived in Refs. [14,41].

B. The double inverse transform

Integrated over rapidities, the jointly resummed direct
photon cross section is written in terms of Mellin mo-
ments of the MS parton distributions, ~�a=H
N;�� �R
1
0 dxx

N�1�a=H
x;��, as
014013
p3T
d�
resum�

AB!�X

dpT
�

X
ab

p4T
8�S2

Z
C

dN
2�i

~�a=A
N;�� ~�b=B
N;��

�
Z 1

0
d~x2T
~x

2
T�

N jMab
~x
2
T�j

2��������������
1� ~x2T

q
� Cab!�c��s
��; ~x2T�

�
Z d2QT


2��2
�
 ���QT�

�
S

4p02
T

�
N�1

� Pab

�
N;QT;

2pT

~xT
;�

�
; (4)

where � is the factorization and renormalization scale, and
the jMabj

2 are squared amplitudes for the partonic pro-
cesses ab ! �c. The variable ~x2T is defined by

~x 2T �
1

cosh2 ~"
; (5)

where ~" is the rapidity of the direct photon in the center-of
mass of the hard-scattering. At partonic threshold, or
equivalently large values of the moment variable N, ~" is
forced to unity. For this reason, we will approximate

2pT=~xT � 2pT � Q (6)

in the functions Pab in Eq. (4), where dependence on pT is
logarithmic. The contour C in Eq. (4) and the b integral in
(7) below define the inverse transforms from N; b space to
z and QT . These contour integrals were described in detail
in Refs. [41,42].

The functions Pab in Eq. (4) were derived in Ref. [41]
and provide QT dependence at fixed N. Each Pab is itself
the Fourier transform of the exponentiated logarithmic
dependence on N and b,

Pab
N;QT;Q;�� �
Z

d2be�ib�QT exp�Eab!�c
N; b;Q;���;

(7)

where the Eab!�c are ‘‘Sudakov’’ exponents that we will
specify explicitly below. They can be split into initial and
final-state contributions, where, as shown in [41], all
b-dependence comes from the initial-state,

Eab!�c
N; b;Q;�� � EISab
N; b;Q;�� � EFSabc
N;Q;��:

(8)

The N-independent coefficients Cab!�c contain the effects
of hard virtual corrections and are perturbative series of the
form Cab!�c � 1� �s

� Cab!�c
1� � . . . . To next-to-leading
logarithmic accuracy one needs the first order terms which
may be found in [35], and are given in the Appendix below.
In this paper, we concentrate on the initial state exponent,
which contains all leading logarithmic effects and all b
dependence.

Threshold resummation is recovered from Eq. (4) by
setting b to zero in the exponents Eab!�c. In this case, the b
-3
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integral produces a delta function that sets p0
T � pT . Then

the exponent Eab!�c reverts to its threshold resummed
form, and S=4p02

T ! 1=x2T . Recoil enhances the cross sec-
tion Eq. (4) because even for QT 	 pT , the ratio S=4p02

T
can be larger than S=4p2T . For large enough QT , the factor
S=4p02

T can diverge, and a cutoff is required, as discussed
above. This momentum configuration, however, requires
QT � 2pT , and hence is far outside the region where
resummation is applicable. This problem is not due to
our approximation in the region of interest, but to our
extrapolation beyond that region. When QT approaches
pT in magnitude, the factorization between gluon emission
and hard-scattering fails. For large N, however, the ‘‘pro-
file’’ functions Pab vanish once QT >Q=N 	 pT . The
Pab’s vanish for moderate QT because the exponents
Eab!�c develop large (negative) logarithms once bQ=N >
1 (see below, Eq. (17)). This ensures that for QT > Q=N
the exponential exp��ib �QT� oscillates on a smaller scale
than the size of the region where exp�Eab!�c� is nonvan-
ishing. Put another way, because the widths of the profile
functions in b space are of order N=Q, their Fourier trans-
forms to QT space have widths of order Q=N. Numerical
examples for the QT integrand in Eq. (2) were given in
Ref. [41], which show the fall-off of the profile function for
increasing QT , followed by the kinematic singularity as QT
increases to the order of pT . We conclude that for large N
the true enhancement due to recoil is insensitive to mod-
ifications of the integrand above QT � pT=N 	 pT . Since
large N corresponds to xT ! 1, we expect a suppression of
recoil effects in this limit. In addition, N is conjugate to
k0=pT , where k0 is the energy of initial state radiation
[14,41]. The relation QT < pT=N is thus equivalent to
the restriction that the total transverse momentum of initial
state radiation is less than its energy. We will use this
observation shortly.

C. Elimination of the kinematic singularity

Given that all-order recoil effects enhance the jointly
resummed cross section from values of QT such that QT <
pT=N, it is only in this region that we are required to
maintain accurate expressions for leading QT behavior
(that is, 1=Q2

T times logarithms). In fact, to construct the
jointly resummed expression in Eq. (4), we have neglected
corrections that are nonsingular at QT � 0 and 1� z � 0.
This means that we do not in general have control over
corrections suppressed by powers of QT=pT , and also that
we are free to change the resummed expression at this level
of accuracy. Such a change will only affect the result from
the region of QT beyond the range that gives enhancement.
These modifications will not produce logarithms, and we
can adjust for them by matching to the cross section at
fixed order.

In summary, we are free to choose an extrapolation that
does not produce spurious singularities at large QT and
which does not change the singularity structure at QT � 0.
014013
This may be done in such a way that the resulting re-
summed expression remains accurate to NLL in the vari-
ables N and b.

In this spirit, we make the following approximation,
accurate to corrections that are suppressed by factors of
QT=pT :�

S

4
 ~pT �
1
2
~QT�

2

�
N�1

� 
x2T�
�N�1 exp

�

N � 1� ~QT � ~pT=p

2
T

�

	
1�O

�
NQ2

T

p2T

�
�
: (9)

Notice that the exponent reaches order unity at just those
values of QT for which the profile function begins to
decrease. Replacing the singular power dependence on
QT with the exponential, we retain the leading behavior
at low QT , but eliminate the kinematic singularity, as
desired. Again we emphasize that suppression for QT >
pT=N is a reflection of energy conservation.

Let us now study the effect of the approximation in
Eq. (9). Consider for the moment N � 1 � �iN with
N fixed and real. Using Eq. (7), we may then replace
the second line of Eq. (4) according to

Cab!�c
Z d2QT


2��2
�
 ���QT�

�
S

4p02
T

�
N�1

Pab

�
N;QT;

2pT

~xT
;�

�

���! Cab!�c
x2T�
�N�1

Z
d2b exp�Eab!�c
N; b;Q;���

�
Z d2QT


2��2
e�iN ~QT � ~pT=p2T�i ~b� ~QT : (10)

Here we have extended the QT integral to infinity. The
integral may then be performed, and gives &
2�
 ~b�
N ~pT=p

2
T�. Using this delta function to perform the b

integral in (10), and inserting the result back into Eq. (4),
we find

p3T
d�
resum�

AB!�X

dpT
�

X
ab

p4T
8�S2

Z
C

dN
2�i

~�a=A
N;�� ~�b=B
N;��

�
Z 1

0
d~x2T
~x

2
T�

N jMab
~x2T�j
2��������������

1� ~x2T
q

� Cab!�c
x2T�
�N�1

� exp
	
Eab!�c

�
N;�i

N � 1

pT
;Q;�

�

:

(11)

This expression for the direct photon cross section is
similar to the result for pure threshold resummation, except
for the additional b dependence, which has become depen-
dence on the combination 
N � 1�=pT in the exponent.
Although we have derived this form for imaginary values
of N � 1, it can be analytically continued to any N, and we
use (11) as the result of the QT integral in the high-xT
-4
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jointly resummed cross section. Recoil is self-consistently
taken into account through the exponential in (9), which is
accurate up to power corrections as shown. There are no
kinematic singularities at large QT . For QT competitive
with pT , of course, the approximations we have made fail,
but in this region the profile function is small.

D. Matching

Matching is now straightforward for the stabilized cross
section, Eq. (11), and can be handled as for the threshold-
resummed cross section. We simply expand the exponents
to NLO (for example) in terms of �s
pT�, and replace these
approximate expressions with the exact hard-scattering
cross sections at that order.

We emphasize that within our new treatment we have
been able to perform both the QT and the b integrals. This
is a great advantage for phenomenological applications,
since now the evaluation of the cross section is technically
equivalent to that of a standard threshold-resummed one. In
fact, as we show below, Eq. (11) is identical to normal
threshold resummation to NLL, but differs at NNLL
through a well-defined set of terms that can be identified
uniquely as recoil effects. The fact that the NLL threshold
logarithms are unchanged by recoil is an important con-
sistency check of our approach because these logarithms
are uniquely specified in the perturbative single-inclusive
cross section.

The final resummed cross section thus has a form that is
closely related to matched threshold resummation [42]:
p3T
d�resAB
dpT

�
X
ab

Z
C

dN
2�i

~�
0�
ab
N�

� Cab!�c
x2T�
�N�1eEab!�c�N;�i
N�1=pT �;Q;��

� p3T
d�AB

dpT

NLO
� p3T

d�AB

dpT

resj�2s ; (12)
where �
0�
ab
N� is the moment of the lowest-order cross

section,
~�
0�
ab
N� �

p4T
8�S2

~�a=A
N;�� ~�b=B
N;��

�
Z 1

0
d~x2T
~x

2
T�

N jMab
~x2T�j
2��������������

1� ~x2T
q ; (13)
and where the final terms in (12) express our matching to
the fixed-order (NLO, O
�2s�) cross section p3T

d�AB
dpT

NLO by
taking out the O
�2s� expansion of the perturbative part of

the resummed cross section, p3T
d�AB
dpT

resj�2s .
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III. PERTURBATIVE AND NONPERTURBATIVE
EXPONENTS

A. Resummed perturbative recoil

To clarify the relationship between joint and threshold
resummation and the implications of our new treatment of
recoil, we review the N and b dependence of the resummed
exponent at NLL found in [14]. To all orders, the NLL
initial-state logarithms in N and b are generated from an
integral, derived using the eikonal nature of soft gluon
emission, that extends down to zero scale in the running
coupling. It may be written in a convenient form as

EISab
N; b;Q;� � Q�

�
Z Q2

0

dk2T
k2T

X
i�a;b

Ai��s
kT��
	
J0
bkT�K0

�
2NkT
Q

�

� ln
� �NkT
Q

�

; (14)

where Q � 2pT (see Eq. (3)) is the minimal center of mass
energy of the partonic subprocess. Here and below, we
define

�N � Ne�E: (15)

The anomalous dimensions Aa
�s� have the familiar ex-
pansion Aa
�s� �

P
n
�s=��

nA
n�
a , with

A
1�
a � CaA


2�
a �

1

2
CaK

�
1

2
Ca

	
CA

�
67

18
�

�2

6

�
�
10

9
TRNf



; (16)

where Cq � CF for quarks and Cg � CA for gluons. The
presence of the Bessel function K0
2NkT=Q� reflects the
conservation of energy that must be imposed to resum
threshold and kT enhancements simultaneously. For the
analogous exponent in kT resummation, the function
K0
2NkT=Q� in Eq. (14) is replaced by � ln
kT=Q� and
ln
 �NkT=Q� by ln
kT=Q�, and the kT integral produces
logarithms of bQ for any b > 1=Q. In joint resummation,
however, b must be greater than N=Q to produce loga-
rithms. As a result, for N ! 1 the profile function in QT
space decreases once QT > Q=N, as discussed in Sec. IIB
above.

Starting from Eq. (14) we isolate the effect of perturba-
tive recoil by separating it from the corresponding ex-
ponent for threshold resummation. Since threshold resum-
mation is already accurate to NLL in the transform variable
N [14], for consistency recoil must appear first at the next
logarithmic order, and it does. As we shall see, however, its
influence on the 1PI cross section need not be negligible in
perturbation theory. In addition, the integral over the
anomalous dimension A��s
kT�� through the infrared re-
gion suggests a specific set of nonperturbative corrections,
whose effects we will also study. For initial-state radiation,
-5
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the form of contributions beyond NLL accuracy is given in
[14]. Threshold logarithms associated with final-state in-
teractions beyond NLL will be the subject of a separate
investigation. We will argue that they respect the pattern
for power corrections found here.

As directed by Eq. (11), we now set b � �i
N � 1�=pT
in Eq. (14), noting the Bessel function relation J0
iz� �
I0
z�. We then reorganize the equation as

EISab
N; b � �i
N � 1

pT
;Q;� � Q�

�
Z 4p2T

0

dk2T
k2T

X
i�a;b

Ai��s
kT��
	
K0

�
NkT
pT

�

� ln
� �NkT
2pT

�

�

Z 4p2T

0

dk2T
k2T

X
i�a;b

Ai��s
kT��

�

	
I0

�

N � 1�kT

pT

�
� 1



K0

�
NkT
pT

�

� EISab;thr
N;pT� � &Eab;rec
N; pT�; (17)

where we have again used Q � 2pT . We have identified
the first term on the right-hand-side of Eq. (17) with the
exponent for threshold resummation for initial-state loga-
rithmic behavior in N [14].

The second term on the right side of (17) is the recoil
correction. It now amounts simply to an N-dependent
correction to the threshold-resummed cross section. As
required by the self-consistency of NLL threshold resum-
mation, this expression is free of NLL logarithms in N,
because for small arguments z,

I0
z� � 1�
z2

4
; K0
z� � � ln

	
ze�E

2


�
1�

z2

4

�
�

z2

4
:

(18)

On the other hand, as z � NkT=pT becomes large with
Re
z�> 0, I0
z� increases as ez=

���������
2�z

p
, while K0
z� de-

creases as e�z=
���������������

2z=��

p
, so that

I0
z�K0
z� !
1

2z
�Re
z�> 0�: (19)

At fixed coupling, and replacing N � 1 by N in I0 in
Eq. (17), the net result is a convergent, N-independent
integral, equal to 
Ca � Cb� � 
�s=2�� 2
2�, a modest
but still significant contribution in the exponent. Although
not characterized by a large logarithm, this result is the
unique, finite remainder left from the cancellation between
real and virtual emission after the QT integral, at leading
power in N and �s in the exponent. As such, it is not a
generic finite correction, but the soft tail of an infrared safe
integration. Although finite-order-by-order in perturbation
theory, such contributions are subject to N-dependent cor-
rections associated with the running of the coupling.

For large values of N, we can readily estimate the effect
of the running coupling to perturbative recoil, by noting
014013
that the combination 
I0 � 1�K0 becomes sharply peaked
near kT � pT=N, with a width that is asymptotically neg-
ligible compared to the scale on which the coupling runs.
As a result, to NNLL, we may isolate perturbative recoil
including the running of the coupling by the expression,

&ENNLLab;rec � 
Ca � Cb�
�s
4p

2
T= �N

2�

2�
2
2�: (20)
We will use this expression below to estimate the effects of
perturbative recoil.

B. Nonperturbative corrections from threshold

The recoil exponent &Eab;rec
N; pT� in Eq. (17) provides
an estimate of perturbative recoil, and is also a guide to
nonperturbative power corrections. The most basic obser-
vation about these corrections is that they factorize and
exponentiate, in much the same manner as for event shapes
in e�e� annihilation and for the transverse momentum
distributions of electroweak boson production. This fol-
lows from the form of the resummed exponent, in which
the entire dependence on the running coupling is through a
single, integrated scale, kT . We emphasize that a similar
result holds for the full eikonal exponent to all logarithmic
order. Indeed, the same underlying nonperturbative pa-
rameters that appear in Drell-Yan cross sections will ap-
pear in power corrections to direct photon cross sections.
As noted in [42], power corrections from threshold and
transverse momentum resummations are separately addi-
tive in the exponent. As we shall see, this leads to an extra
power correction compared to estimates based on trans-
verse momentum resummations alone [12,13].

Using the additivity of the nonperturbative corrections,
we write for the full exponent

Eab!�c
N; pT� � EPTabc � &Enpab;

EPTabc � EPTabc;thr � &ENNLLab;rec ;
(21)
where &Enpab accounts for nonperturbative contributions
from low scales in kT , of order 
QCD. The full perturbative
threshold exponent at NLL, EPTabc;thr, with initial- and final-
state contributions, was derived in [35–37,44]. As noted
above, in this study we derive nonperturbative and recoil
corrections associated with initial-state radiation only.

For small to moderate values of N, the integral in
EISab
N; pT� is perturbatively dominated. Nonperturbative
corrections are generated by treating NkT=pT as a small
parameter in both the threshold and recoil exponents of
Eq. (17). Expanding the integrands of both &Eab;rec
N; pT�
and EISab;thr in Eq. (17) for small k2T , we parametrize the
resulting 1=p2T terms as
-6
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&Enpab �

N � 1�2 � N2

4p2T

X
i�a;b

	
31;1i � 31;0i ln

�
2pT

4 �N

�


�
N2

4p2T

X
i�a;b

31;0i 
N4=pT < 1�; (22)

where the N2 terms come from the threshold (K0) integral
in Eq. (17), while the 
N � 1�2 term is from the recoil (I0)
term. The logarithm in both cases arises from the expan-
sion of the function K0
2NkT=pT�, and, as noted above, its
presence can be traced to the imposition of energy conser-
vation in joint resummation. The constants 3m;n

i in Eq. (22)
are interpreted as the nonperturbative content of moments
of the running coupling [3–5], with indices in a notation
inspired by [4]. More specifically, these are moments of the
anomalous dimensions Aa��s
kT��, [6]

3m;n
a �

Z 42

0
dk2T
k

2
T�

m�1Aa��s
kT��lnn
�
kT
4

�

�
Ca

�

Z 42

0
dk2T
k

2
T�

m�1�s
kT�ln
n
�
kT
4

�
� . . . : (23)

In Eq. (23), the upper limit 4 for the k2T integral, which also
appears as the scale in logarithms of pT in Eq. (22), is a
factorization scale. To isolate a truly nonperturbative cou-
pling, as in Ref. [4], we could subtract perturbative con-
tributions to the 3’s to the order corresponding to our level
of resummation. Since this process does not change the pT
and N dependence of the expressions, and because the
nonperturbative parameters appear in the same manner
here as in electroweak annihilation [12], it is not necessary
to provide such an analysis for our purposes.

As in the case of electroweak bosons [10,11,45], and in
contrast to event shapes [2,3,5,7], only even powers result
from the expansion of the Bessel functions in (17), the first
of which has been displayed in Eq. (22). For N not too
large, that is, for N
QCD 	 pT we expect only one or two
power corrections to be significant, but for larger N, the
resummed cross section should be supplemented by a
function with a more general N-dependence [6,7]. In the
following section, we will study the phenomenological
implications of such dependence.

C. The full exponent

Summarizing our results so far, the full exponent is the
sum of a perturbative threshold exponent, perturbative
recoil and nonperturbative corrections,

Eab!�c

�
N; i

N � 1

pT
;Q;�

�
� EPTabc;thr
N; pT�

� &ENNLLab;rec 
N;pT� � &Enpab;

(24)

where the nonperturbative exponent &Enpab is given in (22)
above and the NNLL recoil correction &ENNLLab;rec by (20).
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Eab;thr
N;pT� is the full exponent for threshold resumma-
tion in prompt-photon production, including initial and
final-state contributions [35–37,44] (see the Appendix).
IV. PHENOMENOLOGY OF POWER
CORRECTIONS

The expressions derived above provide useful informa-
tion on the phenomenology of power corrections associ-
ated with soft gluon emission. First, pT dependence enters
through even powers, with a leading nonperturbative coef-
ficient that is identical to that encountered as the coefficient
of b2 in electroweak annihilation. For comparison, the
latter may be written in terms of the same parameters
3m;n
q as

&Enpq �q
Drell� Yan� � �
b2

4

X
i�q; �q

	
31;1i � 31;0i ln

�
Q
4

�

:

(25)

In contrast, for the single-particle inclusive cross section in
joint resummation the nonperturbative corrections in
Eq. (22) possess highly nontrivial N-dependence, from
recoil directly, as well as from threshold resummation.
This implies that these power corrections inherit nontrivial
energy-dependence, and we may expect their effects to
change with the overall energy.

To see the qualitative energy-dependence implied by the
nonperturbative exponents derived above, we note that the
Mellin moment N and the variable lnx2T are in a conjugate
relationship, exhibited in the inverse transform (12),

N $
1

ln
1=x2T�
: (26)

Identifying these quantities in the nonperturbative power
correction of Eq. (22), and recalling that xT � 2pT=

���
S

p
, we

immediately see that the nonperturbative exponent is sup-
pressed not only by a power of pT , but also by a power of
lnS at fixed pT ,

&Enpab $
31;0a � 31;0b
4p2T ln

2
 S
4p2T

�
ln
	
2pT ln

�
S

4p2T

�

: (27)

Even though this expression is eventually to be convoluted
with the hard-scattering cross sections and the parton dis-
tributions, we may conclude that at fixed pT , the impor-
tance of power corrections will decrease as

���
S

p
increases.

At the same time, as xT approaches unity, the coefficient of
1=p2T diverges, and the nominal power correction may
dominate at the edge of phase space. Even as this coeffi-
cient diverges, however, the logarithm in the numerator
eventually changes sign, so that for xT close enough to
unity the enhancement becomes a suppression. This is not
an accident, because the presence of the factor of N in the
logarithm reflects energy conservation, which is respected
by joint resummation. To give a realistic estimate of the
-7



FIG. 1. Ratios of direct photon cross sections computed with
threshold resummation and nonperturbative shape function (28)
to cross sections with threshold resummation only. The curves
are given as functions of xT for kinematics relevant for com-
parison to fixed-target and ISR experiments (see text).
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behavior of these nonperturbative corrections, we return to
moment space.

For the dominant form of the nonperturbative exponent
at moderate N and pT , we are guided by Eq. (22). For
larger N, however, all power corrections in N may become
relevant. To account for this, we introduce a function of
N=pT that generalizes this expression. We will refer to this
as a shape function by analogy to the discussion of [6]. We
tailor the N-dependence to the behavior of the Bessel
functions of Eq. (17) for large and small values of their
arguments, which both depend on the combination N=pT .
Matching to the small-N behavior of the Bessel functions
in (18) and to the large-N behavior in (19), we modify
Eq. (22),

&Enpab � �0
Ca � Cb

�

N � 1�2 � N2

4p2T

ln
1� 2pT
�NQ0

�


1� Q0N
pT

�2
: (28)

Here the scale �0 is a parameter of dimension mass
squared, which can be thought of as the integral of
Aa��s
kT��
�=Ca� over k2T with unit weight in (23). The
overall factors of color charges in Eq. (28) reflect the
proportionality of the coefficients Aa to Ca. The parameter
Q0 is a scale whose value accounts for nonlogarithmic
terms. If 31;1 � 0 in (23), we may identify Q0 with the
scale 4 in Eq. (23). This is the result found in Ref. [4] with
4 � 2 GeV.

To estimate the impact of these nonperturbative correc-
tions for large xT , we are aided by our experience with
electroweak boson production and with perturbative
resummation. As can be seen from Eq. (23), the non-
perturbative parameters in our approach are related to
moments of the strong coupling, which suggests some
form of universality for them. In a study of Z production
at the Tevatron we estimated nonperturbative effects; the
value obtained may be translated into �
31;0q � 31;0�q �=4��
ln
mZ=4� � 0:8 GeV2 in Eq. (28), or 31;0q � 31;0�q �

0:4 GeV2, consistent with the result quoted in [4] for
4 � 2 GeV. This implies for the parameter �0 in (28),

�0
Drell� Yan� �
�31;0q
CF

� 1 GeV2: (29)

The nonperturbative exponent &Enpab in Eq. (28) with this
value of �0 is our best estimate of the N-dependent
exponent at large N. Substituted into the full exponent
(24) it provides a measure of power corrections at large
xT .

To illustrate the influence of these power corrections, we
compute the ratio of the cross section with threshold
resummation plus the nonperturbative term (28) to the
cross section with threshold resummation alone. We do
this for several cases that are directly relevant for compari-
son with experiments: for pBe scattering with fixed-target
beam energies E � 530 GeV and E � 800 GeV (E706
[22]), for pp and �pp scattering with beam energy
014013
E � 315 GeV (UA6 [21]), and for pp scattering at���
s

p
� 63 GeV (R806 [46]). We use the GRV set of parton

distributions from Ref. [47]. We normalize all our results to
the threshold-resummed cross section, i.e., Eq. (12) with
&ENNLLrecoil � &Enp � 0. This is advantageous because the
dependence on the factorization and renormalization scales
is small in this cross section, and because our recoil and
nonperturbative corrections have been defined relatively to
it. Note that as implied by Eq. (4) our resummation is done
for the cross section integrated over all photon rapidities. In
principle, we should account for the finite ranges of rapid-
ity covered in the various experiments, which could be
done using the techniques developed in Ref. [37].
However, as implied by the results of [37], the dependence
on rapidity will be very weak in the ratios we consider here
and can be neglected for simplicity. Our results are always
matched to the NLO cross section as described after
Eq. (12). We do not take into account a photon fragmenta-
tion contribution to the cross section.

Shown in Fig. 1 are results for the energies discussed
above, as functions of xT . The enhancements exhibited in
the figure are both small and for the most part relatively
flat. We have included values of xT far from unity, espe-
cially for R806, to illustrate the point that these power
corrections decrease with energy. For RHIC and CDF
energies, the effects of (28) are practically negligible, of
the order of just a few tenths of a percent. We emphasize,
however, that this result applies only to extrapolations to
small xT of the expressions derived for xT ! 1, and is not
necessarily representative of the true behavior of the cross
section at low xT .

The moderation of the xT dependence of the cross
section at large xT in Fig. 1 associated with energy con-
-8
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servation is illustrated by comparison to Fig. 2, which
shows the analogous ratios when the nonperturbative co-
efficient is allowed to reflect the b2 $ 
N � 1�2=p2T de-
pendence that is characteristic of kT resummation, starting
from Eq. (25), rather than (28). The shape function then has
the same overall quadratic N-dependence as (28), but lacks
the N-dependence in the logarithm and the denominator
that reflects the influence of the K0 function in (17). We
thus have
&Enpab � �0
Ca � Cb

�

N � 1�2

4p2T
ln
�
2pT

4

�
: 
Fig:2� (30)
Relative to Fig. 1, these curves show both strong enhance-
ments and marked upturns toward increasing xT .

To complete this discussion, we consider two additional
variations of the cross sections computed with Eq. (28).
So far, we have ignored the term in (24) associated with
perturbative recoil, Eq. (20). It is probable that the incor-
poration of recoil at NNLL would affect the values of
the nonperturbative exponents. Indeed, since both NNLL
recoil and power corrections are derived from the same
starting expression, Eq. (14), there is a serious potential for
double counting. On the one hand, for small values of
NQ0=pT the recoil integral in Eq. (14) is dominated
by kT that are outside the soft region kT � Q0. On the
other hand, once N � pT=Q0, the integration region that
gives rise to the result (20) overlaps the power corrections
almost entirely. Nevertheless, it is interesting to test the
influence of the corrections suggested by Eq. (20). To
correct for double counting, at least partially, we use a
modified estimate for recoil, which has the property that
for small N it approaches (20), while it vanishes for large
NQ0=pT ,
FIG. 2. Same as Fig. 1, but for the kT-inspired nonperturbative
shape function (30).
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& �ESUBab;rec � 
Ca � Cb�
�s
4p2T= �N

2�

�

�
2
2�
2

	
1�

2

2
2�

�
NQ0

2pT

�
2 ln
1� e1=2��E 2pT

NQ0
�

1� e1=2��E NQ0
2
2�pT



:

(31)

The specific form of the subtraction has been chosen to
reproduce the integral of the recoil term in Eq. (17) over the
range 0 � kT � Q0 at fixed coupling. For N fixed, Eq. (31)
is a leading power contribution, with power-suppressed
corrections, which, however, conspire to cancel the leading
term when NQ0=pT  1. Figure 3 shows the same sets of
ratios as in Fig. 1, including now & �ESUBab;rec in addition to
&Enpab, Eq. (28). To avoid double-counting with the Cab!�c

coefficents in the cross section, Eq. (11), we subtract the
leading term 
Ca � Cb��s
4p2T�2
2�=2� from the latter.
We see a substantial increase compared to the pure power
corrections, in addition to a moderate slope toward large
xT . Evidently, the enhancement associated with the scale of
the coupling dominates the cancellation in (31) at large N,
at least throughout the experimental ranges shown. We do
not take the level of this enhancement too literally, given
our rough treatment of double-counting, but conclude that
it does demonstrate the possible importance of nonleading
logarithms, even when multiplied by powers of 1=N [25],
and their interplay with the magnitudes of the parameters
of power corrections.

Finally, we illustrate the possible influence of terms that
are nonleading by a power in N. Although we have derived
Eq. (11) only for xT ! 1, the form is sufficiently general
that it can be extrapolated to any value of xT . Clearly, as we
leave the kinematic regions where large N dominates,
terms that are nonleading by powers are expected to be-
come more and more important. Indeed, nonleading terms
may be generated from the low-scale limit of partonic
FIG. 3. Same as Fig. 1, but including the subtracted NNLL
recoil exponent (31).
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evolution. Thinking of the pervasive upturn of experimen-
tal cross sections relative to NLO noted long ago [26],
we assume a phenomenological parametrization for the
N-dependent nonperturbative exponents that behaves as
N=p2T for large N, is related to the splitting functions,
and enhances the cross section at low xT . The simplest
ansatz of this sort is the following modification of the
quark-gluon exponent (only),

& �E
gq�np � & �E
g �q�np � &E
gq�np ��1
CA

4�

N � 1�2

p2T

1

N � 1
;

& �E
q �q�np � &E
q �q�np : (32)

The parameter �1 is defined by analogy to �0 in (28) and
(22), but does not have a direct or indirect interpretation in
terms of resummed perturbation theory.

In Fig. 4 we show the same ratios, but now computed
with the modified shape functions (32), choosing �1 �
�0 � 1 GeV2. These ratios indeed show a noticeable
upturn toward small xT . We observe, however, that
the magnitudes of the enhancements are nowhere near
those necessary to describe the low-xT direct photon
data, especially of E706 [22]. Since we are now consider-
ing terms that are subleading at large N, we also make
exploratory calculations at higher energies, relevant to
comparisons with the collider experiments at Tevatron
(

���
s

p
� 1800 GeV) and RHIC (

���
s

p
� 200 GeV). As one

can see, rather sharp upturns at pT & 5 GeV are a distinct
possibility here, if our ansatz in Eq. (32) is realistic. We
finally note, without claims of physics significance, that it
is possible to provide a qualitatively successful (62 per
degree of freedom approximately 1.5) ‘‘global’’ fit of direct
photon data from E706, UA6, R806, and even CDF, with
the ansatz (32), but only for values of �1 in the range of
FIG. 4. Same as Fig. 1, but for a nonperturbative function with
terms nonleading in N as given by Eq. (32). We also show results
at

���
s

p
� 1800 GeV and

���
s

p
� 200 GeV, relevant for comparisons

with Tevatron and RHIC data.
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10 GeV2, which implies �1CA=4�� 2 GeV2. The origin
of such a large scale, occuring as roughly 2 GeV2=p2T , is at
the least not obvious. On the other hand, it could be simply
an artifact of using Eq. (11) outside the region where the
exponent E
N; b� in (17), evaluated at b � �i
N � 1�=pT ,
has a straightforward interpretation. Even more serious,
however, are the potential consequences of such correc-
tions for pion production at collider energies. These issues
can only be clarified by further work. We again emphasize
that we can offer no specific justification for the form (32),
beyond the analogy to the singularity at N � 1 in the
gluon-gluon splitting function.
V. CONCLUSIONS

We have presented an analysis of recoil and power
corrections from initial state radiation in single inclusive
direct photon cross sections at large xT . In this limit,
we resum logarithmic corrections in N and simultaneously
control logarithmic and power corrections in NQT=pT ,
where QT is a measure of partonic transverse momen-
tum. Our new treatment avoids any kinematic singularity
when QT is large. The resulting expression is equivalent
to threshold resummation at NLL in perturbation the-
ory, with NNLL recoil effects. We have also shown that
we may exponentiate power corrections of the form
NQT=pT .

In the large xT region, leading power corrections enter in
moment space as powers of 
N=pT�

2, with the leading term
multiplied by a logarithm of the form ln
pT=NQ0�. We
have observed that at large xT power corrections are sup-
pressed relative to expectations based on kT resummation
alone. This suppression is attributable to phase space re-
strictions on initial state radiation near partonic threshold.
This result raises the possibility of a link between a
matched kT resummation similar to that of Ref. [33], at
relatively low xT , and a joint resummation at large xT . We
have presented our analysis for initial-state radiation,
which includes all kT dependence in joint resummation.
A detailed discusssion including the role of final-state
radiation will be given elsewhere.

Looking beyond direct photon production, we antici-
pate that similar analyses may shed light on single-hadron
and jet production. A simple, but possibly significant
observation is that in single-hadron cross sections, the
relevant scale for power corrections associated with
partonic threshold and transverse momentum is ŝ, the to-
tal partonic c.m. energy squared. Because ŝ � z�2
4p2T�,
with z the momentum fraction associated with frag-
mentation, nonperturbative effects that are inverse pow-
ers of ŝ are suppressed by factors of z2 when expressed
in terms of p2T . Issues such as these will be relevant to
an effort to tie together perturbative and nonperturba-
tive effects in the full range of inclusive hadronic reac-
tions.
-10
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APPENDIX

In this appendix we provide the explicit forms of the
exponents Eab!�c, as given in [35]. According to Eq. (8)
the exponent is split up into pieces associated with initial
and final state contributions. According to Eq. (17), within
our treatment of recoil, the initial-state exponent becomes
EISab;thr
N; pT� � Eab;rec
N; pT�. One has

EISab;thr
N; pT� �
X
i�a;b

	
1

�s
�2�
h
0�i 
3�

� h
1�i 
3; 2pT;�;�F�



; (A1)

where

h
0�i 
3� �
A
1�
i

2�b20
�23� 
1� 23� ln
1� 23��; (A2)

and

h
1�i 
3; 2pT;�;�F� �
A
1�
i b1
2�b30

	
1

2
ln2
1� 23� � 23

� ln
1� 23�


�

1

2�b0

	
�

A
2�
i

�b0

� A
1�
i ln

�
4p2T
�2

�

�23� ln
1� 23��

�
A
1�
i

�b0
3 ln

�
4p2T
�2

F

�
: (A3)

For completeness, we have distinguished between the re-
normalization scale � and the factorization scale �F. The
A
1�
i are as in Eq. (16), and we have defined

3 � b0�s
�2� ln �N; b0 �
11CA � 4TRNF

12�
;

b1 �
17C2A � 10CATRNF � 6CFTRNF

24�2
:

(A4)

For the NNLL exponent Eab;rec
N; pT� we obtain

ENNLLab;rec � 
Ca � Cb�
�s
�

2�

2�
1� 23�
2
2�: (A5)

The exponent for the final state reads:
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EFSabc
N; 2pT;�� �
1

�s
�2�
f
0�c 
3� � f
1�c 
3; 2pT;��

� g
1�abc
3�; (A6)

with

f
0�a 
3� � 2h
0�a 
3=2� � h
0�a 
3�; (A7)

f
1�a 
3; 2pT;�� � 2h
1�a 
3=2; 2pT;�; 2pT�

� h
1�a 
3; 2pT;�; 2pT�

�
A
1�
a ln2

�b0
�ln
1� 23� � ln
1� 3��

�
B
1�
a

�b0
ln
1� 3�; (A8)

g
1�q �qg
3� � �
CA

�b0
ln
1� 23� ln2; (A9)

g
1�qgq
3� � �
CF

�b0
ln
1� 23� ln2: (A10)

Here,

B
1�
q �

3

4
CF; B
1�

g �
80
4
: (A11)

Finally, the coefficients Cab!�c of Eq. (4) read [35]:

Cq �q!�g � 1�
�s

�

	
�
1

2

2CF � CA� ln2�

1

2
K � Kq

� 22
2�
�
2CF �

1

2
CA

�
�
5

4

2CF � CA�ln

22

�
3

2
CF ln

2p2T
�2

F

� �b0 ln
2p2T
�2



; (A12)

Cqg!�q � 1�
�s

�

	
�
1

10

CF � 2CA� ln2�

1

2
Kq

�
2
2�
10


2CF � 19CA� �
1

2
CFln

22

�

�
3

4
CF � �b0

�
ln
2p2T
�2

F

� �b0 ln
2p2T
�2



; (A13)

where

K � CA

�
67

18
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[25] M. Krämer, E. Laenen, and M. Spira, Nucl. Phys. B 511,
523 (1998).

[26] J. Huston et al., Phys. Rev. D 51, 6139 (1995).
[27] H. Baer and M. H. Reno, Phys. Rev. D 54, 2017

(1996).
[28] H. L. Lai and H. n. Li, Phys. Rev. D 58, 114020

(1998).
[29] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S.

Thorne, Eur. Phys. J. C 4, 463 (1998).
[30] L. Apanasevich et al., Phys. Rev. D 59, 074007 (1999).
[31] M. A. Kimber, A. D. Martin, and M. G. Ryskin, Eur. Phys.

J. C 12, 655 (2000).
[32] P. Aurenche et al., Eur. Phys. J. C 9, 107 (1999).
[33] C. E. Fink, hep-ph/0105276.
[34] E. Laenen, G. Oderda, and G. Sterman, Phys. Lett. B 438,

173 (1998).
[35] S. Catani, M. L. Mangano, and P. Nason, J. High Energy

Phys. 07, 024 (1998); S. Catani, M. L. Mangano, P. Nason,
C. Oleari, and W. Vogelsang, J. High Energy Phys. 03, 025
(1999).

[36] N. Kidonakis and J. F. Owens, Phys. Rev. D 61, 094004
(2000).

[37] G. Sterman and W. Vogelsang, J. High Energy Phys. 02,
016 (2001).

[38] U. D’Alesio and F. Murgia, Phys. Rev. D 70, 074009
(2004).

[39] J. F. Owens, Phys. Rev. D 65, 034011 (2002).
[40] S. Catani, M. Ciafaloni, and F. Hautmann, Phys. Lett. B

242, 97 (1990); 366, 135 (1991); J. C. Collins and R. K.
Ellis, Nucl. Phys. B 360, 3 (1991); G. Marchesini and
B. R. Webber, Nucl. Phys. B 386, 215 (1992); S. Catani
and F. Hautmann, Nucl. Phys. B 427, 475 (1994); Nucl.
Phys. B 366, 135 (1991).

[41] E. Laenen, G. Sterman, and W. Vogelsang, Phys. Rev.
Lett. 84, 4296 (2000).

[42] A. Kulesza, G. Sterman, and W. Vogelsang, Phys. Rev. D
66, 014011 (2002).

[43] A. Kulesza, G. Sterman, and W. Vogelsang, Phys. Rev. D
69, 014012 (2004).

[44] S. Catani, M. L. Mangano, P. Nason, and L. Trentadue,
Nucl. Phys. B 478, 273 (1996).
-12



RECOIL AND POWER CORRECTIONS IN HIGH-xT . . . PHYSICAL REVIEW D 71, 014013 (2005)
[45] J. C. Collins and D. E. Soper, Nucl. Phys. B 197, 446
(1982); M. Beneke and V. M. Braun, Nucl. Phys. B 454,
253 (1995); G. Sterman and W. Vogelsang, hep-ph/
9910371.
014013
[46] R806 Collaboration, E. Anassontzis et al., Z. Phys. C 13,
277 (1982).

[47] M. Glück, E. Reya, and A. Vogt, Eur. Phys. J. C 5, 461
(1998).
-13


