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Equation of state of deconfined matter within a dynamical quasiparticle description
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A simple quasiparticle model, motivated by lowest-order perturbative QCD, is proposed. It is applied to
interpret the lattice QCD equation of state. A reasonable reproduction of the lattice data is obtained. In
contrast to existing quasiparticle models, the present model is formulated in dynamical rather than
thermodynamical terms, and is easily applicable to a system with finite baryon density. In particular, the
model simulates the confinement property.
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I. INTRODUCTION

The most fundamental way to compute properties of
strongly interacting matter and, in particular, its equation
of state (EoS) is provided by lattice QCD calculations [1].
The technique of these calculations rapidly progresses.
Recently, lattice data on the EoS at finite baryon chemical
potential became available [2–4]. Interpretation of these
data within the straightforward QCD perturbation theory
[5] is hardly possible in view of its extremely poor con-
vergence for any temperature of practical interest. To over-
come this poor convergence, resummation schemes were
developed. A scheme based on hard-thermal-loop (HTL)
effective action [6] has been proposed, with alternative
formulations in the form of so-called HTL perturbation
theory [7] or based on the �-derivable approximation [8].
This approach justified a picture of weakly interacting
quasiparticles, as determined by the HTL propagators,
and resulted in remarkably good agreement with lattice
data above 3TC, with TC being the critical temperature of
the phase transition. It is important to emphasize that this
quasiparticle picture emerges directly from the QCD dy-
namics, although treated within the thermal framework.
Recently, a new resummation scheme based on dimension-
ally reduced screened perturbation theory (DRSPT) was
proposed [9]. In certain sense, the efficiency of this DRSPT
scheme even surpasses that of the HTL perturbation theory.
However, it still gives reliable results only above 2:5TC.

To extend this perturbative description below 3TC, vari-
ous phenomenological quasiparticle models [10–16] were
proposed. These models are formulated in terms of massive
quarks and gluons and are constructed in such a way that at
high temperatures they match the perturbative results and
then extend them down in temperature. It is not clear if a
quasiparticle picture is relevant below 3TC at all.
Therefore, all these models are purely phenomenological.
Nevertheless, interpretation of lattice data within these
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quasiparticle models turned out to be very successful.
With few phenomenological parameters it was possible
to reasonably reproduce all lattice thermodynamic quanti-
ties. The feature of all above cited quasiparticle models,
which still looks slightly irritating, is that they are formu-
lated in terms of thermodynamic quantities (i.e., tempera-
ture T and baryon chemical potential �) rather than
dynamical ones, like various densities. From the theoreti-
cal point of view, the quasiparticle picture should be for-
mulated in dynamical terms. The thermal equilibrium is
only a particular case of this general picture. From the
practical point of view, if the quasiparticle is introduced
as a dynamical object, it would be possible to use a
quasiparticle model for extending the equilibrium lattice
description to (at least, slightly) nonequilibrium configu-
rations, relying on reasonable reproduction of equilibrium
properties by this model. Such kind of extension is really
required for analyzing heavy ion collisions, where the
thermalization is still a debating problem.

In the present paper we propose a simple quasiparticle
model formulated in dynamical terms. In construction of
this model, we proceed from properties of the perturbative
solution to QCD, justifying the quasiparticle picture, rather
than from first principles of QCD.
II. DYNAMICAL QUASIPARTICLES

Here we will follow the line of Refs. [10,13–15], assum-
ing only massive quasiparticles and avoiding artificial
reduction of quark-gluon degrees of freedom as in [16].
Let the effective Lagrangian for transverse gluons �a and
quarks  qc of Nf flavors be as follows

L �
1

2

XNg
a�1

��@��a�
2 �m2

g��; ���
2
a�

�
XNc
c�1

XNf
q�1

� qc�i��@� �mq��; ��� qc � B��; ��; (1)

where Nc � 3 is number of colors, Ng � 2�N2
c � 1� is

number of transverse gluons, taking into account two
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transverse polarizations, mg and mq are effective masses
of gluons and quarks, respectively, depending on self-
consistent fields � and � � f�1; . . . ; �Nf g. B��; �� is a
potential of mean-field self interaction. Writing down
Lagrangian (1) we have omitted kinetic terms of the �
and � fields, assuming that they are not essential for the
problem. Note that these kinetic terms are precisely zero in
the spatially homogeneous equilibrium and hence are
really negligible for slight deviations from it. This
Lagrangian is written proceeding from general features
of the perturbative solution to QCD, which claims that
quarks and transverse gluons are weakly interacting qua-
siparticles. Here all interactions between gluons and
quarks, as well as their self interactions, are hidden in their
effective masses depending on mean fields, which in their
turn are determined in terms of these masses.

Equations of motion for the mean fields are derived in
the standard way:

�
@B

@�2 �
1

2

@m2
g

@�2

XNg
a�1

h�2
ai �

1

2

XNf
q�1

@m2
q

@�2

XNc
c�1

h � qc qci

mq
; (2)

�
@B

@�2i
�

1

2

@m2
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@�2i

XNg
a�1

h�2
ai �

1

2

XNf
q�1

@m2
q

@�2i

XNc
c�1

h � qc qci

mq
: (3)

Here

XNg
a�1

h�2
ai �

Ng
2�2

Z 1

0

k2dk

�k2 �m2
g�

1=2
fg�x; k�; (4)

XNc
c�1

h � qc qci

mq
�
Nc
�2

Z 1

0

k2dk

�k2 �m2
q�

1=2
�fq�x; k� � f �q�x; k��

(5)

are scalar densities of gluons and quarks divided by mass,
respectively, with fg�x; k�, fq�x; k�, and f �q�x; k� being
distribution functions of gluons, quarks, and antiquarks in
space-time (x) and 4-momenta (k). In the particular case of
thermal equilibrium we are going to consider here, these
are

fg�k� �
1

exp��k2 �m2
g�

1=2=T� � 1
; (6)

fq�k� �
1

expf��k2 �m2
q�

1=2 ��q�=Tg � 1
; (7)

f �q�k� �
1

expf��k2 �m2
q�

1=2 ��q�=Tg � 1
: (8)

where T is the temperature, and�q is the q-quark chemical
potential. In general, all �q may be different. If we con-
sider a system with zero overall strangeness and charm,�q
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relates to the baryon chemical potential as �u � �d �
�=3 with all other �q � 0.

A solution of Eqs. (2) and (3), which are usually referred
to as gap equations, provides us with an expression of fields
� and �q in terms of above scalar densities. Without losing
generality, it is convenient to demand that these solutions
for the � and � fields are given by scalar densities of gluons
and quarks divided by mass

�2 �
XNg
a�1

h�2
ai; (9)

�2q �
XNc
c�1

h � qc qci

mq
: (10)

Indeed, had we started from other collective variables e�
and e�, which differ from � and � defined by Eqs. (9) and

(10), and the corresponding potential eB�e�;e��, equations of
motion (2) and (3) would provide us with solutions e���; ��
and e���; �� with � and � associated with densities (9) and
(10). Then we could immediately redefine the potential as

B��; �� � eB�e���; ��; e���; ��� and thus transform to desired
variables � and �.

The high-temperature limit, T  TC, where TC is the
temperature of the deconfinement phase transition, puts
certain constrains on the functional dependence of the
effective masses mg��; �� and mq��; ��. In this limit, the
straightforward calculation of above scalar densities in the
leading order results in

�2�T  TC� ’
Ng
12
T2; (11)

�2q��q; T  TC� ’ Nc

�
1

6
T2 �

1

2�2�
2
q

�
: (12)

Perturbative values of mg and mq are also known [17]

m2
g�f�qg; T  TC� �

1

12

�
�2Nc � Neff

f �T2 �
3

�2

XNeff
f

q�1

�2
q

�

� g2�f�qg; T  TC�; (13)

m2
q�f�qg; T  TC� �m2

q0 �
Ng
16Nc

�
T2 �

�2
q

�2

�
� g2�f�qg; T  TC�; (14)

where mq0 is the current mass of the q-quark, Neff
f is the

effective number of quark flavors which can be excited,
and g2 is the QCD running coupling constant squared,
generally depending on T and all �q. In the particular
case of all �q � 0, the latter is also known [18,19], in
the 2-loop approximation it is
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g2�f�q � 0g; T  TC�

�
16�2

�0 ln�2�T=��2

�
1�

2�1

�2
0

lnln�2�T=��2

ln�2�T=��2

�
(15)

with

�0 �
1

3
�11Nc � 2Neff

f �;

�1 �
1

6
�34N2

c � 13NcN
eff
f � 3Neff

f =Nc�;
(16)

and � being the QCD scale. The energy scale is taken here
equal to 2�T, i.e., the first nonzero Mastubara frequency.
In HTL calculations this scale is sometimes varied from
�T to 4�T to determine theoretical error bars.

Expressing T and all �q in terms of scalar densities �
and � of Eqs. (11) and (12), and substituting them into
expressions for asymptotic effective masses (13) and (14),
we arrive at the following expressions for the latter

m2
g��; �� �

�
2Nc
Ng

�2 �
1

2Nc

XNf
q�1

�2q

�
g2��2; ��; (17)

m2
q��; �� �m2

q0 �

�
1

2Nc
�2 �

Ng
8N2

c
�2q

�
g2��2; ��: (18)

Here we keep Nf instead of Neff
f , since quark densities �2q

automatically take care of quark contribution, i.e., �2q � 0,
if the q-quark is too heavy. These expressions give at the
same time the ansatz for the effective masses in terms of
scalar densities.

Now our goal is to find an appropriate expression for
g2��; ��, which takes the limit (15) at�q � 0 and T  TC,
and then to solve gap equations (2) and (3) with respect to
B��; ��. Then the quasiparticle model would be completely
defined, and we could do any calculations both in thermo-
dynamics and nonequilibrium. Unfortunately, we failed to

EQUATION OF STATE OF DECONFINED MATTER . . .
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solve this problem in general, i.e., we have not found an
appropriate potential B which is required for calculation of
the thermodynamic quantities cf. Eqs. (27) and (28).
However, we have found an elegant solution in the par-
ticular case, when number of colors equals number of
flavors, i.e., Nf � Nc. In fact, this case is quite general
for comparison to lattice data as well as for possible
applications in astrophysics and heavy-ion physics.

III. PARTICULAR CASE OF Nf � Nc

Let us consider a particular case when Nf � Nc while
the quarks may be different, i.e., their current masses mq0

as well as chemical potentials �q may differ.
Since Nf � Nc, Eqs. (17) and (18) can be represented as

follows

m2
g �

2

Ng

XNf
q�1

�2qg
2���; (19)

m2
q �m2

q0 �
1

2Nc
�2qg

2���; (20)

where

�2q � �2 �
Ng
4Nc

�2q; (21)

�2 �

�XNf
q�1

�4q

�
1=2
: (22)

Here we just guessed that the � dependence of g2 is the
proper one. This functional dependence is required to
define the potential B, with which gap Eqs. (2) and (3)
give solutions for masses precisely in the form of Eqs. (19)
and (20). Indeed, gap Eqs. (2) and (3) in terms of new
variables �2q read
�
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�2 �
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1
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�
g2 � �2 dg

2

d�2

�
�2i : (23)
where i � u; d, or s. In fact, this is the main trick advanced
by the peculiar case of Nf � Nc. This relation implies that
the potential of mean-field self interaction B��; �� is in fact
a function of a single variable �, and gap Eqs. (2) and (3)
are reduced to the single one

dB
d�

� �
1

Ng
�2 d��

2g2�
d�

; (24)
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integration of which is straightforward

B��� � BC �
1

Ng
��4g2��� � �4

Cg
2��C��

�
2

Ng

Z �

�C
d�1�

3
1g

2��1� (25)

with BC being an integration constant. In fact, this function
B��� has a meaning of the bag constant of the bag model.
However, we will refer BC as the ‘‘bag parameter,’’ since it
is really constant.

Thus, we succeeded to determine the B potential, which
is required for thermodynamically consistent calculation of
thermodynamic quantities (27)–(29). We cannot claim that
this is the only possible solution for this B, because it was
obtained as a result of certain guess. However, this solution
works quite well in reproducing lattice data, as it is dem-
onstrated in the next section.

A reasonable ansatz for the coupling constant itself is as
follows

g2��� �
16�2

�0 ln���
2 � �2

0�=�
2
C�
f���; (26)

where �2
C and �2

0 are some phenomenological parameters,
and an auxiliary function f���, meeting the condition
f��! 1� ! 1, helps us to choose between 1-loop
(f��� � 1) and 2-loop asymptotics of the coupling con-
stant cf. Eq. (15). Two reasonable choices of this auxiliary
function are discussed below, in sect. IV. This g2��2� in-
deed takes the limit (15) at �q � 0 and T  TC, provided
�2
0 � �2

C and properly defined �2
C in terms of �. The

proper definition in the case, when the temperature is
much larger than all current quark masses, T  mq0, is
as follows

�2
C �

NgN
1=2
c

8

�
�

2�

�
2
:

It is appropriate to mention here that in spite of the
declared case Nf � Nc, we are able to consider less num-
ber of flavours, Neff

f < 3 cf. Eq. (16), within the same
formalism. To exclude a q-quark flavor from the treatment
at certain temperature T, we should take its current mass to
be large: mq0  T, which implies mq  T cf. Eq. (20). In
this limit the respective density �2q ! 0 and simply falls
out of the corresponding �2q cf. Eq. (21), and hence out of
the calculation scheme for lighter particles. Taking into
account that the contribution of this heavy quark into
thermodynamic quantities (27)–(29) is negligible as com-
pared with that of lighter particles, we see that this heavy
quark turns out to be completely switched off from the
calculation, as if it does not exist. If we consider mq0 

T  TC, the contribution of this heavy quark disappears
even from asymptotic formulas (13) and (14). However, the
delicate feature of the present solution is that we still
014005
should keep the flavor summation in Eq. (19) running
though all three flavors, in order to obtain the proper gluon
contribution into the gluon mass, even in the case of
mq0  T  TC. The reason is that for the heavy quark
we still have �2q � �2, i.e., the gluon density which is
nonzero. Thus, e.g., for the 2-flavor case, we should keep
Nf � 3 whereas take Neff

f � 2 in Eq. (16) required for
definition of the coupling constant (26).

To summarize, the procedure of solving the model equa-
tions is as follows. First, we define all the free parameters
of the model (�C, �0, BC), including the auxiliary function
f���. Given the temperature T and the set of chemical
potentials �q, implicit set of Eqs. (4), (5), (19)–(22), and
(26) should be solved. As a result of this solution, we
obtain effective quark and gluon masses and the value of
� variable, which is required for calculation of B��� cf.
Eq. (25)). Now, when all the quantities are defined, we can
calculate the energy density "�T;��, pressure P�T;��, and
baryon density nB�T;�� as follows

"�T;�� �
Ng
2�2

Z 1

0
k2dk�k2 �m2

g�
1=2fg�k�

�
XNf
q�1

Nc
�2

Z 1

0
k2dk�k2 �m2

q�
1=2�fq�k� � f �q�k��

� B���; (27)
P�T;�� �
Ng
6�2

Z 1

0

k4dk

�k2 �m2
g�

1=2
fg�k�

�
XNf
q�1

Nc
3�2

Z 1

0

k4dk

�k2 �m2
q�

1=2
�fq�k� � f �q�k��

� B���; (28)
nB�T;�� �
1

3

XNf
q�1

Nc
�2

Z 1

0
k2dk�fq�k� � f �q�k��: (29)

Note that the thermodynamic consistency is automatically
fulfilled in this scheme, since we proceed from a proper
Lagrangian formulation.

In particular, we would like to mention that the present
model simulates the confinement of quarks and gluons.
When temperature and/or chemical potentials decrease,
the densities, �2 and �2q, and together with them the
variable � drop down. At some value of � the argument
of ln���2 � �2

0�=�
2
C� in Eq. (26) becomes very close to 1,

and hence g2 ! 1. Thus, there are no solutions to the
above equations below certain values of temperature and
chemical potentials. This can be interpreted as a kind of
confinement.
-4
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ization factor to the lattice data. However, we do not want to
distort the ‘‘experimental’’ results.
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IV. COMPARISON WITH LATTICE DATA

Our goal is to fit the above described model to the recent
�2� 1� flavor lattice data for nonzero chemical potentials
[2]. To be consistent with these lattice data, we accepted
current quark masses mu0 � md0 � 65 MeV and ms0 �
135 MeV, which were used in these lattice calculations.
As we have found out, the actual results of our quasipar-
ticle model are quite insensitive to variation of mq0 from
above lattice values to the ‘‘physical’’ ones mu0 � md0 �
7 MeV and ms0 � 150 MeV. The model also involves
several phenomenological parameters: the ‘‘bag parame-
ter’’ BC cf. (25), the ‘‘QCD scale’’ �C, and an auxiliary
function f��� cf. (26). Another parameter �2

0, as it was
expected, should be taken small �2

0 � �2
C. In fact, it shifts

the lower limit of integration in the expression for B��� cf.
Eq. (25), from the singular point of the coupling constant
cf. Eq. (26), and hence regularizes the calculation of B���.
Therefore, it is closely related to the ‘‘bag parameter’’ BC,
which is an integration constant in the same expression. A
change of �2

0 implies the corresponding change of BC. In
all further calculations we take �2

0 � 0:01�2
C, and hence

the below stated values of BC correspond only to this
choice.

An implicit parameter of our model is the critical tem-
perature TC, i.e., the temperature at which the deconfine-
ment phase transition occurs at � � 0. We could identify
this temperature with that of the end point of the solution
discussed above. However, this end point is numerically
determined not quite reliably because of the singular be-
havior of the solution near it. Another reason is that the
end-point temperature should not necessary coincide with
TC. The phase transition at � � 0 in the case of �2� 1�
flavors is of the crossover type, as it was found in lattice
calculations. This implies that a strong interplay between
quark-gluon and hadronic degrees of freedom occurs near
TC, which actually determines the TC value itself. As we
completely disregard the hadronic degrees of freedom in
the model, we cannot count on proper determinations of TC
value. Therefore, we vary TC from the determined end-
point temperature to slightly below in order to achieve the
best fit of the lattice data.

As for the auxiliary function f���, our first choice was

f1-loop��� � 1; (30)

which we refer to as ‘‘1-loop’’ choice, because with this
f1-loop the coupling constant takes the 1-loop perturbative
limit at T ! 1 cf. Eq. (15). In this case we are left with
only two basic parameters, �C and BC. These are fitted to
reproduce the form of the pressure as a function of tem-
perature at zero chemical potential. However, these two
parameters do not allow us to reproduce the overall nor-
malization of the lattice pressure. With this respect, it is
suitable to recollect that the overall normalization of the
lattice data is somewhat uncertain. Indeed, the lattice cal-
culations were done on lattices with Nt � 4 temporal ex-
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tension [2]. To transform the raw lattice data into physical
ones, i.e., to extrapolate to the continuum case of Nt ! 1,
the raw data are multiplied by ‘‘the dominant T ! 1
correction factors between the Nt � 4 and continuum
case,’’ cp � 0:518 and c� � 0:446 [2]. These factors are
determined as ratios of the Stefan-Boltzmann pressure at
� � 0 (cp) and the �-dependent part of the Stefan-
Boltzmann pressure (c�) to the corresponding values on
the Nt � 4 lattice [2]. In view of this uncertainty, it is legal
to apply an additional overall normalization factor to the
same quantities calculated within quasiparticle model.1 In
order to keep the number of fitting parameters as few as
possible, we use a single normalization factor instead of
two different ones, cp and c�, in the lattice calculations.
For the best fit of the lattice data the overall normalization
factor was chosen to be equal 0.9 and TC was shifted
slightly below the end-point temperature, which by itself
was determined quite approximately. Note that the fitted
TC � 195 MeV is slightly above its lattice value 175 MeV.
The set of parameters is summarized in Table I. The result
of the fit is presented in Fig. 1. In the same figure, also
comparison with 2-flavor lattice data [1] is presented. For
the present ‘‘1-loop’’ variant, 2-flavor data are perfectly
reproduced with the same set of parameters as for �2�
1�-flavor case, only the current mass of the strange quark
was taken ms0 � 100 GeV in order to suppress its contri-
bution. In this case the result for critical temperature is
even better: T�2f�

C � 175 MeV, which well complies with
its lattice value [1].

Now, when all the parameters are fixed to reproduce the
lattice pressure at � � 0, all other calculations can be
considered as ‘‘predictions’’ of the model. These results
are presented in Figs. 2–4. The model perfectly reproduces
�-dependent part of the pressure, �P � P�T;�� �
P�T;� � 0�, Fig. 2, and the ‘‘interaction measure,’’ "�
3P, Fig. 3, at various chemical potentials. In particular, it
describes practical �-independence of the right slope of
"� 3P. At the same time, the lattice baryon density, see
Fig. 4, turns out to be somewhat overestimated by the
model. In fact, this is not surprising, since the thermody-
namic consistency of continuum lattice limit is somewhat
unbalanced because of application of different normaliza-
tion coefficients to the raw lattice data: cp and c� [2]
mentioned above. Therefore, an exactly thermodynami-
cally consistent model is unable to simultaneously repro-
duce all the continuum lattice data.

Note that the model fits the lattice quantities only above
TC. In view of arguments of Ref. [20] this is not surprising.
In [20] it is argued that below TC these quantities are
quantitatively well described by the resonance hadronic
gas. From this point of view, we cannot count on proper
-5
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TABLE I. Best fits of quasiparticle parameters to the lattice data [1,2].

Version Neff
f

a TC, MeV �C, MeV BC=�
4
C

b f-factorc overall normalization factor
‘‘1-loop’’ 2� 1 195 141.3 �97:5 1 0.9
‘‘1-loop’’ 2d 175 141.3 �97:5 1 0.9
‘‘2-loop’’ 2� 1 195 119.6 � 267:5 2.6 1
‘‘2-loop’’ 2d 175 119.6 � 262:0 2.6 1

aPlease, do not confuse it with Nf, which should be always Nf � 3.
bThese BC values correspond to the �2

0 � 0:01�2
C choice.

cThis is the effective value of the auxiliary function f��� in the temperature range under investigation, i.e., from TC to 3TC.
dms0 � 100 GeV in order to suppress the s-quark contribution.
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description below TC, since the hadronic degrees of free-
dom are completely disregarded by the model.

On the other hand, we are able to reproduce the lattice
data without varying the overall normalization. However,
for this we need nontrivial auxiliary function f���. One of
the possible choices is

f2-loop��� � 1� arctan
�

�1

8�2�0

g2��� ln
g2���
&

�
(31)

with

& � 0:001
16�2

�0
;

which we refer as ‘‘2-loop’’ choice, because with this
f2-loop the coupling constant takes the 2-loop perturbative
limit at T ! 1 cf. Eq. (15). The additional g2 ln�0:001�
term is subleading as compared to g2��� lng2��� and thus
does not prevent agreement with the 2-loop approximation
for coupling constant. In fact, the function f2-loop is an
‘‘exotic’’ representation of a constant, since in the tem-
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FIG. 1. Pressure normalized by T4 as a function of T=Tc at
� � 0. The solid line corresponds to ‘‘1-loop’’ calculation with
the overall normalization factor of 0.9. The dashed line repre-
sents the ‘‘2-loop’’ calculation. The �2� 1�-flavor lattice data
[2] are displayed by open circles, and the 2-flavor lattice data
[1]—by gray band.
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perature range under consideration, from TC to 3TC, it is
f2-loop��� ’ 2:6 with good accuracy. Precisely this en-
hancement of the coupling constant is required to fit the
actual overall normalization of the lattice data. The reason
of using function instead of the constant is only that the
function provides us with the proper 2-loop asymptotic
limit. In this respect, any function f, providing us with
T/Tc
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FIG. 2. �P � P�T;�� � P�T;� � 0� normalized by T4 as a
function of T=Tc at � � 100, 210, 330, 410, 530 MeV (from
bottom to top) within the ‘‘1-loop’’ (upper panel) and ‘‘2-loop’’
(lower panel) calculations. The �2� 1�-flavor lattice data are
from [2].
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FIG. 4. Baryon density normalized by T3 as a function of T=Tc
at� � 100, 210, 330, 410, 530 MeV (from bottom to top) within
the ‘‘1-loop’’ (upper panel) and ‘‘2-loop’’ (lower panel) calcu-
lations. The �2� 1�-flavor lattice data are from [2].
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FIG. 3. Interaction measure, "� 3P, normalized by T4 as a
function of T=Tc at � � 0, 330, 530 MeV (which are hardly
distinguishable between each other) within the ‘‘1-loop’’ (upper
panel) and ‘‘2-loop’’ (lower panel) calculations. The �2�
1�-flavor lattice data [2] for different � � 0, 330, 530 MeV
are displayed by open circles, diamonds, and full circles, re-
spectively, similarly to other figures.
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additional factor 2.6 in the temperature range from TC to
3TC and respecting the proper asymptotic limit of the
coupling constant, is as well suitable for this fit. The fitting
procedure in this case is completely similar to that for the
‘‘1-loop’’ choice. The obtained sets of parameters for �2�
1�- and 2-flavor cases are also summarized in Table I. The
result of fitting the pressure at� � 0 is presented in Fig. 1.
The 2-flavor case requires here only slight tune of the BC
value as compared to the �2� 1�-flavor case. Predictions
of the ‘‘2-loop’’ version are demonstrated in Figs. 2–4. The
quality of reproduction of the lattice data here is approxi-
mately the same as in the ‘‘1-loop’’ case.

In spite of the similar reproduction of lattice data, the
two versions of the model reveal quite different ‘‘internal’’
quantities, see Figs. 5 and 6. Their absolute values differ
by approximately 30%, while the T and � dependences
are very similar in the ‘‘1-loop’’ and ‘‘2-loop’’ versions.
014005
General trend of these dependences is quite similar to
those in the thermodynamic quasiparticle model [14].
Apparently, precisely this trend is essential for reproduc-
tion of lattice data within both thermodynamic and present
quasiparticle models.

V. SUMMARY AND OUTLOOK

We have presented a simple quasiparticle model aimed
to interpret the lattice QCD data. Similarly to existing
quasiparticle approaches [13–16], this model is motivated
by the lowest-order perturbative QCD. However, contrary
to those models, it is formulated in dynamical rather than
thermodynamical terms. Presently we have succeeded only
for the case Nf � Nc, where Nf and Nc are numbers of
quark flavors and colors, respectively. Nevertheless, this is
quite a general case for practical applications.

The model has been applied to fit the lattice �2�
1�-flavor QCD EoS at finite baryon chemical potentials
[2]. This is the most physical and important from the point
of view of practical applications case. However, we frag-
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mentary considered also 2-flavor case.2 It is demonstrated
that a reasonable fit of the quark-gluon sector can be
obtained with different sets of phenomenological parame-
ters. The ‘‘1-loop’’ version of the model cf. Eq. (30),
certainly looks more natural, since it does not involve an
exotic auxiliary function f, as it does in the ‘‘2-loop’’
version cf. Eq. (31). The only problem with the ‘‘1-loop’’
version is that it overestimates all lattice quantities by
approximately 10% (and slightly more for the baryonic
density). However, since the overall normalization of the
lattice data is indeed somewhat uncertain because of the
poor extrapolation of these data to the continuum limit, this
misfit is quite acceptable.

In spite of the difference in absolute values, inter-
nal quantities of the model, like effective quark and gluon
masses and coupling constant reveal very similar behavior
as functions of temperature and chemical potential in both
‘‘1-loop’’ and ‘‘2-loop’’ versions. Moreover, this behavior
2Comparison with various lattice data on pure gauge and 2-
flavor cases will be reported elsewhere.

014005
is also similar to that in thermodynamic quasiparticle
models [10–16]. Apparently, precisely this general trend
is essential for reproduction of lattice data within both
thermodynamic and present quasiparticle models.

The presented model simulates the confinement of the
QCD. In the equilibrium case considered here, the solution
to the model equations simply does not exist below a
certain combination of the temperature and the chemical
potential. In particular, this is the reason why we are able to
fit the lattice quantities only above TC. In [20] it is argued
that below TC these quantities are quantitatively well de-
scribed by the resonance hadronic gas. From this point of
view, we cannot count on proper description below TC,
since the hadronic degrees of freedom are completely
disregarded by the model. From both theoretical and prac-
tical points of view, it is desirable to include hadronic
degrees of freedom in this model. Then we could count
on reproduction of EoS in the whole range of temperatures
and chemical potentials. Such a ‘‘realistic’’ EoS would be
very useful in hydrodynamic simulations of relativistic
heavy-ion collisions.
-8
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