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Dissipative neutrino oscillations in randomly fluctuating matter
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The generalized dynamics describing the propagation of neutrinos in randomly fluctuating media is
analyzed: It takes into account matter-induced, decoherence phenomena that go beyond the standard
Mikheyev-Smirnov-Wolfenstein (MSW) effect. A widely adopted density fluctuation pattern is found to
be physically untenable: A more general model needs to be instead considered, leading to flavor changing
effective neutrino-matter interactions. They induce new, dissipative effects that modify the neutrino
oscillation pattern in a way amenable to a direct experimental analysis.
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1Although within a mean-field (MSW) approach, this possi-
bility has recently been reconsidered in [15–17] and found
compatible with present experimental data.
I. INTRODUCTION

When a neutrino propagates in a constant distribution of
matter, coherent forward scattering phenomena can affect
its time evolution. Despite the smallness of the cross
section induced by the neutrino interaction with the me-
dium, these matter effects can significantly modify the
oscillation pattern, through the so-called Mikheyev-
Smirnov-Wolfenstein (MSW) mechanism [1,2].

However, forward scattering phenomena are just the
simplest matter-induced effects that can occur to a neutrino
when the medium is allowed to fluctuate. In this case, the
neutrino can be viewed as an open system, i.e., a subsystem
immersed in an external environment (the medium) [3–7];
its time evolution, obtained from the total neutrino + matter
dynamics by eliminating (i.e., integrating over) the matter
degrees of freedom, is no longer unitary: It takes into
account possible exchanges of entropy and energy between
the neutrino and the fluctuating medium.

In many physical situations, one can safely ignore the
details of the matter dynamics and use an effective descrip-
tion of the medium as a classical, random external field.
Quite in general, any environment can be modeled in this
way, provided the characteristic decay time of the associ-
ated correlations is sufficiently small with respect to the
typical evolution time of the subsystem. In the case of
relativistic neutrinos, this time scale can be roughly iden-
tified with the vacuum oscillation length: We shall there-
fore consider media that fluctuate on time scales shorter
than this. It has been recently pointed out that the interior
of the sun could indeed satisfy such a condition [8], as
likely as the earth mantel. Thus, a neutrino created in the
sun or moving through the earth would effectively see a
random fluctuating distribution of scattering centers and
therefore be subjected to stochastic, incoherent interaction
with the medium. In this situation, correlations in the
medium play a fundamental role: They are responsible
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for the generation of new matter effects, beyond the
MSW ones, leading to irreversibility and loss of quantum
coherence.

The effects of fluctuating matter on neutrino propagation
have been first discussed in [9–11], and recently reconsid-
ered in [12–14]. However, all these analyses deal with a
simple density fluctuation pattern, naturally suggested by
the standard MSW treatment. Further, these fluctuations
are assumed to be exactly � correlated; this is a highly
idealized description of the environment that, e.g., for heat
baths, can be attained only in the limit of infinite
temperature.

Instead, in the following a more realistic exponentially
damped form for the correlation functions in the medium
will be adopted. Limiting for simplicity the discussion to
the analysis of the oscillations of two species of neutrinos,
we shall see that the effects induced by matter fluctuations
can be fully described in terms of a limited number of
phenomenological parameters. They affect the oscillation
pattern in a very distinctive way that is amenable to a direct
experimental study.

On the other hand, when the simplified density fluctua-
tion hypothesis considered in [9–14] is adopted, a single
constant is sufficient to parametrize the new matter effects.
However, this approximation appears physically unten-
able, since by adopting it certain transition probabilities
take unacceptable negative values; this serious inconsis-
tency can be cured only by allowing more general matter
fluctuations, pointing towards the presence of flavor chang-
ing neutrino-matter interactions.1

As a final remark, it is interesting to point out that the
dissipative effects induced by a randomly fluctuating me-
-1  2005 The American Physical Society
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dium on neutrino oscillations involve in general the
CP-violating phase that is present in the mixing matrix
for Majorana neutrinos. Therefore, contrary to the vacuum
case, matter oscillation experiments can provide, at least in
principle, a way to distinguish between Dirac and
Majorana neutrinos.

II. MASTER EQUATION

In discussing the mixing of two neutrino species, we
shall adopt the familiar effective description in terms of a
two-dimensional Hilbert space [18–22]; the flavor states,
that we shall conventionally call j�ei and j��i, will be
chosen as basis states. With respect to this basis, the
physical neutrino states are then represented by density
matrices R, i.e., by Hermitian 2� 2 matrices, with non-
negative eigenvalues and unit trace. Their time evolution
equation can be cast in a standard Liouville–von Neumann
form [23,24]:

@R�t�
@t

� �i�H0; R�t�	 
 Lt�R�t�	: (2.1)

The first piece on the right-hand side describes the propa-
gation of the neutrinos in vacuum; in the chosen basis, the
effective Hamiltonian H0 takes the standard form:

H0 � !~n � ~�; (2.2)

where ! � �m2=4E, �m2 being the square mass differ-
ence of the two mass eigenstates and E the average neu-
trino energy, while the unit vector ~n � �sin2�; 0;� cos2��
contains the dependence on the mixing angle, ~� �
��1; �2; �3� being the vector of Pauli matrices. The addi-
tional contribution Lt�R	 takes into account the presence of
matter. As explained above, we shall consider the case of a
rapidly fluctuating medium, which can be described by
classical stochastic fields. Its action on the traveling neu-
trinos can then be expressed via the commutator with a
time-dependent Hermitian matrix V�t�,

Lt�R�t�	 � �i�V�t�; R�t�	; V�t� � ~V�t� � ~�; (2.3)

whose components V1�t�, V2�t�, V3�t� form a real, station-
ary Gaussian stochastic field ~V�t�; they are assumed to
have in general a nonzero constant mean and translation-
ally invariant correlations:

Ŵij�t� s� � hVi�t�Vj�s�i � hVi�t�ihVj�s�i;

i; j � 1; 2; 3:
(2.4)

Since the generalized Hamiltonian V�t� in (2.3) involves
stochastic variables, the density matrix R�t�, solution of the
equation of motion (2.1), is also stochastic. Instead, we are
interested in the behavior of the reduced density matrix
��t� � hR�t�i which is obtained by averaging over the
noise; it is ��t� that describes the effective evolution of
the neutrinos in the medium and allows the computation of
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relevant transition probabilities. By making the additional
assumption that neutrinos and noise be decoupled at t � 0,
so that the initial state is ��0� � hR�0�i � R�0�, a condition
very well satisfied in typical situations, an effective master
equation for ��t� can be derived by going to the interaction
representation, where we set:

~R�t� � eitH0R�t�e�itH0 ; ~��t� � eitH0 ~�e�itH0 ;

~Lt� 	 � �i� ~V�t� � ~��t�; 	:
(2.5)

By averaging ~R�t� over the noise, we get the reduced
density matrix ~��t� � h ~R�t�i in the interaction representa-
tion: It is convenient to operate on the standard series
expansion of ~R�t�, so that

~��t� � N t�~��0�	 �
X1
k�0

N�k�
t �~��0�	 (2.6a)

where the terms N�k�
t are explicitly given by

N�k�
t �~��0�	 �

Z t

0
ds1

Z s1

0
ds2 � � �

Z sk�1

0
dsk

� h ~Ls1
~Ls2 � � �

~Lski�~��0�	; (2.6b)

with N�0�
t � 1 the identity, N�0�

t �~��0�	 � ~��0�. The result-
ing series is a sum over multiple integrals of correlators
h ~Ls1

~Ls2 � � �
~Lski, that is of averages over the noise of suc-

cessive commutators with respect to the stochastic opera-
tors V�t� � ~V�t� � ~� at different times. The density matrix
~��0� is not averaged over due to the assumption on the
initial state ��0� � ~��0�.

In order to arrive at a more manageable time evolution,
we use a technique [23], of which we give a brief account
below, that leads to a so-called convolutionless master
equation and is based on the hypothesis of weak coupling
between system and stochastic environment. The first step
is to write the formal inverse of the map N t in (2.6a), i.e.,
~��0� � N �1

t �~��t�	, so that

N �1
t � �1
 N�1�

t 
 N�2�
t 
 � � ���1

� 1� N�1�
t � N�2�

t � �N�1�
t �2 � � � � ; (2.7)

where only terms containing up to two-point correlation
functions have been indicated. Further, denoting with _N�k�

t

the time derivative of N�k�
t , it follows that the reduced

density matrix in the interaction representation satisfies
the equation of motion

@~��t�
@t

�
@N t

@t
�~��0�	 �

@N t

@t
N �1

t �~��t�	

� f _N�1�
t 
 � _N�2�

t � _N�1�
t N

�1�
t � 
 � � �g�~��t�	: (2.8)

Since the interaction of the traveling neutrinos with the
medium is weak, one can focus the attention on the domi-
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2Notice that the procedure of averaging transition probabilities
over random matter profiles as performed in [25] is not compat-
ible with this basic evolution law.
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nant terms of the previous expansion, neglecting all con-
tributions higher than the second-order ones. Further, since
the characteristic decay time of correlations in the medium
is by assumption much smaller than the typical time scale
of the system, the memory effects implicit in (2.8) should
not be physically relevant and the use of the Markovian
approximation justified. This is implemented in practice by
extending to infinity the upper limit of the integrals appear-
ing in _N�2� and N�1� [3–5].

By returning to the Schrödinger representation, one
finally obtains [24]

@��t�
@t

� �i�H;��t�	 
 L���t�	; (2.9a)

where

H � H0 
H1 
H2 �
~� � ~�; (2.9b)

L��	 �
1

2

X3
i;j�1

Cij�2�i��j � f�j�i; �g	: (2.9c)

The effective Hamiltonian in matter, H, differs from the
one in vacuum, H0, by first-order terms [coming from the
piece _N�1� in (2.8)] depending on the noise mean values:

H1 � h ~V�t�i � ~�; (2.10)

and by second-order contributions [coming from the
second-order terms in (2.8)],

H2 �
X3
i;j;k�1

�ijkCij�k; (2.11)

involving the noise correlations (2.4) through the time-
independent combinations:

Cij �
X3
k�1

Z 1

0
dtŴij�t�Ukj��t�; (2.12)

where the 3� 3 orthogonal matrix U�t� is defined by the
following transformation rule: eitH0�ie

�itH0 �P3
j�1Uij�t��j. On the other hand, the contribution L��	

in (2.9c) is a time-independent, trace-preserving linear map
involving the symmetric coefficient matrix Cij �
Cij 
 Cji. It introduces irreversibility, inducing in general
dissipation and loss of quantum coherence. Altogether,
Eq. (2.9) generates a semigroup of linear maps, �t:��0� �
��t� � �t���0�	, for which composition is defined only
forward in time: �t � �s � �t
s, with t; s � 0; this is a
very general physical requirement that should be satisfied
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by all Markovian open system dynamics.2 The set of maps
�t is usually referred to as a quantum dynamical semigroup
[3–7].

The typical observable that is accessible to the experi-
ments is the probability P �e!���t� for having a transition to
a neutrino of type �� at time t, assuming that the neutrino
has been generated as �e at t � 0. In the language of
density matrices, it is given by

P �e!���t� � Tr���e�t����	; (2.13)

where ��e�t� is the solution of (2.9) with the initial condi-
tion given by the matrix ��e�0� � ��e � j�eih�ej, while
��� � 1� ��e . By expanding the neutrino density matrix
in terms of the Pauli matrices and the identity �0, � �
��0 
 ~� � ~�	=2, the linear equation (2.9a) reduces to a
diffusion equation for the components �1, �2, �3 of the
vector ~�:

@ ~��t�
@t

� �2H ~��t�; (2.14)

the entries of 3� 3 matrix H can be expressed in terms of
the coefficients �i and Cij appearing in the Hamiltonian
and noise contribution in (2.9b) and (2.9c) [26]:

H �

a b
�3 c��2

b��3 $ %
�1

c
�2 %��1 &

2
64

3
75; (2.15)

with a � C22 
 C33, $ � C11 
 C33, & � C11 
 C22,
b � �C12, c � �C13, % � �C23. The solution of (2.14)
involves the exponentiation of the matrix H ,

~��t� � M�t� ~��0�; M�t� � e�2H t; (2.16)

so that the transition probability in (2.13) can be rewritten
as

P �e!���t� �
1

2



1


X3
i;j�1

�i�e�
j
��Mij�t�

�

�
1

2
�1�M33�t�	: (2.17)

Indeed, taking the standard form of the Pauli matrices with
respect to the orthonormal basis j�ei � �10� and j��i � �01�,
then ��e � �1
 �3�=2 and ��� � �1� �3�=2.

When correlations in the medium are negligible, i.e., the
combination in (2.4) is vanishingly small, Eq. (2.9) de-
scribes standard (MSW) matter effects, for the presence of
matter is signaled solely by the shift H1 in the effective
Hamiltonian. In this case, the neutrino-medium interaction
-3
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is dominated by coherent forward scattering, and, in the
absence of flavor changing effects, the stochastic vector
field in (2.3) results oriented along the third axis, whence
H1 � A�3, where A � hV3�t�i � GFne=

���
2

p
gives the extra

energy contribution that electron neutrinos receive when
traveling in ordinary matter (GF is the Fermi constant,
while ne represents the electron number density in the
medium). As a consequence, the transition probability in
(2.17) can be expressed in terms of a modified frequency
!M and mixing angle �M in matter,

!M � !�sin22�
 �1� A=AR�2cos22�	1=2;

sin2�M �
!
!M

sin2�;
(2.18)
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AR � ! cos2� being the value of A at resonance. In fact,
the assumption of negligible correlations amounts to con-
sidering in Eq. (2.14) a matrix H of the form
H �

0 �3 0

��3 0 �1

0 ��1 0

0
BB@

1
CCA;

�1 � ! sin�2��; �3 � A�! cos�2��: (2.19)
This matrix can be easily exponentiated as in (2.16),
M �t� �

�2
1
�2

3 cos�2!Mt�
!2
M

��3

�1
sin�2!Mt�

�1�3

!2
M

�1� cos�2!Mt�	

��3

�1
sin�2!Mt� cos�2!Mt� ��1

�1
sin�2!Mt�

�1�3

!2
M

�1� cos�2!Mt�	 ��1

�1
sin�2!Mt�

�2
3
�2

1 cos�2!Mt�
!2
M

0
BBBB@

1
CCCCA; (2.20)
whence the explicit form of the element M33�t� yields the
familiar expression:

P �e!���t� � sin22�Msin
2!Mt: (2.21)

The situation can significantly change for neutrinos
immersed in a random medium; while traveling in it,
they encounter matter fluctuations, whose correlations
Ŵij�t� s� determine the dissipative contribution in
(2.9c). In a typical bath at finite temperature, the correla-
tion functions assume an exponentially damped form;
therefore, one can generically write

Ŵ ij�t� s� � Wije�+ijjt�sj; (2.22)

with Wij and +ij time-independent, real coefficients, with
+ij � 0. Further, as discussed before, the stochastic me-
dium fluctuates on time intervals much shorter than the
typical neutrino ‘‘free’’ evolution time scale 1=!, so that
the decay parameters +ij must be much larger than the
vacuum frequency !. This fact allows neglecting all con-
tributions higher than the first-order one in the ratio !=+ij
while evaluating the coefficients Cij in (2.12). For generic
correlations as in (2.22), these coefficients, and therefore
the entries of the matrix H in (2.15), are all nonvanishing.
However, the parameters a, b, c, $, %, & describing matter
decoherence effects are not all free: As we shall see,
physical consistency requires them to satisfy certain in-
equalities; in turn, these constraints reflect some funda-
mental characteristics of the matter-neutrino interactions.

We shall now discuss some interesting cases of the
master equation (2.9), corresponding to specific physical
realizations of the medium through which the neutrinos
propagate.
III. GENERALIZED MSW DYNAMICS

The simplest instance of a stochastic medium corre-
sponds to ordinary matter with density fluctuations, where
only the propagation of electron neutrinos is affected. It
generalizes the familiar MSW mean-field treatment by
adding to it decoherence effects. In this case, the stochastic
Hamiltonian in (2.3) becomes diagonal and, without loss of
generality, only the stochastic field V3�t� can be taken to be
nonvanishing; the neutrinos are still forward scattered by
the medium, although no longer in a coherent way. This
situation is discussed in [9–14], where however the density
fluctuations in the medium are taken to be exactly
�-function correlated. This is a highly idealized assump-
tion, that can hardly be reproduced in ordinary conditions.
Instead, the much more realistic exponential ansatz (2.22)
will be used here, where the only nonvanishing correlation
strength and decay constant are W33 � W and +33 � +,
respectively.

The noise contributions in (2.9) can be explicitly com-
puted; within our approximation, one finds that only the
entries C23 and C33 of the coefficient matrix in (2.9c) are
nonvanishing,

a � C33 �
2W
+
; % � �C23 �

!W

+2
sin2�; (3.1)

while the Hamiltonian contribution H1 is proportional to
�3 (the standard MSW piece) and H2 to �1:
-4
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�1 � !
�
1


W

+2

�
sin2�; �2 � 0;

�3 � �!
�
1�

A
AR

�
cos2�:

(3.2)

Surprisingly, the dynamics generated by (2.9), or equiva-
lently (2.14), with these coefficients appears to be physi-
cally unacceptable.

As mentioned at the beginning, any density matrix must
be a positive operator (i.e., its eigenvalues should be non-
negative) in order to represent a physical state: Its eigen-
values have the physical meaning of probabilities.
Therefore, any time evolution needs to preserve this prop-
erty, otherwise an initial state would not be mapped to
another state at a later time. This is precisely what happens
when the neutrino evolution in the medium is modeled by
(2.9) with dissipative parameters as in (3.1). In fact, the
probability P �t� for having a transition from an initial
neutrino state ��0� to its orthogonal state �? � 1� ��0�
at a later time t is given by the first equality in (2.17), with
the substitutions ��e ! ��0�, ��� ! �?. Since P is ini-
tially zero, its time derivative must be positive at t � 0,
otherwise we would have physically unacceptable negative
transition probabilities as soon as t > 0. A simple compu-
tation gives _P �0� �

P3
i;j�1 ��0�iH ij��0�j � 0, and since

this must be true for any initial state, physical consistency
requires the symmetric part of the matrix H in (2.15) to be
positive. One easily sees that this is impossible with the
assignment in (3.1).3

In the case of a �-correlated medium, the parameter %
identically vanishes and no inconsistencies arise; however,
as mentioned before, this choice is not supported by strong
physical motivations and appears just a mathematically
convenient simplification. By naively relaxing the
�-correlated assumption, one ends up with the simple
stochastic system discussed above, which turns out to be
seriously flawed. As a consequence, modeling matter fluc-
tuations only in terms of electron density is physically
untenable and indicates that in order to consistently de-
scribe neutrino oscillations in random matter more com-
plex situations need to be analyzed, involving a richer
covariance structure than with ~V�t� � �0; 0; V3�t�	.

Alternatively, instead of the random matter model one
may question the approximations used in deriving the
master equation (2.9), and precisely the weak-coupling
hypothesis and the Markovian limit. However, the first
assumption appears rather well satisfied in the case of the
neutrinos, as they interact very weakly with matter, while
the Markovian approximation is justified by the physically
motivated choice of rapidly decaying matter correlations:
+� !. In reality, once a slightly generalized model of
random medium is adopted, the master equation (2.9)
3An example of the emergence of negative transition proba-
bilities is explicitly provided in the appendix.
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results perfectly adequate to consistently treat decoherence
phenomena in neutrino-matter oscillations.
IV. DIAGONAL CORRELATIONS

When the components of the stochastic field ~V�t� are all
nonvanishing, the noise Hamiltonian in (2.3) is no longer
diagonal: In this case, while traveling in the medium, all
neutrino species undergo incoherent scatterings, in general
involving not exclusively the forward direction; this may
happen only in the presence of flavor changing interac-
tions. However, as a minimal extension of the previously
treated case, we shall assume V1�t� and V2�t� to have zero
mean, so that the Hamiltonian correction H1 contains only
the standard MSW contribution, and further take the cor-
relation functions in (2.22) to be diagonal:

Ŵ ij�t� s� � Wie�+ijt�sj�ij: (4.1)

In addition, for simplicity we shall consider situations for
which the ratios Wi=+i are all equal to a common factor
W > 0; in this case, the parameters appearing in (2.15)
take the form

a � $ � & � 4W ; b � 2!W
�
1

+1
�

1

+2

�
cos2�;

c � 0; % � 2!W
�
1

+3
�

1

+2

�
sin2�; (4.2a)

�1 � !


1
 2W

�
1

+2



1

+3

��
sin2�; �2 � 0;

�3 � �!


1�

A
AR


 2W
�
1

+1



1

+2

��
cos2�; (4.2b)

and the master equation (2.9) can be exactly integrated.
Notice that the request of positivity of ��t� for any t � 0
now requires $2 � b2 
 %2, a condition that is always
satisfied by the original hypothesis of fast decaying
matter-correlations: +i � !. Even more, this inequality
guarantees not only the positivity of the evolution gener-
ated by (2.9), but actually a stronger attribute, that of
‘‘complete positivity’’ [3–5]. This property is crucial in
assuring the consistency of any generalized, dissipative
dynamics in all possible physical conditions and should
always be imposed in place of simple positivity to avoid
possible inconsistencies in the treatment [26]; it is reassur-
ing that it emerges naturally from our simple model of
random matter, without the need of further assumptions.

The transition probability P �e!�� in (2.17) can be ex-
plicitly computed and cast in the simple form:

P �e!���t� �
1
2�1� e

�2$t� 
 e�2$tsin22~�sin2�t; (4.3)

where � � ��2
1 
�2

3 � b
2 � %2	1=2 is the modified os-

cillation frequency, while sin22~� � ��2
1 � %

2�=�2 � 1
defines a new mixing angle. In comparison with the stan-
dard result in (2.21), one sees that the presence of a random
-5



FIG. 1 (color online). Behavior of electron neutrino mean
survival probability P �e!�e as a function of the neutrino energy
(through the ratio A=AR), for sin22� ’ 0:8, density dominated
matter fluctuations, +1; +2 � +3, and different correlation
strengths, W =+2 ’ 10�4–10�3. The lower starting (black) curve
corresponds to the case of noiseless matter (standard MSW
effect), while the remaining (colored) ones show the effect of
the stochastic fluctuations. The initial gap among the group of
curves is due to the presence of the decoherence driven damping
factor.
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medium introduces exponential damping terms and further
modifies the neutrino effective masses and mixing proper-
ties; a resonance enhancement is still present for A � AR,
but its effectiveness is reduced by the damping factors.
This is even more dramatic at large times, where the
decoherence effects dominate: The neutrino state � is
driven to the totally mixed state �0=2 and the transition
probability approaches its asymptotic 1=2 value.

These conclusions apply to neutrinos traveling in uni-
form random media. When this is not the case, the neutrino
total time evolution results from the composition of arbi-
trarily many partial evolutions corresponding to media
with uniform properties, but in general of different thick-
nesses; then, the complete evolution matrix M�t� as de-
fined in (2.16) will be the result of the composition of the
corresponding ones pertaining to the various media (a
simple example is given in the appendix). Nevertheless,
for slowly varying conditions, this composition can be well
approximated by its adiabatic expression, obtained by the
instantaneous diagonalization of the now time-dependent
matrix H in (2.15) and the assumption that the neutrino
states evolve as one of its eigenstates.4 Within this approxi-
mation and neglecting fast oscillating terms, the averaged
transition probability can be cast in the following form:

P �e!���t� �
1

2



1�

e�8W t

R

�
1�

A
AR



4W

+2

�
cos2�

�
;

(4.4)

with

R �

�

1


4W

+2

�
1


+2
+3



4W

+3

��
tan22�


�
1�

A
AR

�

�



1�

A
AR



4W

+2

�
1


+2
+1



4W

+1

���
1=2
: (4.5)

With respect to standard, familiar expressions, the action
of the stochastic medium is signaled by the presence in the
second term of a modified weight and a damping factor;
these additional contributions depend on the ratios of the
three matter-correlation decay constants +i and the corre-
sponding strength W . Although in the weak-coupling
regime one expects W � !, the decay constant ratios
need not be small. Therefore, the behavior of (4.4) as a
function of the neutrino energy can sensibly differ from the
one obtained in absence of decoherence effects (concrete
examples are shown in Fig. 1).

Of particular interest is the application of (4.4) to the
solar neutrino case, where �m2 and � can be taken to
assume the best fit values obtained in recent data analysis
(e.g., see [27,28] and references therein); thanks to the
availability of a larger decoherence parameter space, the
electron surviving probability P �e!�e � 1� P �e!�� is
4Possible hoppings among the instantaneous eigenstates can
also be easily included; for simplicity, we ignore them here.
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found to differ not only from the standard, noiseless ex-
pression, but also from those obtained with �-correlated
fluctuating matter as reported in [13,14] (for a comparison,
see Fig. 1). These results, together with the still present
uncertainties in the fluctuating behavior of the solar matter,
appear to open concrete possibilities for an experimental
study of matter-induced effects in neutrino oscillations that
go beyond the standard MSW phenomenology.
V. DISCUSSION

In the most general situation, the correlations in the
stochastic medium have the form (2.22) and thus all the
entries of the matrix Cij in (2.12) result nonvanishing; as a
consequence, all second-order pieces in the effective
Hamiltonian (2.9b) as well as in the dissipative part
(2.9c) will contribute to the master equation (2.9a).
Further, the first-order mean-field approximation in (2.10)
will no longer be diagonal, taking into account the pres-
ence of possible flavor changing interactions [15–17].

Nevertheless, even in this very general case, the corre-
sponding matrix H in (2.15) cannot result totally generic:
As already pointed out, the positivity of the evolved state
��t� must be preserved under all circumstances; this is
guaranteed by the mentioned condition of complete pos-
itivity of the evolution generated by (2.9). This property
requires the positivity of the matrix Cij in (2.9c) and as a
consequence imposes certain inequalities among the dis-
-6
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sipative parameters in (2.15) (see [29,30] for explicit ex-
pressions). These conditions are certainly of help in re-
stricting the parameter space needed to describe a totally
generic random medium.

Even with these constraints, no simple, exact analytic
expressions for the transition probability P �e!���t� in
(2.17) can in general be given. However, as discussed
before, second-order matter contributions to H are small
with respect to the vacuum frequency !; therefore, in
solving (2.14) one can integrate the Hamiltonian dynamics
exactly, while treating the dependence on a, b, c,$,%, & in
perturbation theory.5 In this way manageable, approximate
expressions for the transition probabilities can be obtained.
Having now at disposal a larger parameter space, their
form involves multiple damping factors and oscillation
phases, showing possible larger deviations from the stan-
dard behavior. In addition, notice that in order to describe
neutrino mixing in a generic random medium two mixing
angles, �̂ and ’̂, are in general needed: They parametrize
the components of the unit vector �i=� �

�cos’̂ sin2�̂; sin’̂ sin2�̂;� cos2�̂�, with � � j ~�j, which
identifies the effective Hamiltonian H � ~� � ~� in (2.9b).

Actually, in the presence of Majorana neutrinos, also in
vacuum the most general mixing matrix involves two
angles, � and ’, so that the explicit expression of the
free effective Hamiltonian H0 in terms of these angles is
as for H above. Although for oscillations in vacuum in-
volving only two species of neutrinos the angle ’ disap-
pears from all observables, this is no longer true in the
presence of matter-induced decoherence effects. Indeed,
one can directly check that the transition probabilities
explicitly depend on ’, unless the dissipative parameters
a, b, c, $, %, & are all zero; at least in principle, it is
therefore possible to distinguish between Dirac and
Majorana neutrinos by studying their oscillations in ran-
dom matter. The detailed analysis of such dependence is
certainly beyond the scope of the present investigation and
thus, in order to keep the treatment as simple as possible, in
the previous discussions we have tacitly assumed the neu-
trinos traveling in matter to be of Dirac type, setting ’ � 0
from the beginning.

As a final remark, let us mention that master equations of
the type (2.9) generate the most general open system
dynamics compatible with a semigroup composition law
and the requirement of complete positivity, and as such can
be applied to model in a physically consistent way a wide
5The effects of the Hamiltonian corrections to the free motion
are in general not small, in particular, near resonance; this is why
no approximation is allowed in the evolution generated by the
effective Hamiltonian (2.9b).
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range of phenomena [3–7]. In particular, they have been
recently used in order to describe dissipative effects in-
duced at low energies by the dynamics of fundamental
objects (strings and branes) at a very high scale, typically
the Planck mass [29,30]. These string induced decoherence
effects may modify the pattern of neutrino oscillations, and
in principle interfere with the phenomena described above.
Nevertheless, besides being very small, they affect in equal
manner all types of neutrinos, so that they can be isolated
from the matter-induced effects by analyzing data taken in
different experimental conditions.
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APPENDIX

In order to show that negative probabilities arise in
experimental accessible observables once the naive model
of density fluctuating matter discussed in the text is
adopted, one needs to combine neutrino propagation in
vacuum with that in the medium. Consider a neutrino,
created as �e, that propagates for time t0 in vacuum, then
enters the random medium in which it stays for a time t,
and is finally detected after having traveled again in vac-
uum for a further time t00. The probability P �e!���.� of
finding a neutrino of type �� at the final time . � t0 
 t

t00 can be expressed as in (2.17), where the total transition
matrix M�.� is now the product of three terms, M�.� �
M0�t

0� �M�t� �M0�t
00�, the middle representing the

propagation in the medium with parameters as in (3.1)
and (3.2), while the outer two the free motion in vacuum,
generated by the Hamiltonian (2.2).

When the vacuum evolution time t0 is chosen to be very
short, such that sin!t0 � %=�2a sin2�� � !=4+, the state
of the neutrino entering the medium is �� � ��0�
~�� � ~�	=2, where ~�� � �M0�t0� ~��e�0� coincides with
the eigenvector of the dissipative part of H relative to
its negative eigenvalue. Similarly, with the same choice
also for t00, one finds M0��t

00� ~����0� � ~��, so that when
exiting the medium the neutrino is found in the state �
 �
1� ��, orthogonal to ��. With these conditions, one has
P �e!���.� � P�!
�t�, and near resonance, one explicitly
finds

P �e!���.� �
1

2



1� e�at

�
cos2�t
D

sin2�t
�

��
;

where D � �a2=4
 %2	1=2 and � � �!2 �D2	1=2; this
expression indeed assumes unphysical negative values for
sufficiently small times: P �e!���.� ’ �a=2�D�t.
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