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Noncommutative isotropic harmonic oscillator
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The energy spectrum of an isotropic harmonic oscillator as a function of the noncommutativity
parameter � is studied. It is shown that for a dense set of values of � the spectrum is degenerated
and the algebra responsible for degeneracy can always be chosen to be SU(2). The generators of the
algebra are constructed explicitly.
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It is well known that the noncommutative geometry
plays an important role in string theory and M theory [1].
It has been found that, in a certain limit, string theory
reduces to a gauge theory on noncommutative space.
Since then quantum theory on noncommutative spaces
has become a subject of intensive research.

The simplest example of such a theory is nonrelativistic
quantum mechanics of a fixed number of particles. There
are indications that some testable predictions can be found
even in this case [2]. There appeared many papers dealing
with quantum mechanics on noncommutative spaces [3–
24].

In particular, several authors studied the energy spec-
trum of natural Hamiltonians on two-dimensional non-
commutative space defined by the commutation rule

�x̂i; x̂j� � i�"ij; i; j � 1; 2: (1)

Unfortunately, most of these models cannot be solved
exactly so only perturbative results are available. They
show that the � dependence of physical quantities is quite
involved.

In particular, it has been suggested [13,25] that, in
general, the limit � ! 0 cannot be taken directly.

In the present paper we show that, even if the limit � !
0 can be taken directly, it is sometimes still highly non-
trivial (although numerically simple). This happens if the
lim�!0En��� is not uniform in n.

More specifically, we consider an isotropic harmonic
oscillator on a noncommutative plane (1). Both the
Hamiltonian and the commutation rule (1) are invariant
under rotations. However, in two dimensions the rotation
group is Abelian so it does not imply energy degeneracy. In
the commutative case the energy spectrum is degenerate
due to the existence of dynamical SU(2) symmetry. For
� � 0 the situation appears to be more complicated. For a
dense set of values of � the energy spectrum is degenerate
and the dynamical SU(2) symmetry is still responsible for
degeneracy; however, the structure of SU(2) multiplets
changes abruptly with �. The complement set, on which
the Hamiltonian has a simple spectrum, is also dense.
Therefore, with � going to zero, one observes a compli-
cated pattern of nondegenerate and degenerate states, the
latter being organized in SU(2) multiplets varying with �.
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We start with the Hamiltonian for an isotropic oscillator
on a noncommutative plane

Ĥ �
1

2m
�p̂2

1 � p̂2
2� �

m!2

2
�x̂21 � x̂22�: (2)

Let xi; pi; i � 1; 2 be the standard canonical variables,
�xi; xj� � 0, �pi; pj� � 0, �xi; pj� � i 	h�ij. Then the com-
mutation rules (1) can be solved in terms of canonical
variables as follows:

x̂ i � xi �
�

2 	h
"ijpj; p̂i � pi: (3)

With the above Ansatz Eq. (2) takes the form

Ĥ �
1

2M
�p2

1 � p2
2� �

M
2

2
�x21 � x22� �

�M
2

2 	h
L (4)

where

L 	 x1p2 � x2p1 (5)

is the angular momentum and

M �
m

1� m2!2�2

4 	h2

; 
 � !

�����������������������������
1�

m2!2�2

4 	h2

s
: (6)

L, as defined by Eq. (5), gives the proper transformation
rules for xi and pi, �L; xi� � i 	h"ijxj, �L; pi� � i 	h"ijpj. In
turn, the relations (3) are O�2�-covariant so L generates
also the proper O�2�-transformation rules for initial dy-
namical variables x̂i, p̂i. Note, however, that L, when ex-
pressed in terms of the latter, acquires an additional term,

L � x̂1p̂2 � x̂2p̂1 �
�

2 	h
�p̂2

1 � p̂2
2�:

It is straightforward to find the spectrum of Ĥ. To this
end we define the relevant creation and annihilation opera-
tors,

a
 	
1

2
������������
M
	h

p �p1 
 ip2� �
i
2

���������
M


	h

s
�x1 
 ix2�; (7)

then
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�a�; a�� � 0; �a�� ; a
�
� � � 0; �a�; a

�
� � � ���

(8)

and Ĥ takes the form [8]

Ĥ � 	h
�

�
N� �

1

2

�
� 	h
�

�
N� �

1

2

�
: (9)

N
 are the standard particle-number operators, N� 	
a��a�, while



 	 
�
M
2�

2 	h
: (10)

Note that, due to (6), 

 > 0. The eigenvalues of Ĥ read

En�n� � 	h
�

�
n� �

1

2

�
� 	h
�

�
n� �

1

2

�
(11)

and the relevant eigenvectors are

j n�n�> �
1��������
n�!

p
1��������
n�!

p �a���
n��a���n� j 0> : (12)

The properties of the spectrum depend on the ratio

�=
�. For irrational 
�=
� the spectrum is nonde-
generate while rational 
�=
� leads to degeneracy.
Consider the latter case. Assume that


�


�

�
k
l

(13)

where k; l are relatively prime. Equation (13) implies

� �
2 	h
m!

j l�kl�k j���������������������
1� �l�kl�k�

2
q : (14)

Let us put


� � k�; 
� � l�; � 	
!�����
lk

p : (15)

Then

En�n� � 	h��kn� � ln�� � 	h�
�
l� k
2

�
: (16)

The last term on the right-hand side is an overall constant.
It follows immediately from Eq. (16) that the spectrum is
degenerate, the level of degeneracy being equal to the
number of natural solutions n
 to the equation kn� �
ln� � const. Surprisingly enough, the symmetry algebra
responsible for degeneracy is always SU(2), like for the
isotropic case. To see this we classify all pairs �n�; n��
according to their congruence properties [26],

n� � pl� r�; 0 � r� � l� 1;

n� � qk� r�; 0 � r� � k� 1:
(17)

Let us fix r 	 �r�; r�� and let Xr be the subspace spanned
by the vectors j n�n�> such that n�, n� are congruent to
r�, r� modulo l and k, respectively. Using (17) one can
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write the energy spectrum of Ĥ, when restricted to Xr, in
the form

Epq � 	hkl��p� q� � 	h�
�
k
�
r� �

1

2

�
� l

�
r� �

1

2

��
:

(18)

Therefore, in each Xr the energy spectrum coincides, up to
an additive constant, with that of the isotropic oscillator.
Moreover, the degeneracy is possible only among the states
belonging to the same Xr [26].

It is also not difficult to find the relevant SU(2) symme-
try algebra responsible for degeneracy in each Xr. To this
end let us note that each Xr is the Fock space if one makes
an identification j n�n�> �j p; q> and defines

br� j p; q> �
����
p

p
j p� 1; q>;

br� j p; q> �
���
q

p
j p; q� 1>;

b�r� j p; q> �
�������������
p� 1

p
j p� 1; q>;

b�r� j p; q> �
������������
q� 1

p
j p; q� 1> :

(19)

New operators are obviously expressible in terms of a�,
a�� . The relevant formulas are slightly complicated and
read [26]

br� � ul
s�1�N� � s���1=2�

�
N� � r�

l

�
�1=2�

al�;

br� � uk
s�1�N� � s���1=2�

�
N� � r�

k

�
1=2
ak�:

(20)

In spite of their appearance these operators are well
defined.

Having constructed new creation-annihilation operators
one easily finds symmetry operators. In fact, defining (here
�i are Pauli matrices)

Tri 	
1

2
b�r���i���br�; i � 1; 2; 3 (21)

one checks that the following relations hold in !r:

�Tri; Ĥ� � 0; �Tri; Trj� � i"ijkTrk: (22)

Now, the total Hilbert space is the orthogonal sum of the
Xr, X � �rXr. Let Pr be the projection operator on Xr;
define

Ti �
X
r

PrTriPr 	
X
r

TriPr: (23)

Then Eqs. (22) extend to the whole Hilbert space !,

�Ti; Ĥ� � 0; �Ti; Tj� � i"ijkTk (24)

which proves that the symmetry algebra is always SU(2)
provided Eq. (14) holds.
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What remains is to construct Pr explicitly. Again, it is
not difficult to verify that [27]

Pr �

�
1

l

Xl�1

s�0

e�2i$s=l��N��r��
��
1

k

Xk�1

t�0

e�2i$t=k��N��r��
�
: (25)

Let us summarize our results. For � ! 0 all energy
levels tend to their undeformed values. However, this limit
is not uniform in quantum numbers n�, n�. This results in
quite involved � behavior of the system. For a dense set of
values the energy spectrum is nondegenerate and the
Hamiltonian is essentially the only independent operator
in the sense that any operator commuting with Ĥ is a
function of Ĥ. On the other hand, for the complement
dense set of �’s obeying Eq. (14) the energy spectrum is
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degenerate and the symmetry algebra responsible for this
degeneracy is always SU(2). However, the structure of
symmetry operators and irreducible SU(2) multiplets
change very rapidly with the change of �. In fact, a slight
change of � can produce an enormous change of k; lwhich
determine the decomposition of X into the sum of Xr’s and
the form of symmetry algebra.

This phenomenon has its classical counterpart. If the
symplectic structure is modified by imposing fxi; xjg �
�"ij, the Hamiltonian continues to be integrable for all
values of �. However, it becomes superintegrable for a
dense set of values of � while it is not superintegrable for
the complementary dense set.
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