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Volume integral theorem for exotic matter
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We answer an important question in general relativity about the volume integral theorem for exotic
matter by suggesting an exact integral quantifier for matter violating Averaged Null Energy Condition
(ANEC). It is checked against some well-known static, spherically symmetric traversable wormhole
solutions of general relativity with a sign reversed kinetic term minimally coupled scalar field. The
improved quantifier is consistent with the principle that traversable wormholes can be supported by
arbitrarily small quantities of exotic matter.
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Traversable wormholes are just as good a prediction of
Einstein’s general relativity as are black holes. The notion
of exotic matter required to construct such wormholes has
found a novel justification in the role of dark matter on a
cosmological scale [1]. There arises a natural enquiry as
to how much of such exotic matter, violating specifically
the Averaged Null Energy Condition (ANEC), is required
to support a traversable Lorentzian wormhole on a local
scale. This question has been recently addressed by Visser,
Kar, and Dadhich [2]. Their key result is the proposal of
quantifying the total ANEC-violating matter in terms of a
volume-integral theorem. Such a theorem is of paramount
importance as it has potential implications for topological
censorship or positive mass theorems of general relativity.
Moreover, given the widespread interest in traversable
wormholes in recent years, especially among the physics
community, it is imperative that the volume-integral in
question be properly identified. The need for a correct
quantifier has also been recognized in Ref. [3].

The work in Ref. [2] concluded with a qualitative state-
ment about the total amount of exotic matter which states
that appropriately chosen traversable wormholes can be
supported by arbitrarily small quantities of exotic matter.
Let us make it very clear at the outset that we do not
contend this important conclusion. Our interest here is
different, that is, to know the exact quantity of exotic
matter present in a given spacetime and we feel that a
more reasonable approach could be to first identify the
corresponding volume integral and then draw qualitative
conclusions (i.e., large or small quantity) as corollaries.
The main purpose of this Brief Report is an attempt to do
just this. We suggest an improved volume quantifier that
checks well against some known examples of static, spheri-
cally symmetric traversable wormholes in the Einstein
minimally coupled scalar field theory. That is to say, the
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integral satisfies an important physical criterion in repro-
ducing, to first order, the scalar ‘‘charge’’ present in the
solution, and hence the exact quantity of exotic matter.

Let us begin with the volume integration measure dV,
viz., ‘‘4�R2dR’’. It is a four dimensional natural measure
in the Reissner-Nordström type of solution in curvature
coordinates where, strictly, gttgRR � �1. But, if the same
measure ‘‘4�R2dR’’ is applied to different spherically
symmetric solutions (where gttgRR � �1), like the ones
we are going to consider, the integral 4�

R
�R2dR does not

reproduce the exotic mass (scalar charge in our case). Of
course, it may still approximate the exact value in some
way, but, as mentioned, our interest here is in exact values.
Similar comments apply also to the measure ‘‘

�����
g3

p
d3x’’

(where g3 is the determinant of the spatial part of the
metric). All these will be evident in what follows.

Consider the Morris-Thorne-Yurtsever (MTY) [4] form
of a static, spherically symmetric wormhole in the curva-
ture coordinates (t; R; 
; ’) (We take G � c � 1):

ds2 � � exp�2��dt2 �
dR2

1� b�R�=R

� R2�d
2 � sin2
d’2�: (1)

The throat of the wormhole occurs at R � R0 such that
b�R0� � R0, and we assume exp�2��R0�� � 0. The density
and pressures can be calculated in the static orthonormal
frame. Then, using these, one has

� � 4�	
Z 1

R0

��� pR� 	 R2dR

�

�
�R� b� ln

�
exp�2��
1� b=R

��
1

R0

�
Z 1

R0

�1� b0�
�
ln
�
exp�2��
1� b=R

��
dR; (2)

where the prime denotes differentiation with respect to R.
Additionally, the boundary term has been assumed to be
zero and the second (integral) part has been proposed in
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Ref. [2] as the volume-integral theorem that provides
information about the total amount of ANEC-violating
matter in the spacetime. The boundary term can be made
to vanish in several ways. One possibility is that, ��R� and
b�R� be asymptotically Schwarzschild [2], i.e., ��R� 

�m=R�O�R�2� and b�R� 
 2m�O�R�1�. An useful
alternative could be ��R� 
O�R�2� and b�R� 
O�R�1�,
given the possibility of a host of traversable wormholes one
is free to construct. However, for our purposes, we require
that the spacetime be only asymptotically flat although,
just incidentally, the examples we are going to consider
follow the first set of asymptotic Schwarzschild behavior.

To get an idea of the value of the charge we want to
retrieve, consider the Einstein minimally coupled scalar
field theory given by the field equations

R�� � �2�;��;� (3)

�;�
;� � 0; (4)

where �; � � 0; 1; 2; 3; � is the scalar field, R�� is the
Ricci tensor and the semicolon denotes covariant deriva-
tives with respect to the metric g��. The minus sign on the
right implies that the scalar field has a negative kinetic
energy so that the stresses violate energy conditions (ghost
scalar field) [5]. These field equations are just the vacuum
Jordan frame Brans-Dicke equations rewritten in the con-
formally rescaled Einstein frame. (They also follow from
the vacuum low energy string theory in four dimensions).
Scheel, Shapiro, and Teukolsky [6] have shown that the
general asymptotically flat, static solution has the asymp-
totic form

g00 � �1�
2MT

r
; g0i � 0;

gij � 1� �ij

�
2MT

r

�
; � � 1�

2MS

r
;

(5)

where i; j � 1; 2; 3; r is the isotropic radial variable, MT
and MS are the tensor and (exotic) scalar masses, respec-
tively. MS may be termed as scalar charge on one side of
the wormhole. Our viewpoint is that it is this MS that the
desired quantifier should first reproduce, and thereby jus-
tify itself, before it can be employed to assess the total
ANEC-violating matter. To this end, we now state our
ANEC volume-integral

�ANEC �
Z 1

xth

ZZ
�T��k

�k��
����������
�g4

p
d3x; (6)

for null k�, stress tensor T��, g4 � detjg��j and the throat
at xth. Some additional comments are in order here. We
have picked up the integration measure ‘‘

����������
�g4

p
d3x’’ from

the general relativity conservation law with the difference
that the integration is taken from xth to 1 because of the
allowed coordinate range in wormhole geometry. It should
be applicable to any spacetime that is asymptotically
Minkowskian. In the simple case of spherical symmetry,
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assuming that the ANEC-violating matter is related only to
pr, and not to the transverse components [2], we have

�ANEC �
Z 1

r0

Z �

0

Z 2�

0
��� pr�

����������
�g4

p
drd
d’; (7)

where r0 is the throat radius. We want to try Eq. (7) with
some examples below.

The form of a certain exact general class of solutions of
the Eqs. (3) and (4) is given in isotropic coordinates
(t; r; 
; ’) by:

ds2 � g��dx
�dx�

� �e2��r�dt2 � e�2 �r��dr2 � r2d
2 � r2sin2
d’2�;

��r� �  �r� � �
M
r
; ��r� � 1�

M
r
: (8)

This solution was actually proposed by Yilmaz [7] decades
ago, in fact a few years earlier than the advent of Brans-
Dicke theory. However, it follows also from the Brans-
Dicke theory under conformal rescaling. For this solution
MT � M and MS � �M=2. The metric in Eqs. (8) exactly
coincides up to second order with the Schwarzschild met-
ric in isotropic coordinates. That is, the solution describes
all the weak field tests of general relativity just as exactly
as the Schwarzschild metric does for r >M=2. It is ac-
tually a singularity free solution as the curvature scalars are
all zero at r � 0 and at r � 1, and thus the solution has
two asymptotically flat regions. The tidal forces are finite
everywhere. In fact, it satisfies all the five conditions laid
down by Visser [8] for any isotropic form to qualify as a
traversable wormhole (see Ref. [9] for more details).
The throat appears at r0 � M. Calculations of the energy
density (�) and pressures (pr; p
; p’) give � � �f; pr �
�f; p
 � p’ � f where f � � 1

8��M
2r�4e�2M=r > 0. That

is, both the Weak Energy Condition (� � 0) and NEC
(�� pr � 0) are violated, as expected in a spacetime
containing wormholes. With these expressions, the inte-
gral (7) converges and immediately gives the values for
the scalar charge �pr�0

ANEC � �M=2 � MS, and the total
ANEC-violating mass �ANEC � �M, no matter whatever
coordinate network we use. These results fundamentally
confirm the validity of our integral. Returning to the MTY
form via the transformation R � rexp�M=r� (Note that for
both r! 0 and r! 1, we have R! 1 and the throat now
occurs at R0 � Me), and calculating with (2), we find
�pr�0 � M�1� e=2� � �M=2 and � � M�2� e� �

�M. The use of
�����
g3

p
d3x measure in (2) instead of

‘‘4�R2dR’’ measure gives � � M�1� e� � �1:71M,
none of which obviously coincides with the desired value.
Now we do have here a traversable wormhole with ANEC-
violating mass �ANEC � �M, but how can we make it
arbitrarily small? We can let M ! 0 to achieve it, but
that would mean that we approach the trivial Minkowski
spacetime!
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Let us consider a second, but qualitatively different
example provided by another class of exact solutions of
the set (3) and (4):

��r� � % ln

"
1� m

2r

1� m
2r

#
;

 �r� � �%� 1� ln
�
1�

m
2r

�
� �%� 1� ln

�
1�

m
2r

�
;

��r� � 1� �%2 � 1�1=2 ln

"
1� m

2r

1� m
2r

#
:

(9)

It was proposed in that form by Buchdahl [10] long ago,
but it can also be obtained from the Brans-Dicke solution
by conformal rescaling. The two undetermined constantsm
and% are related to the source strengths of the gravitational
and scalar parts of the configuration. The tensor mass
responsible for known gravitational effects appears always
as a product MT � m% so that weak field effects can not
separately measure the components. Once the scalar com-
ponent is set to a constant value (� � 1 ) % � 1), the
solutions (9) reduce to the Schwarzschild black hole in
accordance with Wheeler’s ‘‘no scalar hair’’ conjecture.
Physically, this indicates the possibility that the scalar field
could be radiated away during collapse and the end result is
a Schwarzschild black hole. But for % � 1, the solution
has a naked singularity at rNS � m=2. However, the throat
occurs at r�0 � m

2 �%� �%2 � 1�1=2�> rNS and it is known
that the solution represents a traversable wormhole as
it also shows � � �h; pr � �h; p
 � p’ � h with cor-
responding expression for h > 0 [11]. The scalar field

expands like: � � 1� �m=r�
���������������
%2 � 1

p
�O�1=r2� and pro-

vides a charge MS � ��m=2�
���������������
%2 � 1

p
. Using (7), we find,

�pr�0
ANEC � �

�
m
4

�
	 �%2 � 1� 	 ln

�
1� 1=%
1� 1=%

�

� �

�
m
2

� ���������������
%2 � 1

q
	

�
1�

1

2%2

�
; (10)

from which one can read off the scalar charge. Also, like
the first example, �ANEC � 2�pr�0

ANEC. An interesting cor-
ollary from Eq. (10) is the following: Consider the total
energy denoted by, say, M � MT ��pr�0

ANEC. At % � 1, of
course, M � m, but it turns out that, as % increases from
the value 1, the quantity M decreases to a minimum value
M � 0:93m at % � 1:16, and again increases to M � m at
around % � 1:51. Thereafter, M continues to grow beyond
the value m almost linearly with increasing %. These
informations allow us to visualize how the total mass
changes as one increases the component of ghost energy
in the configuration. However, returning to our topic, the
metric in (9) can be transformed to MTY form under R �
re� and we can compute (2) with the ‘‘4�R2dR’’ or any
other measure but that would not give us (10). Now, one
can make �ANEC ! 0 by tuning %! 1� , in which case,
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the solution gradually approximates to the vacuum
Schwarzschild solution.

Finally, keeping in mind that the volume integral in (7) is
neatly supported by our known wormhole examples, it is
curious to see what result it gives for the ‘‘R � 0’’ self-dual
wormhole [2,12] for which � � 0. It is helpful to have the
solution in view:

ds2 � �

"
"� '

 
1� m

2r

1� m
2r

!
2
#
dt2 �

�
1�

m
2r

�
4
�dr2 � r2d
2

� r2sin2
d’2�; (11)

where " and ' are arbitrary constants. The Schwarzschild
solution is recovered at the value " � 0. The Eq. (7) works
out simply to

���0
ANEC � �2m" lnr�1m=2 (12)

If aesthetics is any guiding principle, Eq. (12) amply
satisfies it when contrasted with the expressions one
obtains otherwise. It shows that it is " that controls the
amount of ANEC-violating matter. Unfortunately, Eq. (12)
together with similar expressions computed from the met-
ric (11) show an asymptotic logarithmic divergence. What
does it tell us? One possibility immediately suggests it-
self: Set " identically to zero, that is, conclude that
an asymptotically flat spacetime with � � 0 can only be
a Schwarzschild vacuum (���0

ANEC � 0). A more interesting
possibility is to truncate the spacetime such that the exotic
matter lies only within the fixed radii �m2 ; a� beyond which
the spacetime is exactly Schwarzschild [2]. With Eq. (12),
the limiting arguments appear simpler and transparent. We
have

���0
ANEC � �2m" ln

�
2a
m

�
; (13)

so that ���0
ANEC ! 0 as a! m=2 and/or "! 0:

To summarize, our key suggestion is the volume quanti-
fier given in Eq. (6): In the simplest case of spherical
symmetry, it has justified itself by retrieving the exact
quantity of scalar charge in the first example. Its use in
the second example has thrown up an expression for the
exotic mass, viz., Eq. (10), which is not obvious a priori
and it also provides some new insights into the behavior of
total mass. When applied to the self-dual case, Eq. (6)
yields a very sensible result. Finally, as a corollary, it is
found to be consistent with the principle that the ANEC-
violating matter can be made arbitrarily small [13]. It
would be worthwhile to examine the integral (6) in non-
spherically symmetric cases. This is a task for the future.
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