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Exact string theory model of closed timelike curves and cosmological singularities
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We study an exact model of string theory propagating in a space-time containing regions with closed
timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big
crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory
with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset
model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of
CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an
effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of o’
corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory,
together with the emergence of a region of space with Euclidean signature bounded by timelike
curvature singularities. Although such remarks are premature, their persistence in the exact geometry is
suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the
CTCs, despite their pathological character in general relativity. This may also support the possibility
that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang

cosmological scenarios.
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L. INTRODUCTION AND MOTIVATION

The Taub-NUT space-time [1,2] is an interesting one.
We can write a metric for it as follows:

ds? = —f,(dt — [cosBde)> + fr'dr?

+ (r* + ?)(d6?* + sin*0d ¢?), (1)
where
_ Mr + 2
fi=1- Zw- (2)

The angles 6 and ¢ are the standard angles parameteriz-
ing an S? with ranges 0 =< # = 7, 0 = ¢ =< 2. In addi-
tion to simple time translation invariance, the metric has
an SO(3) invariance acting as rotations on the S%. To
preserve d¢ = dt — l[cosfd¢p, a time translation must
also accompany a general rotation. This makes ¢ periodic
with period 4/, which can be deduced by asking for
there to be no conical singularities in the North or South
Poles. The coordinate ¢ is fibered over the S making a
squashed S°, and the full invariance is under an SU(2)
action on this space.

There are two very different regions of this space-time,
as one moves in r, distinguished by the sign of f;(r). The
regions are separated by the loci (with S* topology)

re =M=NM? + P, 3)

where f; vanishes. They are, in a sense, horizons. The
metric is singular there, but there exist extensions the
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nature of which is subtle in general relativity (for a
review, see Ref. [3]). One of the things which we will
discuss in detail later is the fact that the string theory
provides an extremely natural extension.

The region r_ < r < r, has f;(r) <O0. The coordinate
r plays the role of time, and the geometry changes as a
function of time. This is the ‘“Taub” cosmology, and
spatial slices have the topology of an S3. The volume of
the universe begins at » = r_ at zero, it expands to a
maximum value, and then contracts to zero again at r =
r. This is a classical ““big bang” followed by a classical
“big crunch.”

On either side of this Taub region, f;(r) > 0. The co-
ordinate ¢ plays the role of time, and we have a static
spatial geometry, but since ¢ is periodic, it is threaded by
closed timelike curves. Constant radial slices have the
topology of an S where the time is a circle fibered over
the S2. These regions are called the “NUT” regions.

It is fascinating to note that the Taub and NUT regions
are connected. There are geodesics which can pass from
one region to another, and analytic extensions of the
metric can be written down [3]. The geometry is therefore
interesting, since it presents itself as a laboratory for the
study of a cosmology which naturally comes capped with
regions containing CTCs. Classical physics would seem to
suggest that one can begin within the cosmological region
and after waiting a finite time, find that the universe
contained closed timelike loops.

It is an extremely natural question to ask whether or not
this is an artifact of classical physics, a failure of general
relativity to protect itself from the apparent pathologies
with which such time machines seem to be afflicted. This
leads to a closer examination of the neighborhood of the
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loci f(r) = 0 located at r = ro, which we shall call
(adopting common parlance) ‘‘chronology horizons.”

For small 7 = r — r_, we see that f; = —c7, where c is
a constant, and we get for the (7, £) plane
ds* = —(ct)"'dr* + crdé?, 4)

which is the metric of a two-dimensional version of the
“Milne” Universe, or “Misner space” [4]. It is fibered
over the S2.

There is an early study of cosmological singularities of
this type in a semiclassical quantum treatment, reported
on in Ref. [S]. There, the vacuum stress-energy tensor for
a conformally coupled scalar field in the background is
computed, and it diverges at 7 = 0. This is taken by some
as an encouraging sign that a full theory of quantum
gravity might show that the geometry is unstable to
matter fluctuations and the appropriate back-reaction
should give a geometry which is modified at the bounda-
ries between the Taub and NUT regions. In fact, this is the
basis of the ‘‘chronology protection conjecture” of
Ref. [6], which suggests (using Taub-NUT as a one of its
key examples) that the full physics will conspire to forbid
the creation of CTCs in a space-time that does not already
have them present, i.e., the Misner geometry of the chro-
nology horizon is destroyed and replaced by a nontravers-
able region’. The expectations of a full theory of quantum
gravity in this regard are (at least) twofold: (1) It should
prescribe exactly what types of matter propagate in the
geometry, and; (2) It should give a prescription for exactly
how the geometry is modified, incorporating any back-
reaction of the matter on the geometry in a self-consistent
way.

Since the papers of Ref. [5,6], a lot has happened in
fundamental physics. In particular, it is much clearer that
there is a quantum theory of gravity on the market. It
should allow us to study the questions above®. Of course,
we are referring to string theory (including its not yet
fully defined nonperturbative completion in terms of M-
theory). While the theory has yet to be developed to the
point where we can address the physics of space-time
backgrounds in as dextrous a way as possible, there are
many questions which we can ask of the theory, and in
certain special cases, we can study certain space-time
backgrounds in some detail.

In fact, as we will recall in the next section, the Taub-
NUT space-time can be embedded into string theory in a

"Even staying within relativity, there are many who take an
alternative view, by, e.g., showing that a nondivergent stress
tensor can be obtained by computing in a different vacuum,
thus calling into the question the need for such a conjecture.
See, for example, Refs. [7-16] and for a recent stringy ex-
ample, see Ref. [17].

*Leaving aside the question of CTCs, cosmological singular-
ities of Misner-type have recently become relevant in the
context of cosmologies inspired by string- (and M-) theory.
See for example Ref. [18]
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way that allows its most important features to be studied
in a very controlled laboratory, an exact conformal field
theory [19]. It is therefore not just accessible as a solution
to the leading order in an expansion in small a’ (the
inverse string tension), but to all orders and beyond.
Leading order captures only the physics of the massless
modes of the string, (the low-energy limit) and so any
back-reaction effecting the geometry via high-energy
effects cannot be studied in this limit. With the full
conformal field theory one can in principle extract the
complete geometry, including all the effects of the infi-
nite tower of massive string states that propagate in it. We
do this in the present paper and extract the fully corrected
geometry. We observe that the key features of the geome-
try survive to all orders in o', even though placed in a
string theory setting without any special properties to
forbid corrections. This result means that a large family
of high-energy effects which could have modified the
geometry are survived by the full string theory. The
string seem to propagate in this apparently pathological
geometry with no trouble at all. It is of course possible
that the new geometry we find is unstable to the presence
of a test particle or string, but this type of effect does not
show up in the CFT in this computation. Such test-
particle effects are important to study” in order to under-
stand the complete fate of the geometry by studying its
stability against fluctuations. Our work here yields the
fully corrected geometry in which such probe computa-
tions should be carried out in this context. More properly,
the probe computation should be done in the full confor-
mal field theory, in order to allow the string theory to
respond fully to the perturbation. The conformal field
theory discussed here is a complete laboratory for such
studies, and as it describes the Taub-NUT geometry, it
provides the most natural stringy analogue of this classic
geometry within which to answer many interesting
questions4.

In Sec. II, we recall the stringy Taub-NUT metric
discovered in Ref. [19], and write it in a new coordinate
which gives it a natural extension exhibiting the Taub and
NUT regions and their connection via Misner space. We
also recall the work of Refs. [63—65] which demonstrates
how to obtain the low-energy metric as a stringy embed-
ding by starting with the standard Taub-NUT metric of

3They have been found for the leading order geometry in its
form as an orbifold of Minkowski space by a Lorentz boost
[20-24].

“There are a number of other interesting conformal field
theories (and studies thereof) which have been presented,
which at low energy describe geometries which although are
not Taub-NUT spacetimes, do share many of the key features in
local patches. Some of them are listed in Refs. [25-40].
Refs. [39,40] also contain useful comments and literature
survey. There are also many papers on the properties of string
theory in spacetimes with CTCs, such as the BMPV [41] space-
time [42-54] and the Godel [55] space-time [56—62].
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Eq. (1). It is the “throat” or “near-horizon” region of this
space-time that was discovered in Ref. [19], where an
exact conformal field theory (a ‘“‘heterotic coset model’)
can be constructed which encodes the full stringy correc-
tions. We review the conformal field theory construction
in Secs. IIT A and III B, where the Lagrangian definition
is reviewed. Happily, the extension of the throat geometry
we present in Sec. II (described by the same conformal
field theory) contains all the interesting features: the Taub
region with its big bang and big crunch cosmology, the
NUT regions with their CTCs, and the Misner space
behavior which separates them. Therefore we have a
complete string theory laboratory for the study of the
properties of Taub-NUT, allowing us to address many of
the important questions raised in the relativity commun-
ity. For example, questions about the analytic extension
from the NUT to the Taub regions are put to rest by the
fact that the full conformal field theory supplies a natural
extension via the structure of SL(2, R) (Sec. II). Further,
having the full conformal field theory means that we can
construct the &’ corrections to the low-energy metric, and
we do so in Sec. III E capturing all of the corrections,
after constructing an exact effective action in Secs. II1 D
and IITE. We analyze the exact metric in Sec. III G, and
end with a discussion in Sec. IV, noting that there are
many questions that can be answered in this laboratory by
direct computation in the fully defined model.

IL. STRINGY TAUB-NUT

Taub-NUT space-time, being an empty-space solution
to the Einstein equations, is trivially embedded into
string theory with no further work. It satisfies the low-
energy equations of motion of any string theory, where
the dilaton is set to a constant and all the other back-
ground fields are set to zero. This is not sufficient for what
we want to do, since we want to have a means of getting
efficient computational access to the stringy corrections
to the geometry. A new embedding must be found which
allows such computational control.

This was achieved some time ago. An exact conformal
field theory describing the Taub-NUT space-time (in a
certain throat or ‘“‘near-horizon’ limit) was constructed
in Ref. [19]. This CFT will be described in the next
section. The geometry comes with a nontrivial dilaton
and antisymmetric tensor field, together with some elec-
tric and magnetic fields. The string theory is heterotic
string theory. This model is in fact the earliest nontrivial
embedding of Taub-NUT into string theory, and uses a
novel construction known as “heterotic coset models™ in
order to define the theory [19,66—68]. The technique was
discovered as a method of naturally defining (0, 2) con-
formal field theories, i.e., backgrounds particularly
adapted to yielding minimally supersymmetric vacua of
the heterotic string. That aspect will not be relevant here,
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since we will not tune the model in order to achieve
space-time supersymmetry.

The low-energy metric of the stringy Taub-NUT space-
time was presented in Ref. [19] as (in string frame)

h’o — 1
ds? = Kdo? — 227 7 (g — ) 2+ de?
s {da’ (coshor + 57 (d cosfde)? + db
+ sinzﬁdd)z}, (5)

where 0 < o =< 00, 6 = 1, A = 0. The dilaton behaves as
® — @, = —1n(cosho + §), 6)

and there are other fields which we will discuss later. This
is in fact the NUT region of the geometry, and o = O is a
Misner horizon. We note here that the embedding presents
a natural analytic extension of this model which recovers
the other NUT region and the Taub cosmology as well;
replace cosho with the coordinate x:

dx? x2 -1
ds’ =k — dt— A 0dd)? + do?
Rl g Aeostdd)
+ sin29d¢2:|, @)

with
O — Oy = —1n(x + ), (8)

where now —oo = x = +o0. The three ranges of interest
are 1 = x = 400, (x = cosho) which is the first NUT
region above, —o0 = x = —1 (x = — cosho) which is a
second NUT region, and —1 =x = +1 (x = — cos7),
which is a Taub region with a big bang at 7 =0 and a
big crunch at 7 = 7. We shall see shortly that this embed-
ding is very natural from the point of view of string
theory, since x is a natural coordinate on the group
SL(2, R), which plays a crucial role in defining the com-
plete theory. It is interesting to sketch the behavior of the
function G,, = F(x) = (1 — x?)/(x + §)>. This is done in
Fig. 1. Note that F(x) vanishes at x = *1 and so for x =
1 — 7 where 7 is small, the metric of the (7, £) space is

27

22l _r-19.2
ds k|: 7)) ldr +(1 o)

)
which is of Misner form, and so the essential features of
the Taub-NUT space-time persist in this stringy version of
the space-time. Note that, unlike general relativity’s Taub-
NUT solution, there is a genuine curvature singularity in
the metric, and it is located at x = —§. The dilaton
diverges there, and hence the string theory is strongly
coupled at this place, but it is arbitrarily far from the
regions of Misner space connecting the Taub and NUT
regions, so we will not need to worry about this locus for
the questions of interest in this paper.

Note that the (x, ) plane is fibered over a family of S?s
which have constant radius, as opposed to a radius vary-
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F(x)

FIG. 1. The various regions in the stringy Taub-NUT geome-
try. There are two NUT regions, containing CTCs, and a Taub
region, which is a cosmology. Note that there is a curvature
singularity in the second NUT region, when x = — 4.

ing with x. This does not mean that we lose key features
of the geometry, since, e.g., in the Taub region, we still
have a cosmology in which the universe has S* topology,
but its volume is controlled entirely by the size of the
circle fiber (dt — A cosfd¢), which ensures that the uni-
verse’s volume vanishes at the beginning and the end of
the cosmology.

The constancy of the $%s is in fact a feature, not a bug.
It allows the geometry to be captured in an exact confor-
mal field theory, as we shall recall in the next section.
This geometry is the “near-horizon” limit of a space-
time constructed as confirmation of the statement in
Ref. [19] that the metric in question is indeed obtainable
from the original Taub-NUT metric in a series of steps
using the symmetries of the heterotic string theory action
[63—-65]. This geometry is, in string frame
ds* = (a* + f%){—%[dt + (p + 1)lcosOdp* + fildr?

2

+ (2 + P)(d6* + sin20d(f)2)}, (10)
where £ is as before, p> = 1 and
Mr+ 17 r—m
f2:]+(p_1)r27—|—12’ and a=(p—1)lr2le
(11)

This metric has the full asymptotically flat part of the
geometry and connects smoothly onto the throat region,
which develops in an “‘extremal’” limit (analogous to that
taken for charged black holes). Figure 2 shows a cartoon
of this. The metric (5) is obtained from it in the extremal
limit p — 0o, M — 0, l — 0, where m = pM and € = pl
are held finite. The limit is taken in the neighborhood of
f1 =0, and o is the scaled coordinate parameterizing r
in that region. The coordinate ¢ has to be rescaled as well
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throat region

asymptotically
flat region

FIG. 2 (color online). A schematic showing the asymptoti-
cally flat region connected to the throat region located near the
horizon at extremality. In the extremal limit, the typical mea-
sure, A of the distance from a point on the outside to a point
near the horizon region diverges logarithmically, and the throat
region is infinitely long. The coordinate o is used for the exact
throat region in low-energy metric (5), while r is the coordi-
nate for the general low-energy metric (10).

to get matching expressions. The parameters of metric (5)
are recovered as A = [/m and 6% = 1 + I>/M?.

The stringy embedding giving rise to the metric (10)
(we have not displayed the other fields of the solution
here) is carried out starting from the metric (1) as fol-
lows: (The details are in Refs. [63—65]) First, an O(1, 1)
boost (a subgroup of the large group of perturbative
noncompact symmetries possessed by the heterotic the-
ory) is used to generate a new solution, mixing the ¢
direction with a U(1) gauge direction. This generates a
gauge field A,, a nontrivial dilaton, and since there is a
coupling of 7 to ¢ in the original metric, a gauge field A,
and an antisymmetric tensor background B,,. So the
solution has electric and magnetic charges under a U(1)
of the heterotic string, and nontrivial axion and dilaton
charge. We will not need the forms of the fields here. It
turns out that the dilaton has a behavior which is “‘elec-
tric” in its behavior in a sense inherited from the behav-
ior of charged dilaton black holes; it decreases as one
approaches the horizon. Such holes do not support the
development of throats in the string frame metric, but
their “magnetic” cousins, where the dilaton has the op-
posite behavior, do support throats’. Using the SL(2, R)
S-duality of the four dimensional effective action of the
heterotic string, which combines an electric-magnetic
duality with an inversion of the axi-dilaton field 7 = a +

ie”®, a solution with magnetic character can be made

In fact, an exact conformal field theory can be written for
pure magnetic dilaton black holes in four dimensions [69], and
it can be realized as a heterotic coset model as well [19].
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[63,64], which supports a throat in the string frame
metric. This is the solution whose metric we have dis-
played in Eq. (10).

So in summary, there is an embedding of general
relativity’s celebrated Taub-NUT solution into heterotic
string theory which preserves all of the interesting fea-
tures: the NUT regions containing CTCs, and the Taub
region with its big bang and big crunch cosmology, and
(crucially) the Misner regions connecting them. There is a
throat part of the geometry which decouples from the
asymptotically flat region in an extremal limit, but which
captures all of the features of the Taub-NUT geometry of
interest to us here.

The next thing we need to recall is that this throat
geometry arises as the low-energy limit of a complete
description in terms of a conformal field theory, as pre-
sented in Ref. [19].

III. EXACT CONFORMAL FIELD THEORY
A. The Definition

In Ref. [19], the “heterotic coset model” technique was
presented, and one of the examples of the application of
the method was the model in question, from which the
low-energy metric in Eq. (7) was derived, for x = cosho.
The other regions that have been presented here (making
up —o© = x = 0) are easily obtained from the same con-
formal field theory by choosing different coordinate
patches in the parent model, as we shall see.

Actions can be written for a large class of conformal
field theories obtained as coset models [70-74], by using
gauged WZNW models [75-80]. The ungauged model
[81,82] has some global symmetry group G which defines
a conformal field theory [83-85] with an underlying
current algebra, and coupling it to gauge fields charged
under a subgroup H C G gives the coset. Such models
have been used to generate conformal field theories for
many studies in string theory, including cosmological
contexts (see the introduction for some references). It is
important to note that the vast majority of these models
use a particular sort of gauging. The basic world-sheet
field is group valued, and we shall denote it as g(z, 7). The
full global invariance is G; X Gg, realized as g(z, 7) —
218(z,2)gx", for g;, gx € G. The sorts of group actions
gauged in most studies are g — h; ghg!, for h;, hg € H,
and it is only a restricted set of choices of the action of A,
and Ay, which allow for the writing of a gauge-invariant
action. These are the “anomaly-free”” subgroups, and the
typical choice that is made is to correlate the left and right
actions so that the choice is essentially left-right sym-
metric. This also gives a symmetric structure on the
world-sheet, as appropriate to bosonic strings and to
superstrings if one considers supersymmetric WZNW
models. For these anomaly-free subgroups, a gauge ex-
tension of the basic WZN W action can be written which is
H-invariant, and the resulting conformal field theory is
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well-defined. The supersymmetric models can of course
be turned into heterotic string theories too, by simply
tensoring with the remaining conformal field theory
structures needed to make a left-right asymmetric model.

The general heterotic coset model goes beyond this,
and exploits the basic fact that the heterotic string is
asymmetric in how it is built. The idea is to allow oneself
the freedom to choose to gauge far more general sub-
groups. This might well produce anomalies, but permits
one to choose to retain certain global symmetries which
might be of interest (such as space-time rotations) and/or
use in the conformal field theory. Introducing right-
moving fermions to achieve a right-moving supersym-
metry is easy to do, and they contribute extra terms to the
anomaly, making matters worse in general Their cou-
plings (the effective charges they carry under H) are
completely determined by supersymmetry, so one has
no choice. Of course, one does not have a well-defined
model if there are anomalies, so ultimately they must be
eliminated. This is achieved as follows [19]. Note that the
left-moving fermions can be introduced with arbitrary
couplings (charges under H), since there is no requirement
of left-moving supersymmetry in the heterotic string.
The anomaly they contribute comes with the opposite
sign to that of the others, since they have the opposite
chirality. The requirement that the anomaly cancels can
be satisfied, since it just gives a set of algebraic equations
to solve for the charges. The resulting model is a confor-
mal field theory with (0,1) world-sheet supersymmetry,
(enhanced to (0,2) when G/H is Kihler [86—88]) natu-
rally adapted to the heterotic string.

It is important to note that the types of heterotic
models obtained by this method are very different from
the types of models obtained by gaugings that do not
cancel the anomalies against those of the gauge fermions.
One way to see the difference is to note that since the
anomaly is proportional to k, the cancellation equation
puts the gauge charge at the same order as the metric. This
means that there is a nontrivial modification of the ge-
ometry one would read off from the WZNW action, trace-
able to the left-moving fermions. We will explain this
more shortly.

By way of example, we simply present the model
relevant to our study here [19]. The group in question is
SL(2, R) X SU(2), and the group elements are denoted g,
and g, respectively. Let the levels of the models be
denoted k; and k,, respectively. We are interested in a
U(1), X U(1)z subgroup (A and B are just means of
distinguishing them) which acts as follows:

eeAtr3/2gl €(5€A +Aeg)os/2

iegos/2

U(1), X U(1): {gl - (12)

82— &€

Notice that there is a whole global SU(2); of the original
SU(2); X SU(2)g untouched. This is a deliberate choice to
give a model with space-time SU(2) invariance (rota-
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tions) in the end. With that, and the other asymmetry
introduced by the presence of A and &, the gauging is
very anomalous. Once right-moving supersymmetry fer-
mions are introduced, the anomalies are proportional to
—k;(1 — 8%) + 282 from the AA sector, k; 6A + 28 from
the AB sector, and k, + k;A> + 2(1 + A?) from the BB
sector. The k-independent parts come from the fermions.
Next, four left-moving fermions are introduced. Two are
given charges Q4 p under U(1), 3 and the other two are
given charges P, p. Their anomalies are —2(Q3% + P3),
—2(Q40p + P4Pp), and —2(Q% + P3%), respectively,
from the various sectors AA, AB, BB. So we can achieve
an anomaly-free model by asking that:

—ki(1 = &) =2(QF + P} — &%),
ki6A =2(Q,0p + P4Pg — SA), (13)
ky + ki A2 = 2[0% + P4 — (1 + A?)].

It is a highly nontrivial check on the consistency of the
model to note that in the solution-generating techniques
used to verify the observation made in Ref. [19] that our
stringy solution (5) can be obtained from the basic Taub-
NUT solution (1), the charges in the resulting throat
metric turn out to be given in terms of the parameters
M, [ and p in such a way that they satisfy the anomaly
equations above, in the large k limit (which is appropriate
to low-energy). See Ref. [63].
The central charge of this four dimensional model is
3k, 3k,

- + 14
“Th-2 K+t2 (14)

where the —2 from gauging is cancelled by the +2 from

four bosons on the left and right. We can ask that this be
|
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equal to 6, as is appropriate for a four dimensional model,
tensoring with another conformal field theory to make
up the internal sector, as desired®. The result is that
kl = k2 + 4.

In Ref. [19], the metric for the throat region was dis-
covered by working in the low-energy limit where k; and
k, are large, and denoted simply as k. In this paper, we
study the case of going beyond this large k (low-energy)
approximation and derive the geometry which is correct
to all orders in the a’ ~ 1/k expansion.

B. Writing The Full Action
The G = SL(2, R) X SU(2) WZNW model is given by

S(g1, 82) = —ki1(gy) + kyl(g), (15)

where
1
I(g) = — — f &P2Tr(g 9,89 "0:8) — il(g), (16)
47 Js

with

1

I'(g) = ——

dPoeTr(g™ 19,88 10,88 '0.8).
127 |3

a7)

The group valued fields g, (z, z) € SL(2, R) and g,(z, 2) €
SU(2) map the world-sheet 3 with coordinates (z, Z) into
the group SL(2, R) X SU(2). Part of the model is defined
by reference to an auxiliary space-time B, whose bound-
ary is 3, with coordinates . The action I'(g) is simply
the pullback of the G; X Gp invariant threeform on G.
With reference to the U(1), X U(1)g action chosen in
Eq. (12), the gauge fields are introduced with the action

k _ _ _
S(g1, 82, A) = ﬁ fdzz{—Z(BA? + AME)Tr{ 038,190,811 — 2A4Tr{ 03028, 87 '] + AZA2(1 + 82 + 8Tilo3g,0387 1))

_ k o _
+ N2ABAE + NSALAB + ABAZ(AS + ATio3g,0387 ' D} + 8_727' [dza{ZzAzBTr[a'3g2 '9.g,] + ABAE},

and we note that we have written the generators as

m _ 93 (n _ 93 M _ _ )93
‘R T 709 arT o fer T TAG
(19)
t(2) = —12
B,R 2 *

The anomaly under variation 5AZ‘(B ) = d,€4(3) can be
written as

1
A ab ETr[ta,Ltb,L - ta,Rtb,R]Ea ]dzzF?z’,’ (20)

6Actually, we can also choose other values of ¢, and adjust
the internal theory appropriately.

(18)
\
(no sum on a, b) and we have defined Tr = —k;Tr; +
k,Tr,. The right-moving fermions have an action
i 2
Ig = E fd ZTr(\PRDZ\I,R), (21)

where Wy takes values in the orthogonal complement of
the Lie algebra of U(1),4 X U(1)g, (so there are four right-
movers, in fact) and

D Vg =0.Vp— > Atyp Vil (22)

The four left-moving fermions have action
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ik
==k [ Ao+ 0ual + 0uaIAG)

" % f PN [0, + PyAd + PLAPAL (23)
Under the gauge transformation SAAE) = d,€4p)» these
two sets of fermion actions yield the anomalies discussed
earlier, but at one-loop, while the WZNW model displays
its anomalies classically. It is therefore hard to work with
the model in computing a number of properties. In par-
ticular, in working out the effective space-time fields it is
useful to integrate out the gauge fields. It is hard to take
into account the effects of the successful anomaly can-
cellation if part of them are quantum and part classical.
The way around this awkward state of affairs [19] is to
bosonize the fermions. The anomalies of the fermions
then appear as classical anomalies of the action. The
bosonized action is

1
In = [ @ella.y —Pat = Py + DA +

az(I)l

—(Qp + MNAE — (Q4 + AL — ®1[(Q5 — VFE
+ (QA - S)F?z] - ‘bz[(PB - I)Ffz + PAF?z]
+[AZAAB — A2AZB][805 — A0, — PAl} 24)

which under variations

5ALE) = d.€a8) 0Dy =(Qp + ey +(Qp + Ve,
5(D2:PAEA+(PB+1)EB’ (25)

manifestly reproduces the anomalies presented earlier.

C. Extracting the Low-Energy Metric

At this stage, it is possible to proceed to derive the
background fields at leading order by starting with the
Lagrangian definition given in the previous section and
integrating out the gauge fields, exploiting the fact that
they appear quadratically in the action. As these fields are
fully quantum fields, this procedure is only going to
produce a result which is correct at leading order in the
1/k expansion, where k is large. This is because we are
using their equations of motion to replace them in the
action, and neglecting their quantum fluctuations. Before
turning to how to go beyond that, let us note that there is
an important subtlety even in the derivation of the lead-
ing order metric. This is not an issue for coset models that
are not built in this particularly heterotic manner, and so
is a novelty that cannot be ignored.

The coordinates we use for SL(2, R) and SU(2) are

1 et+/2(x 4 1)1/2 et,/2(x _ 1)1/2
Bz e—t,/Z(x_ 1)1/2 e_’+/2(x+ 1)1/2 . (20)

gl_\/j

where . =t; = tp, and —o0 = 1y, f;, x = o0, and the
Euler angles
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e'®-/2sin¢ 7
e i¢+/2 cos? | 27

[ €*+/?cost
82 —eTi¢-/2 sin§

where . ==, 0=0=7, 0=y =47, and 0 =
¢ = 2ar. Note that the full range of x is available here,
while remaining in SL(2, R). In Ref. [19], the range x =
cosho = 1 was used. The larger range reveals the con-
nection to the Taub and the other NUT region. This
extension is very naturally inherited from the SL(2, R)
embedding’.

The gauge we fix to before integrating out the gauge
fields is

tLZO,

b ==*9, (28)

where the sign choice depends on which coordinate patch
we investigate, such that + refers to the North Pole on the
§? parameterized by (6, ¢) and — refers to the South
Pole, and we write f; = t. One can then read off various
space-time fields from the resulting o-model, by examin-
ing terms of the form C;;0,x'9Zx/, where here x/, is a
place holder for any world-sheet field, and j denoted
which field is present. When i, j are such that 'y’ run
over the set of fields ¢, x, 6, ¢, then the symmetric parts of
C;;j give a metric we shall call G(}w, and the antisymmet-
ric parts give the antisymmetric tensor potential B,,.
When i, j are such that )’ is one of the bosonized fermi-
ons and ,\/f isone of t, x, 6, ¢, the C,-j is a space-time gauge
potential, either from the (1) or the (2) sector: Aﬂ’z).
Note that G?U, is not the correct space-time metric at
this order. This is a crucial point [19]. The anomaly
cancellation requirement means that the contribution
from the left-movers has a significant modification to
the naive metric. The most efficient way of seeing how
it is modified is to refermionize the bosons, using as many
symmetries as one can to help in deducing the normal-
ization of the precise couplings. After some work [19], it
transpires that the correct metric (to leading order) is

1
G =GY) — ﬂ[A}LA}, +A%A2]), (29)

where it can be seen that because A ~ Q and from the
anomaly Egs. (13) we have Q ~ /k, this gives a non-
trivial correction to the metric one reads off naively. This
is the clearest sign that these heterotic coset models are
quite different from coset models that have commonly
been used to make heterotic string backgrounds by ten-
soring together ordinary cosets. In those cases, typically
A ~ Q ~ 1 and so at large k, the correction is negligible.

This sets the scene for what we will have to do when we
have constructed the exact effective o-model. We will
again need to correct the naive metric in a way which

"See Ref. [32] for a discussion of how an SL(2, R) structure
also provides a natural extension for the discussion of wave-
functions in related spacetimes.
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generalizes Eq. (29), in order to get the right space-time
metric.

D. The Exact Effective Action

In the previous section, we treated the gauge fields as
classical fields, substituting their on-shell behavior into
the action to derive the effective o-model action for the
rest of the fields and ignoring the effects of quantum
fluctuations arising at subleading order in the large k
expansion. To include all of the physics and derive a result
valid at any order in k, we need to do better than this. For
ordinary coset models, this sort of thing has been
achieved before, using a number of methods. To our
knowledge, this was first done in Ref. [89] in the context
of the SL(2, R)/U(1) coset model studied as a model of a
two-dimensional black hole [90]. The exact metric and
dilaton were written down by appealing to a group theo-
retic argument, writing the exact expressions for the
quadratic Casimirs for G and for H, in terms of the target
space (G/H) fields, and then equating their difference to
the Laplacian for the propagation of a massless field (the
tachyon) in the background. The proposed metric and
dilaton were verified at higher orders by explicit calcu-
lation in Ref. [91,92], and the argument was generalized
and applied to a number of other models in a series of
papers [93,94]. An elegant alternative method was devel-
oped in Refs. [95,96], and is the one we adapt for use here.
We must extend it to work for the heterotic coset models,
since although heterotic backgrounds are considered in
some of those works, they are of the mildly heterotic type
which are essentially similar to the superstring models;
an asymmetric arrangement of fermions is merely ten-
sored in as dressing.

Since there will be a fair amount of messy computation
in what follows, we state the key ideas in what follows: It
is known [95,97,98] that the exact effective action for the
WZNW model defined in Ref. [16] is extremely simple to
write down. One takes the form of the basic action at level
k, kI(g), where g is a quantum field, and one writes for the
full quantum effective action (k — c;)I(g), where now g
should be taken as a classical field, and ¢ is the dual
Coxeter number of the group G. This is particularly
simple since k only enters the action as an overall multi-
plicative factor, which then gets shifted. The key obser-
vation of Refs. [95,96] is that this can be applied to a
gauged WZNW model as well, by exploiting the fact that
if one writes A, = 9.h.h; ' and AZ = 9h-h; ", the action
can be written as the sum of two formally decoupled
WZNW models, one for the field g’ = h:'gh, at level k
and the other for the field &’ = h: 'h. at level 2cy — k.
To write the exact effective action, one shifts the levels
in each action: k— k — c¢g and 2cy — k— 2cy — k —
cy =cy —k, and treats the fields as classical.
Transforming back to the original variables, one gets
the original gauged WZNW model with its level shifted
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according to k— k — cg, together with a set of new
terms for A,, A; which are proportional to ¢y — ¢, and
have no k dependence. Because there is no multiplicative
factor of k in these new terms, it is easy to see that the
large k contribution to the result of integrating out the
gauge fields will be the same as before. For results exact in
k, there will be a family of new contributions to the
o-model couplings upon integrating out the gauge fields.
In this effective action, they are to be treated as classical
fields now and so once the integration is done, there are no
further contributions from quantum fluctuations to take
into account. The metrics derived using this method are
the same as those constructed using the algebraic ap-
proach, which is a useful consistency check [95,96].

Note that the new pieces in the effective action are
nonlocal in the fields A_, A; (although local in the A_, h:).
This difficulty does not present a problem for the pur-
poses of reading off the space-time fields, since it is
enough to work in the zero-mode sector of the string to
capture this information. This amounts to dropping all
derivatives with respect to o on the world-sheet and
working with the reduced “point-particle” Lagrangian
for that aspect of the computation [96].

Let us turn to the model in question. Here, we exploit
the fact [19,66,67] that our heterotic coset model, in its
bosonized form (where all the anomalies are classical)
can be thought of as an asymmetrically gauged WZNW
model for G/H supplemented by another asymmetrically
gauged WZNW model for SO(dimG — dimH)/H, repre-
senting the fermions. We should be able to carry out a
similar set of changes of variables to write the whole
model as a set of decoupled WZNW models, transform
to the effective action, and then rewrite it back in the
original variables to see what new terms the effective
action supplies us with. Then we have to integrate out
the gauge fields and—crucially—correctly refermionize
the bosons to read off the space-time fields. This is the
subject of the next subsection. The reader wishing to skip
to the result can pick up the story again at the beginning
of subsection II1G.

E. Computation of the Exact Effective Action

As noted above, the fermions can also be represented as
a gauged WZNW model based on the coset SO(D)/H,
with D = dimG — dim H = 6 — 2 = 4. Doing this, the
complete classical action can be written as

S = —kil(g)) + koI(g>) + I(gy), (30)

with g; € SL(2, R), g, € SU(2), and gr € SO®4). It is
convenient to write

81 0 O
g=1| 0 g 0 | €SLE2 R)XSUR) X SO4).

3D
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To gauge the subgroup H = U(1)4 X U(1) we introduce
the covariant derivative

D,u,g = a,u.g + Af:/,,Lg - gAZ,,R’ (32)

where A, ; = Ay, and A, p = Ajt,g. These are the
gauge fields, which take values in the Lie algebra of H.
With f; € H;, fr € Hg, the gauge transformation is
written

g— frefr’. (33)

The ¢, ; are left generators, and ¢, x are right generators of
H. Using the block diagonal notation above, we can write

A0 0
A=A o /2 0o | E€Lie(H), (34)
o o0
where tfll) and tﬁf) are 2 X 2 matrices, and tgf ) are 4 X 4
matrices.

The gauged WZNW model is
Sewznw = —ki[1(g1) + S1(g1, A)] + ky[1(g2)
+ S1(g2, A)] + [I(gy) + S1(gp, AL, (35)

where

2 _ _
Sl(g, A) = E /dZZTr{AZ,Lazgg ! — A Rrg lazg
_ 1
— Az A g E(Az,LAZ,L + A rAzR)}-
(36)

Since there is no gauge-invariant extension for the Wess-
Zumino term I'(g) for general subgroup H, this action has
(in general) classical anomalies. However, there is a
unique extension such that the anomalies do not depend
on g, but only on gauge fields [99]. This extension has
been used in the expression above.

1. A Change of Variables

By the change of variables
AL = _azhzhz_l’ AR = _azﬁzﬁgl’
Azp = —9zhzh!,  Aggp = —9zh:

we find

2 _ _
Si(g, h) = yp= fdzzTr{—aZgg '9zhzhz!
+ gilazgaziizﬁz_l - azhihglgazﬁzﬁ;1871
+ 30zh-hz 0 hhY + 9zhoh: o hoh ')
(38)

The Polyakov-Wiegmann identity [82] leads to the iden-
tities
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~ - 2
I(h:'gh,) = 1(g) + I(h") + I(h;) + yp

X fdzzTr[—athhg]azgg’l
— d:h-hz g hh'g™!
+g7'9:g0,h,h; "],
I(h:'h,) = 1(hs") + I(h,) + % (39)
X fdzzTr[—azhzhg'azhzh;'],
Gz ) = 1) + 105) + -

X fd%Tr[—azﬁfﬁglazﬁzﬁ;l].
Using these, the classical action can be written as®

S) = _[(g) + I(hf_lgﬁz) - %[I(hf_lhz) + I(I/N[E_lﬁz)]
—3C]
where C = I(hz') — I(h;") — I(h,) + I(h,).

The term C is not manifestly gauge-invariant, but the
others are. Note that if A; = Ag, then C = 0, in which
case the gauging is classically anomaly-free. Otherwise,
the anomalous terms C; may look disturbing, but in fact
they cancel, > k(;C; = 0, as will follow from the anom-
aly cancellation Egs. (13).

Taking all this into account, we can write the action as

v 1
S=- Z {kI(hz'g;h,) — (ki) — ZCH)E[I(hZ_IhZ)
i=12.f

+1(h:'h,)1}, (40)

with k() = ki, ko) = —k; and k(s) = —1 and we note that
h:'gh, € G,hz'h, € H,and h:'h, € H. Now, as prom-
ised in the previous section, we have achieved the rewrit-
ing of the full action in the form of a sum of WZNW
actions, which allows us to write down the quantum
effective action in a very simple way.

2. Effective Action

Using the simple prescription given above,

for G: k(,-) e k(i) — CGp
while for H: — kg + 2cy — (—kg + 2cy) — ey (41)
= —(ku — cn),

we find the effective action

81n this case of Abelian H, the Jacobian for the change of
variables vanishes.
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Seff = — z {(k(l) - CGi)I(hglgil/;Z)
i=12f

~ (ki = )y L0 ) + 1 R0, 42)

where G, = SL(2, R), G, =SU(2), G, =S0O4), H =
U(1) X U(1). Again, the action is manifestly gauge-
invariant. It is important to note here that the level
constant for the fermionic sector k() = 1 is not shifted.

3. Return to the Original Variables

We now change variables back to the original ones,
using the identities given above. We find

Geff — _i_lz‘;,f{(k(i) - CG,-)[I(g) + S1(g, A) + %[IZ(AL)

+ L(AR)] + %Ci:| — (k¢ — CH)%[[Z(AL)
+ IZ(AR)]}, 43)

where I,(A;) = I(h:'h.), I,(Ag) = I(h:'h,). Observe
that the C;’s have come back into the action. Rewritten,
|

(ki) —

PHYSICAL REVIEW D 70, 126011 (2004)

this is
off _ A
S = - (k@py — cg)| 1(g) + Si(g, A) — ?[IZ(AL)
i=12.f
+ Iz(ARﬂ} (44)
where A; = ;(G):CC: )

F. Extracting the Exact Geometry

As we stated earlier, a problem with working with this
action is that it has terms which are nonlocal in the gauge
fields. Since we are going to integrate these out, this is
inconvenient. To avoid this complication, we shall reduce
to the zero-mode sector [96], which is enough to extract
the information we want. The zero-mode sector is ob-
tained by letting fields depend on world-sheet time only.
So 9, and 0Z — 0d,. We also denote A by a in this limit.
This leads to the desired simplifications. Note the addi-
tional simplification that the WZ part of the WZNW
action vanishes in this sector, i.e., I'(g) — 0.

The resulting action is

N Cg.
S =D . de{Tr(g'agglag) +2Tilaz, Logg™' —a.rg '0g — az Lga.gg™"
o

+agpaz L+ a paz, R)] — AATH{(az, L — a,;)* + (az, R — a_g)?]

1
+ ETr[az,Raz,R —as; Raz R+ az, La:, L —

az,Laz,L]}. (45)

This is a local action quadratic in a. It is going to be useful to simplify the notation, so let us define

LY = L§ox" = Z(k(z’) — ¢ )Ti(t,rg ' 9g),

—R* = —R§0XM = (k) — c¢)Tr(t,.088 "),

My = Z(k(i) — ¢ )Tr(t,18thr8 ™" —

M, = Z(k(i) - CG,.)Tf(fb,Lgta,Réf1 -

tartpL)

ta,Rtb,R) = M, +2H,, (46)

1
=> (e, — CH)ETr(ta,Ltb,L + 14 RIbR),

1
Hab - Z(k(’) - CGi)ETr(ta,Ltb,L - ta,Rtb,R)r

g = gunoXMox" = Z(k(,-) — ¢ )Tr(g 'agg ag).
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In this notation the action can be written as
1
o' =~ f dr{g — 2a¢R, — 2a¢L,
- Za?a?(Mab - Gab + Hab)
—atal(Gyy + Hyp) — a2al(Gyy — Hyp)y.  (47)

Defining

i — az B. = R, !
Z b ) i L >
a; b

. G-H M — (G — H)
ij_(MT—(G—H)T G+H )

_ G_ M—-G_
M- G, G, |
where G, = G + H and G_ = G — H, the action can be
further simplified to

(48)

S§f='_Z;L[df@'—ZBﬂ“‘waﬂ} (49)

Now we can complete the square, and get

4
+ A¥B,B,}, (50)

where AK = (A71),,.

The equations of motion for z (i.e., the equations of
motion for the gauge fields a, and aZ) are now easily read
off,

1 . .
o —— [dr{g — Az + A'BY(z + A B)

Sz= 7 =—A*B, (51)
Inserting this into the action, we end up with
1
Sih= 45 [dle T BAYBL &

To write out this explicitly we need to invert the matrix
A;;. If we write this inverted matrix as

-1_(P 4
A (r s), (53)
then we can write
|
0 —04 0
1)@ 0 pno__11o
AL \/E 0 PA ’ AR \/§
_PA 0
0 —A
B=—p" "
’ V2
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a$ = —pupRy — qapLy, (54)
ai = —rgRy — sapLy, (55)
and
1
Setf = s fdr[g + Rp., R + R(qup + rpa)L°
+ LasabLb]

1
- f dr{gyn + R4 paRY + Ry (quy + rpa) LY
+ LS s L8 ]oXMaxN
1 1
= —— [ dr=CyyoxMaxV. (56)
41 2

So, finding the coefficients C,;y means finding the ma-
trices p, g, r, s. Explicitly,

Cyn = 2lgun + Rj{,,pabe{, + Ry(qap + rba)L?v
+ LYsap L% ] (57)

Note that Cy;y is not automatically symmetric.

Now let us recall the parameterization of the gauge
groups. The generators of the gauge group H = U(1),4 X
U(1)g, when acting on the H C SL(2, R) part are

1
1 1 1
he=3o G20 k=50 (58)
A
1
ti},)R = _50'3.

The generators of H when acting on the H C SU(2) part
are

@ _ @ _ @ _ @ _ _1t
tar =0, tgr =0, tag =0, R = ~59s

(59)

We note once more that this gauging leaves the global
SU(2); symmetry untouched, and so it will survive as a
global symmetry of the final model; the SU(2) invariance
of Taub-NUT. Finally, introduce the generators of H when
acting on the fermionic part, H C SO(4):

—0p

0

0
0 1). (60)
-1 0
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Note that the 75 are fixed by (0, 1) world-sheet supersym-
metry, while in the #;, the Q4 and P4 p are chosen to
cancel the anomaly via Eq. (13). The group elements are
chosen as

1 2+ D2 T (2 = 1)1/2
g ==—— e ii(x 1) € z+(x 1) c SL(2, R)’
2\e T(x> =DV e T(x2+1)1/2
(61)
g, = €373 802 033 (62)
eid% cos? ewf sin
= w2 i@ 2 1 € Su(2), (63)
Y B S
—e 7 sing e 7 cosy
O, %
2n
cos%) sin%
—sin—% cos—+#
= 2 V2 ® . ® € SO4),
COS—72 — sin—2
V2 V2
sin% cos%
(64)

where t;, tr, x ER, 6 € (0, 7), ¢ € (0,27), ¥ € (0, 47),
and @, and ®, are 27 periodic. Also, ¢~ = ¢ * ¢ and
t+ = t; = tg. We have already gauge-fixed the fermionic
sector.

To find the coefficients Cy;y we now have to compute
the group manifold metric g,y and the vectors L;, and
Ry We also have to compute the matrix A;; and find its
inverse. This is all relatively straightforward and the de-
tails, involving a number of rather messy expressions, are
left out. Having completed this task, we must worry about
the effects of refermionization.

1. Refermionization and Back-Reaction on Metric

Assume that the local part of the action can be written
(where we have reintroduced dependence on world-sheet
space as well as time, which is necessary to deduce the
B-field)

1 -
=3 f d?*zChynoXMIXN. (65)
This expression can be rewritten as follows:

S = / d*zCpynoXMaxXV (66)

N =
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1 _ . o .
=3 fdzz[CWaX#axv + AL (OXH DT + 9XH DY)
+ B (0X* D' — X D) + Riji(aqntacbf

+9DID)) + Fij— (0D'9D) — 9D 9D/)], ©7)
72

1 o _ )
=3 [ d?z[(C,, — RVALA})OX X" + R; (9D
+ R¥A 9X)(9®7 + RIALIX")BL, (0X 5D
_ . 1 . .
where

A;.L =C/_“'+C‘

iws Bfu, = C,ui -C
R;j = Cgj)

i (69)
Fij = Cjy

Note that in the zero-mode sector where we keep only
symmetric terms, which means F;; = 0 and B; = 0. This
is (almost) the form required for refermionization, and
we can read off the metric from the first term. Before
refermionisation, we must rescale the ®s in the action
(68) that the term R;;0 PP/ becomes 8;;0D'dd/. This is
done by

' = Uid/, (70)
with R,»jU;'(U{ = 8;;. This corrects the A, to Al =
RUAj,, where RV = (R™');;. The space-time metric is then

Guy = Ciuyy — RIA] A = GY, — ALAL (T1)

Carrying out the computation, we find that the final
expression for the exact metric simplifies in a remarkable
way to the following [using Eq. (14) we write k; = k,
k2 =k — 4]

ds*> = G, dX*dX”

o dx? _ x2 -1 M )
— (k 2){m B i + 2044 o)
+do? + sinz(adw}, (72)
where
_ 2 _ 2 _
D(x) = (x + ) P (x 1), (73)

and 2A; = *1 — cosf is a Dirac monopole connection
where * refers to the N(S) Pole on the S?. The =1 can be
gauged away by, e.g., a shift of # to match the form given
in Sec. L. The dilaton is generated by the effects of two
Jacobians. One comes from the determinant, detA, arising
from integrating out the gauge fields, but there is another
contribution coming from the change of variables from &
to ®. That Jacobian is
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od
_ | = detU = (detR)™ /2. 74
23]

This results in [100]:
e*® = (detA)~'/2(detR) /2, (75)
where the determinants can be written as follows. Define

p=k—2+2Ps qg=(k+2)5+20,,

r=(k+2)A+2Q0g. (76)

Then
detA = A(x)
= [(k =2)px = @Psr — p@)P + 4(r* — p?), (17)
and
detR = 4(k + 2)(k — 2)° % (78)
The result is that the exact dilaton is
® — &y = —1In[D(x)] (79)

where we have absorbed a nonessential constant into the
definition of ®,. The expressions for the exact fields
BM,,,A;'A are somewhat involved, but straightforward to
read off. We will not list them here, as we will not need
them in what follows.

As a useful check on our procedure, it is worth noting
that the large k limit gives the expressions originally
written in Ref. [19]. In this limit, we get D — (8 + x)?,
and the metric becomes that given in Eq. (7), and the
dilaton becomes

® — dy— —Lin(x + §). (80)

G. Properties of the Exact Metric

As already stated in the previous section, the final
result for the exact space-time metric is (after a trivial
shift in f)

dx?

¥ —

ds* = (k — 2)|: 7 + F(x)(dt — A cosOdep)?
+do* + sin20d¢2}

where F(x) = —

xz—l__(x+5)2_ 4 \-1
D(x) <x2—1 k+2> '

81)

This is a pleasingly simple form to result from such an
involved computation. In fact, its relation to the leading
order result is reminiscent in form to the relation between
the leading order and exact results for the black hole
SL(2, R)/U(1) model [89,90].
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FIG. 3. The various regions in the stringy Taub-NUT geome-
try for arbitrary k, with all 1/k corrections included. Compare
to the leading order result in Fig. 1. Note that the singularity
splits in order to incorporate a finite sized region of Euclidean
signature in the second NUT region.

It is interesting to sketch the behavior of G,, = F(x), as
it contains the answer to our original questions about the
fate of the Taub and NUT regions of the space-time once
the contributions of the stringy physics are included. This
result is plotted in Fig. 3, and it should be contrasted with
Fig. 1.

Several remarks are in order. The first is that the Taub
and NUT regions, although modified somewhat, survive
to all orders. The second is that the local structure of the
chronology horizons separating these regions is com-
pletely unaffected by the stringy corrections! F(x) still
vanishes at x = *=1 and furthermore for x = 1 — 7 where
7 is small, the metric of the (7, £) space (the space over
each point of the §?) becomes

2T

ds* = (k — 2)[—(27’)_1d72 + TE5E

| @
which is again of Misner form.

Notice that the singularity we observed in F(x) (and
the space-time) has now split into two. Recalling the
definition of D(x) given in Eq. (73), we can write the
Ricci scalar as

1
- W[ZD(XZ - I)DN - 3()C2 - 1)(D/)2

+ A2(x* — 1)D + 6xDD'], (83)

R =

(where a prime means d/dx). R diverges if and only if
D(x) = 0. These singularities are located at

-8 = Ja*+a(8*>—1) 4
X+ =

* (1—a) YT Ty

(84)

and the region in between them has Euclidean signature.
Such a region was noticed in Ref. [101] in the context of
the exact metric for the SL(2, R)/U(1) coset giving the

126011-13



CLIFFORD V. JOHNSON AND HARALD G. SVENDSEN

Euclidean
region

.

JFlx)

FIG. 4. The various regions in the stringy Taub-NUT geome-
try for the smallest value of k possible. This is the “most
stringy”” geometry. Compare to the leading order result in Fig. 1
and the intermediate k result in Fig. 3. The Euclidean region
has grown and occupied the entire region to the left, making
the second nut region of finite extent.

two-dimensional black hole. This region remains entirely
within the second NUT region, however, and never ap-
proaches the Misner horizons. Its size goes as 1/(k — 2).
The model only seems to make sense for k > 2, of course,
and it interesting to note that the limiting behavior of this
metric as k — 27 is that the Euclidean region grows until
it fills the entire left hand side of the sketch (see Fig. 4),
with one singularity at x = —(8%> 4+ 1)/(28), and the
other, when last seen, was moving off to x = —oo.

IV. DISCUSSION

Our goal was to identify a stringy laboratory for the
study of a number of issues of interest, which allows a
controlled study of various physical phenomena. Closed
timelike curves are very common in general relativity,
but the theory is silent about their physical role in a
complete theory of gravity. They can appear after a
cosmology passes through a certain type of spacelike
“big crunch” singularity, and it is natural to wonder if
the full theory somehow modifies the geometry in a way
which obstructs this process of formation, realizing the
so-called chronology protection conjecture [6]. The
model upon which a great deal of the study within general
relativity has been focused is the Taub-NUT space-time
(or local parts of it). Quite satisfyingly, this is precisely
the model that we study here, furthering earlier work
which showed how to embed it into string theory in a
way which allows a complete definition in terms of con-
formal field theory.

The study of the model we performed here was to go
beyond the low-energy truncation and compute the all
orders in @’ geometry, thereby including the effects of the
entire string spectrum on the background. Our embedding
(into heterotic string theory) was chosen so as to permit
such corrections to occur, at least in principle. Somewhat
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surprisingly (perhaps) we found that the key features of
the Taub-NUT geometry persist to all orders. This in-
cludes the fact that the volume of the universe in the
Taub cosmology vanishes as a circle shrinks to zero
size, at the junction (described by Misner space) where
the CTCs first appear. There is no disconnection of the
Taub region from the NUT regions containing the CTCs,
to all orders in a'. Note that the strength of the string
coupling near the junctions is not particularly remark-
able, and so an appeal to severe corrections purely due to
string loops may not help modify the geometry further.

We have therefore ruled out a large class of possible
modification to the geometry which could have destroyed
the chronology horizons and prevented the formation of
the CTC regions (from the point of view of someone
starting in the cosmological Taub region). As remarked
upon in the introduction, there is still the possibility that
there is an instability of the full geometry to back-
reaction by probe particles or strings. A large class of
such effects are likely missed by our all orders computa-
tion of the metric. There are studies of Misner space in
various dimensions (in its orbifold representations) that
signal such an instability [21,23,24], and the fate of the
chronology horizons embedded in our geometry should
be examined in the light of those studies. The nature of
the space-time in which they are embedded is important,
however, and so it seems that the relevant geometry to
study such back-reaction effects is the fully corrected
geometry we have derived here, since it takes into ac-
count the full o’ effects.

Quantum effects may well be important even though
the string coupling is not strong at the chronology hori-
zons, and even if there are no (as we have seen here)
modifications due to a’ corrections. Radically new phys-
ics can happen if there are the right sort of special (for
example, massless) states arising in the theory there
together with (crucially) certain types of new physics.
Strings wrapped on the #-circle are candidate such states.
Following these states could shed new light on the valid-
ity of the geometry if they are accompanied by the
appropriate physics, such as in the mechanism of
Ref. [102]. Such probe heterotic strings are hard to study
in the sigma model approach, but it would be interesting
to undergo such an investigation. The study of probes
directly in the full conformal field theory (i.e., without
direct reference to the geometry) may well be the most
efficient way to proceed.

Another (less often considered) possibility is that the
result of this paper is a sign that the theory is telling us
that it is perfectly well-defined in this geometry. The
conformal field theory is (at face value) well-defined,
and there are no obvious signs of a pathology. Perhaps
string theory is able to make sense of all of the features of
Taub-NUT. For example, the shrinking of the spatial
circle away to zero size at the big bang or big crunch
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might not produce a pathology of the conformal field
theory even though there might be massless states appear-
ing from wrapped heterotic strings. They might simply be
incorporated into the physics in a way that does not
invalidate the geometry: The physics, as defined by the
world-sheet model, would then carry on perfectly sensi-
bly through that region. This would mean that would be
another geometry that a dual heterotic string sees which
is perfectly smooth through this region. It would be
interesting to construct this geometryg.

In this scenario, if we accept that the conformal field
theory is telling us that the stringy physics is well be-
haved as it goes through from the Taub region to the NUT
region, we have to face the possibility that the CTCs
contained in the NUT regions might well be acceptable,
and part of the full physics as well.

While it is perhaps too early to conclude this with
certainty, it is worth noting that most objections that
are raised about physics with CTCs are usually ones based
on paradoxes arrived at using macroscopic and mani-
festly classical reasoning, or reasoning based on our
very limited understanding of quantum theory outside
of situations where there is an asymptotic space-time
region to which we make reference. Some CTCs fall out-
side of those realms, opening up new possibilities. We
must recall that time, just like space, is supposed to arrive
in our physics as an approximate object, having a more

The right-handed world-sheet parity flip which generates a
dual geometry is no longer achievable by axial-vector duality
as in simpler cases such as the SL(2, R)/U(1) black hole
[89,103]. It only works for 6 = =1, A = 0. Here, it is natural
to explore whether 6 — — 6 combined with other actions might
generate it, but a fiberwise duality rather like that which relates
[104,105] an NS5-brane to an ALE space might be more
appropriate.
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fundamental quantum mechanical description in our the-
ory of quantum gravity. The ubiquity of CTCs in theories
of gravity might be a sign that (appropriately attended to)
they are no more harmful than closed spatial circles.
Rather than try to discard CTCs, we might also keep in
mind the possibility that they might play a natural role in
the full theory, when we properly include quantum me-
chanics. Here, we saw them remain naturally adjoined to
a toy cosmology, surviving all o’ corrections. This is just
the sort of scenario where CTCs might play a role in
nature; a natural way to render meaningless the usual
questions about the lifetime of the universe prior to the
“big bang” is to have the big bang phase adjoined to a
region with CTCs'”. This is an amusing alternative to the
usual scenarios, and may be naturally realized within
string theory, or its fully nonperturbative successor.
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'Although it is in the very different context of eternal
inflation, the role of CTCs in cosmology has been speculated
about before [106].
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