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In this paper, globally N � 1 supersymmetric configurations of intersecting D6-branes on the Z6

orientifold are discussed, involving also fractional branes. It turns out rather miraculously that one is
led almost automatically to just one particular class of five stack models containing the standard model
gauge group, which all have the same chiral spectrum. The further discussion shows that these models
can be understood as exactly the supersymmetric standard model without any exotic chiral symmetric/
antisymmetric matter. The superpartner of the Higgs finds a natural explanation and the hypercharge
remains massless. However, the nonchiral spectrum within the model class is very different and does
not in all cases allow for a N � 2 low energy field theoretical understanding of the necessary breaking
U�1� � U�1� ! U�1� along the Higgs branch, which is needed in order to get the standard Yukawa
couplings. Also the left-right symmetric models belong to exactly one class of chiral spectra, where the
two kinds of exotic chiral fields can have the interpretation of forming a composite Higgs. The
aesthetical beauty of these models, involving only nonvanishing intersection numbers of an absolute
value three, seems to be unescapable.
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I. INTRODUCTION

String Theory claims to be the correct unifying theory
of gravity and elementary particle physics. As the latter,
it should contain the standard model as a low energy
limit, which is a chiral gauge theory. Since it was realized
that chiral matter is possible in the context of intersecting
D-branes [1], many different approaches have been taken,
the most successful ones being constructions with inter-
secting D6-branes in type IIA orientifolds [2–13] (for
recent reviews of the topic see [14–17]). The branes
wrap special Lagrangian 3-cycles of the compact space
in these models, which in general can be a simple toroi-
dal, orbifolded or Calabi-Yau space, where the world sheet
parity symmetry � together with a space-time symmetry
R is modded out. In this picture, chiral fermions are
localized at the intersections of the different stacks of
D6-branes and consequently are 4-dimensional, whereas
the gauge fields live on the whole world volume of the
branes and by this are 7-dimensional. Finally, gravity is
contained in the closed string sector of the theory and
lives in the 10-dimensional bulk.

The massless chiral fermion spectrum can be deter-
mined in all three cases, as it only depends on the ho-
mology of the 3-cycles [18,19]. On the other hand, the
nonchiral part of the spectrum depends on the closed
string moduli and requires the world sheet conformal
field theory computation of the one-loop amplitude that
can be explicitly obtained only in the case of the torus or
orbifolded torus. The 6-torus usually is assumed to be
address: gabriele@th.physik.uni-bonn.de
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factorized in three 2-tori, i.e., T6 � T2 � T2 � T2. Every
3-cycle factorizes into three 1-cycles, one on every torus,
and one obtains a nice geometrical picture.

In such an approach, a model containing only the
standard model matter in the chiral sector has been ob-
tained [20] (for similar subsequent models see [21,22]).
But shortly afterwards, it was realized that this model is
unstable due to the uncanceledNS� NS-tadpoles becom-
ing manifest in the runaway behavior of the complex
structure and dilaton moduli [23,24] (see also the remarks
in [25]). The first instability can be cured by making the
transition to a Z3-orientifold (where the exact realization
of the standard model is different), but the dilaton insta-
bility cannot. Although this instability might be interest-
ing from the perspective of cosmology and particularly
inflation at first sight, it has been found, that only under
very special and rather unsatisfactory requirements (for
instance some moduli have to be fixed by an unknown
mechanism), the remaining modulus could act as the in-
flaton [26] (for a different approach see, e.g., [27]). Beside
that fact, inflation has to end and today only a very small
cosmological constant is observed, which would require a
very unnatural fine-tuning to comply with a natural time
scale of for instance the dilaton instability.

Therefore, in the recent past another road has mainly
been taken, namely, the attempt to construct instead a
N � 1 supersymmetric standard model (or supersym-
metric SU(5) grand unified theory and Pati-Salam
models, respectively). A first supersymmetric three-
generation standardlike model has been constructed in
[28,29]. Nevertheless, the goal so far has been achieved
only with moderate success: either the constructions are
plagued with a large amount of exotic chiral matter, as in
-1  2004 The American Physical Society



1They correspond to a vanishing or nonvanishing NS� NS
2-form flux b in the T-dual F-flux picture of D9-branes.

2There exists a second, inequivalent possibility with Z6
symmetry, having the shift vector v � �1=6; 1=3;�1=2�,
which is often denoted as Z0

6. Both symmetric orbifolds in
the IIA picture are T-dual to asymmetric orbifolds in the IIB
background. Our models are therefore not T-dual to the sym-
metric Z6 orbifold of IIB in [70].
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the Z2 � Z2 orientifold of [28–33], which might be cured
by a confinement of the exotic chiral matter into compos-
ite fields coming from the strong infrared dynamics of the
hidden sector [34,35]. In the other cases, brane recombi-
nations of non-Abelian gauge groups are needed, as in the
Z4 orientifold of [36] or the Z4 � Z2 [37,38], giving rise
to Pati-Salam models, and leading to nonflat and non-
factorizable branes which give up the complete predict-
ability of the worldsheet conformal field theory approach.
Another possibility are the constructions of [39,40],
where only the sectors between certain branes are locally
N � 1-supersymmetric (‘‘Q-SUSY’’ theories), but the
setting as a whole is not, meaning that the NS�
NS-tadpole is not canceled. For similar constructions
see [41,42].

If a realistic globally N � 1 supersymmetric standard
model with the right chiral spectrum was found, many
phenomenological properties could be discussed [43],
such as for instance proton decay [44] or the running of
the gauge couplings [34,45] and a possible gauge unifica-
tion [46], the generation of masses [47–49], and the
precise realization of the Higgs mechanism(s) [50]
and Yukawa couplings [51–53], leading towards the
goal of making contact with experimental reality [47].
It could even lead to an understanding of supersymmetry
breaking [54,55].

Such a model can be compared to the minimal super-
symmetric standard model (MSSM), which is claimed to
be the best candidate for the search for supersymmetry at
the LHC (for a good review see for instance [56]). This
model has more predictive properties than a general
supersymmetric standard model, it contains only a mini-
mal Higgs sector of two SU(2) doublets and their super-
partners whose hypercharge is exactly opposite, the
declaration that all scalar masses are the same, all gau-
gino masses are the same, some statements about soft
supersymmetry breaking (in the context of intersecting
branes see [55]). In the past, the term MSSM often has
been used very sloppily within string model building,
basically meaning only the correct chiral spectrum. For
a recent overview about the actual status of D6-brane
constructions see [57,58].

A new possibility that has been explored is to get
phenomenologically interesting models in a completely
different corner of Calabi-Yau moduli space, namely, at
the Gepner points [59–63]. Even chiral supersymmetric
models with the standard model spectrum have been
obtained already in this corner of moduli space [64] (for
an introduction see [65]).

In this paper, the aim of getting a precise realization of
a supersymmetric standard model will be continued fur-
thermore on the compact space T6=Z6, which again cor-
responds to a N � 2 background of type II theory,
following the classification of orbifolds in [66,67]. For
this background (which geometrically can be defined in
126010
two different consistent ways on the 2-tori T2
k), the

Z2-twisted sector in both cases contributes a nonvanish-
ing number h2;1 to the number of complex structure
deformations and so contains twisted 3-cycles, requiring
the introduction of fractional branes [68,69], similar to
the Z4-orientifold of [36].

The organization of the paper is as follows. The ge-
ometry of the orbifold is discussed in detail in Sec. II,
including the definition of bulk and fractional cycles and
an integral basis of homology, the orientifold plane and
the resulting R� R-tadpole conditions for all possible
choices of A- and B-tori.1 Finally, the conditions for
N � 1 supersymmetry on the bulk and exceptional
cycles are derived.

Section III discusses the calculation of the one-loop
amplitudes and the transformation to the tree-channel,
preparing the calculation of the chiral and nonchiral open
string spectrum as well as clarifying the connection
between the computation of cycles and string loop
amplitudes.

Subsequently, there is a detailed discussion on anoma-
lies and the generalized Green-Schwarz-mechanism in
Sec. IV.

In Sec. V, we finally come to the systematic search of
phenomenologically interesting models with a different
number of stacks, leading to a detailed presentation of the
explicit supersymmetric standard model which we have
found in Sec. VI. There is also a short discussion on
another possible left/right symmetric model in Sec. VII.

The conclusions and prospects are given in Sec. VIII.
Some technical details are collected in appendices A,

B, C, and D.
II. GEOMETRY OF THE T6=Z6 ORBIFOLD

In this section, the geometric setting of the six dimen-
sional compact space including D6-branes, O6-planes,
cancellation of R� R tadpoles and supersymmetry are
discussed.

If one assumes a factorization of the T6 into three 2-
tori, then the T6=Z6 orbifold is generated by a rotation 	
of the form

	: zk ! e2�ivkzk for k � 1; 2; 3 (1)

where the shift vector v is given by v � �1=6; 1=6;�1=3�,
see for instance [66,67], and zk is the complex coordinate
on T2

k .2
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FIG. 1 (color online). Fixed points of the T6=Z6 orbifold. Full circles denote 	2 fixed points on T2
1 � T2

2 , empty circles additional
	3 fixed points. On T2

3 , the points 1,2,3 are fixed under 	, the whole T2
3 is fixed under 	3. The coordinates are depicted for the AAA

torus. The details of the choices of complex structures are given in Sec. II D and Appendix A.
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Apart from the Z6 fixed points, additional points are
fixed under the Z3 subsymmetry generated by 	2. At all
these fixed points, exceptional 2-cycles of zero volume3

are stuck. Under the Z2 subsymmetry generated by 	3, the
whole third 2-torus T2

3 is fixed, and exceptional 3-cycles
which are products of 2-cycles stuck at the Z2 fixed points
on T2

1 � T2
2 times 1-cycles on the fix-torus T2

3 appear. The
geometry is depicted in Fig. 1, where a specific complex
structure of the torus from six possibilities has been
chosen. This is explained in more detail inII D
appendix A.

The Hodge numbers of the Z6 orbifold are as follows
(see e.g. [4] for the closed string spectrum, [72] for the
number of untwisted and twisted moduli and [73] for the
Hodge numbers explicitly),
hU1;1 � 5; h	1;1 � 3; h	
2

1;1 � 15; h	
3

1;1 � 6;

hU2;1 � 0; h	2;1 � 0; h	
2

2;1 � 0; h	
3

2;1 � 5:
(2)
In the following, we will only consider the 3-cycles, but
not the 2-cycles, since only intersections of D6-branes
wrapping different 3-cycles in the compact dimensions
give rise to chiral fermions. According to the value of the
third Betti number, b3 � 2� 2h2;1, two independent
‘‘bulk’’ 3-cycles are inherited from the six-torus and
ten additional exceptional 3-cycles arise at the Z2 fix-
points.

A. Bulk 3-cycles

Any basic factorizable 3-cycle on
Q3
k�1 T

2
k can be rep-

resented in terms of the basic 1-cycles of each 2-torus,
�2k�1 and �2k, as a direct product �i;j;m � �i 	 �j 	 �m.
Out of the 23 different combinations, one can construct
only two linearly independent bulk cycles which are
invariant under the orbifold action. A convenient choice
for them is given by
3The volume is not zero in the stringy sense, i.e., a non-
vanishing string tension is generated by a discrete NS� NS
two-form background in the ten dimensional language. For
more details see, e.g., the review article [71].
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�1 � 2
�1� 	� 	2��1;3;5�

� 2��1;3;5 � �2;4;�6 � �2�1;4�3;6�5�

� 2��1;4;5 � �1;3;6 � �2;3;5 � �1;4;6 � �2;4;5 � �2;3;6�;

�2 � 2
�1� 	� 	2��2;3;5�

� 2��2;3;5 � �2�1;4;�6 � ��1;4�3;6�5�

� 2��1;4;5 � �1;3;6 � �2;3;5 � �1;3;5 � �2;4;6�: (3)

The factor of 2 in (3) arises due to the trivial action of 	3

on any 3-cycle. Any orbifold invariant nonfactorizable 3-
cycle can be written as a linear combination of these two
bulk cycles.

The coefficients of the factorizable 3-cycles are deter-
mined by the wrapping numbers nk and mk along the
basic 1-cycles �2k�1 and �2k on the 2-torus T2

k and their
orbifold images,

n1 m1

n2 m2

n3 m3

0
BB@

1
CCA!	

�m1 n1 �m1

�m2 n2 �m2

m3 ��n3 �m3�

0
BB@

1
CCA

!
	

��n1 �m1� n1
��n2 �m2� n2
��n3 �m3� n3

0
BB@

1
CCA: (4)

Starting with the 3-cycle �na1�1 �ma
1�2� 	 �na2�3 �

ma
2�4� 	 �na3�5 �ma

3�6� and adding its orbifold images,
the invariant bulk 3-cycle is of the form


a � Ya�1 � Za�2; (5)

where the coefficients Ya and Za are given by linear
combinations of products of the elementary wrapping
numbers,

Ya � na1n
a
2n

a
3 �

X
i�j�k�i

ma
i m

a
j n

a
k �ma

1m
a
2m

a
3 ;

Za �
X

i�j�k�i

ma
i m

a
j n

a
k �

X
i�j�k�i

ma
i n

a
j n

a
k:

(6)

In computing the intersection numbers of the two
independent bulk cycles which are invariant under a ZN
action, the orbifold projection has to be taken into ac-
count,
-3
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a 

b �
1

N

 XN�1

i�0

	i�a

!



 XN�1

j�0

	j�b

!
: (7)

This leads to the intersection numbers of the two funda-
mental bulk cycles (3),

�1 
 �2 � �2; �1 
 �1 � �2 
 �2 � 0; (8)

and for general bulk cycles 
a � Ya�1 � Za�2, we al-
ways obtain even intersection numbers,

Iab � 
a 

b � 2�ZaYb � YaZb�: (9)
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B. Exceptional 3-cycles

Exceptional 3-cycles in the orbifold limit only occur in
the 	3 sector. They consist of products of 2-cycles which
are stuck at the Z2 fixed points and have zero volume in
the orbifold limit on T2

1 � T2
2 times a 1-cycle on T2

3 . The
fixed point 1 in the origin of each 2-torus is already
126010
invariant under the orbifold generator 	. The other three
Z2 fixed points are permuted by the Z6 symmetry in the
following way,

	�4� � 5; 	�5� � 6; 	�6� � 4: (10)

Similarly, every 1-cycle on T2
3 is invariant under 	3, but

the Z6 generator acts as follows,

	��5� � ��6; 	��6� � �5�6 � �5 � �6: (11)

Thus, the exceptional 3-cycles are given by orbifold in-
variant combinations of the products of 2- and 1-cycles,

�1� 	� 	2��eij 	 �k� with

i; j � 1; 4; 5; 6; k � 5; 6;
(12)

where the orbifold images are given by 	�eij 	 �k� �
e	�i�	�j� 	 	��k�. This ansatz leads to ten linearly inde-
pendent exceptional cycles,
"1 � �e41 � e61� 	 �5 � �e61 � e51� 	 �6; ~"1 � �e51 � e61� 	 �5 � �e41 � e51� 	 �6;
"2 � �e14 � e16� 	 �5 � �e16 � e15� 	 �6; ~"2 � �e15 � e16� 	 �5 � �e14 � e15� 	 �6;
"3 � �e44 � e66� 	 �5 � �e66 � e55� 	 �6; ~"3 � �e55 � e66� 	 �5 � �e44 � e55� 	 �6;
"4 � �e45 � e64� 	 �5 � �e64 � e56� 	 �6; ~"4 � �e56 � e64� 	 �5 � �e45 � e56� 	 �6;
"5 � �e46 � e65� 	 �5 � �e65 � e54� 	 �6; ~"5 � �e54 � e65� 	 �5 � �e46 � e54� 	 �6:

(13)
This construction resembles very much the one in [36].
The intersection numbers of exceptional cycles are com-
puted from the self-intersection number �2 of any excep-
tional cycle eij stuck at a Z2 singularity and the
intersection numbers of the 1-cycles on T2

3 , taking into
account the factors from the orbifold projection similarly
to Eq. (7). The result

"i 
 ~"j � �2�ij; "i 
 "j � ~"i 
 ~"j � 0; (14)

leads to the intersection matrix for exceptional cycles

I" �
M5
j�1

0 �2
2 0

� 

: (15)
C. An integral basis

The intersection numbers of pure bulk cycles (8) and
pure exceptional cycles (15) are always even. It is there-
fore possible to construct fractional cycles of the form
1
2


bulk � 1
2


exceptional which form an unimodular lattice
as required by Poincaré duality [74].
For example, a D6-brane with wrapping numbers
�n1; m1; n2; m2; n3; m3� � �1; 0; 1; 0; 1; 0� and its orbifold
images wrap the bulk cycle �1 and pass through the fixed
points ekl with k; l 2 f1; 4g as well as their orbifold im-
ages. The orbits of the three nontrivial fixed points
e14; e41; e44 generate the exceptional cycles "1, "2, and
"3 while the orbit of e11 vanishes. In this case, a valid
fractional cycle is given by
1

2
�1 �

1

2
�"1 � "2 � "3� (16)
with arbitrary relative signs for the exceptional
contributions.

This argument can be repeated for different wrapping
numbers and 3-cycles which do not pass through e11 but
instead are displaced by

P4
i�1 �i�i (with �i 2 f0; 12g)

from the origins of T2
1 and T2

2 . All possible combinations
of wrapping numbers of the bulk 3-cycles with fixed
points are listed in Table XXIII. From this, we can obtain
a basis for the unimodular lattice of 3-cycles
-4
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�1 �
1

2
�1 �

1

2
�"1 � "2 � "3�; �2 �

1

2
�2 �

1

2
�~"1 � ~"2 � ~"3�; �3 �

1

2
�1 �

1

2
�"1 � "2 � "3�;

�4 �
1

2
�2 �

1

2
�~"1 � ~"2 � ~"3�; �5 �

1

2
�"1 � "3 � "4 � "5�; �6 �

1

2
��~"1 � ~"3 � ~"4 � ~"5�;

�7 �
1

2
�~"1 � ~"3 � ~"4 � ~"5�; �8 �

1

2
�"1 � "3 � "4 � "5�; �9 � �

1

2
�1 �

1

2
��"3 � "4 � ~"1 � ~"3 � 2~"4�;

�10 �
1

2
�2 �

1

2
�"1 � "3 � 2"4 � ~"1 � ~"4�; �11 �

1

2
��1 � �2� �

1

2
�"1 � "4 � ~"3 � ~"4�;

�12 �
1

2
���1 � 2�2� �

1

2
��"3 � "4 � ~"1 � ~"3�; (17)
TABLE II. O6-planes for T6=�Z6 ��R�. In each case, the
wrapping numbers of an arbitrary element of a Z6 orbit are
listed. The coefficients Y; Z are computed from (6). The total
homology class of the O6-planes is given by the sum over the
two orbits for each lattice.

O6-planes for T6=�Z6 ��R�

Lattice �n1; m1; n2; m2; n3; m3� Y Z Cycle
with an intersection matrix

IZ6 � diag
�

0 1
�1 0

� 

; � � � ;

0 1
�1 0

� 
�
: (18)

The D6-branes of the IIA orientifold theory which we are
going to consider can wrap fractional 3-cycles. The limi-
tation on these cycles is determined by the O6-planes
which will be discussed in the following section.

D. Orientifold projection

The aim of this work is to find stable and supersym-
metric models. In order to cancel the R� R charge of the
D6-branes, orientifold 6-planes are required. Such O6-
planes arise naturally, if the world sheet parity � is
chosen to be accompanied by an antiholomorphic involu-
tion R, which we can choose to be the complex conjuga-
tion

R : zk ! zk for k � 1; 2; 3; (19)

where zk � x2�2k � ix3�2k are the complex coordinates
on every 2-torus T2

k .

1. Orientifold images of bulk cycles

In order to be consistent with the compactification, R
has to be an automorphism of the Z6 invariant lattice.
This leads to two possible orientations A and B of each 2-
torus with a lattice basis and its dual which are given
explicitly in appendix A. In terms of the notation of Fig. 1,
the different orientations lead to the following projections
TABLE I. R images of cycles inherited from the torus in the
orbifold limit T6=�Z6 ��R�.

R images of bulk cycles
Lattice R:�1 R:�2

AAA �1 �1 � �2

AAB �2 �1

ABA �2 �1

ABB �2 � �1 �2

BBA �2 � �1 �2

BBB ��1 �2 � �1

126010
of the fundamental 1-cycles under R,

A :

8<
:�2k�1!

R
�2k�1;

�2k!
R
�2k�1 � �2k;

B: �2k�1$
R
�2k:

(20)

The geometry of the first two 2-tori is identical because
the orbifold generator acts in the same way. Consequently,
only six of the 23 naive choices are inequivalent while the
choices AB and BA for T2

1 � T2
2 lead to identical results.

Evaluating the projection (20) on the right hand side of
(3) leads to the orientifold images of bulk cycles dis-
played in Table I.

The bulk cycles which are invariant under R are easily
read off from Table I. However, in order to determine the
homology classes of the O6-planes and thereby the re-
quired sets of D6-branes, the factorizable 3-cycles have to
be considered in more detail. The O6-planes can be
decomposed into two orbits which are invariant under
�R	2k and �R	2k�1. The corresponding wrapping
numbers, the coefficients Y and Z of the homological
AAA (1,0;1,0;1,0) 1 0 �1

(1,1;1,1;1,-1) 3 0 3�1

AAB (1,0;1,0;1,1) 1 1 �1 � �2

(1,1;1,1;2,-1) 3 3 3��1 � �2�

ABA (1,0;1,1;1,0) 1 1 �1 � �2

(1,1;0,1;1,-1) 1 1 �1 � �2

ABB (1,0;1,1;1,1) 0 3 3�2

(1,1;0,1;2,-1) 0 3 3�2

BBA (1,1;1,1;1,0) 0 3 3�2

(0,1;0,1;1,-1) 0 1 �2

BBB (1,1;1,1;1,1) �3 6 3���1 � 2�2�

(0,1;0,1;2,-1) �1 2 ��1 � 2�2

-5
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cycles [see Eq. (6)], and bulk cycles are listed in Table II.
The overall cycle which is wrapped by the orientifold
plane is given by the sum of the two orbits.

2. Orientifold images of exceptional cycles

In order to find the correct transformations of the
fractional cycles and thereby the D6-branes under the
orientifold projection, the transformations of the relevant
fixed points on T2

1 � T2
2 under R have to be taken into

account,

A :

8>><>>:
1!
R
1;

4!
R
4;

5$
R
6;

B:

8>><>>:
1!
R
1;

4$
R
5;

6!
R
6;

(21)

and the 1-cycle on T2
3 transforms according to (20).

The images under the reflection R for all inequivalent
lattices are displayed in Table III.

3. R� R-tadpole cancellation

The most important consistency requirement on the
cohomology classes of the forms which live on the world
volume of the D6-branes is that the charge of the R� R 7-
form which couples to the D6-branes and O6-planes
vanishes. The Poincaré duals of these 7-forms are homol-
ogy classes (see, e.g., [9]), implying that the R�
R-tadpole cancellation conditions can be reformulated in
terms of the bulk and exceptional 3-cycles discussed
above.

The O6-planes only wrap bulk 3-cycles whereas D6-
branes can wrap both exceptional and bulk 3-cycles. The
general condition of an overall vanishing homology class
is given by

X
a

Na�
a �
a0 � � 4
O6 � 0; (22)

and can be evaluated in detail using Tables I and III where
by 
a0 we denote the R image of the 3-cycle 
a. For the
six inequivalent lattice orientations and only bulk branes
we obtain
TABLE III. R images of the excep

R images of exceptional cy
Lattice R:"1 R:"2 R:"3 R:"4 R:"5

AAA "1 "2 "3 "5 "4
AAB ~"1 ~"2 ~"3 ~"5 ~"4
ABA "1 ~"2 � "2 "4 "3 "5
ABB ~"1 �"2 ~"4 ~"3 ~"5
BBA ~"1 � "1 ~"2 � "2 ~"3 � "3 ~"5 � "5 ~"4 � "
BBB �"1 �"2 �"3 �"5 �"4
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AAA:
X
a

Na�2Ya � Za��1 � 24�1;

AAB:
X
a

Na�Ya � Za���1 � �2� � 24��1 � �2�;

ABA:
X
a

Na�Ya � Za���1 � �2� � 23��1 � �2�;

ABB:
X
a

Na�Ya � 2Za��2 � 3 � 23�2;

BBA:
X
a

Na�Ya � 2Za��2 � 24�2;

BBB:
X
a

NaZa���1 � 2�2� � 24���1 � 2�2�:

(23)

Here, Na is the number of D6-branes wrapping the cycle

a, the so-called stack size. These conditions are easily
generalized for fractional D6-branes with a bulk part 1

2 �

�Ya�1 � Za�2� by inserting the corresponding factor 1=2
on the left hand side of (23).

For exceptional cycles, the overall homology class has
to cancel among all D6-branes and their R-images by
themselves, because the O6-plane does not contribute.

The same results can be obtained by computing the
loop channel annulus, Möbius strip and Klein bottle
amplitude and performing the modular transformation
to the R� R-tree-channel. For more details on the open
string amplitudes and massless spectrum see Sec. III.

E. Supersymmetry conditions

1. Supersymmetric bulk cycles

Factorizable 3-cycles preserve N � 1 supersymmetry
provided that the sum over the three angles with respect
to the R invariant plane on all 2-tori vanishes. It is
convenient to reformulate the supersymmetry condition
in terms of the coefficients Y, Z [see Eq. (6)] as follows. If
�’ka is the angle w.r.t. �2k�1 of the bulk cycle 
a repre-
sented by the wrapping numbers �nak;m

a
k�, we have

tan��’ka� �
���
3

p ma
k

2nak �ma
k

: (24)

On an A lattice, �’ka is also the angle w.r.t. the R
invariant axis, whereas on a B lattice it is given by�’ka �
�
6 . We can combine both possibilities in the single equa-
tional cycles for T6=�Z6 ��R�.

cles for T6=�Z6 ��R�

R:~"1 R:~"2 R:~"3 R:~"4 R:~"5

"1 � ~"1 "2 � ~"2 "3 � ~"3 "5 � ~"5 "4 � ~"4
"1 "2 "3 "5 "4

"1 � ~"1 ~"2 "4 � ~"4 "3 � ~"3 "5 � ~"5
"1 ~"2 � "2 "4 "3 "5

4 ~"1 ~"2 ~"3 ~"5 ~"4
~"1 � "1 ~"2 � "2 ~"3 � "3 ~"5 � "5 ~"4 � "4

-6
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tion �~’ka � ��’ka �
bk
6 �, where bk � 0 for an A and bk �

1 for a B torus. The necessary condition for a supersym-
metric factorizable bulk cycle is given in terms of the
tangents by

P3
k�1 tan��~’ka� �

Q3
k�1 tan��~’ka�. Evaluating

this equation for the six inequivalent choices of lattice
orientations and using (24), we obtain

AAA: Za � 0; AAB: Ya � Za � 0;

ABA: Ya � Za � 0; ABB: Ya � 0;

BBA: Ya � 0; BBB: 2Ya � Za � 0:

(25)

By the analysis of the angle criterion, we recover the
result obtained by stating that the supersymmetric cycles
are those special Lagrangian cycles which are calibrated
w.r.t. the same holomorphic 3-form as the ones wrapped
by the O6-planes. Stated differently, the vanishing coef-
ficients in (25) are also those which are zero in Table II.
Therefore, up to normalization the supersymmetric D6-
branes wrap the same bulk 3-cycle as the O6-planes, and
by this the intersection between the two always vanishes,


a 

O6 � 0: (26)

There remains a little subtlety: since the tangent is
periodic in �, the condition above does not distinguish
between D6-branes and anti-D6-branes. However, a D6-
brane gives a positive contribution to the untwisted R� R
charge on the left hand side of (23). The sufficient second
condition for a supersymmetric bulk 3-cycle therefore
reads

AAA;AAB;ABA: Ya > 0;

ABB;BBA;BBB: Za > 0:
(27)
TABLE IV. Generic chiral spectrum of intersecting D6-
branes.

Multiplicity Rep.


a 

b �Na;Nb�


a 

b0 �Na;Nb�
1
2 �
a 

a0 �
a 

O6� Syma
1
2 �
a 

a0 �
a 

O6� Antia
2. Supersymmetry condition on exceptional cycles

Fractional branes preserve supersymmetry provided
that their contribution from the exceptional cycles arises
only from fixed points on the first two 2-tori which are
traversed by the supersymmetric bulk part of the 2-cycle
times a 1-cycle on T2

3 . All possible combinations of
factorizable 2-cycles on T2

1 � T2
2 and Z2 fixed points

which they traverse are displayed in Table XXIII. The
corresponding exceptional cycles can be read off from
Table XXIV.

In all cases where the bulk part of the cycle passes
through the origin of T2

1 � T2
2 , the signs of the contribu-

tions from the three nontrivial fixed points are arbitrary.
However, if the bulk cycle does not pass through the
origin, exceptional cycles arise from four nontrivial fixed
points. In this case, three signs can be chosen indepen-
dently while the fourth one is determined to be the
product of the other three. This is due to the fact that
relative Wilson lines #k2 2 f0; 1=2g between two branes are
associated to the Z2 fixed points on T2

k . Since in our
convention, the fixed points are localized on T2

1 � T2
2 ,
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discrete Wilson lines naturally occur on these two tori
(compare also with [70]). We choose the convention such
that for vanishing Wilson lines all fixed points contribute
with the same sign. The relative signs between excep-
tional 2-cycles are then given as follows,

#0
eik � ��1�#1ejk � ��1�#2eil � ��1�#1�#2ejl�

� #0eik � #01ejk � #02eil � #0#01#
0
2ejl; (28)

where #0 � �1 is the global sign of contributions from
exceptional cycles corresponding to the two possible Z2

eigenvalues and #0k � #0��1�#k for k � 1; 2. The allowed
relative signs for combinations of exceptional 3-cycles
associated to a specific bulk cycle are obtained by means
of Table XXIV.

III. MASSLESS OPEN STRING SPECTRUM: TREE
AND LOOP AMPLITUDES

The chiral spectrum and R� R-tadpole contributions
can be computed from the 3-cycles the D6-branes wrap.
However, to ensure that this method reproduces the string
theory calculation it is crucial to understand the corre-
spondence between the one-loop open string amplitudes
which allow also for the computation of the nonchiral
spectrum. The cycles are in direct correspondence to the
boundary and cross-cap states of the tree-channel ampli-
tudes, and the one-loop expressions are obtained via
world sheet duality.

A stack of Na identical fractional D6-branes in general
supports the gauge group U�Na� and preserves N � 2
supersymmetry by itself. This is in contrast to the com-
pactifications on T6 [5,6,20], T6=Z3 [23], T6=�Z3 � Z3�,
T6=�Z2 � Z2� [28] and T6=�Z4 � Z2� [37] which admit
only pure bulk 3-cycles and hence preserve N � 4 su-
persymmetry in the gauge sector. However, also on
T6=Z6, additional chiral multiplets in the adjoint repre-
sentation arise at intersections of branes with their orbi-
fold images as explained below.

The chiral part of the open string spectrum can be
directly derived from the intersections of the 3-cycles in a
given configuration as displayed in Table IV, whereas the
knowledge of the nonchiral states such as Higgs particles
in a standard model compactification or multiplets in the
adjoint representation requires a detailed analysis of the
string amplitudes or the computation of the Chan-Paton
label for each massless open string state. Both techniques
-7
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are briefly discussed in this section in order to show
manifestly that our choice of Chan-Paton matrices and
the sign of the orientifold projection on the exceptional
cycles are appropriate. Furthermore, by using both tech-
niques simultaneously, ambiguities in relative signs can
be eliminated.

A. Boundary states for fractional intersecting branes

The untwisted and twisted boundary states are directly
related to the bulk and exceptional cycles wrapped by
fractional D6-branes. After applying a modular trans-
formation on the scattering amplitudes between two D6-
branes and between an O6-plane and a D6-brane, one
obtains the two open string one-loop amplitudes, the
annulus, and the Möbius strip. From these two, we can
read off the complete massless spectrum.

The boundary state of an arbitrary fractional D6-brane
consists of an untwisted part jUai, corresponding to the
wrapped bulk cycle 
bulk

a , and a twisted part jTai, coming
from the exceptional cycles 
ex

a stuck at the traversed Z2

fixed points,

jBai � jUai � jTai: (29)

For a pure bulk D6-brane, the complete boundary state is
given by

jUai � cU

 Y3
k�1

Lak

!"X2
l�0

jD6; 	l�nai ; m
a
i �i

#
; (30)

where in cU all universal factors of the normalization
have been absorbed.

Lak �
����������������������������������������������
�nak�

2 � nakm
a
k � �ma

k�
2

q
is the length of the 1-

cycle wrapping T2
k measured in units of its radius Rk,

and 	l�nai ; m
a
i � labels a factorizable 3-cycle with wrapping

numbers �nai ; m
a
i � �i � 1; 2; 3� and its orbifold images.

A fractional brane wraps only 1
2


bulk
a . Accordingly, the

normalization constant of the untwisted boundary state
changes, cU ! cU=2, and the twisted parts of the bound-
ary states are of the form

jTai � cTLa3
X
i;j

�ij

"X2
l�0

jD6; 	l�na3 ; m
a
3�; 	

l�eij�i

#
(31)

where all universal factors of the normalization have been
absorbed in cT . The relative factor cT=cU is fixed by world
sheet duality. The twisted boundary states depend only on
the wrapping numbers on T2

3 and are stuck at those Z2

fixed points eij �i; j � 1; 4; 5; 6� on T2
1 � T2

2 which are
traversed by the bulk cycle. The relative signs �ij � �1
for different fixed points correspond to the Z2 eigenvalue
and discrete Wilson lines displayed in Eq. (28).

The oscillator expansion of the boundary states and
zero mode contributions in the annulus amplitude includ-
ing discrete Wilson lines are stated in Appendix C.
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The untwisted cross-cap states are constructed in a
similar way to the boundary states. Since the total ho-
mology class of the O6-planes is composed of two inde-
pendent orbits as shown in Table II, the cross-cap state
contains two kinds of contributions,

jCi � N even

 X2
k�0

j�R	2ki

!
�N odd

 X2
k�0

j�R	2k�1i

!
;

(32)

where the normalizations N even, N odd depend on the
choice of the lattice orientation and can be deduced from
world sheet duality using the explicit calculation in [4]. In
particular, for an AB lattice on T2

1 � T2
2 they are

identical.
From (30)–(32), the tree-channel annulusR

1
0 hBaje

�2�HcljBbi and Möbius strip
R
1
0 hBaje

�2�HcljCi �
h:c: amplitudes can be computed and then transformed to
the loop channel.

B. Loop channel amplitudes

The open string one-loop amplitudes are given by

A �M � c
Z 1

0

dt

t3
Tropen
PorbPGSOP�R��1�Se�2�tL0�

(33)

with the projectors Porb �
1
6

P5
k�0 	

k, PGSO � 1
2 �


1� ��1�F�, and P�R � 1
2 �1��R� and Tropen running

over the NS and R sector weighted by ��1�S where S is
the space-time fermion number. The massless spectrum
can be read off from (33) by a power series expansion.

In the following, we restrict to supersymmetric con-
figurations and compute only the number of fermionic
degrees of freedom.

1. Adjoint and bifundamental representations: Annulus

A general element of the orbifold group exchanges D6-
branes with their images. Only a Z2 twist preserves the
brane configuration, such that the only nonvanishing
contributions to the annulus amplitude for bulk branes
are given by

A �
c
24

Z 1

0

dt

t3
Tropenf�1� 	3�
1� ��1�F�

� ��1�Se�2�tL0g: (34)

The generic form of lattice contributions to the ampli-
tudes per 2-torus is displayed in (C1) and the oscillator
contributions are listed in (C5).

Since the R sector with ��1�F insertion always has a
vanishing contribution to the loop channel amplitudes,
the massless fermionic spectrum for bulk D6-branes at
generic angles �’abk is computed from
-8
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AR �
X
a;b

c
24

Z 1

0

dt

t3

�2Na��2Nb�IabA

1=2;0
0;�’ab1 ;’

ab
2 ;’

ab
3 �

�Tr-a	3Tr-
b;�1
	3

I	
3

abA
1=2;0
v�1=2;�’ab1 ;’

ab
2 ;’

ab
3 �
�; (35)

where Iab �
Q3
k�1�n

a
km

b
k � nbkm

a
k� is the intersection

number between the factorizable D6-branes a and b and
I	

3

ab is the number of those intersections which are invari-
ant under the 	3 insertion, i.e., intersections localized at
the Z2 fixed points eij on T2

1 � T2
2 and with arbitrary

position on T2
3 . One subtlety arises from the existence of

the discrete Wilson lines: the Z2 invariant intersections
are counted with relative signs which come from the
Wilson lines. The matrices -	3 are displayed below in
Sec. III B 3, Eq. (39). For bulk branes, Tr-a

	3
�

Na � Na � 0, and Z2 insertions give vanishing contribu-
tions to the annulus amplitude. For fractional branes a,
the coefficient of the contribution from the 1I insertion
decreases by a factor of 2, i.e., replace �2Na� ! Na, in
126010
accordance with the expectation from the boundary state
approach and tr-a	3 is replaced by #a0Na where #a0 � �1

distinguishes the Z2 eigenvalues of the two fractional
branes 1

2 �

bulk
a �
ex

a � forming a bulk brane.
For branes parallel on a 2-torus, in the above formula,

the intersection number on the corresponding 2-torus is
replaced by the appropriate lattice sum (C1) and the
oscillator expression is modified as explained in
Appendix C.3.

The annulus amplitude is sufficient to compute the
massless spectrum of strings which are not invariant
under the orientifold projection. This comprises the ad-
joint representations localized on a stack of identical
branes or stuck at intersections of orbifold images as
well as bifundamental representations at intersections of
different branes a and b.

For Na factional branes a which are not their own �R
image, the R sector annulus contributions containing
adjoint representations are given by
AR
aa �

c
24

Z 1

0

dt

t3

N2

aL
A;a
1 LA;a

2 LA;a
3 A1=2;0

0;�0;0;0� � �#a0�
2N2

aL
A;a
3 A1=2;0

v�1=2;�0;0;0��

�
c
24

Z 1

0

dt

t3

16N2

a �O�e�2�t��;

AR
a�*a� �

c
24

Z 1

0

dt

t3

N2

aIa�*a�A
1=2;0
0;�1=3;1=3;�2=3� � �#a0�

2N2
aI
	3
a�*a�A

1=2;0
v�1=2;�1=3;1=3;�2=3��

�
c
24

Z 1

0

dt

t3

�2Ia�*a� � 2I	

3

a�*a��N
2
a �O�e�2�t=3��;

AR
a�*2a�

�
c
24

Z 1

0

dt

t3

N2

aIa�*2a�A
1=2;0
0;��1=3;�1=3;2=3� � �#a0�

2N2
aI
	3

a�*2a�
A1=2;0

v�1=2;��1=3;�1=3;2=3��

�
c
24

Z 1

0

dt

t3

�2Ia�*2a� � 2I	

3

a�*2a�
�N2

a �O�e�2�t=3��:

(36)
It follows that the gauge group with support on Na iden-
tical branes wrapping 1

2 �

bulk
a �
ex

a � is U�Na�. The
gauge sector preserves N � 2 supersymmetry, i.e., one
multiplet in the adjoint representation is living on the
world volume of the stack of branes. This multiplet car-
ries the degrees of freedom which correspond to a parallel
displacement of the 1-cycle on the third torus. At each
intersection of a with its orbifold images �	ka�, one
further chiral multiplet in the adjoint representation is
stuck which is due to the fact that the orbifold images can
recombine into a smooth cycle.

2. Symmetric and antisymmetric matter: Möbius strip

Arbitrary string configurations are not invariant under
�R. However, some D6-branes can wrap the same 3-
cycles as the O6-planes. In this case, the Möbius strip
gives nonvanishing contributions to the gauge degrees of
freedom and the resulting gauge group is special
orthogonal.
Furthermore, strings can stretch between a brane a and
an orbifold image in the orbit of the R image a0. These
strings provide for further antisymmetric or symmetric
representations of the unitary gauge factor with support
on a.

The only nonvanishing R sector contributions to the
Möbius strip are of the form

M R �
c
24

Z 1

0

dt

t3
fTrR;aa

0

open 
�R�1 � 	3�e�2�tL0�

� TrR;a�	a�
0

open 
�R�	� 	4�e�2�tL0�

� TrR;a�	
2a�0

open 
�R�	2 � 	5�e�2�tL0�g: (37)
They can be rewritten in terms of oscillator contributions
and eigenvalues #ak � �1 under �R	k as follows,
-9



GABRIELE HONECKER AND TASSILO OTT PHYSICAL REVIEW D 70, 126010 (2004)
MR �
c
24

Z 1

0

dt

t3
X2
k�0

X
l�0;1

#ak�3lNaI
R	k�3l

a�	ka�0

�M
~’1��k�3l�=6; ~’2��k�3l�=6; ~’3��k�3l�=3� (38)

where �~’k is the angle of brane a w.r.t. the R invariant
axis as described in Sec. II E 1. IR	k�3l

a�	ka�0
counts the number

of intersections between a and �	ka�0 which are invariant
under R	k�3l.

For example, let a and b be the fractional branes
wrapping the bulk parts of the cycles on top of the O6-
planes in the AAB model with wrapping numbers as
displayed in Table II, i.e., 
a �

1
2 ��1 � �2� �

#a0
2 �

�"1 � ~"1 � "2 � ~"2 � "3 � ~"3� and 
b �
3
2 ��1 � �2��

#b0
2 �"1 � ~"1 � "2 � ~"2 � "3 � ~"3� with #a;b0 � �1 being
the two possible Z2 eigenvalues. The aa and bb strings
support the gauge group SO�Na� � SO�Nb� and one chiral
multiplet in the antisymmetric representation, Antia �
Antib. Furthermore, intersections of a with its orbifold
images �	ka� (k � 1; 2) provide for three multiplets in
Antia, and b�	kb� strings contribute 15 multiplets in
Antib. For #a0 � #b0 , ab and a�	2b� strings carry three
multiplets in �Na;Nb�, and four multiplets in �Na;Nb� live
on the a�	b� strings. For #a0 � �#b0 , all sectors a�	kb�
give vanishing contributions to the spectrum. Observe
that this spectrum can be compared to the one arising
from the branes c and e in Table XIV. In the latter case,
the discrete relative Wilson on T2

1 leads to a nonvanishing
contribution to the spectrum although the Z2 eigenvalues
differ.

3. Computation of the open spectrum from Chan-Paton
labels

The open string spectrum at fractional D6-branes can
be computed in a similar way as for bulk branes using the
decomposition into irreducible representations of the or-
bifold group as follows.4

One choice of matrices consistent with the fact that the
D6-branes a and b at the end of Sec. III B 2 carry or-
thogonal gauge factors and consequently �R has to
preserve the Z2 eigenvalues is given by

-	3 �
1N 0
0 �1N

� 

; -�R � 12N; (39)

where N is the number of identical bulk branes. This
choice confirms the global sign of the �R projection
on exceptional cycles in Table III, i.e., �R acts merely
as a permutation on exceptional 2-cycles but does not
bring about any internal reflection of the blowups.
4See, e.g., [71] for a recent review on such decompositions in
orbifold compactifications.
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For an arbitrary kind of D6-branes wrapping a bulk 3-
cycle which is not �R	k invariant, the resulting gauge
group is U�N�1 �U�N�2. The two gauge factors belong to
the two fractional branes whose superposition gives the
bulk brane.

In particular, the aa strings decompose into Z2 even
massless states  I�1=2j0iNS for I � /; 3; 3 and their super-
partners which provide for the vector multiplet carrying
the gauge group and one chiral multiplet in the adjoint
representation. For I � 1; 1; 2; 2 the massless states are Z2

odd and correspond to strings stretching between the two
fractional branes of opposite Z2 eigenvalues forming a
bulk brane.

In the example at the end of Sec. III B 2, only one
fractional cycle of each kind a and b occurs and therefore
the Z2 odd states do not contribute to the massless spec-
trum on the brane. The representations of states localized
at the intersections a�	ka� and b�	kb� with k � 1; 2 are
computed from the fact that in this case the massless NS
and R states are nondegenerate and Z2 invariant. The bulk
parts of the cycles a and �	ka� intersect in three Z2

invariant points while b and �	kb� intersect in three Z2

invariant points and 24 points which form pairs under R.
Similarly, the ab and a�	2b� massless states are non-
degenerate and Z2 invariant while a�	b� massless string
states are twofold degenerate. By counting the respective
intersections, the spectrum in Sec. III B 2 is recovered.
IV. ANOMALIES AND GREEN-SCHWARZ
MECHANISM

As discussed in the previous section, the chiral spec-
trum and R� R-tadpole cancellation can be computed
either via the 3-cycles or the string loop ampltidues, and
the nonchiral spectrum by means of the latter method.
The non-Abelian gauge factors remain unbroken in the
low energy field theory, but the U(1) factors can have
anomalies and acquire a mass via couplings to closed
string R� R fields. In this section, we discuss this gen-
eralized Green-Schwarz mechanism and show how to
compute the surviving massless U(1) factors.

The closed string sector contains for all six different
choices of lattice orientations the axion as untwisted R�
R scalar and five additional R� R scalars from the 	3

twisted sector. The number of vectors arising from the
R� R sectors depends on the lattice. The complete
bosonic closed string spectrum is listed in Table V,
the fermionic degrees of freedom follow from
supersymmetry.

The axion and the five twisted R� R scalars are those
fields which participate in the generalized Green-
Schwarz mechanism. Using the Tables I and III, the 3-
cycles can be reexpressed in terms of R even and R odd
linear combinations 0i and 1j (i; j � 0; . . . ; 5), respec-
tively, with the property 0i 
 1j � �4�ij and all other
-10



TABLE V. Closed string spectrum on T6=�Z6 ��R�: Counting of the bosonic degrees of freedom. The fermionic degrees of
freedom follow from supersymmetry. 1 s. corresponds to a real scalar while 1 v. denotes a massless vector with its two helicities.

Closed string spectrum T6=�Z6 ��R�

Lattice AAA AAB ABA ABB BBA BBB
Sector NS� NS R� R NS� NS R� R NS� NS R� R NS� NS R� R NS� NS R� R NS� NS R� R

Untwisted NS� NS: Graviton + Dilaton + eight scalars; R� R: Axion + one vector

	� 	5 4 s. 1 v. 6 s. � � � 4 s. 1 v. 6 s. � � � 4 s. 1 v. 6 s. � � �

	2 � 	4 20 s. 5 v. 30 s. � � � 18 s. 6 v. 24 s. 3 v. 20 s. 5 v. 30 s. � � �

	3 NS� NS: 15 scalars; R� R: five scalars + one vector
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intersections being trivial. The detailed form of these
linear combinations depends on the choice of the lattice
as listed in Tables VI and VII.

A general 3-cycle and its R image can be rewritten in
terms of the R even and odd cycles as follows,


a �
X5
i�0

�ria0i � sia1i�; 
a0 �
X5
i�0

�ria0i � sia1i�;

(40)

with ria; sia multiples of one quarter. The R� R-tadpole
cancellation condition (22) can be rephrased in terms of
these coefficients asX

b

2Nb ~rb � 4 ~rO6 (41)

with ~rO6 � �r0O6; 0; 0; 0; 0; 0�
T and r0O6 as read off from

Table II. Using the fact that the intersection number of
two arbitrary 3-cycles is given by 
a 

b �
2��~ra � ~sb � ~sa � ~rb�, and multiplying (41) by 2~sa leads to

0 � 4Na ~sa � ~ra � 8~sa � ~rO6 � 4
X
b�a

Nb ~sa � ~rb

� Na
a 

a0 � 4
a 

O6 �
X
b�a

Nb�
a 

b

�
a 

b0 �: (42)

As in the toroidal orientifold models with intersecting
D6-branes [20], Eq. (42) shows manifestly that the R�
R-tadpole cancellation conditions imply the disappear-
TABLE VI. R even cycl

R even cycles
Lattice 00 01 02

AAA �1 "1 "2
AAB �1 � �2 "1 � ~"1 "2 � ~"2
ABA �1 � �2 "1 �~"2
ABB �2 "1 � ~"1 "2 � 2~"2
BBA �2 �~"1 �~"2
BBB ��1 � 2�2 "1 � 2~"1 "2 � 2~"2
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ance of all cubic gauge anomalies of the generic spectrum
listed in Table IV and impose analogous conditions for
matter charged under SU(2) and U(1) factors.

The mixed gauge anomalies are of the form

A U�1�a�SU�Nb�2 � 4~sa �
�
~rbNa � �ab

�X
c

Nc ~rc

� 2~rO6


�
C2�Nb�: (43)

The inner bracket in (43) vanishes upon R� R-tadpole
cancellation. The remaining part which is also present for
a � b is compensated by the generalized Green-Schwarz
couplings as follows. Six linearly independent �R even
R� R scalars and their dual two-forms can be defined as
the pull back of the ten dimensional � even 3-form and
the � odd 5-form over the R even and R odd 3-cycles,
respectively,

~5 i � �4�2�0��3=2
Z
0i
C3; ~Bi2 � �4�2�0��3=2

Z
1i
C5:

(44)

The axion of TableV corresponds to ~50 while the remain-
ing scalars ~51; . . . ; ~55 represent the five R� R scalars
from the 	3 twisted sector.

The four dimensional effective couplings to the gauge
fields are determined by the coefficients of the 3-cycles in
(40),
es for T6=�Z6 ��R�.

for T6=Z6

03 04 05

"3 "4 � "5 �~"4 � "5 � ~"5
"3 � ~"3 �~"4 � "5 �"4 � ~"5
"5 "3 � "4 �~"3 � "4 � ~"4

"5 � ~"5 �~"3 � "4 �"3 � ~"4
�~"3 "4 � "5 � ~"5 �~"4 � ~"5

"3 � 2~"3 "4 � "5 �~"4 � "5 � ~"5
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TABLE VII. R odd cycles for T6=�Z6 ��R�.

R odd cycles for T6=Z6

Lattice 10 11 12 13 14 15

AAA ��1 � 2�2 �"1 � 2~"1 �"2 � 2~"2 �"3 � 2~"3 ~"4 � "5 � ~"5 "4 � "5
AAB ��1 � �2 �"1 � ~"1 �"2 � ~"2 �"3 � ~"3 "4 � ~"5 �~"4 � "5
ABA ��1 � �2 �"1 � 2~"1 2"2 � ~"2 �"5 � 2~"5 ~"3 � "4 � ~"4 "3 � "4
ABB �2�1 � �2 �"1 � ~"1 "2 �"5 � ~"5 "3 � ~"4 �~"3 � "4
BBA �2�1 � �2 2"1 � ~"1 2"2 � ~"2 2"3 � ~"3 ~"4 � ~"5 "4 � ~"4 � "5
BBB ��1 "1 "2 "3 �"4 � ~"4 � ~"5 "4 � "5
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X5
i�0

2rib
Z
M4

~5itrFb ^ Fb; Na
X5
i�0

2sia
Z
M4

~Bi ^ trFa;

(45)

the factor of 2 stemming from the couplings to branes a
as well as their images a0. The couplings in (45) obviously
match those in (43) and thus provide for the cancellation
of mixed gauge anomalies.

In order for a U(1) factor Q �
P
axaQa to remain

massless, the couplings to all two-forms have to vanish,
i.e., the coefficients xa have to fulfillX

a

xaNa ~sa � 0: (46)

In a generic model, at most six Abelian gauge factors can
acquire a mass. However, in a supersymmetric setup all
couplings to ~B0 vanish and only up to five Abelian factors
can become massive.

The nonanomalous U(1)s can also be calculated di-
rectly from the homological cycles by determining the
kernel of the matrix [14,15]

MaI � Na�v
I
a � vI0a �; (47)

where vIa and vI0a are just the 12 coefficients of the homo-
logical basis and the �R-mirror, respectively; a runs
overall stacks of branes.
V. SUPERSYMMETRIC MODELS

After having specified the R� R-tadpole and super-
symmetry conditions, it is now possible to search for
concrete configurations of fractional D6-branes fulfilling
these conditions.

In this section, we explore systematically what kind of
gauge groups and chiral spectra can be obtained. To do so,
we will proceed in the usual way for a certain number r of
stacks, each consisting of Nr branes. Our main aim is to
find a phenomenologically appealing supersymmetric
three generation model, ideally without any exotic chiral
matter as compared to the standard model.

The guiding model for our considerations will be the
nonsupersymmetric standard model on the toroidal ori-
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entifold of [20] which might also allow for a supersym-
metric extension. It has the two main features that first, it
only contains exactly the standard model matter as chiral
matter (plus right-handed neutrinos) and second, only in
bifundamental representations of the gauge groups. This
model is realized on four stacks plus possibly hidden
branes (which do not intersect with the standard model
branes). The second different possibility to realize the
standard model from [23] does not have a supersymmet-
ric extension on the Z6-orientifold for the following rea-
son: in this model, the right-handed u, c, and t quarks
have been realized in the antisymmetric representation of
the U(3) brane and it was not allowed to have any sym-
metric representations of this gauge factor. In the present
case, the intersection of any brane cycle 
a with the
orientifold plane 
O6 has to vanish for a supersymmetric
model, i.e., 
a 

O6 � 0. But according to Table IV, this
just means that the number of symmetric and antisym-
metric representations on a certain brane are always the
same.

In the past, the model building approaches often have
been rather nonsystematic, a fact that we will try to avoid
here. To do so, a computer program has been set up in
order to first calculate the configurations in terms of
wrapping numbers n and m which fulfill the untwisted
R� R-tadpole conditions and the supersymmetry condi-
tions at the same time, where we have to keep in mind that
only the untwisted R� R-tadpole conditions get a con-
tribution from the orientifold planes.

Having specified all such configurations in a certain
range of wrapping numbers, all possible fractional cycles
are constructed after a reduction to one representant of
the orbit. This of course has to be done according to the
specific fixed points that the particular fractional brane
passes through. The possible cycles can be determined
from Table XXIII, where we have allowed a displacement
of the branes from the origin by

X4
i�1

�i�i with �i 2
�
0;
1

2

�
(48)

on the first two T2, according to the discussion in the
preceding sections. For every given configuration of
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TABLE VIII. All possible intersection numbers �Iab; Iab0 � between two stacks of branes a and b for intersections with only
bifundamental representations of the gauge group.

�Iab; Iab0 �

�0; 0� ��1;�1� ��2;�2� ��3;�3� ��5;�5� �0;�1� ��1; 0� �0;�3� ��3; 0� ��1;�3� ��3;�1�
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wrapping numbers fulfilling the R� R-tadpole condi-
tions in the untwisted part, this procedure allows for a
number of 16 � 23 � 128 different cycles according to
Eq. (28) and Table XXIII for every stack. This enhances
the model building possibilities by a factor of 128r (where
r again is the number of stacks) as compared to the case of
constructions without fractional cycles (like in the Z3

orientifold of [23]). The reader should be reminded that
the fulfillment of the untwisted R� R-tadpole equation
actually does not depend on the specific choices of wrap-
ping numbers n and m for every stack of branes, but only
on the corresponding coefficients of the two homological
cycles Ya and Za which are defined in Eq. (6). In contrast,
the construction of twisted cycles does depend on the
numbers n and m, but actually only on the oddness and
evenness of the wrapping numbers on the first two tori.
These two facts allow for a more effective and evolved
computer algorithm to handle the amount of computation.

To get started, we will look for all generally possible
two stack configurations (which for now shall be denoted
a and b). We will not require to fulfill the R� R-tadpole
equation at this point, therefore we do not have to specify
the size Nr for any of these two stacks. In this way we get
the most general intersection numbers which—most op-
timistically—are possible in any Z6 orientifold construc-
tion (with more than one stack). These intersection
numbers make up a finite set, if we insist on constructions
without anti-D-branes, simply because every D-brane
gives a positive contribution which never should be larger
than the absolute value of the contribution from the
orientifold plane. This gives an upper bound on Ya and
Za if one assumes the smallest possible stack size ofNa �
1. The computation shows that the possibilities com-
pletely agree on all possible tori. They are listed in
Table VIII for the case that the intersections of the two
branes with themselves and their orientifold mirror brane
are vanishing, i.e., Iaa � Iaa0 � Ibb � Ibb0 � 0.5 This
means that we require that there are no symmetric and
antisymmetric representations in the corresponding open
string sectors. Another computation shows that exactly
the same intersections are still possible if we additionally
insist on N � 1 supersymmetry on both stacks.

We can already see from Table VIII, that an identical
construction of the standard model spectrum to the one in
[20] also will not be possible: one cannot get a pair of
intersection numbers between two stacks of the form
5In fact, the intersection number of any brane with itself
vanishes automatically in four dimensions.
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�Iab; Iab0 � � �1; 2�. In the model in [20], this possibility
was necessary in order to realize the three generations of
left-handed quarks as two SU(2) doublets and one anti-
doublet. In this way, no additional (w.r.t. the standard
model) SU(2) lepton doublets were required in order to
cancel the U(2) anomaly in the effective 4-dimensional
gauge sector.

This problem seems to persist in the construction on
the Z6 orientifold, but later we will see how it actually can
be overcome and that we can even profit from this fact. At
this point, it just shall be mentioned that this might only
be a problem in a construction with four observable
intersecting (plus hidden) stacks.

Before coming to the most interesting five stack con-
figurations, we will shortly mention some results on 2, 3,
and 4 stack configurations and how they automatically
point towards a five stack model.

A. 2, 3, and 4 stack configurations

Even with two stacks of various stack sizes, already
nontrivial models which fulfill the R� R-tadpole cancel-
lation conditions and carry matter in bifundamental rep-
resentations can be obtained. But in all such models on all
six different tori, the stack size of both stacks has to
agree. Besides, there also exists matter in the symmetric
and antisymmetric representation of at least one gauge
factor and furthermore, only even intersection numbers
are possible. This means that the number of bifundamen-
tal representations is always even, too. A typical example
for Na � Nb � 3 on the AAA-torus is given in Table IX.

These limitations can be explained by the simple fact
that the twisted homological cycles plus their R-mirrors
have to be exactly opposite to each other for the two
stacks. Therefore, one cannot obtain any 3-generation
model like the SU(5)-grand unified theory model in
[23] and one has to allow for at least three stacks for a
phenomenologically appealing model.

There is a simple possibility how to sort out right from
the start which stack sizes are able to give valid models
and which are not. Indeed, only the first two components
of the R� R-tadpole Eq. (22) which do not depend on the
construction of fractional cycles, are already enough to
rule out most of the possibilities, because if there are no
solutions for a given stack size, the fractional cycles
cannot change this. On the other hand, if there are solu-
tions of the untwisted R� R-tadpole components, it is not
ensured that the twisted R� R-tadpole components also
admit solutions.
-13



TABLE IX. The wrapping numbers and homology cycles of the D6-branes in a 2-stack model containing chiral matter.

Stack �nI; mI� Homology cycle Chiral spectrum

U(3) ��3; 1;�3; 2;�1; 1� 
1 �
1
2 �7�2 � "1 � "3 � 2~"1 � ~"3 � ~"5�


0
1 �

1
2 �7�2 � 2"1 � "4 � "5 � ~"1 � ~"4�

2� �+3; 3�
1� �3A; 1�; 1� �6S; 1�
1� �1; +3A�; 1� �1; +6S�

U(3) �0;�1; 0; 1;�1; 1� 
2 �
1
2 ��2 � 2"1 � "4 � "5 � ~"1 � ~"4�


0
2 �

1
2 ��2 � "1 � "3 � 2~"1 � ~"3 � ~"5�

6This statement is valid up to an over-all minus sign of the
intersection numbers, an exchange of the so-far equivalent 4th
and 5th stack and an exchange between the general sectors xy
and xy0, all leading to the same massless spectrum. The same
result was found in [20].
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Using three stacks, it turns out that there are solutions
of the untwisted components of the R� R-tadpole equa-
tion for the most appealing given stack sizes N1 �
3; N2 � 2; N3 � 1. After the construction of fractional
cycles, it is observed that all existing solutions with chiral
matter contain antisymmetric (and by this also symmet-
ric) representations of the gauge group, but it is possible
to have this only on the most ‘‘harmless’’ N3 � 1-stack.
Requiring this additional constraint, it is found that just
three bifundamental representations between the U(3)-
and the U(2)-stack are not possible, so one cannot obtain
three left-handed quark generations.

If one turns over to 4 stacks, it is observed quickly from
the untwisted components of the R� R-tadpole equation
that the most favorable configuration N1 � 3, N2 � 2,
N3 � 1, N4 � 1 does not produce any solutions.
However, the two configurations N1 � 4, N2 � 2, N3 �
1, N4 � 1 and N1 � 3, N2 � 2, N3 � 2, N4 � 1, which
still might be acceptable, provide for solutions. Requiring
again no (anti-)symmetric representations on the first
brane, it is observed that just on the ABB-torus, there
exist solutions with three bifundamental representations
between the first and the second brane, i.e., there exist
three left-handed quarks. This seems rather nice, but in
the further investigation of these models it turns out that
there are always more than three UR andDR quarks in the
�+3; 1� representation of SU�3� � SU�2� localized at inter-
sections between the U(3) and any one of the U(1) stacks.

From all this, we have to conclude that there have to be
at least five stacks of branes to obtain three quark gen-
erations and it indeed turns out that with this number of
stacks, it is possible to obtain a very appealing class of
phenomenological models which will be introduced in
the following section.

B. 5 stack configurations

For the search of 5 stack models, we cannot proceed
exactly in the same way as for 4 stack configurations,
because it would require much too much computer power
to got through all possible constructions with fractional
cycles. Therefore, we will alter our approach in the fol-
lowing way: we fix the stack size on the first three stacks
to be Na � 3, Nb � 2 and Nc � 1. Then we require from
the beginning that first, there are no (anti-)symmetric
126010
representations of the U(3) gauge factor, second, that
the absolute value of intersection numbers are jIab �
Iab0 j � 3 and jIac � Iac0 j � 6. This just means that we
demand (up to conjugation) three left-handed quark gen-
erations in the bifundamental representation �3; 2� and
that the sum of UR and DR quark generations in the
representation �+3; 1� has to be six.

For all homological cycles fulfilling this condition, we
now search for a variable stack size on the 4th and 5th
torus if (and for which Nd, Ne) the two untwisted com-
ponents of the R� R-tadpole equations can be fulfilled.
For the remaining possibilities, we construct all possible
fractional cycles also on the 4th and 5th stack and then
look for the spectra which are possible. At this point,
there is a rather miraculous observation we have made: if
we furthermore require that there are no (anti-
)symmetric representations of any gauge factor, there
remains exactly one class of models with a given chiral
spectrum.6 This model has the two stack sizes Nd �
Ne � 1. The same observation has been made on all three
possible tori which give results at all (namely the AAB,
ABA, and ABB tori) and the chiral spectra of these
models all agree. Even more astonishingly, this model
resembles almost exactly the nonsupersymmetric model
of [20] with regard to the chiral spectrum. There is just
one difference: on the 5th stack e, there are three addi-
tional bifundamental representations. At this point, we
should make another remark, being that all nonvanishing
intersection numbers have an absolute value 3, this seems
to be a very aesthetical feature of this model and most
likely could be understood in more depth directly from
the Z6 symmetry.

There is another observation which completely agrees
on the whole class of possibilities: the third and fifth
homological cycles are �R-invariant. A detailed calcu-
lation shows that they both indeed are SO(2)-stacks. The
chiral spectrum of this class of models is shown in
Table X for an example on the AAB torus.
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TABLE X. Chiral spectrum of the model class with gauge group SU�3�a � SU�2�b �
SO�2�c � U�1�d � SO�2�e � U�1�a � U�1�b.

Chiral spectrum of five stack models with Na � 3, Nb � 2, Nc � Nd � Ne � 1
Sector SU�3�a � SU�2�b � SO�2�c � SO�2�e Qa Qb Qd

1
3Qa �Qd

QL ab0 3� �3; 2; 1; 1� �1 �1 0 � 1
3

UR;DR ac 3� �3; 1; 2; 1� 1 0 0 1
3

L bd0 3� �1; 2; 1; 1� 0 1 1 1
ER;NR cd 3� �1; 1; 2; 1� 0 0 �1 �1

be 3� �1; 2; 1; 2� 0 1 0 0
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The fact that we have two SO(2)- instead of U(1)-stacks
is not a problem, because it just means that the two frac-
tional branes coincide with their �R-mirror branes. In
the nonchiral spectrum there is the adjoint representation
of both gauge factors, being related to the unconstrained
distance between the two branes and their mirrors on T2

3 .
If one gives a vacuum expectation value (VEV) to these
fields, then the branes and their mirrors are distinguish-
able and the gauge group is a U(1) instead of the SO(2)
which indeed has the same rank. Then any bifundamental
of the type �3; 2�, where the 3 comes for instance from a
U(3) and the 2 from the SO(2), splits up into a �3; 1� and a
�3;�1�, where one and �1 now are the U(1)-charges.
After this transition, the UR- and DR-quarks (and the
ER and NR) are distinguishable as usual by their opposite
U(1) charge.

Besides these common properties, the nonchiral spec-
trum which has been calculated according to the lines of
Sec. III disagrees for different models on just one and also
between different tori. This is well understandable, be-
cause it does not only depends on the homology, but also
on the geometrical properties of the branes and the choice
of the lattice. In the next section, we will discuss two
different explicit examples of this class of models in more
detail.

VI. THE SUPERSYMMETRIC STANDARD MODEL

In the previous section, we systematically explored
how it is possible to obtain three quark generations in a
stable and R� R-tadpole free D6-brane configuration. In
TABLE XI. The setup of the D6-branes in the five stack
model on the AAB torus.

�nI; mI� ��1; �2; �3; �4� �#1; #2� Z2

Na � 3 ��2; 1;�1; 2;�2; 1� �0; 0; 0; 0� �0; 0� �

Nb � 2 ��1; 0;�1; 1;�1; 2� �0; 0; 0; 0� �1; 0� �

Nc � 1 ��2; 1;�2; 1;�1; 2� �0; 0; 0; 0� �1; 0� �

Nd � 1 ��1; 0;�1; 1;�1; 2� �0; 0; 0; 0� �0; 0� �

Ne � 1 ��1; 1;�1; 1;�2; 1� �0; 0; 0; 0� �0; 0� �
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this section, we explore in detail how the supersymmetric
standard model arises.

A. The model on the AAB torus

The explicit configuration that shall be discussed in
this section is given in Table XI, the homological cycles
and intersection numbers are listed in Table XII. After the
displacement of the third and fifth stack on the third 2-
torus (as discussed in the preceding section), the chiral
spectrum takes the form as shown in Table XIII. We can
immediately calculate which U(1) factors remain mass-
less after applying the Green-Schwarz mechanism which
is discussed in detail in Sec. IV. The result is that one
obtains three U(1)s which are free of triangle anomalies,
being QB�L � � 1

3Qa �Qd, Qc and Qe. As in similar
constructions, the first one is the B� L symmetry, Qc is
twice the third component of the right-handed weak
isospin. Qe is an additional U(1) symmetry under which
none of the standard model particles transforms, only the
two additional fields.

Also the linear combination

QY � �
1

6
Qa �

1

2
Qc �

1

2
Qd (49)

is massless, being the hypercharge Y. Every chiral field
has the correct quantum numbers (for both hypercharge
and B� L symmetry), the only mystical one being the
two additional kinds of fields at the be and be0 intersec-
tions. Actually, these two kinds of fields have the right
quantum numbers to be the supersymmetric standard
model partners of the Higgs fields with a vanishing hy-
percharge, H and +H.7 The only problem in the present
construction is the fact that these bifundamental fields do
not stretch from the second stack to the c-brane, but to the
e-brane, and therefore do not give rise to the standard
Yukawa couplings.

But the problem at first sight can be overcome as well. It
is known that in many cases a gauge breaking where two
7The hypercharge could also be defined with an additional
factor of �1=2Qe, then the two additional kinds of fields would
have the more familiar opposite hypercharge �1=2 and 1=2.
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TABLE XII. The homology cycles and intersection numbers (all other intersection numbers
vanishing) of the D6-branes in the five stack model on the AAB torus.

Homology cycles Intersections


a �
1
2 �3�1 � 3�2 � "1 � 2"2 � "5 � 2~"1 � ~"2 � 2~"5� Iab � 0 Iab0 � �3


b �
1
2 ��1 � �2 � "1 � 2"2 � "5 � 2~"1 � ~"2 � 2~"5� Iac � 3 Iac0 � 3


c �
1
2 �3�1 � 3�2 � "1 � "2 � "3 � ~"1 � ~"2 � ~"3� Ibd � 0 Ibd0 � 3


d �
1
2 ��1 � �2 � "1 � 2"2 � "5 � 2~"1 � ~"2 � 2~"5� Icd � 3 Icd0 � �3


e �
1
2 ��1 � �2 � "1 � "2 � "3 � ~"1 � ~"2 � ~"3� Ibe � 3 Ibe0 � 3

TABLE XIII. Chiral spectrum of the model class with gauge
group SU�3�a � SU�2�b � U�1�a � U�1�b � U�1�c � U�1�d �
U�1�e.

Chiral spectrum of five stack model on AAB torus
Sector SU�3�a � SU�2�b Qa Qb Qc Qd Qe QB�L QY

QL ab0 3� �3; 2� �1 �1 0 0 0 1
3

1
6

UR ac 3� �3; 1� 1 0 �1 0 0 � 1
3 � 2

3

DR ac0 3� �3; 1� 1 0 1 0 0 � 1
3

1
3

L bd0 3� �1; 2� 0 1 0 1 0 �1 � 1
2

ER cd 3� �1; 1� 0 0 1 �1 0 1 1
0
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unitary gauge groups are broken to the diagonal subgroup
is possible, in our case the breaking U�1�c � U�1�e !
U�1�C would be needed. In the language of D-branes,
this requires a brane recombination mechanism which
in some cases can be understood in the effective field
theory just as a Higgs effect. We will explain in the
following why this is exactly the case for the present
model.

If two stacks of D-branes preserve a common N � 2
supersymmetry, then a massless hypermultiplet being
localized at the intersection indicates that there is a
possible deformation of the two stacks into just one
recombined one. In our case, which is similar to the one
described in [36], two factorizable branes can only pre-
serve a common N � 2 supersymmetry if they are
parallel on one of the three tori. To understand this for
our concrete model, we have to take a look at the non-
chiral spectrum. This has been calculated for the concrete
model of Table XI as described in Sec. III and the result is
shown in Table XIV.

From Table XIV, we can immediately see that the
necessary hypermultiplets are indeed existing, being the
ones in the sector between the c and e-brane. If we take a
closer look at the computation and for a moment distin-
guish between the different orbifold images under the 	
action,8 we observe that the two hypermultiplets are not
in the ce sector, but in the c�	2e� sector. In this sector, the
branes c and �	2e� are indeed parallel on the third torus,
see Fig. 2. Therefore, we can recombine in this way the c
with the �	2e�-brane [and at the same time the �	c� with
the e brane and the �	2c� with the �	e� brane] by giving a
VEV to the two hypermultiplets in the following way: it is
possible to understand the recombination as a Higgs effect
in the N � 2 effective theory, if there exists a flat
direction hh1i � hh2i in the D-term potential

VD �
1

2g2
�h1 +h1 � h2 +h2�

2; (50)

along which the gauge symmetry is broken to the diago-
nal subgroup. Here, h1 and h2 denote the two chiral
multiplets inside the hypermultiplet. If one gauge factor
8Of course, in the end we have to sum over all 	 images such
that the result is invariant under the orbifold action.
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is a U(1), there is a potential problem: if the two involved
stacks intersect only once (meaning that there is just one
hypermultiplet), then the D-flat direction is not F-flat
because there is a superpotential, coupling the two chiral
multiplets to the adjoint vector multiplet , as

W � h1h2,: (51)

Therefore @W=@, imposes h1h2 � 0, meaning that we
cannot give a VEV to both fields h1 and h2 at the same
time (what D-flatness actually requires).

The situation in our case is different: looking at the
geometrical intersections of brane c and �	2e� in Fig. 2, it
can be observed that they intersect on both the first and
the second torus twice, but hypermultiplets live only on
two of the intersections, because the relative Wilson line
on T2

1 projects out the other two.
For two hypermultiplets, there is one flat direction

which is obtained by combining the VEVs for h1; h2 in
one hypermultiplet and for ~h1; ~h2 in the other, such that
both the D- and F-flatness conditions are fulfilled. This
means explicitly that

W1 � h1h2,; W2 � ~h1 ~h2,: (52)

From F-flatness, it is possible to give h2 and ~h1 a non-
vanishing VEV (while at the same time giving a vanish-
ing one to h1 and ~h2) and still obtain a flat direction in the
D-term potential because they couple to the same vector
NR cd 3� �1; 1� 0 0 �1 �1 0 1 0
be 3� �1; 2� 0 1 0 0 �1 0 0
be0 3� �1; 2� 0 1 0 0 1 0 0
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TABLE XIV. Nonchiral massless and light open spectrum of the model in Table XI on AAB computed from 3-cycles. If the
factorizable cycles are parallel on T2

3 , the mass of the states is proportional to the relative distance -xy � j�x56 � �y56j of the D6-
branes on this torus,

�����
�0

p
mxy � -xy. The distance has to be taken to be in the range -xy 2 
0; 1=2� � R3 with R3 being the

(dimensionless) length scale on T2
3 . �x56 denotes the distance of brane x from the origin on T2

3 . The 3A of U�3�a transforms as 32
under the decomposition U�3�a! SU�3�a � U�1�a, while the 2 of U�2�b decomposes into 2�1 of SU�2�b � U�1�b. The physical U(1)
charges can be computed from Sec. IV.

Nonchiral massless and light open spectrum, AAB on T6=�Z6 ��R�

Sector U�3�a � U�2�b�Qc;Qd;Qe�

�����
�0

p
m Sector U�3�a �U�2�b�Qc;Qd;Qe�

�����
�0

p
m

aa 16� �9; 1�0;0;0 0 ad0 6� 
�3; 1�0;1;0 � h:c:� 0
bb 4� �1; 4�0;0;0 0 �3; 1�0;1;0 � h:c: -ad0

cc 16� �1; 1�0;0;0 0 ae 6� 
�3; 1�0;0;�1 � h:c:� 0
dd 4� �1; 1�0;0;0 0 �3; 1�0;0;�1 � h:c: -ae

ee 4� �1; 1�0;0;0 0 ae0 6� 
�3; 1�0;0;1 � h:c:� 0
aa0 9� 
�3A; 1�0;0;0 � h:c:� 0 �3; 1�0;0;1 � h:c: -ae0

5� 
�3A; 1�0;0;0 � h:c:� -aa0 bc 6� 
�1; 2��1;0;0 � h:c:� 0
bb0 3� 
�1; 1A�0;0;0 � h:c:� 0 �1; 2��1;0;0 � h:c: -bc

�1; 1A�0;0;0 � h:c: -bb0 bc0 6� 
�1; 2�1;0;0 � h:c:� 0
ab 2� 
�3; 2�0;0;0 � h:c:� -ab �1; 2�1;0;0 � h:c: -bc0

ac 3� 
�3; 1��1;0;0 � h:c:� 0 ce 2� 
�1; 1�1;0;�1 � h:c:� -ce

4� 
�3; 1��1;0;0 � h:c:� -ac ce0 2� 
�1; 1�1;0;1 � h:c:� -ce0

ac0 3� 
�3; 1�1;0;0 � h:c:� 0 de 3� 
�1; 1�0;1;�1 � h:c� 0
4� 
�3; 1�1;0;0 � h:c:� -ac0 �1; 1�0;1;�1 � h:c -de

ad 3� 
�3; 1�0;�1;0 � h:c:� 0 de0 3� 
�1; 1�0;1;1 � h:c� 0
4� 
�3; 1�0;�1;0 � h:c:� -ad �1; 1�0;1;1 � h:c -de0
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multiplet ,, i.e., the D-term looks like

VD �
1

2g2
�h1 +h1 � h2 +h2 � ~h1

+~h1 � ~h2
+~h2�

2: (53)

The D-term and F-terms are indeed flat for the choice

hh1i � h~h2i � 0; (54)

hh2i � h~h1i � 0: (55)

This construction is just possible if theVEVs that we have
given to the fields in between the c and c0 brane and the e
and e0 brane (formerly the adjoints on the world volume of
the �R invariant stacks, in order to get U(1) instead of
Πc

Πc

θ2Πe

T 2
1 T 2

2

FIG. 2 (color online). Geometrical intersections of branes c and �
branes are displaced from the origin on T2

3 . Remember that the R in
as in Fig. 1.
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SO(2) gauge groups) are the same, but this is completely
unproblematic.

Homologically, we only have to add the two cycles 
c
and 
e to get the recombined brane, which shall be
denoted as 
C � 
c �
e. This complex cycle has the
same volume as the sum of volumes of the two cycles
before recombination occurs. The intersection numbers of
the recombined cycles are given in Table XV. The final
chiral spectrum after the recombination is given in
Table XVI. The massless U(1)s can be checked again using
the computation of the Green-Schwarz couplings along
the lines of Sec. IV. There are two nonanomalous U(1)s,
being QB�L � � 1

3Qa �Qd and QC. Fortunately, the hy-
percharge
T 2
3

	2e� on the AAB torus. The gauge group is U�1�c � U�1�e if the
variant plane lies along �1 	 �3 	 ��5 � �6� with the notation
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TABLE XV. The intersection numbers (all other intersection
numbers vanishing) of the D6-branes in the final 5 stack model
on the AAB torus.

Intersections

Iab � 0 Iab0 � �3
IaC � 3 IaC0 � 3
Ibd � 0 Ibd0 � 3
ICd � 3 ICd0 � �3
IbC � 3 IbC0 � 3

GABRIELE HONECKER AND TASSILO OTT PHYSICAL REVIEW D 70, 126010 (2004)
QY � �
1

6
Qa �

1

2
QC �

1

2
Qd (56)

is still massless and the two types of fields H and +H have
just the opposite hypercharge �1=2 and 1=2. Therefore,
they can be exactly understood as the superpartners of the
standard model Higgs with a definite chirality.

B. The model on the ABA torus

The explicit configuration that shall be discussed in
this section is given in Table XVII, the homological cycles
and intersection numbers are listed in Table XVIII.

Comparing Table XVII with the model of the preceding
section, Table XI, reveals that the realization on the torus
is very different, for instance in the previous case stacks b
and d are parallel while in this model stacks a, b, and d
are parallel as well as c and e. Furthermore, the stacks c
and e are displaced from the origin on T2

1 .
Nevertheless, the chiral spectrum agrees up to a con-

jugation with the chiral spectrum of the model on the
AAB torus, see Table XIII. The massless U(1)s after the
application of the Green-Schwarz formalism do also
completely agree. On the other hand, calculating the non-
chiral spectrum for this second explicit model shows that
it is indeed very different as compared to the one on the
torus. The spectrum is listed in Table XIX. Remarkably,
the brane recombination mechanism which has been de-
scribed in the last section does not work for this model:
TABLE XVI. Chiral spectrum of the model class with gauge
group SU�3�a � SU�2�b � U�1�a � U�1�b � U�1�C � U�1�d.

Chiral spectrum of 5 stack model on AAB torus
Sector SU�3�a � SU�2�b Qa Qb QC Qd QY

QL ab0 3� �3; 2� �1 �1 0 0 1
6

UR aC 3� �3; 1� 1 0 �1 0 � 2
3

DR aC0 3� �3; 1� 1 0 1 0 1
3

L bd0 3� �1; 2� 0 1 0 1 � 1
2

ER Cd 3� �1; 1� 0 0 1 �1 1
NR Cd0 3� �1; 1� 0 0 �1 �1 0
H bC 3� �1; 2� 0 1 �1 0 � 1

2

+H bC0 3� �1; 2� 0 1 1 0 1
2
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the hypermultiplets in the sector between the c and the e
brane are absent due to the relative Wilson line on T2

2 .
Therefore, we can draw the conclusion that it is only

possible for a subclass of models with the same initial
chiral spectrum to break it to the exact supersymmetric
standard model.

VII. LEFT-RIGHT SYMMETRIC MODELS

In order to obtain a left-right symmetric model with
three quark generations, also at least five stacks are
required. For the lattices AAA, BBA, and BBB, it turns
out that all brane configurations with SU�3�a � SU�2�b �
SU�2�c, no (anti)symmetric chiral states of SU�3�a, i.e,

a 

a0 � 0, and three left and right-handed quark
generations, i.e., 3� �3a; 2b� � 3� �3a; 2c� in the chiral
spectrum, wrap larger bulk cycles than the O6-planes.
Therefore, no supersymmetric chiral left-right symmet-
ric 3-generation model on these tori fulfills R� R-tadpole
cancellation. This result agrees completely with the ob-
servation made for the ansatz Na � 3, Nb � 2 and Nc �
1 in the previous section. For the ABA and ABB lattices,
the minimal requirement on three stacks of fractional
D6-branes can be fulfilled. However, the twisted R� R
charges cannot be canceled by any configuration with at
most five stacks of D6-branes—at least if we require that
the two additional gauge groups have at most rank two.

For the lattice AAB, there exists chiral 3-generation
left-right symmetric models with five stacks. Two distinct
chiral spectra occur, one of them containing (anti)sym-
metric representations of some SU(2) factors. The other
chiral spectrum encloses only bifundamental representa-
tions as displayed in Table XX. The gauge group of the
standard model part consists of SU�3�a � SU�2�b �
SU�2�c � U�1�d. In order to fulfill tadpole cancellation,
an additional stack with gauge group U�2�e is required.
Apart from the left/right symmetric MSSM particles, two
kinds of exotic chiral particles charged under the addi-
tional U�2�e arise. These seemingly unwanted exotic par-
ticles, however, have the correct quantum numbers to
combine into composite Higgs particles, i.e., also in the
left/right symmetric models the Higgs fields can originate
from the chiral spectrum due to an ‘‘internal’’ U�2�e
symmetry.
TABLE XVII. The setup of the D6-branes in the 5 stack
model on the ABA torus.

�nI; mI� ��1; �2; �3; �4� �#1; #2� Z2

Na � 3 ��1; 1;�1; 1;�2; 1� �0; 0; 0; 0� �0; 0� �

Nb � 2 ��1; 1;�1; 1;�2; 1� �0; 0; 0; 0� �0; 1� �

Nc � 1 ��1; 0;�1; 1;�1; 2� �0; 12 ; 0; 0� �1; 0� �

Nd � 1 ��1; 1;�1; 1;�2; 1� �0; 0; 0; 0� �0; 0� �

Ne � 1 ��1; 0;�1; 1;�1; 2� �0; 12 ; 0; 0� �1; 1� �
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TABLE XX. Chiral spectrum of a left-right symmetric model. In the last two columns, the charges under the two massless linear
combinations for the specific D6-brane configuration (Table XXI) are displayed.

Chiral left-right symmetric spectrum of an AAB model on T6=�Z6 ��R�

Sector SU�3�a � SU�2�b � SU�2�c � SU�2�e Qa Qb Qc Qd Qe QB�L
~Q

QL ab0 3� �3; 2; 1; 1� 1 1 0 0 0 1=3 2
UR;DR ac0 3� �3; 1; 2; 1� �1 0 �1 0 0 �1=3 �2
L bd0 3� �1; 2; 1; 1� 0 �1 0 �1 0 �1 -1

ER;NR cd0 3� �1; 1; 2; 1� 0 0 1 1 0 1 1
be0 3� �1; 2; 1; 2� 0 �1 0 0 �1 0 �5=2
ce0 3� �1; 1; 2; 2� 0 0 1 0 1 0 5=2

TABLE XIX. Nonchiral massless and light open spectrum of the model from Table XVII on the ABA torus. The notation agrees
with Table XIV.

Nonchiral massless and light open spectrum, ABA on T6=�Z6 ��R�

Sector U�3�a � U�2�b�Qc;Qd;Qe�

�����
�0

p
m Sector U�3�a � U�2�b�Qc;Qd;Qe�

�����
�0

p
m

aa 4� �9; 1�0;0;0 0 ab 3� 
�3; 2�0;0;0 � h:c:� 0
bb 4� �1; 4�0;0;0 0 ab0 �3; 2�0;0;0 � h:c: -ab0

cc 4� �1; 1�0;0;0 0 ac �3; 1��1;0;0 � h:c: -ac

dd 4� �1; 1�0;0;0 0 ac0 �3; 1�1;0;0 � h:c: -ac0

ee 4� �1; 1�0;0;0 0 ad 2� 
�3; 1�0;�1;0 � h:c:� -ad

aa0 �2� 3A � 6S; 1�0;0;0 � h:c: 0 ad0 3� 
�3; 1�0;1;0 � h:c:� 0
�3A; 1�0;0;0 � h:c: -aa0 ae �3; 1�0;0;�1 � h:c: -ae

bb0 �1; 2� 1A � 3S�0;0;0 � h:c: 0 ae0 �3; 1�0;0;1 � h:c: -ae0

�1; 1A�0;0;0 � h:c: -bb0 bc �1; 2��1;0;0 � h:c: -bc

cc0 �1; 1�2;0;0 � h:c: 0 bc0 �1; 2�1;0;0 � h:c: -bc0

dd0 �1; 1�0;2;0 � h:c: 0 be �1; 2�0;0;�1 � h:c: -be

ee0 �1; 1�0;0;2 � h:c: 0 be0 �1; 2�0;0;1 � h:c: -be0

TABLE XVIII. The homology cycles and intersection numbers (all other intersection numbers vanishing) of the D6-branes in the
5 stack model on the ABA torus.

Homology cycles Intersections


a �
1
2 ��1 � �2 � "1 � "2 � "3 � ~"1 � ~"2 � ~"3� Iab � 0 Iab0 � 3


b �
1
2 ��1 � �2 � "1 � "2 � "3 � ~"1 � ~"2 � ~"3� Iac � �3 Iac0 � �3


c �
1
2 ��1 � �2 � 3"1 � 2"3 � "4 � ~"3 � ~"4� Ibd � 0 Ibd0 � �3


d �
1
2 ��1 � �2 � "1 � "2 � "3 � ~"1 � ~"2 � ~"3� Icd � �3 Icd0 � 3


e �
1
2 ��1 � �2 � 3"1 � 2"3 � "4 � ~"3 � ~"4� Ibe � �3 Ibe0 � �3

TABLE XXI. The setup of the D6-branes in the five stack left/right symmetric model on the AAB torus.

�nI; mI� ��1; �2; �3; �4� �#1; #2� Z2�� #0�

Na � 3 ��2; 1;�1; 2;�2; 1� �0; 0; 0; 0� �0; 0� �

Nb � 2 ��1; 0;�1; 1;�1; 2� �0; 0; 0; 0� �0; 1� �

Nc � 2 ��1; 0;�1; 1;�1; 2� �0; 0; 0; 0� �1; 0� �

Nd � 1 ��1; 0;�1; 1;�1; 2� �0; 0; 0; 0� �0; 0� �

Ne � 2 ��1; 0;�1; 1;�1; 2� �0; 0; 0; 0� �1; 1� �

GETTING JUST THE SUPERSYMMETRIC STANDARD . . . PHYSICAL REVIEW D 70, 126010 (2004)

126010-19



TABLE XXII. Nonchiral massless and light open spectrum of the left/right symmetric model computed from cycles.

Nonchiral left-right massless and light open spectrum, AAB, T6=�Z6 ��R�

Sector U�3�a � U�2�b � U�2�c � U�2�e�� U�1�d� Sector U�3�a � U�2�b � U�2�c � U�2�e�� U�1�d�

aa 16� �9; 1; 1; 1�0 ad 7� 
�3; 1; 1; 1��1 � h:c:�
bb 4� �1; 4; 1; 1�0 ad0 7� 
�3; 1; 1; 1�1 � h:c:�
cc 4� �1; 1; 4; 1�0 ae 2� 
�3; 1; 1; 2�0 � h:c:�
dd 4� �1; 1; 1; 1�0 ae0 3� 
�3; 1; 1; 2�0 � h:c:�
ee 4� �1; 1; 1; 4�0 bc 3� 
�1; 2; 2; 1�0 � h:c:�
aa0 14� 
�3A; 1; 1; 1�0 � h:c:� bc0 3� 
�1; 2; 2; 1�0 � h:c:�
bb0 4� 
�1; 1A; 1; 1�0 � h:c:� be 3� 
�1; 2; 1; 2�0 � h:c:�
cc0 4� 
�1; 1; 1A; 1�0 � h:c:� be0 �1; 2; 1; 2�0 � h:c:
ee0 4� 
�1; 1; 1; 1A�0 � h:c:� ce 3� 
�1; 1; 2; 2�0 � h:c:�
ab 2� 
�3; 2; 1; 1�0 � h:c:� ce0 �1; 1; 2; 2�0 � h:c:
ac 2� 
�3; 1; 2; 1�0 � h:c:�
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A concrete realization of this chiral spectrum is given
in Table XXI. The corresponding 3-cycles can be read off
from Tables XXIII and XXIV. Two Abelian gauge factors
remain massless,

QB�L �
1

3
Qa �Qd;

~Q �
1

4
�3Qa � 5Qb � 5Qc �Qd � 5Qe�:

(57)

The nonchiral massless spectrum of the configuration
XXI is listed in Table XXII.
VIII. CONCLUSIONS AND PROSPECTS

In this article, we have worked out all technical details
of computing chiral and nonchiral massless spectra for
intersecting fractional D6-branes on the Z6 orientifold.
Discrete Wilson lines and distances of branes naturally
occur due to the existence of exceptional cycles. The Z3

subsymmetry on each two torus freezes all complex
structure moduli. Supersymmetry projects onto one out
of two possible toroidal cycles. In addition, the D6-branes
can wrap some of the ten existing exceptional 3-cycles.
This leads to a N � 2 supersymmetric gauge sector as
compared to the N � 4 ones for toroidal and orbifold
backgrounds without exceptional 3-cycles. In a supersym-
metric setup, all contributions to the bulk cycles are
proportional to those of the O6-planes. In the Z6 orienti-
fold, therefore, nontrivial intersections arise purely from
the exceptional part of fractional branes. This approach
also could be generalized to the two further symmetric
orbifold groups Z6 � Z3 and Z60 . The former is briefly
mentioned in Appendix D, but does not seem to be of any
phenomenological interest due to the small number of
fractional cycles.

Already for 2-stack configurations, nontrivial chiral
spectra with bifundamental representations exist. By sys-
tematically examining the possible 2, 3, and 4-stack
126010
configurations, we find that they cannot provide for non-
trivial chiral spectra with the standard model gauge
group. In all models, R� R tadpoles are cancelled and
supersymmetry is preserved globally, ensuring also the
absence of NS� NS tadpoles.

The first configurations with the standard model gauge
group and also the correct chiral matter exist for five
stacks. The most miraculous fact is that with only making
the requirements of having at least one 3-, one 2- and one
1-stack of branes, having three quark generations, no
chiral matter in antisymmetric representations, and pre-
serving globally N � 1 supersymmetry, there remains
only one model with a definite chiral spectrum, which is
shown in Table XIII.

Looking more closely at this model, it is not just very
aesthetical in having only nonvanishing intersection
numbers of an absolute value of 3, besides a massless
hypercharge, it also seems to give rise to exactly the
standard model particles in the chiral spectrum in addi-
tion to two additional kinds of particles in the bifunda-
mental representation �1; 2� of U�1� � U�2�. This looks
like the two superpartners of the Higgs in a supersym-
metric standard model, the only seemingly problem being
the fact that the U(1) is not from the right stack, so at first
sight they cannot give rise to the standard Yukawa
couplings.

The nonchiral spectrum is rather different for two
representatives of the discussed class of models.
However, through a well motivated brane recombination
process which is shown to exactly correspond to a Higgs
branch in the effective N � 2 theory of the type U�1� �
U�1� ! U�1�, these particles indeed can be identified with
the two kinds of Higgs multiplets in one concrete real-
ization. In homology, this process just means that we add
the two factorizable 3-cycles for the two involved U(1)-
branes to get the recombined one, which then is non-
factorizable. In the second presented example, the recom-
bination still works in homology, but cannot be
understood as a Higgs effect in the effective field theory,
-20



TABLE XXIII. Relation between fixed points and wrapping numbers on T2
1 � T2

2 . The fixed point e11 does not give rise to any
exceptional cycle. The bulk 2-cycle specified by the wrapping numbers can be displaced from the origin by

P4
i�1 �i�i with �i 2

f0; 1=2g.

Wrapping numbers intersecting fixed points for T6=Z6

�n2; m2� (Odd, even) (Even, odd) (Odd, odd) (Odd, even) (Even, odd) (Odd, odd)
�n1; m1� �3 � �4 � 0 �3 �

1
2 ; �4 � 0

�1 � �2 � 0

(Odd, even) �e11�e14e41e44 �e11�e15e41e45 �e11�e16e41e46 �e11�e14e41e44 e14e16e44e46 e14e15e44e45
(Even, odd) �e11�e14e51e54 �e11�e15e51e55 �e11�e16e51e56 �e11�e14e51e54 e14e16e54e56 e14e15e54e55
(Odd, odd) �e11�e14e61e64 �e11�e15e61e65 �e11�e16e61e66 �e11�e14e61e64 e14e16e64e66 e14e15e64e65

�1 �
1
2 ; �2 � 0

(Odd, even) �e11�e14e41e44 �e11�e15e41e45 �e11�e16e41e46 �e11�e14e41e44 e14e16e44e46 e14e15e44e45
(Even, odd) e61e64e41e44 e61e65e41e45 e61e66e41e46 e61e64e41e44 e64e66e44e46 e64e65e44e45
(Odd, odd) e51e54e41e44 e51e55e41e45 e51e56e41e46 e51e54e41e44 e54e56e44e46 e54e55e44e45

�1 � 0; �2 �
1
2

(Odd, even) e61e64e51e54 e61e65e51e55 e61e66e51e56 e61e64e51e54 e64e66e54e56 e64e65e54e55
(Even, odd) �e11�e14e51e54 �e11�e15e51e55 �e11�e16e51e56 �e11�e14e51e54 e14e16e54e56 e14e15e54e55
(Odd, odd) e41e44e51e54 e41e45e51e55 e41e46e51e56 e41e44e51e54 e44e46e54e56 e44e45e54e55

�1 � �2 �
1
2

(Odd, even) e61e64e51e54 e61e65e51e55 e61e66e51e56 e61e64e51e54 e64e66e54e56 e64e65e54e55
(Even, odd) e41e44e61e64 e41e45e61e65 e41e46e61e66 e41e44e61e64 e44e46e64e66 e44e45e64e65
(Odd, odd) �e11�e14e61e64 �e11�e15e61e65 �e11�e16e61e66 �e11�e14e61e64 e14e16e64e66 e14e15e64e65

�3 � 0; �4 �
1
2 �3 � �4 �

1
2

�1 � �2 � 0

(Odd ,even) e15e16e45e46 �e11�e15e41e45 e15e14e44e45 e15e16e45e46 e14e16e44e46 �e11�e16e41e46
(Even, odd) e15e16e55e56 �e11�e15e51e55 e14e15e54e55 e15e16e55e56 e14e16e54e56 �e11�e16e51e56
(Odd, odd) e15e16e65e66 �e11�e15e61e65 e14e15e64e65 e15e16e65e66 e14e16e64e66 �e11�e16e61e66

�1 �
1
2 ; �2 � 0

(Odd, even) e15e16e45e46 �e11�e15e41e45 e14e15e44e45 e15e16e45e46 e14e16e44e46 �e11�e16e41e46
(Even, odd) e65e66e45e46 e61e65e41e45 e64e65e44e45 e65e66e45e46 e64e66e44e46 e61e66e41e46
(Odd, odd) e55e56e45e46 e51e55e41e45 e54e55e44e45 e55e56e45e46 e54e56e44e46 e51e56e41e46

�1 � 0; �2 �
1
2

(Odd, even) e65e66e55e56 e61e65e51e55 e64e65e54e55 e65e66e55e56 e64e66e54e56 e61e66e51e56
(Even, odd) e15e16e55e56 �e11�e15e51e55 e14e15e54e55 e15e16e55e56 e14e16e54e56 �e11�e16e51e56
(Odd, odd) e45e46e55e56 e41e45e51e55 e44e45e54e55 e45e46e55e56 e44e46e54e56 e41e46e51e56

�1 � �2 �
1
2

(Odd, even) e65e66e55e56 e61e65e51e55 e64e65e54e55 e65e66e55e56 e64e66e54e56 e61e66e51e56
(Even, odd) e45e46e65e66 e41e45e61e65 e44e45e64e65 e45e46e65e66 e44e46e64e66 e41e46e61e66
(Odd, odd) e15e16e65e66 �e11�e15e61e65 e14e15e64e65 e15e16e65e66 e14e16e64e66 �e11�e16e61e66
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because the necessary fields in between the two branes are
missing.

We have to emphasize again that the model presented in
Sec.VI therefore represents the first compactification with
intersecting D6-branes at angles and genuinely three
generations, i.e., no brane recombination is required to
obtain three quark and lepton families.
126010
A similar reasoning applies to the left-right symmetric
model displayed in Sec. VII .

It will be interesting to explore the whole class of
discussed models with the given chiral spectrum in
more detail, meaning that one could compare all different
concrete realizations in a spirit like in [75]. Besides, the
behavior of the Yukawa and gauge coupling constants
-21



TABLE XXIV. Relation between orbits of fixed points and
cycles as read off from (13).

2� cycle 	 1� cycle Exceptional 3-cycle

e11 	 �n3�5 �m3�6� —
e14 	 �n3�5 �m3�6� n3"2 �m3~"2
e15 	 �n3�5 �m3�6� n3�~"2 � "2� �m3"2
e16 	 �n3�5 �m3�6� �n3~"2 �m3�~"2 � "2�
e41 	 �n3�5 �m3�6� n3"1 �m3~"1
e51 	 �n3�5 �m3�6� n3�~"1 � "1� �m3"1
e61 	 �n3�5 �m3�6� �n3~"1 �m3�~"1 � "1�
e44 	 �n3�5 �m3�6� n3"3 �m3~"3
e45 	 �n3�5 �m3�6� n3"4 �m3~"4
e46 	 �n3�5 �m3�6� n3"5 �m3~"5
e54 	 �n3�5 �m3�6� n3�~"5 � "5� �m3"5
e55 	 �n3�5 �m3�6� n3�~"3 � "3� �m3"3
e56 	 �n3�5 �m3�6� n3�~"4 � "4� �m3"4
e64 	 �n3�5 �m3�6� �n3~"4 �m3�~"4 � "4�
e65 	 �n3�5 �m3�6� �n3~"5 �m3�~"5 � "5�
e66 	 �n3�5 �m3�6� �n3~"3 �m3�~"3 � "3�
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depends on the internal geometry and the full massless
spectrum. For instance, one could try to calculate the
threshold corrections to these models as in [45] and
determine if gauge coupling unification is possible [46].
Furthermore, supersymmetry breaking sources should
arise at some point and might be understandable in these
models. All these tasks hopefully will be achieved in the
future [76].

ACKNOWLEDGMENTS

It is a pleasure to thank L. Görlich, K. Landsteiner,
A. Uranga, K. Wendland, J. Cascales, W. Troost, A. van
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APPENDIX A: BASIS FOR A Z3 INVARIANT
2-TORUS

We fix the angle between the two basis vectors of a Z3

invariant 2-torus to be �=3. With this restriction, the two
possible R invariant lattices are spanned by

eA1 �

���
2

p

0

 !
; eA2 �

1=
���
2

p��������
3=2

p !
;

e�A1 �
1=

���
2

p

�1=
���
6

p

 !
; e�A2 �

0��������
2=3

p !
;

(A1)

for the A orientation where �2k�1 lies on the R invariant
plane, and
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eB1 �

��������
3=2

p
�1=

���
2

p

 !
; eB2 �

��������
3=2

p
1=

���
2

p

 !
;

e�B1 �
1=

���
6

p

�1=
���
2

p

 !
; e�B2 �

1=
���
6

p

1=
���
2

p

 !
; (A2)

for the B orientation where R exchanges �2k�1 and
�2k.
APPENDIX B: EXCEPTIONAL CYCLES,
WRAPPING NUMBERS AND FIXED POINTS ON

T2
1 � T2

2

In this section, some technical details regarding the
fractional branes are given. Table XXIV lists the corre-
sponding fixed points which are possible to be traversed
for a given set of geometric brane wrapping numbers and
displacements. The connection between the orbits of the
traversed fixed points and the corresponding exceptional
cycles is subsequently given in Table XXIV.
APPENDIX C: SOME LOOP AN TREE-CHANNEL
RESULTS

1. Tree-channel bulk part

The oscillator expansion of an untwisted boundary
state (30) with spin structure 0 � �1 and relative angles
�’ka w.r.t. �2k�1 is given by [5,11]

jD6; �nai ; m
a
i �; 0i � exp

�
�
X3
k�0

X
n

e2�i’
k
a

n
�k�n ~�k�n

�i0
X3
k�0

X
r

e2�i’
k
a k�r ~ 

k
�r � h:c:

�

�j0; 0;pk; wk; #i; �ii: (C1)

In order to shorten the notation, the noncompact coordi-
nates are denoted by k � 0 and the corresponding angle is
’0
a � 0.
In addition to the Kaluza Klein momenta and windings

existing in toroidal compactifications, for fractional
branes discrete Wilson lines on T2

1 � T2
2 parametrized

by #1; #2 arise from the Z2 fixed points [36], see
Eq. (28). A bulk brane can be displaced from the origin
by

P6
i�1 �i�i, with arbitrary values �i 2 
0; 1�, whereas

for a fractional brane the displacement is discretized on
two tori, �i 2 f0; 1=2g for i � 1; . . . ; 4.

Relative Wilson lines between two different boundary
states which are parallel on a 2-torus give rise to complex
phases at each mass level, i.e., if L is the dimensionless
length of the 1-cycle wrapped by the two branes, R2 the
volume of the corresponding 2-torus, #

2 2 f0; 1=2g the
relative Wilson line and � the spatial separation, the
tree-channel zero mode contributions are given by
-22
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~L�l� �

 X
r2Z

e��lr
2L2R2=�0��ir#

! X
s2Z

e��ls
2L2�0=R4�2�is�

!
: (C2)

Modular transformation leads to the loop channel annulus contribution

L �t� �

 X
r2Z

e�2�t�r�#=2�2�0=�R2L2�

! X
s2Z

e�2�t�s���2R4=�L2�0�

!
; (C3)

which confirms that strings stretching between parallel branes with relativeWilson lines and/or spatial separation do not
carry massless modes.

2. Tree-channel twisted part

The oscillator modding of a twisted boundary state (31) is shifted by the twist vector v � �1=2;�1=2; 0�,

jD6; �na3 ; m
a
3�; eij0i � exp

�
�
X
k�0;3

X
n

e2�i’
k
a

n
�k�n ~�

k
�n � i0

X
k�0;3

X
r

e2�i’
k
a k�r ~ 

k
�r �

X
j�1;2

X
n

e2�i’
j
a

n
�j�n�vj ~�

j
�n�vj

�i0
X
j�1;2

X
r

e2�i’
j
a j�r�vj

~ j�r�vj � h:c:
�
j0; 0;p3; w3; eiji; (C4)

and the discrete Wilson lines enter the boundary states only as relative signs �ij between the twisted sector
contributions, compare Eq. (31).

The cross-cap states do not have any twisted contributions.

3. Oscillator contributions to the amplitudes

The tree-channel oscillator contributions to the annulus and Möbius strip amplitude are of the form

~A
�B
v;�’1;’2;’3�

�

#
�
B

� �
03

Y3
i�1

#
�� vi
’i � B

� �
# 1=2� vi

’i � 1=2

� � �2l� ~M�B
�’1;’2;’3�

�

#
�
B

� �
03

Y3
i�1

#
�

’i � B

� �
# 1=2

’i � 1=2

� � �2l� i=2� (C5)

where v � 0 for the untwisted and v � �1=2;�1=2; 0� for the Z2 twisted annulus contributions. � � 0; 1=2 corresponds
toNS� NS and R� R contributions, respectively, and B � 0; 1=2 labels contributions from identical and opposite spin
structures. For more details on the notation see, e.g., the appendices of [4,10].

For each vanishing angle ’i � 0 and vanishing twist vi, the corresponding denominator has to be replaced,

#
1=2

’i � 1=2

� �
!
’i 03:

The loop channel oscillator contributions are given by

A A;B
v;�’1;’2;’3�

� i
#

A
B

� �
03

Y3
i�1

#
A� ’i
B� vi

� �
# 1=2� ’i

1=2� vi

� � �t� MA;B
�’1;’2;’3�

� i
#

A
B

� �
03

Y3
i�1

#
A� 2’i
B� ’i

� �
# 1=2� 2’i

1=2� ’i

� � �t� i=2� (C6)

where v � 0 corresponds to an open string state without and v � �1=2;�1=2; 0� with Z2 insertion. The modification for
vanishing angle is identical to the tree-channel result up to a factor of i.

The modular transformation l � 1=�Dt� (where D � 2 or 8 for the annulus or Möbius strip, respectively) for three
nonvanishing angles is given by

~A
�B
v;�’1;’2;’3�

�
e�i�2��1�

P
3
i�1

’i

t
AB;�

v;�’1;’2;’3�
; ~M�B

�’1;’2;’3�
�
e2�i�

2

e4���B��i
P

3
i�1

’i

t
M�;1=2����B�

�’1;’2;’3�
: (C7)
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Each vanishing angle modifies these equations by a factor of 1=t for the annulus and 1=�2t� for the Möbius strip.

APPENDIX D: SOME RESULTS FOR T6=�Z6 � Z3�

The orbifold generators * and! are represented by the two shift vectors v � �1=6;�1=6; 0� andw � �0; 1=3;�1=3�,
respectively. The Hodge numbers are given by (see, e.g., [77] and also [10] for the closed string spectrum)

hU1;1 � 3; h*
3

1;1 � 4; hfixplanes�not�Z2
;11 � 36; hfixpoints1;1 � 30

hU2;1 � 0; h*
3

2;1 � 1; hfixplanes�not�Z2
2;1 � 0; hfixpoints2;1 � 0:

(D1)

The allowed compactification lattices are as depicted in Fig. 1, and the fundamental bulk 3-cycles can be chosen to be
identical (up to normalization) to those displayed in Eq. (4). The orbits of wrapping numbers which describe all possible
factorizable 3-cycles are given by

n1 m1

n2 m2

n3 m3

0BB@
1CCA!*

�m1 n1 �m1

�n2 �m2� �n2
n3 m3

0BB@
1CCA!*

��n1 �m1� n1
m2 ��n2 �m2�

n3 m3

0BB@
1CCA

# !

n1 m1

��n2 �m2� n2
m3 ��n3 �m3�

0
BB@

1
CCA!*

�m1 n1 �m1

�m2 �n2 �m2�

m3 ��n3 �m3�

0
BB@

1
CCA!*

��n1 �m1� n1
n2 m2

m3 ��n3 �m3�

0
BB@

1
CCA

# !

n1 m1

m2 ��n2 �m2�

��n3 �m3� n3

0
BB@

1
CCA!*

�m1 n1 �m1

�n2 �m2

��n3 �m3� n3

0
BB@

1
CCA!*

��n1 �m1� n1
��n2 �m2� n2
��n3 �m3� n3

0
BB@

1
CCA

(D2)

and lead (up to normalization) to the coefficients (6) computed for the T6=Z6 case. Only two exceptional 3-cycles arise.
The fixed points on T2

1 are permuted under * as in (10) and are fixed under !. On T2
2 , the permutations are given by

*�4� � !�4� � 6; *�5� � !�5� � 4; *�6� � !�6� � 5: (D3)

On T2
3 , only ! fixed points occur, which transform trivially under * and do not contribute to exceptional 3-cycles. Two

linearly independent, orbifold invariant exceptional 3-cycles with vanishing self-intersection can be expressed in terms
of (13),

F1 � �1�*�*2��1�!�!2�e44 	 �5 � "3 � "4 � ~"4 � ~"5;

F2 � �1�*�*2��1�!�!2�e55 	 �5 ��"3 � "5 � ~"3 � ~"4:
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