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We study the effective action of the heterotic string compactified on particular half-flat manifolds
which arise in the context of mirror symmetry with Neveu-Schwarz–Neveu-Schwarz flux. We explicitly
derive the superpotential and Kähler potential at lowest order in �0 by a reduction of the bosonic action.
The superpotential contains new terms depending on the Kähler moduli which originate from the
intrinsic geometrical flux of the half-flat manifolds. A generalized Gukov formula, valid for all
manifolds with SU(3) structure, is derived from the gravitino mass term. For the half-flat manifolds
it leads to a superpotential in agreement with our explicit bosonic calculation. We also discuss the
inclusion of gauge fields.
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I. INTRODUCTION

The stabilization of moduli remains one of the central
problems when trying to relate string theory to low-
energy particle physics. Recently, flux compactifications
were intensively studied as a method to tackle this prob-
lem, mostly in the context of type II strings or M-theory
[1–39]. The analysis is particularly straightforward
within the context of type IIB strings on Calabi-Yau
spaces where a combination of Neveu-Schwarz–Neveu-
Schwarz (NS-NS) and Ramond-Ramond (RR) flux can be
used to fix all complex structure moduli as well as the
axion dilaton [8]. If all moduli are successfully stabilized
in such models [40] the radius of the internal space is
usually not much larger than the string scale. This ex-
cludes very large additional dimensions and a low string
scale and means that low-energy supersymmetry remains
as the only known option to stabilize the electroweak
scale. Explicit examples for type II brane models can be
found, for example, in Refs. [41–49]. The construction of
phenomenologically attractive supersymmetric type II
brane models has so far proven difficult, however, see
Ref. [50].

The situation is somewhat reversed in the context of
heterotic string models. It has been known for a long time
that supersymmetric models with broadly the right phe-
nomenological properties can be obtained easily and in
large numbers [51,52]. NS-NS flux in heterotic compac-
tifications has been introduced some time ago [53–57]
and there are also a number of more recent discussions
[58–62] of the subject. However, discarding the E8 � E8

or SO(32) gauge fields whose vacuum expectation values
are tied to the curvature via the Bianchi identity, the NS-
NS three-form field strength is the only antisymmetric
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tensor field in heterotic theories which implies an appar-
ent lesser degree of flexibility in fixing moduli through
flux, as compared with type II theories. In particular, no
even-degree form field strength is available whose flux
could fix the Kähler moduli.

In this paper, we are going to address this problem by
considering the heterotic string on particular six-
dimensional manifolds with SU(3) structure and nonvan-
ishing (intrinsic) torsion. We will see that these manifolds
encode even-degree flux ‘‘geometrically’’ and we will
compute the resulting Kähler moduli superpotential ex-
plicitly. The existence of these manifolds is suggested by
type II mirror symmetry with NS-NS flux, as has been
argued in Refs. [17,20]. This conjecture was generalized
and further evidence was provided for it in Refs. [63,64].
Explicit noncompact examples were constructed in
Refs. [65,66]. Also, consistency of embedding such back-
grounds in string/M-theory was discussed in Ref. [67].

In Ref. [17], it was proposed that type IIB (IIA) on a
Calabi-Yau three-fold with NS-NS flux is mirror-
symmetric to IIA (IIB) on a particular class of six-
dimensional half-flat manifolds with SU(3) structure. In
the following, we will refer to these manifolds as half-flat
mirror manifolds. Under the mirror map, the original
odd-degree NS-NS flux, which generates a superpotential
for the complex structure moduli, is mapped to even-
degree geometrical flux of the half-flat mirror manifolds,
which generates a superpotential for the Kähler moduli.
In this paper, we are not interested in type II mirror
symmetry by itself but merely as a means of ‘‘defining’’
the half-flat mirror manifolds. Our goal is to consider the
heterotic string on the so-defined manifolds with torsion.

The heterotic string on non-Kähler manifolds was al-
ready discussed in a number of papers [68–74] and the
supersymmetric solutions were classified in terms of the
five torsion classes of manifolds with SU(3) structure.
However, the lack of knowledge of internal properties
(such as the moduli space) of general manifolds with
SU(3) structure makes it difficult to derive the effective
-1  2004 The American Physical Society
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action for such theories and, so far, general properties of
the superpotentials have been discussed [69–71].

In comparison, we can see a number of advantages in
our approach. First of all, type II mirror symmetry
strongly suggests the existence of the half-flat mirror
manifolds and it imposes very strong constraints on
them. In fact, mirror symmetry provides us with a con-
crete set of relations describing half-flat mirror mani-
folds, which allows the calculation of much of the low-
energy effective action. Their mirror symmetry origin
implies that a half-flat mirror manifold should exist for
each Calabi-Yau three-fold with a mirror and for each set
of NS flux parameters. Hence, we are dealing with a large
class of manifolds which is closely linked to Calabi-Yau
three-folds. This will hopefully lead to models preserving
many of the attractive features of heterotic Calabi-Yau
compactifications while at the same time enhancing the
flexibility for moduli stabilization through flux.

In this paper, we will mainly focus on zeroth order in
�0, that is, on the gravitational sector of the heterotic
string and we will discuss only some aspects of including
gauge fields. The full gauge field sector will be included in
a forthcoming publication [75]. Our main aim is to derive
the effective four-dimensionalN � 1 supergravity for the
heterotic string on half-flat mirror manifolds to this order
in �0. In particular, we will compute the superpotential
which will be done in two largely independent ways,
namely, from the bosonic action and the gravitino mass
term. We also obtain a general Gukov-type formula for
the superpotential which we expect to hold for all heter-
otic compactifications on manifolds with SU(3) structure
and to first order in �0.

The outline of the paper is as follows. In the next
section, we present a brief review of the ten-dimensional
action of the heterotic string and of the half-flat mirror
manifolds on which we are going to carry out the dimen-
sional reduction. Section III reduces the bosonic part of
the action on half-flat mirror manifolds at zeroth order in
�0, at first without and eventually including NS-NS flux.
In Sec. IV, we present an alternative derivation of the
superpotential from fermionic terms in the action.
Based on the gravitino mass term, we first derive a
Gukov-type formula for the heterotic string on SU(3)
structure manifolds and then show that, specialized to
half-flat mirror manifolds, it reproduces the previous
result for the superpotential. Section V discusses some
steps necessary to include gauge fields and we conclude in
Sec. VI. Two appendices present some relevant results in
special geometry and the calculation of the potential
from the superpotential in the general case.
II. REVIEW OF BACKGROUND MATERIAL

In this section, we present some background material in
order to set up our notation and conventions. First, we
review the ten-dimensional effective action of the heter-
126009
otic string [52] which is the action we would like to
compactify to four dimensions. Then we describe the
half-flat mirror manifolds [17] on which we are going
to carry out the dimensional reduction.

A. Ten-dimensional effective action for
the heterotic string

The ten-dimensional effective action for the heterotic
string is given, to leading order in �0, by ten-dimensional
N � 1 supergravity coupled to ten-dimensional super-
Yang-Mills theory with gauge group E8 � E8 or SO(32).
In this paper, we will focus on the E8 � E8 case for
definiteness but most of our considerations will directly
apply to the SO(32) case as well. Ten-dimensional coor-
dinates are denoted by �xM�, labeled by curved indices
M;N; . . . � 0; . . . ; 9.

The ten-dimensional N � 1 supergravity multiplet
consists of the metric ĝMN , the dilaton 	̂, the NS-NS
two-form B̂MN and their fermionic partners, the gravitino
�̂M and the dilatino �̂, both ten-dimensional Majorana-
Weyl spinors which we take to be of positive chirality.
Here and in the following a hat denotes a ten-dimensional
quantity. To lowest (zeroth) order in the �0 expansion the
bosonic part of the effective action is given by [52]

S0;bosonic � �
1

2
2
10

Z
M10

e�2	̂
�
R̂ ? 1� 4d	̂ ^ ?d	̂

	
1

2
Ĥ ^ ?Ĥ

�
; (2.1)

where Ĥ � dB̂ is the three-form field strength of B̂ and R̂
is the Riemann curvature scalar. We will later find it
useful to consider some of the fermionic terms. To zeroth
order in �0 they read
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�������
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�̂M�MNPDN�̂P

�
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24
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	 6e�	̂�̂
N
�P�̂Q�ĤNPQ 	 . . .

�
; (2.2)

where the dots stand for additional four-fermion terms
and terms which involve the dilatino. Here, �M are the
ten-dimensional gamma matrices which are taken to be
real, conjugation is defined as � �  y�0 for a spinor  ,
and multi-indexed � symbols denote antisymmetrized
products of gamma matrices with unit norm, as usual.
For convenience we have chosen the overall dilaton factor
to be the same as in the bosonic part of the action by
appropriately rescaling the gravitino field.

The ten-dimensional Yang-Mills multiplet consists of
the gauge field ÂM, with field strength F̂MN , and its super-
partner, the gaugino, both in the adjoint E8 � E8 [or
SO(32)]. The kinetic terms for these fields along with
-2
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R̂2 terms and additional four-fermion terms involving the
gauginos arise at order �0. The bosonic among those
terms are given by

S1;bosonic � �
�0

16
2
10

Z
M10

d10x
�������
�ĝ

p
e�2	̂fTr�F̂2� � tr� ~R2�g

(2.3)

where tr� ~R2� really stands for the Gauss-Bonnet combi-
nation. The curvature two-form ~R is computed in terms of
the modified connection

~! IJ
K � !MN

P 	
1

2
ĤMN

P; (2.4)

where ! is the Levi-Civita connection. The other modi-
fication to the action at this order appears in the definition
of the field strength Ĥ which now becomes

Ĥ � dB̂	
�0

4
�!L �!YM�: (2.5)

Here, !L and !YM are the usual Lorentz and Yang-Mills
Chern-Simons three-forms defined by

!L � tr
�

~R ^ ~!�
1

3
~! ^ ~! ^ ~!

	
(2.6)

!YM � Tr
�
F̂ ^ Â�

1

3
Â ^ Â ^ Â

	
: (2.7)

The trace Tr denotes 1=30 of the trace in the adjoint for
E8 � E8 or the trace in the fundamental for SO(32), as
usual. These are the only corrections to the action at order
�0. Further terms appear at order �02 which, however,
will not concern us here. In fact, throughout most of the
paper we will focus on the leading, zeroth order in �0 for
which we present a complete analysis. In addition, we
discuss some aspects related to the gauge fields.

B. Half-flat manifolds

We will now briefly describe the particular six-
dimensional manifolds on which we are going to carry
out the reduction of the ten-dimensional heterotic effec-
tive action. In general terms, these manifolds arise as the
mirrors of Calabi-Yau manifolds with (a particular type
of) NS-NS flux, as constructed in Ref. [17]. Before we get
to this specific definition in terms of mirror symmetry it
is useful to review the main properties of the general
manifolds with SU(3) structure and their classification
in terms of torsion classes following [76] and then spe-
cialize to the case of half-flat mirror manifolds.

A six-dimensional manifold is said to have SU(3)
structure if it admits a globally defined spinor1 which
we denote �. From a physical point of view this is the
1For definiteness we will take this spinor to be Weyl, but one
can as well work with Majorana spinors.
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most practical definition as this globally defined spinor
ensures that the action obtained by compactifying on such
manifolds preserves some supersymmetry.

The geometric properties of manifolds with SU(3)
structure are better described in terms of two invariant
forms J and � which can be defined as bilinears in the
spinor � as follows

Jmn � �i�y"mn�; �mnp � �
ijj�jj���

8
p �y"mnp��:

(2.8)

Here, "m, with indices m; n . . . � 5; . . . ; 9 are six-
dimensional Euclidean gamma matrices which are
chosen to be purely imaginary. As before, multiple in-
dices denote antisymmetrization. Note that the normal-
ization of � is different from what can be found in the
literature and was chosen in order to agree with the usual
moduli space conventions. Indeed, it is easy to check
using gamma matrix algebra and Fierz identities that

�mnp
��mnp � 3!jj�jj2; (2.9)

provided the spinor � satisfies �y� � 1.
Manifolds with SU(3) structure can be classified by

their intrinsic torsion and it will be useful to briefly
review this. For a more complete account see, for ex-
ample, Ref. [76]. It is well known that the SU(3) structure
induces a metric on the manifold [77]. The Levi-Civita
connection associated to this metric violates in general
the structure, but there always exists a connection which
we denote r�T�, which does preserve it. In other words,
denoting any of the invariant objects �, J, or � by $ we
have

r�T�$ � 0: (2.10)

Any connection, and in particular r�T� defined above, can
be expressed in terms of the Levi-Civita connection r as

r�T�
m � rm 	 
m; (2.11)

where 
m are matrices whose entries constitute the con-
torsion tensor 
mnp. Unlike the Levi-Civita connection,
this connection has a torsion Tmnp � 
�mn�p. Note that the
contorsion tensor is antisymmetric in its last two indices
and can be thought of as a one-form taking values in
so(6), the Lie algebra of SO(6). Thus, we can decompose it
under the SU(3) structure group as


m � 
0
m 	 
su�3�

m ; (2.12)

where 
su�3�
m takes values in su�3� � 8, the Lie algebra of

SU(3), and 
0
m takes values in the complement su�3�? �

1 � 3 � �3 of su(3) within so(6). The action of 
su�3� on the
SU(3) invariant tensors $ vanishes and, hence, the left-
hand side of the compatibility condition (2.10) only de-
pends on 
0 which is called the ‘‘intrinsic contorsion.’’
This intrinsic contorsion can be used to classify SU(3)
-3
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structures and it is useful, in this context, to analyze its
SU(3) representation content. From what has been said
above, the intrinsic contorsion 
0 is an element of the
SU(3) representation

�3 � �3� � �1 � 3 � �3� � �1 � 1� � �8 � 8� � �6 � �6�

� �3 � �3� � �3 � �3�0: (2.13)

The five terms on the right-hand side of this relation
correspond to the five torsion classes [76], denoted by
W 1; . . . ;W 5, of six-dimensional manifolds with SU(3)
structure. These classes are a useful tool to characterize
the intrinsic torsion and the associated SU(3) structure.
The intrinsic torsion can also be read off from the exterior
derivatives dJ and d� since Eq. (2.10) implies that

�dJ�mnp � 6
0
�mn

rJrjp� (2.14)

�d��mnpq � 12
0
�mn

r�rjpq�: (2.15)

Therefore, a practical way to specify the intrinsic torsion
of an SU(3) structure is to explicitly write down expres-
sions for dJ and d�. As can be seen from Eqs. (2.14) and
(2.15), these expressions contain information about vari-
ous of the five torsion classes, namely,

dJ 2 W 1 �W 3 �W 4; d� 2 W 1 �W 2 �W 5:

(2.16)

It will turn out that the first torsion class W 1 plays a
special role in the case we address in this paper. Thus we
define the corresponding contorsion to be


mnpjW 1
� 
1�mnp 	 �
1

��mnp; (2.17)

where 
1 is given by


1 �
i
R ���

g
p

�dJ�mnp ��mnp

6
R ���

g
p

�mnp
��mnp ; (2.18)

and we have used Eq. (2.14).
In this paper, we are interested in a more special class

of manifolds with SU(3) structure, namely, half-flat
manifolds. They are defined as six-dimensional SU(3)
structure manifolds with the invariant forms J and �
satisfying

d�� � 0; dJ ^ J � 0; (2.19)

where �� is the imaginary part of �. Comparison with
Eq. (2.16) reveals [76] that these conditions are equivalent
to vanishing torsion classes W�

1 , W�
2 (these being the

imaginary parts of the classes W 1 and W 2), W 4, and
W 5.

The specific half-flat manifolds considered in this pa-
per arise in the context of mirror symmetry with NS-NS
flux [17]. Let us briefly review how this comes about.
Consider a mirror pair X and Y of Calabi-Yau manifolds
and introduce a standard symplectic basis �~�I; ~*I�, where
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I � 0; . . . h2;1�X�, of the third cohomology on X. We start
with, say, type IIB on X in the presence of NS-NS flux
~H � ei ~*

i, where i � 1; . . . ; h2;1�X� and , � �ei� are real
flux parameters. Is there any compactification on the
IIA side which is mirror-symmetric to this configuration?
Evidence for this has been presented in Refs. [17,20] and
it has been shown that the mirror configuration is given by
IIA on a half-flat manifold Ŷ, , closely related to the
original mirror Calabi-Yau Y, but without NS-NS flux.
Moreover, it has been argued that the moduli spaces of
metrics on Y and Ŷ, are identical for all values of the flux
, .

Let us now describe the structure of these half-flat
mirror manifolds Ŷ, in more detail. Matching of the
moduli spaces of metrics, together with the correspon-
dence between metrics and SU(3) structures implies that
the forms J and � have expansions

J � vi!i (2.20)

� � zA�A � GA*
A; (2.21)

similar to the ones on the associated Calabi-Yau manifold
Y. Here �!i�, where i; j; . . . � 1; . . . ; h1;1�Y�, are
�1; 1�-forms and ��A;*A�, where A;B; . . . �
0; . . . ; h2;1�Y�, are three-forms, suitable for the expansion
of J and � while the coefficients vi and zA are the analog
of Kähler and complex structure moduli. For simplicity,
we will continue to use Calabi-Yau terminology and refer
to Kähler and complex structure moduli and moduli
spaces, although the manifolds Ŷ, are generally neither
Kähler nor complex. The three-forms ��A;*A� satisfy the
standard normalizationsZ

Ŷ,
�A ^ *

B � 0BA;

Z
Ŷ,
�A ^ �B �

Z
Ŷ,
*A ^ *B � 0;

(2.22)

and we also introduce dual four-forms ~!i such thatZ
Ŷ,
!i ^ ~!j � 0ji : (2.23)

So far, all relations are identical to the corresponding
Calabi-Yau ones. However, unlike in the Calabi-Yau case
the forms !i and ��A;*

B� are not all closed and, in
particular, do not form a basis of the second and third
cohomology. Rather, as shown in Ref. [17], mirror sym-
metry requires them to satisfy the differential relations

d�0 � ei ~!i; d�a � 0; d*A � 0;

d!i � ei*
0; d ~!i � 0; (2.24)

where we have introduced indices a; b; . . . �
1; . . . ; h2;1�Y�. The real parameters ei are precisely the
NS-NS flux parameters on the mirror side mentioned
-4
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earlier and they encode the degree to which the half-flat
mirror manifold Ŷ, ‘‘deviates’’ from the associated
Calabi-Yau manifold Y. Using the above relations to-
gether with the expansions (2.20) and (2.21) for J and �
it is easy to show that

dJ � viei*
0 (2.25)

d� � ei ~!
i: (2.26)

As discussed, the right-hand sides of these relations spec-
ifiy the intrinsic torsion and the SU(3) structure of the
manifolds Ŷ, . Comparison with the conditions (2.19)
shows that they are indeed half-flat manifolds.

The point of view taken in this paper is that mirror
symmetry with NS-NS flux provides us with a practical
‘‘definition’’ of the half-flat manifolds Ŷ, as well as with a
set of relations which allows us to deal with them. The
evidence for mirror symmetry with NS-NS flux was
obtained in the context of IIA and IIB supergravity [17]
and one should, hence, expect the above relations to be
valid only in the large complex structure limit. We will,
therefore, work in this limit, in addition to the large
radius limit in Kähler moduli space which is mandatory
whenever supergravity theories are considered. In this
paper we are not interested primarily in mirror symmetry
itself but in using the so-defined manifolds in the context
of the heterotic string. We can see a number of advantages
in this method compared to, for example, working with
the heterotic string on general manifolds of SU(3) struc-
ture or even general half-flat manifolds. First, mirror
symmetry strongly suggests that the manifolds Ŷ, ac-
tually exist although we are not aware that examples of
these manifolds have been explicitly constructed except
for the noncompact cases considered in Ref. [65]. Second,
we have a relatively simple and explicit set of differential
relations, describing these half-flat mirror manifolds,
which facilitates concrete calculations. And finally,
from mirror symmetry one expects a half-flat mirror
manifold Ŷ, for each Calabi-Yau space X with a mirror
Y and each set of flux parameters , . This means we are
dealing with a large class of manifolds closely related to
Calabi-Yau manifolds. Hopefully this allows one to keep
some of the phenomenologically attractive features of
heterotic Calabi-Yau compactifications [51] while gaining
additional benefits, for example, in terms of moduli sta-
bilization through flux.

III. HETEROTIC ON HALF-FLAT: THE BOSONIC
ACTION TO LOWEST ORDER IN �0

We will now carry out the dimensional reduction of the
heterotic string on the half-flat mirror manifolds2 Ŷ de-
2For convenience, we will drop the index , on Ŷ, from here
on.
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scribed in the previous section. We only consider the
reduction of the bosonic part of the action which should
be sufficient to obtain all the relevant information about
the four-dimensional effective action. However, the re-
duction of some of the fermionic terms provides some
additional insights and confirmation of the bosonic results
and we will come back to this in the following section.
For now, we restrict the calculation to lowest (zeroth)
order in �0 which, in particular, means we will not deal
with gauge fields at this stage. We will discuss the inclu-
sion of gauge fields later.

A. The reduction

We would now like to compactify the zeroth order
bosonic action (2.1) on a half-flat mirror manifold Ŷ.
As usual in flux compactifications, the collective modes
are taken to be the same as for the corresponding case
without flux, that is, as for the reduction on the associated
Calabi-Yau manifold Y, in our case. This approach is in
line with the earlier statement that the moduli spaces of
the half-flat mirror manifolds Ŷ and the associated
Calabi-Yau manifolds Y are identical. Of course, one
expects the flux to induce a low-energy potential and,
potentially, masses for some of the previously massless
fields. The idea will be that this ‘‘flux’’ scale is sufficiently
lower than the string and Kaluza-Klein scales. Only then
can heavy string/Kaluza-Klein modes be neglected while
modes acquiring masses from flux effects can be kept.
This can be achieved by sufficiently small flux parameters
ei and/or large radii of the internal manifold. At any rate,
this separation of scales can be consistently checked once
the low-energy potential has been computed. Although
one expects the flux parameters ei to be quantized (since
the NS-NS flux of the mirror is quantized) we will here
work in a supergravity approximation and view them as
continuous parameters. We also adopt the general princi-
ple that our low-energy effective theory should reduce to
the standard one, obtained from the reduction on the
associated Calabi-Yau manifold Y, in the limit of vanish-
ing flux parameters, ei ! 0.

We split ten-dimensional coordinates as �xM� �
�x3; xm� with external indices 3; 4; . . . � 0; 1; 2; 3 and
internal indices m; n; . . . � 4; . . . 9. The ten-dimensional
metric for our reduction then takes the form

ds210 � e2	g34dx3dx4 	 gmndxmdxn; (3.1)

where gmn is the metric on the half-flat mirror manifold Ŷ
induced by the SU(3) structure and g34 is the four-
dimensional metric. We have also introduced the zero
mode

	 � 	̂�
1

2
lnV ; (3.2)

of the dilaton where V is the volume
-5
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V �
1

v

Z
Ŷ
d6x

���
g

p
(3.3)

of the internal space Ŷ, measured relative to a fixed
reference volume v. The dilaton factor in front of the
four-dimensional part of the metric (3.1) has been chosen
so that we arrive at a canonically normalized Einstein-
Hilbert term in four dimensions. As we have already
explained, the moduli space of internal metrics gmn on
Ŷ is parametrized by Kähler moduli vi, where i; j; . . . �
1; . . . ; h1;1�Y� and complex structure moduli za, where
a; b; . . . � 1; . . . ; h2;1�Y�. More specifically, we can write
the following standard equations for the deformations of
the metric

0g� �* � �i!i� �*0v
i

0g �� �* � �
1

jj�jj2
�� ��

"0�6a�"0 �*0z
a;

(3.4)

where we have introduced a set of �2; 1�-forms 6a and
holomorphic (antiholomorphic) indices �;*; . . .
( ��; �*; . . . ) on the internal space. Finally, we have the
following zero mode expansion for the NS-NS two-form

B̂ � B	 bi!i (3.5)

Ĥ � H 	 dbi ^!i 	 �biei�*0; (3.6)

where B is a four-dimensional two-form with field
strength H � dB and bi are h1;1�Y� real scalar fields.
Note that the last term in the Ansatz (3.6) for the field
strength Ĥ is new compared to the Calabi-Yau case and
results, via Eq. (2.24), from the fact that the �1; 1�-forms
!i are no longer closed. This term does have the form of (a
particular type of) H flux, although it should be kept in
mind that it originates from the intrinsic flux encoded in
the half-flat mirror manifolds. For now we will not in-
clude genuine H flux into the calculation but defer this
until later in the section.

Inserting the Ansätze (3.1), (3.2), (3.3), (3.4), (3.5), and
(3.6) into the ten-dimensional bosonic action (2.1) one
finds, after integrating over the internal space

S4 � �
1

2
2
4

Z �
R ? 1 	 2d	 ^ ?d		

1

2
da ^ ?da

	 2h�1�i �j dt
i ^ ?d�t �j 	 2h�2�

a �b
dza ^ ?d�z �b 	 2
2

4V � 1
�
;

(3.7)

with the four-dimensional Newton constant 
2
4 � 
2

10=v
and the scalar potential

V � 4
�2
4 e2		K�1�	K�2�

�eiejh
ij
�1� 	 4�eib

i�2�: (3.8)

The complex Kähler moduli ti are defined by
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ti � bi 	 ivi; (3.9)

and the four-dimensional two-form B has been dualized
to the scalar a. The Kähler and complex structure moduli
space metrics are defined as usual by

h�1�ij �
1

4vV

Z
Ŷ
!i ^ ?!j (3.10)

h�2�
a �b

� �

R
Ŷ 6a ^ �6 �bR
Ŷ � ^ ��

; (3.11)

with inverse metrics hij
�1� and ha �b

�2� and associated Kähler
potentials

K�1� � � ln�8V � K�2� � � ln

 
i
Z
Ŷ
� ^ ��

!
: (3.12)

In this calculation, we have used the following result for
the integrated scalar curvature of half-flat mirror mani-
folds Z

Ŷ

���
g

p
Rhf � v exp�K�2��eiejh

ij
�1�; (3.13)

which was proven in Ref. [17], as well as the special
geometry relations (A11) and (A20) in order to evaluate
the integral

R
Ŷ *

0 ^ ?*0. The two contributions to the
four-dimensional potential (3.8) originate from this non-
vanishing scalar curvature and the additional term in the
Ansatz for the NS-NS three-form field strength Ĥ in
Eq. (3.6), respectively.

B. Four-dimensional supergravity

The four-dimensional action derived in the previous
subsection should be the bosonic part of an N � 1 super-
gravity theory. We would now like to make this explicit
comparing it to the standard N � 1 supergravity action
[78].

The kinetic terms in (3.7) are easy to deal with since
they are identical to the ones arising in standard Calabi-
Yau compactifications. We introduce chiral superfields S,
Ti, and Za satisfying

Sj � a	 ie�2	 (3.14)

Tij � ti (3.15)

Zaj � za; (3.16)
-6
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where the bar denotes the lowest component of the mul-
tiplet. Then the Kähler potential reproducing the kinetic
terms in Eq. (3.7) can be written as

K � 
�2
4 �K�S� 	 K�1� 	 K�2��; (3.17)

where

K�S� � � ln�i� �S� S��; (3.18)

and K�1� and K�2� are given in (3.12). In order to perform a
concrete calculation one needs to express these Kähler
potentials in terms of the low-energy fields. This is done
via holomorphic prepotentials F and G and the respec-
tive equations are given in (A4) and (A10).

Having fixed the Kähler potential and the superfields in
terms of component fields via Eqs. (3.14), (3.15), and
(3.16) we now have to check whether the potential (3.8),
obtained from dimensional reduction, can be reproduced
from the standard supergravity expression

V � 
�4
4 e


2
4K�KX �YDXWD �Y

�W � 3
2
4jWj2�; (3.19)

for a suitable choice of superpotential W. In this expres-
sion, we have used indices X; Y; . . . to label all chiral
superfields �'X� � �S; Ti; Za� and DX denotes the
Kähler-covariant derivative defined by

DXW � @XW 	 
2
4KXW: (3.20)

Further KX �Y is the inverse of the Kähler metric KX �Y .
The potential (3.8) is quadratic in the axionic fields bi

which are part of the chiral multiplets Ti. This suggest
that the superpotential may be a linear function in the
fields Ti. In fact, we claim that W is given by

W �
���
8

p
eiTi: (3.21)

Let us now verify this claim. We first note that, using the
expression (3.17) for the Kähler potential, the prefactor in
the reduction potential (3.8) can be rewritten as

4 exp�2		 K�1� 	 K�2�� � 8e

2
4K: (3.22)

This correctly matches the e

2
4K prefactor of the super-

gravity potential (3.19). With the superpotential (3.21),
the various Kähler-covariant derivatives are given by

DSW � �
1

2
e2	W (3.23)

DiW �
���
8

p
ei 	 K�1�

i W (3.24)

DaW � K�2�
a W: (3.25)

For the nonvanishing components of the Kähler metric
we have KS �S � e2	=4, Ki �j � h�1�i �j , and Ka �b � h�2�

a �b
. Using

these, and Eq. (A4) we find

DSWD �S
�WKS �S � jWj2 (3.26)
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DiWD �j
�WKi �j � 8eiejh

ij
�1� � 32�eivi�2 	 3jWj2 (3.27)

DaWD �b
�WKa �b � 3jWj2: (3.28)

In the second line, we have used (A7) which holds for
special geometries with a cubic prepotential. The result in
the third line can be proved using a similar cubic prepo-
tential (A18) for the complex structure moduli which is
justified in the large complex structure limit. Inserting
the relations (3.22) and (3.26), (3.27), and (3.28) into the
supergravity potential (3.19), using the explicit
form (3.21) of W we indeed correctly reproduce the
potential (3.8) obtained from the reduction.

To summarize our results so far, we have derived, to
lowest order in �0, the bosonic part of the four-
dimensional effective action of the heterotic string on
half-flat mirror manifolds Ŷ. We have shown that this
action is indeed the bosonic part of a four-dimensional
N � 1 supergravity theory with Kähler potential (3.17)
and superpotential (3.21). This latter statement has been
proved for large complex structure since we have used the
relation (3.28) which, as far as we know, only holds in this
limit. Given that the relations which define the half-flat
mirror manifolds can only be expected to hold for large
complex structure this is perhaps not surprising. However,
our result indicates that the definition of the half-flat
mirror manifolds indeed has to be modified away from
the large complex structure limit.

C. Including H flux

Our previous calculation can be generalized by adding
an arbitrary three-form Hflux, harmonic on the internal
space, to the Ansatz (3.6) for the NS-NS field strength Ĥ.
In the analogous Calabi-Yau case, the forms ��A;*B�
constitute a basis of harmonic three-forms and the most
general NS-NS flux is simply given by an arbitrary linear
combination of these forms. Here, we have to be more
careful. From Eq. (2.24) we know that �0 is not even
closed which means it does not define a cohomology
class. All other forms ��a; *

b� are closed but not neces-
sarily co-closed. However, we know that

d ? �a � O�ei�; d ? *b � O�ei�; (3.29)

since these forms are harmonic in the Calabi-Yau limit
ei ! 0. Hence, the forms ��a; *b� define cohomology
classes and they differ from the harmonic representative
by exact forms of the order ei. This understood, we write
the following Ansatz for the NS-NS flux

Hflux � <A*A 	3A�A; (3.30)

where

<A � �0; <a�; 3A � �0; 3a�: (3.31)

We have allowed indices in (3.30) to run over all values to
keep expressions covariant but we have set 30 � 0 in
-7
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accordance with the above discussion. Also we note that
dealing with the flux parameter <0 is a bit more subtle as it
was argued in [17] that it reproduces the mirror of the
zero-NS flux. For this reason, we have also set <0 � 0.
However, all other flux parameters �<a;3a� are kept ar-
bitrary. The so-defined NS-NS flux satisfies

dHflux � 0; d ? Hflux � �second order in flux�:

(3.32)

For the second relation, we have used Eq. (3.29) and, here
and in the following, ‘‘nth order in flux’’ refers to a
quantity proportional to a product of n of the flux pa-
rameters ei, <a, or 3a.

We would now like to repeat our reduction of the lowest
order bosonic action (2.1), using the Ansätze (3.1), (3.2),
(3.3), (3.4), (3.5), and (3.6), but modifying the expression
for Ĥ by adding to it the NS-NS flux (3.30). The kinetic
terms are, of course, unmodified by the additional NS-NS
flux and the four-dimensional effective action is still of
the form (3.7), where only the potential V has a different
form. Combining our earlier expression (3.6) for the field
strength Ĥ with the H flux (3.30) we have

Ĥ � H 	 dbi ^!i 	 �biei�*0 	 <a*a 	3a�a:

(3.33)

The contribution to the potential which originates from
the nonvanishing scalar curvature (3.13) of the half-flat
mirror manifolds remains the same. However, we have to
consider the additional terms which arise from this new
form of Ĥ when inserted into the form field kinetic term.
To do this, we note, the term proportional to *0 in the
above expression looks like an ordinaryH flux and can be
treated on the same footing. To this end, we define the
modified flux parameters ~<A � �eib

i; <a�. With these, the
potential takes the form

V � 4e2		K�1�	K�2�
eiejh

ij
�1� � 2e2		K�1�

�~<A 	3cMcA�

� �ImM��1AB�~<B 	3d �MdB�: (3.34)

To obtain the last term we have used (A11) and (A12) and
the matrix M is defined in Eq. (A19). Since we have
neglected second order flux terms inHflux this potential is
correct up to quadratic terms in the flux and there are
possible corrections of cubic and higher order in flux
which we have not calculated. Let us also note that despite
the explicit minus sign which appears in the above for-
mula, this potential is manifestly positive definite as the
matrix �Im�M���1 is negative definite.When deriving the
potential from the superpotential, this feature will arise
from the no-scale structure which annihilates the nega-
tive contribution in (3.19). We note that Eq. (3.34) reduces
to the previous formula (3.8) for the potential in the
absence of H flux by setting <a � 0 and 3a � 0, remem-
bering that ~<0 � eibi.
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As before, it has to be checked that the above result can
be embedded into four-dimensional N � 1 supergravity.
Since the kinetic terms are unmodified, the definition of
superfields is still given by (3.14), (3.15), and (3.16) and
the Kähler potential is the standard one, Eq. (3.17). Given
these results, is the modified potential (3.34) of the su-
pergravity form (3.19) for a suitable superpotential W? It
is shown in Appendix B that this is indeed the case,
provided one is working in the large complex structure
limit. The superpotential then reads

W �
���
8

p
�eiTi 	 <aZa 	3aGa�; (3.35)

with arbitrary flux parameters ei, <a, and 3a.
IV. GRAVITINO MASS AND THE
SUPERPOTENTIAL

In this section we propose another approach to compute
the superpotential which will turn out to be more suitable
for further generalizations and for obtaining some more
insight when �0 corrections are taken into account.
Previously, we have derived the moduli superpotential
by dimensional reduction of the bosonic action and by
comparing the result with the standard form of four-
dimensional N � 1 supergravity. However, there is also
a more direct method using Gukov’s formula [79,80]
which, in the appropriate form, has led to the correct
result for a number of different compactifications. In this
section, we are going to explore this second approach and
its relation to the results of the previous section, for the
case of heterotic string on half-flat mirror manifolds.

We will proceed in two steps. First, we will derive the
appropriate version of Gukov’s formula from the four-
dimensional gravitino mass term which we obtain as a
dimensional reduction of the appropriate terms in the ten-
dimensional action, an approach also considered in
Refs. [59,69]. As we will see, the resulting Gukov-type
formula applies to the heterotic string on all manifolds of
SU(3) structure and is valid to first order in �0. As a
second step, we then apply this general formula to our
particular half-flat mirror manifolds and show that it
specializes to the superpotential (3.35), derived in the
previous section.

A. Gukov formula from the gravitino mass term

The mass term for the gravitino � in four dimensions
is given by

S�;mass � �
1

2

Z
M4

d4x
�������
�g

p
fM3=2�

y
3"0"34��

4 	 h:c:g;

(4.1)

where the four-dimensional gamma matrices "3 are
chosen to be real and the chirality matrix
-8



HETEROTIC STRING COMPACTIFIED ON HALF-FLAT. . . PHYSICAL REVIEW D 70, 126009 (2004)
" � �
i
4!
<34>?"34>? (4.2)

is purely imaginary. In the context of N � 1 four-
dimensional supergravity the gravitino mass can be writ-
ten as

M3=2 � exp�
2
4K=2�W; (4.3)

and the invariant function G � K 	 lnjWj2 can be com-
puted from the gravitino mass using the relation

eG � jM3=2j
2: (4.4)

If the Kähler potential has been computed independently
or the holomorphic part of M3=2 can be identified then the
superpotential can be obtained directly fromM3=2. We are
now going to apply these facts to the gravitino mass term
which descends from the ten-dimensional theory.

A quick inspection of the ten-dimensional action (2.2)
reveals which parts potentially contribute to the gravitino
mass terms in four dimensions. The most obvious one is
the flux term �M�MNPQR�NHPQR. This term was also
considered in Refs. [59,62,69] and, as we will show, it
gives rise to the well-known superpotential W �

R
H ^

� which was proposed in Refs. [79,80]. This result for W
is definitely correct for Calabi-Yau manifolds, but if the
internal manifold has only SU(3) structure there will be a
further contribution from the gravitino kinetic term in ten
dimensions. This additional contribution will turn out to
be proportional to the first torsion class, W 1, of the SU(3)
structure manifold. The reason this term appears in four
dimensions is that on such manifolds the globally defined
spinor � is no longer covariantly constant with respect to
the Levi-Civita connection.

Let us now see how this works in detail.We first have to
decompose the ten-dimensional gamma matrices

�"M� � �"3 � 1; " � "m�: (4.5)

Note that we have chosen the four-dimensional gamma
matrices, "3, real and the six-dimensional ones, "m,
imaginary so that the above decomposition leads to real
ten-dimensional gamma matrices. Furthermore, we have
to decompose the ten-dimensional gravitino �̂M in a way
compatible with its Majorana-Weyl nature. The unique
possibility, up to overall rescalings, for the case of a
manifold with SU(3) structure is

�̂M � e	=2� M � �	  �
M � ���; (4.6)

where  M is a four-dimensional Weyl spinor of positive
chirality. We recall that � is the six-dimensional globally
defined Weyl spinor which exists on manifolds with
SU(3) structure. The external components  3 correspond
to the four-dimensional gravitino while  m represent spin
1=2 fields. In fact, in order not to have cross kinetic terms
between the gravitino and the spin 1=2 fields one needs to
redefine  3 by some particular combination of  m.
126009
However, this subtlety does not effect the gravitino
mass which can be read off as the coefficient of the
term 1

2 
y
3"0"34 �

4. On the other hand the normalization
of the gravitino field is important since its kinetic term
needs to be in canonical form in order to read off the
correct gravitino mass. For this reason we have chosen the
overall factor e	=2 in Ansatz (4.6) and one can easily
check that this leads to the correct kinetic term for the
gravitino in four dimensions. Let us quickly sketch how
this works. Inserting (4.6) and (4.5) into the ten-
dimensional kinetic term from (2.2) and keeping only
the terms involving the four-dimensional spacetime in-
dices we obtain

�̂3�34>D4�̂> � e	� 3"
34>D4 >��

y��

	  T3"34>D4 �
>��T����: (4.7)

Note that due to our conventions the above terms are the
only combinations which survive as �T� � �y�� � 0.
Also recall that we have normalized the spinor � requir-
ing �y� � 1 so that the terms above do not depend on the
internal manifold. Consequently the integration over the
six-dimensional space will only produce a volume factor
which combines with the dilaton factor in Eq. (2.2) into
the four-dimensional dilaton (3.2). Finally, taking into
account the rescaling of the spacetime metric (3.1) we
obtain for the four-dimensional gravitino kinetic term

S�3=2�kin �
1

2

Z
M4

d4x
�������
�g

p
� 3"34>D4 >

	  T3"34>D4 �
>�; (4.8)

which is indeed the correct kinetic term for the gravitino
in four dimensions [78].

Having normalized the gravitino field correctly we can
go ahead and derive the gravitino mass term. This can be
done by inserting the decompositions (4.5) and (4.6),
along with the Ansatz (3.1) for the ten-dimensional met-
ric into the fermionic action (2.2) and keeping the terms
with two four-dimensional gamma matrices and no
spacetime derivatives. Let us consider the two relevant
terms in (2.2) separately, starting with the kinetic term.
We obtain

�̂3�3n4Dn�̂4 � �� 3 � �	  �
3 � ���T

� �"0"34 � "nDn�� 4 � �	  �
4 � �

��:

(4.9)

From compatibility condition (2.10) we know that the
spinor � is covariantly constant with respect to the
connection with torsion. This implies

Dn��
1

4

npq"

pq� � 0; (4.10)
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which, applied to Eq. (4.9), yields

�̂3�3n4Dn�̂4 �
1

4
 y
3"0"34 �

4��y"n"pq���
npq

�
1

4
 T3"0"34 4��T"n"pq��
npq:

(4.11)

As before, we have discarded terms like�y"n"pq�which
vanish identically. Moreover, the properties of six-
dimensional spinors and gamma matrices assure that
only the totally antisymmetric part of �y"n"pq�� sur-
vives. Using (2.8) and taking care to include all the
dilaton factors in Eqs. (3.1) and (4.6), we conclude that
the torsion contribution to the gravitino mass term can be
written as

M�T�
3=2 �

e	

4V

Z
Ŷ

���
g

p
�y"npq��
npq

�
ie	

���
8

p

4V jj�jj

Z
Ŷ

���
g

p
� �� �* �"
 �� �* �": (4.12)

With Eq. (2.14) and the relation Jm
n�npq � i�mpq one

can also write the above expression in the following form

M�T�
3=2 �

e	
���
8

p

24V jj�jj

Z
Ŷ

���
g

p
� �� �* �"�dJ� �� �* �"

�
ie	

���
8

p

4V jj�jj

Z
Ŷ
� ^ dJ: (4.13)

We recall from Eq. (2.13) that the torsion 
 decomposes
into five classes according to the various SU(3) represen-
tations it contains. Evidently, contracting with � in the
above relation projects out the SU(3) singlet part which
corresponds to the torsion class W 1.

For the Ĥ-dependent term in the fermionic action (2.2)
the calculation is similar and was also discussed in
Refs. [59,60,62,69]. One finds

��3�3npq4�4Ĥnpq � �� 3 � �	  �
3 � ���T

� �"0"34"5 � "npq�

� 4 � �	  �
4 � �

��; (4.14)

and comparison with Eq. (4.1) leads to the gravitino mass
contribution
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M�H�
3=2 � �

ie	
���
8

p

24V jj�jj

Z
Ŷ

���
g

p
� �� �* �"Ĥ �� �* �"

�
e	

���
8

p

4V jj�jj

Z
Ŷ
� ^H: (4.15)

Adding up the two contributions (4.13) and (4.15) one
finds for the gravitino mass

M3=2 �

���
8

p
e	

4V jj�jj

Z
Ŷ
� ^ �H 	 idJ�: (4.16)

From Eq. (4.4) this determines the supergravity function
G.

Of course we do not know the Kähler potential for
general manifolds with SU(3) structure. However, it is
suggestive to identify the integral in Eq. (4.16) as the
holomorphic part and, hence, the superpotential and the
prefactor as the Kähler potential. Accepting this we find
by comparison with Eq. (4.3) that3

W �
Z
Ŷ
� ^ �Ĥ 	 idJ�: (4.17)

Note that Ĥ 	 idJ � d�B̂	 iJ� is precisely the holomor-
phic combination which determines the scalar compo-
nents (3.15) of the superfields Ti. Equivalently,
following the notation of Ref. [64] we can write the
superpotential as

W �H1 	 
1; (4.18)

where the SU(3) singlet component of the torsion, 
1, was
defined in (2.17). Likewise, H1 is the SU(3) singlet com-
ponent of Ĥ defined by

Ĥ mnpjsinglet � �6H1�� 	 ���mnp: (4.19)

Comparing again with (4.3) we can argue that the
prefactor in Eq. (4.16) should determine the Kähler po-
tential. Thus we can write

eK �
e2	

V 2jj�jj2
: (4.20)

We stress that one expects these results forG,W, and K to
be valid for heterotic compactifications on all manifolds
with SU(3) structure. In addition, they hold up to and
including correction of order �0 since the relevant ten-
dimensional gravitino terms in Eq. (2.2) do not receive
corrections at this order. This latter fact can be illustrated
for standard Calabi-Yau compactifications. In this case it
is straightforward to show that the formula (4.17) cor-
rectly reproduces the cubic gauge matter superpotential
-10
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[52] which arises at order �0. We expect the relation (4.17)
will be quite useful when computing the gauge matter
superpotential in more general cases, such as for half-flat
mirror manifolds.

B. Application to half-flat mirror manifolds

If the Kähler potential has been fixed by other means,
the superpotential can be obtained from Eq. (4.16) ex-
actly, including the prefactor. For example, using the
Calabi-Yau Kähler potential (3.17) which, as we have
seen, also applies to half-flat mirror manifolds one finds

W �
���
8

p Z
Ŷ
� ^ �Ĥ 	 idJ�: (4.21)

It is now just a simple exercise to obtain the expression of
the superpotential in terms of the component fields in
four dimensions. We recall from Eqs. (3.6) and (3.30) that
the complete Ansatz for the NS-NS field strength, includ-
ing NS-NS flux, is given by

Ĥ � H 	 dbi!i 	 �biei�*0 	 eA*A 	ma�a: (4.22)

Using the expansion of the �3; 0�-form � in terms of the
complex structure moduli (2.21), the particular expression
for dJ, (2.25), and the integration rules (2.22) one imme-
diately obtains

W �
���
8

p
�eiT

i 	 <aZ
a 	3aGa�; (4.23)

which precisely coincides with (3.35). In summary, we
have verified this result in two, largely independent ways,
namely, by a reduction of the bosonic term and from a
generalized Gukov-type formula which we have derived
from the gravitino mass term.
V. INCLUDING GAUGE FIELDS

Let us now discuss some properties of the heterotic
E8 � E8 string on half-flat mirror manifolds at first order
in �0. At this order, the Bianchi identity (2.5) for Ĥ
receives its gauge field and gravitational Chern-Simons
correction and finding its solution becomes a nontrivial
task. With

d!YM � Tr�F̂ ^ F̂�; d!L � tr� ~R ^ ~R�; (5.1)

the Bianchi identity leads to the well-known relation

dĤ �
�0

4
�tr� ~R ^ ~R� � Tr�F̂ ^ F̂��: (5.2)

It implies, as a condition for the Bianchi identity to be
soluble, that the right-hand side has to be cohomologi-
cally trivial and, hence, that

�tr� ~R ^ ~R�� � �Tr�F̂ ^ F̂��; (5.3)

where the bracket �. . .� denotes the cohomology class.
Traditionally, the way to satisfy this condition has been
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the standard embedding [51] although more general pos-
sibilities have been discussed in the literature [81–83].

Here, we will consider the simplest possibility, a gen-
eralization of the standard embedding to our compactifi-
cations. Let us first recall the standard Calabi-Yau case.
The spin connection !�CY�

m of the Calabi-Yau manifold Y
takes values in SU(3) which means its nonvanishing

components are of the form !�CY�� �*
m . The standard em-

bedding then amounts to setting the internal Yang-Mills
connection equal to the Calabi-Yau spin connection, that
is

Am
� �*jbackground � !�CY�� �*

m : (5.4)

Here, the indices ��; �*� on A refer to an SU(3) subgroup
of one of the E8 factors of the gauge group. The trace of
the square of such an SU(3) generator in the adjoint of E8

is 30 times the trace of the square of an SU(3) generator in
the fundamental. With the definition of Tr as 1=30 of the
trace in the adjoint of E8 � E8, this means that the stan-
dard embedding indeed solves the cohomology con-
straint (5.3) and, even more strongly, leads to the right-
hand side of Eq. (5.2) to vanish identically. Note that, at
the level of background fields, the internal part of Ĥ is
vanishing so that the modification (2.4) of the spin con-
nection does not contribute for Calabi-Yau manifolds. The
surviving low-energy gauge group is the maximal com-
mutant of SU(3) within E8 � E8 which is E6 � E8. In
addition, one obtains h1;1�Y� chiral multiplets in the 27 of
E6 and h2;1�Y� chiral multiplets in the 27 of E6.

Can this picture be adapted to half-flat mirror mani-
folds? There are two essential modifications. First of all,
the spin connection !�hf�

m of the half-flat manifold gen-
erally takes values in SO(6) rather than SU(3). Second,
the internal background value of Ĥ is no longer vanishing
due to the additional term in Eq. (3.6) and, if present, H
flux in Eq. (3.30). Therefore, we have to work with the
modified connection ~w which is the correct object that
enters the Bianchi identity. From Eqs. (2.4), (3.6), and
(3.30) it is given by

~!m
np � !�hf�np

m 	 1=2�biei*
0 	 <a*

a 	3a�a�m
np:

(5.5)

This connection still generically takes values in SO(6).
The generalization of the standard embedding to half-flat
mirror manifolds is then characterized by

Amnp � ~!m
np; (5.6)

where the index pair �np� on A refers to an SO(6) sub-
group of one of the E8 gauge factors. The trace of the
square of an SO(6) generator in the adjoint of E8 is still 30
times that of the trace in the fundamental of SO(6) and,
hence, the above choice indeed provides a solution to the
cohomology constraint (5.3). As for the Calabi-Yau case it
sets the right-hand side of Eq. (5.2) identically zero.
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However, the low-energy gauge group is now the com-
mutant of SO(6) within E8 � E8 which (modulo global
issues) is given by SO�10� � E8. It is interesting to com-
pare this to the standard Calabi-Yau case. Apparently,
switching on flux has broken the gauge group from E6

to SO(10). From the decomposition

78 ! 45	 16	 16	 1 (5.7)

of the adjoint 78 of E6 under SO(10) we conclude that the
additional gauge bosons in the 16, 16, and 1 representa-
tions of SO(10) must have picked up a mass proportional
to the flux parameters ei, <a, and 3a. For this to happen
the additional gauge multiplets must pair up with chiral
multiplets in the same SO(10) representations. To see how
this works let us examine the decomposition of the fun-
damental of E6 under SO(10) which is given by

27 ! 16	 10	 1: (5.8)

In the standard Calabi-Yau case, we therefore have h1;1�Y�
chiral multiplets in 16 and h2;1�Y� chiral multiplets in 16.
One 16 and one 16 (and one singlet) chiral multiplet have
to be paired up with the additional gauge bosons, so they
will pick up a mass proportional to flux parameters. It is
reasonable to expect, therefore, that h1;1�Y� � 1 antifa-
milies in 16 and h2;1�Y� � 1 families in 16 are left mass-
less. This expectation should be confirmed by an explicit
calculation of the four-dimensional effective theory in-
cluding gauge matter. We remark that the general for-
mula (4.17) for the superpotential should be valid
including gauge matter and its evaluation should, hence,
lead to the correct gauge matter superpotential. This will
be discussed in detail in a forthcoming publication [75].

A final remark concerns the gauge kinetic function f of
the low-energy gauge group. From a simple reduction of
the ten-dimensional gauge field action (2.2) it is clear
that, to order �0, this function is given by the dilaton,
as in the standard Calabi-Yau case. More precisely, fixing
the normalization of the gauge field kinetic term by

�
1

4g2
YM

Z
M4

d4x
�������
�g

p
Re�f�Tr�F2�; (5.9)

where F is the low-energy gauge field strength, and

g2
YM �

4
2
10

�0v
; (5.10)

one finds that

f � S: (5.11)

This result can be expected to receive threshold correc-
tions at order ��0�2 which result from terms at that order
in the ten-dimensional effective action [84]. It would be
interesting to calculate these corrections for half-flat
mirror manifolds.
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VI. CONCLUSION AND OUTLOOK

In this paper, we have considered the heterotic string on
half-flat mirror manifolds which arise in the context of
mirror symmetry with flux. More precisely, given a mir-
ror pair �X; Y� of Calabi-Yau three-folds, the associated
half-flat mirror manifolds Ŷ, are the mirror duals of X
with NS-NS flux , � �ei�.

Our main result is the complete derivation of the four-
dimensional N � 1 effective action to lowest order in �0

on such manifolds. We find that the Kähler potential for
the dilaton S, the Kähler moduli Ti, and the complex
structure moduli Za are the same as for the reduction
on the associated Calabi-Yau manifolds Y while the
superpotential is given by

W �
���
8

p
�eiT

i 	 <aZ
a 	3aGa�: (6.1)

Here, the first term arises from the intrinsic, geometrical
flux of the half-flat mirror manifold and the other two
terms arise from NS-NS flux with electric and magnetic
parameters <a and 3a, respectively. The structure of this
result certainly invites speculations about more general
half-flat mirror manifolds which also contain intrinsic
magnetic flux and generate the ‘‘missing’’ term miF i in
Eq. (6.1). Unfortunately, at present, there is no explicit
description available for such manifolds.

We have confirmed the above result for W by two
largely independent methods, namely, by a reduction of
the bosonic action and via a reduction of some fermionic
terms leading to the four-dimensional gravitino mass
term. As a by-product, we have also obtained a Gukov-
type formula for the superpotential which we expect to be
valid for the heterotic string on all manifolds of SU(3)
structure and includes order �0 effects. It is given by

W �
Z
Ŷ
� ^ �Ĥ 	 idJ�; (6.2)

where J is the two-form which, along with the three-form
�, characterizes the SU(3) structure.

We have also argued that the standard embedding can
be generalized to the heterotic string on half-flat mirror
manifolds and leads to (in the case of E8 � E8) a low-
energy gauge group SO�10� � E8 rather than E6 � E8. We
also expect h1;1�Y� � 1 antifamilies in the 16 representa-
tion of SO(10) and h2;1�Y� � 1 families in the 16
representation.

There certainly remains substantial work to be done
concerning the inclusion of gauge and gauge matter fields.
In particular, one would like to derive the four-
dimensional effective theory for these fields, understand
the way in which the flux parameters break E6 to SO(10),
and compute the gauge matter superpotential explicitly.
For this latter task the general formula (6.2) will be quite
useful. All these issues are currently under investigation
[75].
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An important application of our results concerns mod-
uli stabilization in heterotic models. The superpoten-
tial (6.1) is independent of S so, as stands, at least the
dilaton still represents a runaway direction. However, we
have seen that the gauge kinetic function is still propor-
tional to S and, hence, gaugino condensation would gen-
erate a nonperturbative superpotential [53]

Wgaugino � exp��cS� (6.3)
for some appropriate constant c. Studying the combined
effect of this gaugino superpotential and (6.1) is an in-
teresting problem which we are currently investigating.
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APPENDIX A: SOME USEFUL RESULTS ON
SPECIAL GEOMETRY

In order to make the paper self-contained we add this
appendix on special Kähler geometry and its particular
realizations on Calabi-Yau manifolds. Our discussion will
be carried out for a Calabi-Yau space Y with occasional
reference to its mirror X. For an extensive cover of the
subject see Ref. [85,86].

A Kähler manifold of complex dimension n is called
special Kähler if its geometry is completely determined
in terms of a holomorphic function H , called the pre-
potential. When written in terms of projective coordi-
nates, which we denote by XP, where
P;Q; . . . � 0; . . . ; n the prepotential is a homogeneous
function of degree two which implies that XPH P �

2H with derivatives H P � @H
@XP . In terms of the prepo-

tential, the Kähler potential has the form

K � � lni� �XPH P � Xp �H P�: (A1)
It is also useful to introduce a �n	 1� � �n	 1� matrix Q

Q PQ � �H PQ 	 2i
Im�H PR�Im�HQS�XQXS

Im�H RS�XRXS
; (A2)
which plays the role of gauge coupling matrix in type II
compactifications and which satisfies H P � QPQXQ.
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It is well known that the moduli space of Calabi-Yau
manifolds is governed by two such special Kähler ge-
ometries: one for the complexified Kähler moduli and one
for the complex structure moduli. Let us now describe
these two moduli spaces in turn.

We start with the Kähler moduli space of the Calabi-
Yau manifold Y which has dimension n � h1;1�Y�. We
denote its projective coordinates by TI with indices
I; J; . . . � 0; . . . ; h1;1�Y�. It is also useful to introduce in-
dices i; j; . . . � 1; . . . ; h1;1�Y�.

In the large radius limit of the Calabi-Yau space, the
prepotential, which we call F , is known explicitly and
given by

F � �
1

6

d�Y�ijkT
iTjTk

T0 ; (A3)

where d�Y�ijk are the triple intersection numbers of the
manifold Y. Introducing affine coordinates ti � Ti=T0,
one finds from Eq. (A1) for the associated Kähler poten-
tial

K�1� � � ln�idYijk�t
i � �ti��tj � �tj��tk � �tk�� � � ln8V ;

(A4)

where V can be interpreted as the volume of the Calabi-
Yau space. It is useful to describe the moduli space in
terms of the Kähler form J which can be expanded as

J � vi!i; (A5)

where vi � Im�ti� and �!i� is a basis of the second coho-
mology of Y. Then, the metric h�1�ij on the Kähler moduli
space can be written as

h�1�ij � @i �@jK
�1� �

1

4V

Z
Y
!i ^ ?!j: (A6)

A useful relation which can be derived from the explicit
Kähler potential (A4) is

hij
�1�K

�1�
j � �ti � �ti� � 2ivi; (A7)

where K�1�
i denote the derivatives of the Kähler

potential (A4) with respect to the fields ti and hij
�1� is the

inverse of the Kähler metric.
One can also explicitly compute the coupling matrix

defined in (A2) which we denote by N . The components
of N together with the ones of �Im�N ���1 are given by
-13
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Re�N ij� � �d�Y�ijkb
k; Im�N ij� � �4Vh�1�ij ; �Im�N ���1ij � �

hij
�1�

4V
�
bibj

V
; Re�N i0� �

1

2
d�Y�ijkb

jbk;

Im�N i0� � 4Vh�1�ij b
j; �Im�N ���1i0 � �

bi

V
; Re�N 00� � �

1

3
d�Y�ijkb

ibjbk;

Im�N 00� � �V � 4Vh�1�ij b
ibj; �Im�N ���100 � �

1

V
:

(A8)
Let us now pass to the complex structure moduli space
of the same Calabi-Yau manifold Y which has dimension
n � h2;1�Y�. We denote the projective coordinates on this
moduli space by ZA, where A;B; . . . � 0; . . . ; h2;1�Y� and
also introduce lowercase indices a; b; . . . � 1; . . . ; h2;1�Y�.
The prepotential is called G. In general, an explicit ex-
pression for this prepotential cannot be written down.
However, one can still derive some useful formulas
when working with a generic G. Most of the properties
of this space can be described in terms of the holomor-
phic �3; 0�-form �. Recall that in a real, symplectic basis
��A;*

B� of three-forms it can be expanded as

� � ZA�A � GA*A: (A9)

It follows immediately that the Kähler potential can be
written as

K�2� � � ln�i� �ZAGA � ZA �GA�� � � ln

 
i
Z
Y
� ^ ��

!
:

(A10)

Let us here denote the coupling matrix (A2) by M. It
turns out that, for the complex structure moduli space,
this matrix has a proper geometric interpretation in terms
of the integrals

BAB �
Z
Y3

�A ^ ��B �
Z
Y3

�B ^ ��A � BBA;

CAB � �
Z
Y3

*A ^ �*B � �
Z
Y3

*B ^ �*A � CBA;

AA
B � �

Z
Y3

*B ^ ��A � �
Z
Y3

�A ^ �*B;

(A11)

which can be expressed as [87,88]

A � Re�M��Im�M���1;

B � �Im�M� � Re�M��Im�M���1Re�M�;

C � �Im�M���1:

(A12)

A particularly useful insight can be obtained by choos-
ing a different basis for the third cohomology of Y. One
can define complex �2; 1�-forms 6a via Kodaira’s formula
[89]

@�
@za

� �K�2�
a � 	 6a; (A13)

where za � Za=Z0 are the affine coordinates and K�2�
a

denote the derivatives of the complex structure Kähler
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potential (A10) with respect to za. Then the forms
��; 6a; �6a; ��� form a basis for the third cohomology of
Y. In this new basis, the metric h�2�ab on the complex
structure moduli space has the simple form

h�2�
a �b

� @a@ �bK
�2� � �

R
Ŷ 6a ^ �6 �bR
Ŷ � ^ ��

: (A14)

The transformation from the symplectic basis ��A;*A� to
the complex basis defined above can be summarized as

*A � ~fA� 	 ~fAa6a 	 h:c:;

�A � fA� 	 fA
a6a 	 h:c:;

(A15)

where

~fA � �
�ZAR

Y � ^ ��
;

~fAa �
ha �b
�2�R

Y � ^ ��
�D �b

�ZA;

fA � �
�GAR

Y � ^ ��
;

fA
a �

ha �b
�2�R

Y � ^ ��
�D �b

�GA;

(A16)

and by ha �b
�2� we denote the inverse of the metric (A14). The

Kähler-covariant derivatives D are defined by

�D �b
�ZA � @ �b

�ZA 	 K�2�
�b

�ZA; �D �b
�GA � @ �b

�GA 	 K�2�
�b

�GA:

(A17)

Until now all the formulas for the complex structure
moduli space were generic and can be applied to any
Calabi-Yau manifold. However, in the limit of large
complex structures one can be somewhat more explicit.
For this we rely on mirror symmetry which relates the
complex structure deformations of the Calabi-Yau mani-
fold Y to Kähler deformations on the mirror X. As a
result, the prepotential G is now given by a cubic formula
similar to Eq. (A3), that is,

G � �
1

6

d�X�abcZ
aZbZc

Z0 : (A18)

Here, d�X�abc are the triple intersection numbers of the
mirror Calabi-Yau manifold X. The matrix M can be
computed explicitly in this limit and is given by
-14
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Re�M00� � �
1

24
d�X�abc�Z

a 	 �Za��Zb 	 �Zb��Zc 	 �Zc�; Im�M00� � �
e�K

�2�

8
�1 	 h�2�ab�Z

a 	 �Za��Zb 	 �Zb��;

Re�Ma0� �
1

8
d�X�abc�Z

b 	 �Zb��Zc 	 �Zc�; Im�Ma0� �
e�K

�2�

4
h�2�ab�Z

b 	 �Zb�;

Re�Mab� � �
1

2
d�X�abc�Z

c 	 �Zc�; Im�Mab� � �
e�K

�2�

2
h�2�ab:

(A19)
The components of �Im�M���1 read

�Im�M���1ab � �2eK
�2�
�hab�2� 	 �Za 	 �Za��Zb 	 �Zb��;

�Im�M���1a0 � �4eK
�2�
�Za 	 �Za�;

�Im�M���100 � �8eK
�2�
:

(A20)

As a simple application of the above formulas and as a
warm-up for the next section we can rewrite the potential
[5], obtained by turning on H fluxes in Calabi-Yau com-
pactifications, in a more suggestive way which makes it
easier to read off the superpotential. As in Eq. (3.30), the
H flux4

H � <A*A 	3A�A: (A21)

can be expanded in terms of the symplectic basis
��A;*

B�. With Eqs. (A11), this potential can be written as

e�KVH � 4e�K
�2�
Z
H ^ �H

� �4e�K
�2�
�<A 	3CMAC�ImM�1AB

� �<B 	3D �MBD�: (A22)

On the other hand, writing theH flux in the complex basis
defined in (A15) the above formula reads

e�KVH � 8e�K
�2�
�<A ~fAa 	3AfA

a��<B
�~f
Bb

	3B �fB
b�

�
Z
6a ^ � �6b 	 8e�K

�2�
j<A ~fA 	3AfAj2

�
Z

� ^ � ��: (A23)

Inserting the relations (A16) and using (A14) we obtain

e�KVH�8hab
�2��<ADaZ

A	3ADaGA��<B �Db
�ZB	3B �Db

�GB�

	8j<AZA	3AGAj
2: (A24)

Thus we can write

VH � ha �b
�2��DaWH��DbWH� 	 jWHj

2; (A25)

where we have defined
4Unlike in the main part of the paper, <A and 3A denote
arbitrary flux parameters, that is, we allow <0 � 0 and 30 � 0.
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WH �
���
8

p
�<AZ

A 	3AGA�: (A26)

Let us stress that, at this level, Eq. (A25) does not yet
have the structure of the usual supergravity relation (3.19)
between the potential and the superpotential since the
term �3jWj2 is not correctly reproduced. However, for
heterotic strings compactified on Calabi-Yau manifolds in
the presence of H fluxes also the dilaton and the Kähler
moduli have to be included in calculating the potential.
Their contribution is precisely 4jWHj

2 which cancels
against �3jWj2 leaving behind precisely the factor
jWHj

2 present in (A25).
APPENDIX B: SUPERPOTENTIAL
INCLUDING NS-NS FLUX

Having defined all the technical tools in the previous
section, we are now ready to show that the scalar poten-
tial in Eq. (3.34) can be indeed obtained from the super-
potential (3.35) using the general supergravity
formula (3.19). To do this it will be useful to replace ~<0 �
eibi in the potential (3.34) and pull apart the contributions
to the potential coming from the torsion of the half-flat
mirror manifold and the one coming from the H flux,
writing the potential as

V � VT 	 VH 	 Vmix: (B1)

Here, VT arises from the torsion of the internal manifold,
VH is due to H flux, and Vmix is the mixed term which is
present when both are taken into account simultaneously.
Explicitly, these parts are given by

VT � �2e2		K�2�
ei�Im�N ���1ijej;

VH � �2e2		K�1�
�<A 	3CMAC��Im�M���1AB

� �<B 	3D �MBD�;

Vmix � �4�eibi�e2		K�1�
f<a�Im�M���10a

	3c�Im�M���10AReMAcg; (B2)

where, in the second equation, we have used the conven-
tion

<A � �0; <a�; 3A � �0; 3a�: (B3)

Taking into account Eq. (A8) one finds that VT defined
above is precisely the potential obtained in Eq. (3.8)
while VH is the potential we have discussed in Eq. (A22).
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Let us split the superpotential in its two main pieces

W � WT 	WH; (B4)

where WT was defined in Eq. (3.21) and WH is taken from
Eq. (A26) with the specific flux parameters (B3) inserted.
Note thatWT depends only on the Kähler moduli Ti while
WH depends only on the complex structure moduli Za. We
would like to reproduce the potential (B1) by inserting
this superpotential, as well as the standard Kähler poten-
tial (3.17), into the general supergravity formula (3.19).
We start by evaluating the Kähler-covariant derivatives
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which now read

DSW � �
1

2
e	W;

DiW �
���
8

p
ei 	 K�1�

i W;

DaW � DaWH 	 K�2�
a WT:

(B5)

Using the Kähler metric h�1�ij in terms of the fields ti, to be
derived from the Kähler potential (A4), we obtain
DSW�DSW�K �SS � jWj2 DiW�DjW�K �ji � 8eiejh
ij
�1� � 2i

���
8

p
�eiv

i��W � �W� 	 3jWj2

DaW�DbW�K �ba � DaWH�DbWH�h
�ba
�2� 	 �K�2�

a K
�2�
b h

�ba
�2��jWTj

2 	 �DaWH�K
�2�
b WT�h

�ba
�2� 	 h:c:�;

(B6)
where we have used

K�1�
i K

�1�
j h

ij
�1� � 3; (B7)

which follows for the cubic prepotential (A3).
In the large complex structure limit, the prepotential

for the complex structure moduli space is given by (A18)
and thus, in analogy with the Kähler moduli space, we
have K�2�

a �K�2�
b �h �ba

�2� � 3. Using this relation and further
splitting W as in Eq. (B4) we obtain from the supergrav-
ity formula (3.19)

e�KV�8eiejh
ij
�1��32�eivi�2	4jWT j

2

	DaWH�DbWH�h
�ba
�2�	jWHj

2

	�WT� �WT��WH� �WH�	4�WT
�WH	 �WTWH�

	�@aWH�K
�2�
b �h �ba

�2�
�WT	h:c:�: (B8)

It was shown in the main part of the paper that the first
line in the above equation reproduces the potential VT
from Eq. (B2) while we have proved in Eq. (A25) that the
second line gives rise to the potential VH.

In order to evaluate the mixed terms in the last line
which contain half-flat as well as H flux, we need to
compute the expressions @aWH�K

�2�
b �h �ba

�2�. In general this
is a complicated task, but in our case, as we work in the
large complex structure limit, this computation is fairly
easy. First of all note that in this case we can derive a
formula similar to Eq. (A7), namely,

ha �b
�2��K

�2�
b � � ��za � �za�: (B9)

Then, making explicit use of the cubic formula for the
prepotential G, Eq. (A18), one can rewrite the
potential (B8) into the following form

V � VT 	 VH 	 32�eibi�eK<a�Za 	 �Za�

	 8eKfei �Ti3a� �Ga 	 3Ga 	 � �Zb � Zb�Gba� 	 h:c:g:

(B10)

Working from the other end, we now rewrite the mixed
part of the potential Vmix in Eq. (B2), obtained from the
reduction, by using the explicit form of the matrix M
given in Eq. (A19). One can easily show that

�Im�M���10ARe�M�Ac � �2eK
�2�
� �Ga 	 3Ga

	 � �Zb � Zb�Gba�: (B11)

Inserting this relation into Eq. (B2) and using the ex-
pression for �Im�M���10a from (A20) one obtains

Vmix � 32�eibi�eK<a�Za	 �Za�

	 8eKfei �Ti3a� �Ga	 3Ga	� �Zb�Zb�Gba�	h:c:g:

(B12)

Comparing the result (B10) from the supergravity side
with the reduction result (B1), where Vmix is given by the
formula above, we see that the two potentials are indeed
the same. This proves that the potential obtained by
compactifying the heterotic string on half-flat mirror
manifolds with H flux (3.34), can be obtained from the
N � 1 supergravity formula (3.19) with the superpoten-
tial given by (3.35).
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