PHYSICAL REVIEW D 70, 126008 (2004)

Braneworld inflation

Alex Buchel'? and Ahmad Ghodsi®

'Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada
2Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9, Canada
3nstitute for Studies in Theoretical Physics and Mathematics (IPM), PO. Box 19395-5531, Tehran, Iran
(Received 8 June 2004; published 9 December 2004)

We discuss various realizations of the four-dimensional braneworld inflation in warped geometries of
string theory. In all models the inflaton field is represented by a Dp probe brane scalar specifying its
position in the warped throat of the compactification manifold. We study existing inflationary throat
local geometries, and construct a new example. The inflationary brane is either a D3 or a D5 brane of
type IIB string theory. In the latter case the inflationary brane is wrapping a two-cycle of the
compactification manifold. We discuss some phenomenological aspects of the model where slow-roll

conditions are under computational control.
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L. INTRODUCTION

Inflation [1-3] is an attractive scenario which solves
many important problems in cosmology. The basic idea of
its simplest realization is that our Universe went through
the stage of the accelerated expansion driven by the
potential energy of the slowly rolling inflaton field. In
agreement with current observational data such a model
naturally predicts a flat Universe and a scale invariant
spectrum of density perturbations, provided the inflaton
potential is sufficiently flat. It is thus important to find an
embedding of inflation in the fundamental theory of
quantum gravity, such as a string theory.

Recently there has been considerable progress in im-
plementing this program. Based on the developments of
the moduli stabilization problem in string compactifica-
tions [4,5], a framework of constructing de Sitter vacua in
string theory (with all moduli stabilized) was proposed in
[6] (KKLT). It was further pointed out in [7] (K>’LM?>T)
that warped de Sitter vacua of KKLT is a natural setup to
embed D3D3 inflation [8-11] into string theory. In the
original braneworld model scenarios [8—11] the inflaton
field is identified with the separation between four-
dimensional domain walls (3-branes) moving in a flat
transverse six-dimensional space. The main result of [5]
is that in realistic string theory compactifications with
stabilized moduli, the six-dimensional compactification
manifold is not flat—rather, it must contains one (or
more) “throat” regions with large warp factors. These
warped throat geometries provide string theory realiza-
tion of the Randall-Sundrum ““‘compactification” scenario
[12]. The authors of [7] studied brane-antibrane inflation
in warped throat geometries. As the D3 brane is stabi-
lized at the end of the throat [7], the four-dimensional
inflaton field (the D3 — D3 brane separation in [8—11])
can be identified with the position of the D3 in the throat
geometry. Unfortunately, the slow-roll parameter associ-
ated with the ¢-field inflation is too large for this model
to be realistic
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where V;,((¢) is the inflaton potential, mé is an inflaton

mass, and H is the Hubble scale of the de Sitter vacua. The
above conclusion can be best understood by noting that
the inflaton of [7] has an effective four-dimensional
description in terms of a conformally coupled scalar in
the de Sitter background with a Hubble scale H. It was
suggested [7] that the 7 problem might be alleviated once
the ¢ dependence of the overall Kdhler modulus of the
compactification manifold in the superpotential is taken
into account [13], or if a Kdhler stabilization mechanism
(as opposite to the superpotential stabilization) is used to
fix the size of the compactification manifold. Each of
these proposed mechanisms is fairly difficult to imple-
ment/verify in the context of the low-energy effective
description used to construct de Sitter vacua of [6].

A complementary approach for analyzing inflation in
warped de Sitter string theory geometries which, in
particular, bypasses the difficulties of computing correc-
tions to n from the effective four-dimensional perspec-
tive mentioned above was proposed in [14]. It was pointed
out that the brane inflation in the scenario of [7] occurs
deep inside the warped throat geometries, where the de-
tails of the compactification manifold are not important.
All that matters from the compactification manifold is
that it, providing a UV completion of the otherwise
infinite throat, supplies a four-dimensional Hubble pa-
rameter H. Also, in this setup it is assumed that all
moduli of the compactification manifold are fixed, and
the scale of moduli stabilization E, is much higher than
the relevant scales of inflation E, > H, E; > |¢|. It is
clear that D3 brane inflation in this class of models is
equivalent to the probe brane dynamics in the local
geometry where the throat, rather than terminating on
some complicated (compact) Calabi-Yau manifold, ex-
tends to infinity. The advantage of this viewpoint is
that, unlike compact KKLT backgrounds, the correspond-
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ing local models can be rather easily and explicitly con-
structed. For example, much like KS model [15] is a local
description of the throat geometry of the GKP compacti-
fication [5], the de Sitter deformed KT model [16] de-
scribed in [17,18] is a local realization of the throat
geometry of the KKLT model.' The inflation, or equiv-
alently the brane probe dynamics, can now be studied
very explicitly and analytically. Thus, studying inflation
as probe dynamics in de Sitter deformed KT backgrounds
[17,18] it was shown that the 7 problem persists.” It was
further shown in [19] that (1.1) is a direct consequence of
imaginary-self-dual (ISD) condition® on the 3-form
fluxes, used in [5,6] to stabilize the complex structure
moduli of the compactification manifold.

As emphasized in [14], using probe brane dynamics as
a tool for a quantitative analysis of the braneworld in-
flation” in the warped de Sitter geometries is quite gen-
eral, and can be applied outside the inflationary scenario
of [7]. Specifically, the warped throat geometry of the
inflationary scenario of [7] is locally AdSs. The latter is
just a reflection of a particular set of fluxes that are turned
on. Turning on more generic fluxes would lead to the
deformation of the inflationary throat geometry away
from being locally AdSs. One can imagine that the 7
problem (1.1) in K’LM?T inflation is a consequence of a
quite restrictive set of fluxes used there, and can be
alleviated for a judicious choice of fluxes. In fact, it was
argued in [19] that a D3 brane inflation in appropriately
deformed AdSs local throat geometries can lead to a
slow-roll inflation. In this paper we confirm that expec-
tation. Additionally, we study ‘‘wrapped-brane” infla-
tionary models. Thus, in Sec. III we discuss inflation
modeled by a D5 brane wrapped on a two-cycle of the
de Sitter deformed Maldacena-Nunez (MN) geometry
[22]. The supersymmetric background geometry of MN
realizes the backreaction of a large number of D5 branes
wrapping a two-cycle of the resolved conifold, with a
“twist” preserving four supercharges. The corresponding
de Sitter deformed geometry was explained in detail in
[23]. Unfortunately we find that from the phenomenologi-
cal perspective this inflationary model is not viable,
as it leads to the slow-roll parameter n =3. Next,

2
we study D5 brane inflation in a closely related model,

1Strictly speaking, the correct local model would be de Sitter
deformation of the Klebanov-Strassler solution [15]. For the
inflation occurring far from the end of the KS throat the
difference between KT and KS models is subdominant, as it
will be for their corresponding de Sitter deformations. KS de
Sitter deformation as proposed in [18] can be explicitly
constructed.

>The computations of [7] leading to (1.1) where done in
approximation, where the 3-form fluxes of the background
geometry are neglected.

>The ISD condition is modified in the presence of the
suyersymmetry breaking effects [20].

Related ideas were discussed previously in [21].
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ie., de Sitter deformed background of [24] (GKMW).
Supersymmetric GKMW solution represents a supergrav-
ity description of D5 branes wrapping an S?, with the
twist preserving eight supercharges. In Sec. IV we first
construct de Sitter deformation of the GKMW back-
ground, and then proceed to the probe brane analysis.
As in the case of inflation in the de Sitter deformed MN
throat we find that slow-roll inflation in not possible: n =
1. Some phenomenological constraints for the inflation-
ary models are discussed in Sec. V. The common feature
of all discussed local de Sitter deformed geometries is the
presence of an energy scale w that breaks conformal
invariance characteristic to AdSs throat geometries.
Interestingly, depending on the ratio u/H certain local
geometries undergo ‘‘cosmological phase transitions.”
For a local model both u and H are nondynamical
(parameters). This is not so once local throat geometries
are embedded into a global geometry (a compactifica-
tion). It is possible that these phase transitions might have
observable effect on the realistic four-dimensional
inflation.

Before we move to a somewhat technical discussion of
brane probes in de Sitter deformed local geometries, we
would like to mention a phenomenological motivation
underling this study. Consider a string theory compacti-
fied on a smooth six-dimensional manifold. The presence
of D branes will deform a locally flat geometry of a
compactification manifold to a warped throat geometry
[25,26]. Generically, we expect multiple throats produced
from multiple stacks of branes on a compactification
manifold. We can imagine a scenario, where one of the
throats is of the KKLT type, with a D3 brane at the
bottom, generating the four-dimensional Hubble constant
H. Though slow-roll inflation in that throat is not pos-
sible, it might still be realized by a mobile brane in a
different throat, in which local geometry permits suffi-
ciently flat probe brane potentials.5 Finally, our proposal
is just one way to alleviate the 7 problem. Interesting
alternative ideas for overcoming the difficulties described
in [7] for string theory inflationary models were pre-
sented in [27-35].

IL INFLATION IN DE SITTER DEFORMED
N = 2* THROATS

In [19] it was argued that brane inflation in de Sitter
deformed N = 2* throats might lead to slow-roll infla-
tion with arbitrarily small 7 parameter. In this section we
provide numerical analysis supporting that claim. The
relevant throat geometry is that of the supergravity dual
to N = 2" supersymmetric gauge theory constructed in
[36] (PW). The probe dynamics in PW background was
discussed in detail in [37,38]. The de Sitter deformation of

>We will discuss this in some detail in the phenomenology
section.
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the PW geometry was constructed in [39], and the D3
brane probe dynamics was analyzed in [19]. We first
review the necessary data for the background geometry
and the D3 probe brane effective action. Then we identify
singularity-free de Sitter deformed flows in which the D3
braneworld inflation is slow roll. Phenomenological as-
pects of the inflation in N = 2* throats are further
discussed in Sec. VA.

A. The background and the probe brane dynamics

It is convenient to construct first the background ge-
ometry in five-dimensional gauged supergravity, and then
further uplift the solution to ten dimensions [39]. The
effective five-dimensional action is

S = fde\/—_ng—lR —300a)® — (0x)* — :P} 2.1

where the potential P is°

1 fowWN2 1 /aW\2 1
P=—(—)+—(—) —W% 2.2
48(601) 16((%\/) 3 22
with the superpotential
1
W= —e¢ 2 — 564“ cosh(2y). (2.3)

The supergravity scalars & and y encode the renormal-
ization group flow of the N° = 4 Yang-Mills deformation
induced by generically different masses to the bosonic
and fermionic components of the N° = 2 hypermultiplet.
To be more specific, we choose the 5D renormalization
group (RG) flow metric as

ds? = 4(dS,)* + dp?, 2.4)

where (dS,)? is a metric of the four-dimensional de Sitter
spacetime with Hubble scale H = 1. Assuming A = A(p)
and a = a(p), ¥ = x(p), equations of motion [derived
from (2.1)] become

O=a”+4A’a’—lg,
6 da
O=X”+4A’X’—1£,
2 dy
: 3 : 2.5)
ZAT 4+ A/Z__ —2A=__7)’
gA" T A e 3

—A — (A/)2 — 3(a/)2 + (X/)Z + %T

Lacking exact analytical solution of (2.5), in the next
section we turn to its numerical analysis. The most gen-
eral singularity-free solution in the IR (p — 0) is speci-
fied by two parameters pg, xo

®We set the 5D gau§ed SUGRA coupling to one. This
corresponds to setting S° radius L = 2.
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1 1
A = + p?| == po* + =P}
e p[l p [72 Po* + 7¢ Py cosh(2xo)

T .
55 Pisinh <2x0>} +0(p )}

1, 1
e =po+ p2[60 P’ ~ g Pocosh(2xo) (2.6)

1
+ 9cinh2 + 4
135 PHsIE20) | + O(p*)

1 . 1 .
X=X+ pz[ - 2—0;0% sinh(2x) + @pé Slﬂh(4X0)}

+ O(p*).

The ultraviolet (p — o0) asymptotics are conveniently
written in terms of a new radial coordinate

x=e P2

2.7

We find

1 1 1
A=¢—Inx — x2<672§ + §X(2)o> + x4[§)(30 - 56745

1 -~ 1 1
+ 6)((2)0‘3 * - EX(%OXIO — Pl — gp%l
_ 2
- (2/\%0‘3 %+ ngo + 2P10P11>1nx - plllnzx:|

+ O(x%In’x), (2.8)

1 3
e* =1+ xz(plo + P11 lnx) + x4|:§/\/go + Ep%o

3 2
—2ppn + 5/’%1 + §X30(5P10 —4pyy)

_ 10
+2¢ %2p1o— p1) + (;X%o/hl +3p10P1

3
—2p3, + 4plle_25>1nx + Ep%]lnzx} + O(x%In’x),

(2.9)

4
X = X00x<1 + xz[Xlo + <*X(2)0 + 462'f>lnxD

3
+ O(x°In’x), (2.10)

where {&, x00, X10- P10 P11} are parameters characteriz-
ing the ultraviolet asymptotics, and are functions of the
infrared data {po, xo}. As explained in [40], p11 (xo0)
should be identified with the mass ml% (my) of the bosonic
(fermionic) components of the N = 2 hypermultiplet.
Two more parameters pig, 1o are related to the bosonic
and fermionic bilinear condensates correspondingly.
Finally, ¢ is a residual integration constant associated
with fixing the radial coordinate—it can be removed at
the expense of shifting the origin of the radial coordinate
p, or rescaling x. As the origin of the radial coordinate is
“fixed” in specifying the infrared boundary condi-

tions (2.6), £ = £(po, xo)-
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The complete ten-dimensional lift of the RG flow (2.5)
was presented in [39], and the D3 brane probe dynamics
in the resulting 10D geometry was studied in [19].
Identifying the inflaton with the radial motion of the
probe brane in this background geometry, the inflaton

mass mf/) was found to be

2 3
my =2+ [§e2§X(2)O:| + [ezpr(EcoszO - 1) , (2.11)

thus leading to inflationary slow-roll parameter

2 2 1 3
n= g + |:§€2§)((2)0:| + |:§€2§p11<§(30520 - 1) . (212)

Few comments about (2.11) and (2.12) are in order.

(i) Inflaton mass depends on one of the angles (6) of
the squashed S° in the ten-dimensional back-
ground [19];

(i1)) Turning off the mass deformation (setting py =
Xo = 0) gives rise to m%, = 2, which is the effec-
tive mass of the conformally coupled scalar of the
N = 4 vector multiplet;

(iii) Turning on mass to the fermionic components of
the N = 2 hypermultiplet always raises the in-
flaton mass. Thus the slow-roll inflation is most
effectively generated with xy = 0. Actually,
x(p) = 0 is an exact solution of (2.5), which we
restrict to from now on;

(iv) Recall that bosonic mass deformation parameter
p11 « m3. In principle, in the supergravity solu-
tion p;; can be either positive or negative.
However, without a stabilizing effect of the gauge
theory background curvature [setting H — 0 or
removing 2" in (2.11)], p;; <0 would lead to
the supergravity background instabilities associ-
ated with unboundedness of the probe brane po-
tential close to the boundary. This is a reflection of
the dual gauge theory instabilities corresponding
to mi < 0. Once H # 0, sufficiently small nega-
tive mi will not destabilize the background:

0=e¥p,, = —4 (2.13)

In the regime (2.13), a D3 probe would tend to move in the
cos?f = 1 “valley,” where its potential energy is locally
minimized, leading to a slow-roll parameter nn = n_

(2.12)
2
mn- e |:0, §i|

In the case of p;; > 0 (a positive m3), the D3 probe brane
potential energy is minimum in the cosf = 0 valley.’
Here background stability against spontaneous

2 1
n-=3+_-e¥py,

3t e (2.14)

"For H = 0 this submanifold is a moduli space of a D3 probe
in the PW background [37,38].
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D3D3-pair production constrains

2=¢e*p, =0, (2.15)
leading to a slow-roll parameter n = 7,
2 1 2
e =37 gezgpu’ n+ € [05} (2.16)

B. Slow-roll inflation

We now map numerically the phase space of the D3
inflation in de Sitter deformed N = 2* throat reviewed
in the previous section. The procedure is to numerically
integrate (2.5) from the infrared (p = 0) (2.6) to the
ultraviolet (2.8) and (2.9) (p — o), and, given® {p,} in
the IR extract {£, p;,} in the UV. Depending on the sign of
P11, we can use (2.14) and (2.16) to determine 7.
Though simple to state, the problem is rather challenging
to implement. The reason is the huge exponential asymp-
totic suppression of the coefficient p;, (2.9). Ultimately,
we resolved this technical difficulty by reparametrizing
a(p) as follows

B(p)

e* =1 +71 TR

(2.17)

and rewriting (2.5) in terms of A(p) and B(p) with
x(p) = 0. Notice that such a redefinition implies identi-
fication

dB
po = lim[1 + B(p)], e*p;, = —2lim ﬁ
p—0 p—o dp
(2.18)
Obviously, since e*=0, pyg=0, and thus
B(p=0) = —1.

Results of numerical integration are presented in
Figs. 1-3. For py = 1 we have undeformed AdS5 throat,
leading to a familiar result for the slow-roll parameter
n= % We find that for 0 < py < 1, p;;(pg) = 0, thus the
corresponding slow-roll parameter is n = 7, defined by
(2.16), Fig. 2. For 1< py = paitica = 1.2, we find
p11(pg) = 0, thus the corresponding slow-roll parameter
is § = m_, defined by (2.14), Fig. 1. As py > Pritical» the
inflaton mass m%b < 0. In this case rather that moving
inside the warped throat (toward the infrared end), the
probe brane will move to the boundary, with its potential
energy being unbounded from below. If the spatial direc-
tions of the probe brane are compactified, then the back-
ground will have nonperturbative instability with respect
to the spontaneous brane-antibrane creation [41].

8We explained in the previous section that the most efficient
inflation occurs for y, = 0.
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FIG. 1. Numerical analysis of the slow-roll condition in

de Sitter deformed N = 2* local warped geometries. The
n(py) parameter is the large-r asymptotic of the corresponding
plot n(r, pg). In the regime py > 1, py;(po) < 0. Thus corre-
sponding slow-roll parameter is n = n_, defined by (2.14).
Notice that with py = 1.3, n_ <0, and thus from (2.13), the
background is unstable.

oaz P, =99
0.5
0.4 _
= ] p"_'9
~ ]
+ ]
:U.S:
0.2 P,=-8
17
0.1
i P,=-6
U_IIIIIIIIIIIIIIIIIIIIIIIIIIIII
Z/ 10 20 30 40 B0 &0

FIG. 2. Numerical analysis of the slow-roll condition in de
Sitter deformed N = 2* local warped geometries. The n(p,)
parameter is the large-r asymptotic of the corresponding plot
1n(r, py). In the regime 0 =< py =1, p;(pg) = 0. Thus the
corresponding slow-roll parameter is n = 5., defined by
(2.16).
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FIG. 3. The slow-roll parameter 7 as a function of p, for D3
brane inflation in de Sitter deformed N = 2* throats. For p, >
17 n=7-, and 0 = Po =1, n= 7+ For Po = Pecritical =~ 1~2,
we have n_ <0, which according to (2.13) implies the insta-
bility associated with the presence of a tachyonic mode in the
spectrum of the holographically dual gauge theory.

ITIL. INFLATION IN DE SITTER DEFORMED MN
BACKGROUND

Typically an inflaton of a brane inflationary scenario in
string theory is identified with a scalar coordinate of a 3-
brane. This is the case, in particular, for the inflationary
model of [7], and the model discussed in the previous
section. Since string theory compactification manifold
might contain topologically nontrivial cycles, one might
wonder whether a more exotic inflationary scenario might
be slow roll. Specifically [14], one can imagine inflation
realized by a probe Dp brane, for p > 3, wrapping a (p —
3) cycle of the compactification manifold. In the follow-
ing two sections we study inflation from D5 branes wrap-
ping a two-cycle of a local de Sitter deformed geometry.
We begin with inflation modeled by a D5 brane wrapped
on a two-cycle of de Sitter deformed MN geometry [22].

After reviewing the construction of the background
[23], we study D5 probe dynamics. Unfortunately, the
slow-roll inflation is not possible in this model. For a
canonically normalized inflaton we find

3
=_. 3.1
MmN 3 (3.1
A. The background

The de Sitter deformation of the MN supergravity
background was constructed and studied in detail in
[23]. Here, the string frame metric is
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1
dsiy = F2(dsa)” + ”[d/ﬂ + G+ Y (o,
a

- Aa)2:|, (3.2)

where 3 is a round $? [parametrized by (6, ¢)] which
the branes wrap,

1
(ds pa)*(x) = —dr* + ?costhtdﬂg, (3.3)

and w, are the SU(2) left-invariant 1-forms on the 3
[parametrized by (6, ¢, )] transverse to the NS5 branes,

w; = cos¢pdl + sing sinfdy,
wy = — singdf + cose sinfdiy,
w3 = d¢ + cosOdi.

(3.4)

Also in (3.2), A, are the SU(2)y gauge fields on the S>
realizing the twist,
Al = adé,

A, = asinfd e, A; = cosfd .

(3.5)

Finally, there is a dilaton ® =Ing,, and a Neveu-
Schwarz—Neveu-Schwarz (NS-NS) 3-form flux

H; = n[_%(wl —A) A (@; — A) A (w3 — Ajz)

1
+ Z‘ZIFQ Alw, — Aa)} (3.6)

where F, = dA, + %egbCAb A A,. Altogether, the back-
ground is parametrized by four functions F, G, a, g, of
the radial coordinate p € [0, +0).

With this ansatz, the type IIB supergravity equations of
motion for the deformed MN model are reduced to’

0— 'a’F4:|/ 3 aF*a*—1)

L & &G
—(GZ)IF4 / F4
Rl IRyt (R (T

r 1\ F*
0=|GF 5] | — 555l —-1)7
g 4g:G

L N

3.7)

+ 2G?[8G? + (d')*]},
0— '(F4)’G2}/ _ 12nH?*F?G?
L g} g

There is also a first order constraint coming from fixing

°The prime denotes derivative with respect to p.
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the reparametrization invariance (the choice of p),

0 = PRGASG))? + 4¢3 (G — 4GV (&)
— @] + gilla® — 17— 8G(1 +2G7)])

+ 16gSG3{3gSG[(F’)2 —aH?] ¢ 2(F')2g3(§)’}.

(3.8)

B. Probe dynamics

We will study D5 probe dynamics, where the probe
brane extends in four de Sitter directions, and wraps the
), directions. For this we would need to go to S-dual
geometry, and compute the pullback of the RR Cg to the
brane worldvolume. Note that, performing S-duality we
find

, ds(D5) = g;'ds%(NS5),
<. sa(D5) = g S;t( ) 3.9)
Co = —B Ce = —B,
where ds?,(NS5) is the string frame metric (3.2), and
dB = g;> x H;, (3.10)
where the Hodge dual is taken in NS5 metric (3.2).
Explicitly, we find

B = volyy A [Vl(p) sindd(6) A d(J)

Y ) nF*a

+ Valp)singd(y) A d(o) + "¢ - @2} 3.11)

where vol 34 is the volume form on M, (3.3), and

Vi - nF*(a* — a®> — 16G*) Vi nF*(1 — a?)
T e 0 T T sge

O, = sinf sinf singd(P) A d(i) + sinf cospd(h) A d(6)
+ sinf cosdpd(p) A d(6) + singd(6) A d(6),
(3.12)

where again, primes denote derivatives with respect to p.
Notice that only the first term in (3.11) survives the pull-
back to the worldvolume of the D5 probe.

Consider a D5 probe with the worldvolume M, X S2,
where $2 is parametrized by (6, ¢) in (3.2). The probe
brane action reads [42]

1
Sps = — d°¢é—/~8ps +
D5 Ms famxsz fg?5 8ps T Ms [3\4 y

4

C >
 Co
(3.13)

where gps is the pullback of the ds,(D5) (3.9) to the
probe brane worldvolume, and Cg is given by (3.9),
(3.10), (3.11), and (3.12). For a slowly moving probe in
p = p(M,) direction, localized at a point in S3, we find
the effective action S,
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n2(4G? + a?)F? 1
S, = d*x. /= -4 E(.[1 ———=)a,pd*p — V(p) | 3.14
p fj\’l4 X gﬂ\’l4|: 8g§ s ( 4G2 + a2> wPOo" P (P)i| ( )
where
n(4G?* + a*)F* 1
V(p) = 47T,LL5|:TE< - m) +V, } (3.15)
and the complete elliptic integral is defined as follows
11— X%
E(x) = ——dt. 3.16
(x) ]0 N (3.16)
In what follows we use canonically normalized inflaton p — @
n2(4G?* + a®)F? 1 _
\
leading to We begin with constructing de Sitter deformation of the
1 background [24]. We then study the D5 probe brane dy-
So = f d*x/=gm, [ ~3 9, DD — V(CI))} namics, p_h_ases of the background geometry, and the slow-
My roll condition.

(3.18)
Asymptotic p — oo solution of (3.7) was given in [23]
F = (3nH?*p)'/? + -+,

g = go(p¥ie P + 1),
a=Yp 21+ )+ Cp' e (1 + ),

G’=p+---,

(3.19)

where - - - denote corrections which are subdominant as
p — . Given (3.19), and the normalization (3.17), we
find
9
V(®) = ZHZ(IDZ[I + O(In~'®)], (3.20)
which leads to a slow-roll parameter reported in (3.1). We

conclude that the slow-roll inflation is not possible in this
model.

IV. DE SITTER DEFORMED GKMW
BACKGROUND

Our next example of a wrapped braneworld inflation-
ary model is represented by a D5 probe brane moving in a
de Sitter deformed local warped throat geometry of
GKMW [24]. In the absence of the deformation, H = 0,
GKMW and MN [22] models differ by the supersymme-
try preserving twist for a 5-brane wrapping a two-cycle of
the resolved conifold. Apparently, this difference is not
enough to overcome the large-n problem. Here we find

Nexkmw = 1. 4.1)

A. The background

The supergravity background corresponding to NS5
branes wrapped on S? with JN' = 2 supersymmetry in
four dimensions has been constructed in [24]. In this
section we study de Sitter deformations of this geometry.
Following [24] we construct deformed solution in D = 7
SO(4) gauged supergravity, and then further uplift it to
ten dimensions using [43].

The effective Lagrangian of the relevant D = 7 gauged
supergravity reads [24]

5
L = 1/—g<R - Eaﬂyaf‘y — 9,x0"x

1
_ _672x7y/2F§%1)}F(2)/w + 4826)’/2)’

1 4.2)

where x, y are scalar fields, and F ﬁf)y is a field strength of

the U(1) C SO(4) gauge fields. For the metric and the
gauge field we choose

ds3 = e [F*(dsp,)* + dp*] + a?dQ)},

1 4.3
F® = —volg, (4-3)
8

where (dsay,)* is given by (3.3), and a, f, F, x, y are
functions of a radial coordinate p only.
We obtain the following equations of motion
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a' F U o2y
3’+2—+4 = — XTI, 4.4
< / F) 262" @5
!/ !
"4 (3F 4+ 2“7 + 45 y = _ler 2 e 2xy/2 4 16g26y/2 ,(4.5)
a F 5 g’a*
s F) + [ 37+ aanpy + 2L |+ mpy =S 2 L (L aen g 4.6
(f + InF) A (InF) z(f nF) 7 10¢ We g e’ ) (4.6)
a’ _d a' Voo L oy 2,5/2 5 e 2
A(f +InF)" +2— = 2—(f + InF) + 2(InF)| — + 2(f + InF) |= —e¥ [ —— e 27V/2 4 8g2e¥/2 ) — —(y/)2 — (x)2,
a a a 10 \g%d* 16
“4.7)
" / 2 ) 4
4 3Ly @ + 4—(lnF)’ =5 — S5 P2+ _gled/?), (4.8)
a a a® 5gca 5
0 = 6a2f"(F%) + 6a%(F")* + 6a%(f)*F% + 4(a®)/F2f" + 2(a®)'(F?) + (a')*F?* — 6H?*a?
f f
2
RETyO [32a2g%e% + 5g2a*(y')? + 16g2a*(x)? + 64a’gte?/ +7/2 — g2/ ~2x-y/2], (4.9
g’a
[
In (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9) primes denote Q = e*cos?d + e *sin?6. (4.14)

derivatives with respect to p. With H = 0, F = 1 above
equations are the same as in [24]. We explicitly verified
that though overdetermined, (4.4), (4.5), (4.6), (4.7), and
(4.8) are self-consistent even with H # 0. As in [24] we
can solve for y with

y = —4f.

Consistent Kaluza-Klein reductions on spheres devel-
oped in [43] does not rely on supersymmetry. Thus using
formula of [43], we can uplift the D = 7 solution con-
structed above to a full ten-dimensional solution. We find

1
ds3, = F*(ds,)* + dp* + a’e”*dQO3 + — db*
g

(4.10)

. 20
+ ﬂ(dd;l + cos@dd)* + ¢’sin d‘ﬁz,
g
4.11)
et =0, 4.12)
2 sinf 0
;= %(sinﬁ cosfdx — do) A (d¢,
8

—Xqin2

+ cosfdP) Add, + ————
cosfdd) A d¢, 70

sinfdf A dd A d,,

(4.13)

where the metric is given in the string frame, {0, ¢, ¢,}
are coordinates parametrizing squashed and twisted 3
transverse to wrapped NS5 branes, and

We explicitly verified that for the background (4.11),
(4.12), and (4.13) ten-dimensional type IIB supergravity
equations of motion reduce to (4.4), (4.5), (4.6), (4.7), and
(4.8).

B. Probe dynamics
The computations here parallel those of Sec. III B. For
the 6-form potential Hodge dual to the NS-NS 3-form
flux (4.13) we find
B = vola, AM[Vi(p) + V,(p)cos?d]sindd(6) A d(p)
+ V;(p)cos?f cosfd(p) A d(p)
+ Vi(p)sin®0d(p) A d(¢y)}
= voly, AM[Vi(p) + Va(p)cos?6]sinfd(6) A d($)
+ Vi(p)eos*0d(p) A [cosfd(d) + d(¢))]h  (4.15)

where vol g, is the volume form on M, (3.3), and

F4 3f 4241
V’l = —2a’gF*e¥, V, = rerar ,
8
F4e7f—2x F4e7f—2x (416)
T

The second equality in (4.15) is valid up to gauge trans-
formations B~ B + d A.

As before, we consider a D5 probe brane with the
worldvolume M, X S%. For a slowly moving probe in
p = p(M,) direction, localized at a point in S3, we
find the effective action
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o 1
S, = Ms fM . d*xsinfdfd ¢ \/—g%[—iﬂg(ﬂ)%p&“p - V(p)}

where
2 2
j<p _ F2a263fQ<1 n e*cos?o )1/2’

g*e*Qa’tan’d

V= F4aze3fﬂ(1 +

PHYSICAL REVIEW D 70, 126008 (2004)

4.17)

e* cos?6
g2e*Qa’tan’f

>1/2 + V,(p) + V,(p)cos?6.

(4.18)

As a check, we compare with the N' = 2 supersymmetric flow [24]. Here we have

v d 1

F=1, H=0, L= —2g2z0%, Lo
dz dp ge
ae ™ =g e =1

2 2
Vy= - Z; gzZ di e ], aPT =z,
g* dz
1+ ke 26
_ 4.19
2¢%z ( )

leading to a moduli space cosf = 0 (for all values of the parameter k), and the kinetic term for p on the moduli space

1 - 1 2
- §a263f T0,pItp = — zgzzezg 9,20z, (4.20)
in agreement with [24]. Four-dimensional effective action from S, (4.17) reads
a’F?e3 Q) [ e¥cos?d
Sp = [M d4x«/_gm4|:_T47T/.L5E< 1 - M)aﬁpa”p - V(p)i|, (421)
4
where
4 2.3f e*/cos*0 5
Canonical normalization of the inflaton field is achieved with p — ®
2f 00520
47r,u,5a2F2e3fQE< 1 - %)(?#pa“p =0, Do . (4.23)

In the following section we study asymptotics of the (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9) that would allow the
computation of the slow-roll parameter 7 for the model (4.22) and (4.23).

C. Asymptotics and a phase transition

In this section we discuss different classes of solutions of (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9). There are two
topologically distinct classes of solutions of above equations:

(a): F— Fo,
(b): F—0,

ate™ — gz,

a’e ™ — z,,

where all constants {F, z, ky} are positive. What is the
physical meaning of different infrared boundary condi-
tions? The GKMW model represents a supergravity dual
to d=6 SUN) N =2 supersymmetric Yang-Mills
(SYM) theory compactified (with an appropriate twist)
on S2. The “twist” preserves half of the original super-
symmetries, so that in the infrared we have N =2
SU(N) SYM in four dimensions. The scale of the com-
pactification (up to a numerical factor) coincides with the

e — ky, as

e~ =, as p— 0,
0 (4.24)

\

strong coupling scale A of the four-dimensional gauge
theory. As common in gauge/string duality constructions
with reduced supersymmetry, decoupling the compacti-
fication scale and the scale of the strong coupling
dynamics requires to go beyond the regime of validity
of the supergravity approximation. Once we formulate
such a gauge theory on dS, (or Euclidean $%), the
background spacetime curvature (the Hubble parameter
H) introduces a new infrared cutoff. One would
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expect now two different dynamical regimes in the gauge
theory

(a): A>H,

(b): A< H. (4.25)

The gauge theory regimes in (4.25) are in direct corre-
spondence with the supergravity IR boundary condi-
tions'® (4.24). From (4.11), notice that on the
supergravity side in the case (a) the Euclidean gauge
theory S* is noncontractible, while an S!' C §* parame-
trized by ¢, shrinks to zero size. In the case (b), the
(Euclidean) gauge theory S* shrinks to zero size, while
the squashed and twisted S° transverse to the 5-branes
remains noncontractible. On the supergravity side we
explicitly demonstrate that as the compactification scale
decreases with H kept constant, the system undergoes a
phase transition. The physics of this transition is not clear
to us. We hope to return to this problem in the future.
Let us introduce a new radial coordinate as

r=gp, (4.26)

and
2(r) = ga(r)e 7", f1(r) = e 0

F(r) = gG(r), (4.27)

then (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9) are equivalent
to

0 =[(G* e 2] — 12G*e> 22, (4.28)

0= [(e¥/)22G*] — W (4.29)
0= [nfyer 26y -9 430
0=[(z")e’G + Glelt = 22) (4.31)

22 ’

0= IOOZZGZf%(f/)Z _ ZZGZ(fll)Z + 862f%(zl)2
+4822f2(G')? + 162G f2(10zf'G’ + 5Gf'7/
f1(f1G? — 42°G* — 8G?z* — 24z%)

+47G") + 2 5 ,
z

(4.32)

where prime denote derivative with respect to r as defined
by (4.26).

'"This correspondence is established by noticing that in
case (a) of (4.25), the limit H — 0 must be smooth. The
same phenomena occurs in the related model, de Sitter defor-
mation of the MN background [23].

PHYSICAL REVIEW D 70, 126008 (2004)

1. Case (a)

Corresponding to case (a) in (4.24), the power series
solution in the infrared is

1
=2 +4—72 + O(r%),

20
(22585 + 625 + g§)r?
- k0r2[1 — (%080 . ChLA (9(#)}
1 1 (42585 — 625 — &)1
f==1In(hg) + = In(r) + + O(r*),
5775 30235
3
G = &o + E}’Z + @(’A), (433)
0

where {z, kg, go} are positive integration constants char-
acterizing the ‘“‘size” of the wrapped S in the infrared,
the “size” of the S! C S3 parametrized by ¢, in addition
go characterizes the “size” of de Sitter space; hg is a
trivial modulus corresponding to the value of the dilaton
(4.12) in the infrared. Without loss of generality we will
set hy = 1, which leaves us with the three-dimensional
parameter space of initial conditions: {zy, ko, go}-
Numerically we observe that given {z,, go} there is a
critical value kgiicar = Keritica (2o €o), such that for 0 <

5 272(n) &

027

0 nz 04 (1N ns 1 1.2 14

FIG. 4. De-Sitter deformed GKMW solution exhibits an in-
teresting phase transition, as one varies scales of the geometry
relative to the four-dimensional Hubble parameter H. A typical
evolution of the S? size, z(r)?, wrapped by the 5-branes. Here
we choose infrared boundary conditions (4.33), with g, = 1,
and z(r = 0) = z;, = 0.5. Notice that for ky = 3 the S? collap-
ses at finite r. One can verify that this results in a naked
timelike singularity of the background geometry. For ky = 2,
background geometry is smooth, and the asymptotics are
determined by (4.34).
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ko < kegiical the supergravity solution (4.11) is singularity-
free, while for kg > k.01 the background geometry has a
naked timelike singularity. This singularity is associated
with collapsing of the S? wrapped by the 5-branes at finite
value of the radial coordinate r. A typical evolution of
z(r)? for a given set of initial parameters {zy, k¢, go} in
(4.33) is shown in Fig. 4.

Nonsingular solutions behave asymptotically, r > 1,

as
1 ke
G?> — 3r— = Inr, Z—=r+|(—=—22)nr,
4 2
5 (4.34)
23 PR
57 100 2
where ko, = ke (ko, zg) depends on the infrared data. We

verified (4.34) both analytically and, by extracting rele-
|
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vant asymptotics, numerically. Generically k., # 1,
which implies that asymptotically the S° transverse to
NS5 branes remains squashed. It is somewhat surprising
that the infrared deformation of the theory has such a
profound effect on its ultraviolet properties. On the other
hand, we have to remember that in the ultraviolet we are
dealing with Little String Theory [44,45]. Thus it is
conceivable that the observable phenomena is a reflection
of the UV/IR mixing in this nonlocal model. This “mix-
ing” clearly deserves further study.

2. Case (b)

Corresponding to case (b) in (4.24), the power series
solution in the infrared is

272 — k k2 8z + k
=170+ 3030 2+ O>r), f1=k0+—1004r2+(9(r4), f=hy+ 1%040 2+ O,
(4.35)
472 — ky + 872
G = r[l B R 24(()) 4 042 4 @(r4)}

where {7, ko} are positive integration constants characterizing the “‘size” of the wrapped S? in the infrared, the “‘size”
of the S' C S° parametrized by ¢; hy is a trivial modulus corresponding to the value of the dilaton (4.12) in the

infrared. Without loss of generality we will set hy = 0.

Given (4.35), the two classes of solutions of (4.28), (4.29), (4.30), (4.31), and (4.32) differ depending whether k, >

. 11
kcritical or kO < kcritical? for a certain kcritical

= kesitical (20)- In the former case the S which NS5 branes wrap starts in the
infrared r = O at a finite radius z,, and ultimately collapses to zero size at finite r =

Fsingular» Where the background has a

naked timelike singularity. For ko < k.;ca1 the supergravity flow is nonsingular, moreover as r — oo we find the same

asymptotics as in (4.34). Again, generically k,, # 1.

D. Slow roll

Given asymptotics of the nonsingular solution (4.34) (recall that the dimensionless radial coordinate r is given by
(4.26)), the probe brane potential (4.22) in terms of a canonically normalized inflaton field ® (4.23) becomes

N/

2,6
V(P) = H2<1 - ﬁ><b ln(q) g° ) +O(1) |, i g2 > 1,
c0s“6 + ky.sin“6 wsH? MmsH

leading to generically large slow-roll parameter

/_koo CI)2g6
=(1-— 1 + 0O(1) |
nGKmMw < cos?6 + kwsin20>[ n<M5H2> ( )i|

4.37)

Depending on the infrared data of supergravity phases in
Secs. IVC1 and IV C2, nonsingular solutions can have
asymptotically k,, either greater or less than 1, see Fig. 5.
From (4.36), for k., > 1 the probe brane potential is
locally minimized for sinf = 0, which leads to a poten-
tial unbounded from below for large values of ®. Here,

"From (4.35) it is tempting to speculate that keica (o) = 22
Explicit numerical integration shows that kgica(zo) < 223.

(4.36)

\

the probe brane would move toward the boundary, signal-
ing the instability encountered previously in de Sitter
deformed N = 2* warped throat geometries. For ko, <
1 the probe brane potential is locally minimized for
cosf = 0. From (4.37) it appears that fine-tuning k., —
1_ would lead to a slow-roll inflation. This is not so, in

fact for k., = 1 [including the subleading terms in (4.34)]
we find
1 8e d2g
=1+ -cos?61 1 +0(1
TGKMW koo—1_ 2C0S H[COSZQ n<M5H> ( )}

(4.38)

resulting in (4.1).
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FIG. 5. Large r (ultraviolet) asymptotics of nonsingular so-

lutions of both phases in the de Sitter deformed GKMW
background (4.34) are characterized by ko = lim,_f(7),
where f,(r) determines the “squashing” of the S3 transverse
to the NS5 branes. The phase (b), (4.24), asymptotic behavior
of nonsingular solutions, depending on the infrared data
{ko, zo = 1}. Notice that k. can be both larger or less than 1,
which leads to a vastly different dynamics of the probe branes
(4.36).

V. PHENOMENOLOGY

In this section we discuss phenomenological implica-
tions of the mobile brane inflation in de Sitter deformed
warped throats of the compactification manifold.
Specifically we comment on inflation in KS throat [6],
and de Sitter deformed N = 2* [36], MN [22], GKMW
[24] throats of the compactification manifold.

A. Inflation in KS throat

The effective four-dimensional low-energy description
[7] and the detailed probe brane computation of [14] show
that the slow-roll inflation is not possible in this simplest
setup. Here, the slow role parameter is n = % An inter-
esting proposal to circumvent this obstacle was presented
in [35], where inflation is realized by a mobile D3 brane
near the enhanced symmetry point of a compactification
manifold with several identical KS throats. One notice-
able signature of the model [35] is the generic prediction
for the tilt parameter n < 1 in the spectrum of density
perturbations. Current observational data indicate that for

a class of models with n < 1 [46,47]
n=0.97. 5.1

We emphasize the constraint (5.1) because in the infla-
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tionary models discussed below, though we also would
have to resort to a multiple throat geometry, we find n >
1. Thus the tilt in the spectrum is a characteristic feature
distinguishing our models from the one in [35].

B. Inflation in de Sitter deformed N = 2* throat

Slow-roll inflation in the de Sitter deformed N = 2*
throats was proposed in [19] and studied in detail in
Sec. II of this paper. One noticeable difference of this
setup compared to inflation in KS throat [7] is the fact
that the inflationary throat does not end in the IR: the
redshift factor Z at the ‘“bottom” of the inflationary
throat is exactly zero. This means that we cannot generate
a nonzero four-dimensional Hubble parameter by placing
a D3 at the bottom of the inflationary throat. Indeed,
recall that in the de Sitter vacua construction of KKLT
[6] H> ~Z* A simplest resolution is to assume that
compactification manifold has (as least) two warped
throat geometries: one being an original KKLT throat,
while the inflationary one is de Sitter deformed N = 2*.
A cartoon picture of this inflationary scenario is shown in
Fig. 6. One might worry whether an “infinite” in the IR
N = 27 throat can be consistently “glued” into a com-
pactification manifold along with stabilizing the parame-
ters that fix 7 (see Fig. 3) of the local model. We do not
have a definitive answer to this question. What is clear is
that the “infinite volume” of the local de Sitter N = 2*
throat comes from its UVend (as the radial coordinate in
(2.4) goes to infinity), which is expected to be cut off very
much like a volume of local KS geometry [15] is cut off in
the GKP compactification [5]. Thus, having a zero red-
shift at the bottom of the inflationary throat of this type
does not pose an immediate obstacle for the compactifi-
cation.'? Also, though D3 brane at the end of the infla-
tionary throat does not affect H (which is determined by
KS throat of the compactification manifold), the exit
from inflation might require putting a D3 brane there
anyway. In what follows we assume that a cartoon of
Fig. 6 can be realized and study phenomenological im-
plications of inflation in this model.

We assume that compactification manifold size L is
large in string units

LS > (a')}, (5.2)

and

g, < 1. (5.3)

Above conditions validate the use of the supergravity
approximation. From the low-energy effective four-
dimensional perspective the potential energy driving ac-
celeration is

"It is extremely interesting to rigorously establish whether
such throats can be compactified.
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6—dim compactification manifold

k
N=2 throat

KS—throat

FIG. 6. Inflationary scenario with a mobile D3 brane in de
Sitter deformed N = 2 throat. In addition to 2N* = 2* throat,
compactification manifold is required to have a KS throat with
a D3 brane at the bottom. The Hubble scale of the four-
dimensional de Sitter vacuum is set by the fluxes and the D3
in the Klebanov-Strassler throat. The slow-roll inflation is
realized by a mobile D3 brane in N = 2 throat.

V(@) = 3m2 H> + gn(po)hﬂqﬂ[l + (9(

L*H’T,
z )}

(DZ
64

where the ® independent term is a cosmological constant
of the KS throat, and n(p,) is the slow-roll parameter of
mobile D3 brane in the inflationary throat summarized in
Fig. 3. Effective potential Veff is computed in the ap-
proximation for a mobile brane to be far from the IR end
of the inflationary throat. The latter approximation is
reflected in the condition [14]

412
LHT3<<1.

o (5.5)

In (5.4) m,,; is the four-dimensional Planck constant

my, = miL® ~ (a') g 2L, (5.6)
and Tj; is Einstein frame 3-brane tension
T; ~ (a’)2 5.7

Finally, the computations for n(p,) were done in the local
geometry, i.e., the mobile brane should be far from the
UV end of the inflationary throat. Relating the brane
position inside the throat and inflaton field ® as in
[14,19] this translates into

LTY? > ®. (5.8)
Both conditions (5.5) and (5.8) imply
HL < 1. (5.9)
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Notice that HL is a characteristic of the KS throat of the
compactification manifold.

The inflationary parameters corresponding to Veff
are [48]: slow-roll parameters {7, €}, the tilt in the spec-
trum of the density perturbations n, the scale of the
adiabatic density perturbations &y, the power in the
gravity wave perturbations P,

VI/
_ 2 eff _
n = my == n(pg), (5.10)
"V o
6_1m2< {%)2—117(;:)2( ) 5.11)
i (Y = Lo () ,
27\V 2 ol

D, \2
n=1—6e+2n=1- 377(P0)2(m—> + 21(po).

pl

(5.12)

3/2
oy = Lt Yy 1 H (5.13)

NERL mZZ Véff 57n(po) ;’
P L

== 5.14
grav 277_2 mil ( )

where ®; is the value of the inflaton field N, = 60 e-
foldings before the end of inflation.
(i) The first observation is that @; must satisfy (5.8).
Thus, given (5.6) and (5.7) and 5(p,) < 1, we have
an upper bound on the slow-roll parameter e

LTY*\2  (alg,\?
€K n(p0)2< m3 ) ~ <aL§“> <1, (5.15
pl

where we used the validity of the supergravity
approximation (5.2) and (5.3). This immediately
implies that in our model the tilt in the spectrum
of perturbations is

n=1+2n(py) > 1 (5.16)

Current observational data for models with n > 1
constrain (in a 95% confidence region) [46,47]

(5.17)

leading to 0 < 1 < 0.14. From Fig. 3 there is a
large region of the allowed'® p,-parameter space
(more than 60%) consistent with this constraint.
(i1) The slow-roll condition (assuming we adjust n <
0.14) is valid as long as Veff (5.4) is justified.
With potential (5.4), inflation starting at P, and
ending at @4 will produce N, e-foldings

1<n<1.28,

3By the construction of the model.
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. ln<q)3tm>.
7(po) Deng
Taken for @, and D4 the UV (5.8) and IR (5.5)
cutoffs of the local inflationary throat, respec-

tively, we find that the maximal number of e-
folding in this model is

N, =

(5.18)

1
Nmax ~ — In(HL).

5.19
1(po) ©-19)

(iii) To illustrate that phenomenologically viable sce-
narios are possible let us assume that n = 0.02
(which is clearly possible from Fig. 3). We take

m, = 2.4 X 108 GeV,

a2 =1/1, =3.5 X 10" GeV. (5:20)
We further assume L ~ 5/;. Given [46]
Sy =1.9X%1073, 5.2
we find
kil ~ 6.0 X 107, (5.22)

b.

1

Let us assume that inflation starts - from the UV

119

cutoff of the throat, ®; = 5 LT;’". Then (5.22)
leads to a low scale of inflation
H = 6.7 X 108 GeV. (5.23)

From (5.19) the maximum number of e-foldings
in this model

N4 ~ 693. (5.24)

The power in gravity wave perturbations in this
model is

P gray = 40 X 10721, (5.25)

which is much below the level of detection in
future experiments.

C. Inflation from wrapped braneworlds

In Secs. IIT and IV of this paper we considered exotic
inflationary models, where a mobile D5 brane was wrap-
ping a two-cycle in the inflationary throat. These local
inflationary throats are de Sitter deformed MN geometry
[23], and the newly constructed de Sitter deformation of
the GKMW background [24], respectively. In the former
case we found nyy = %, while in the latter nggyw = 1
(generically nggayw >> 1). Thus in the simplest inflation-
ary scenario advocated here, these models are excluded.

VI. CONCLUSION

In this paper we discussed probe brane dynamics as a
tool to study inflation in four-dimensional de Sitter vacua
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of string theory warped flux compactifications. This is a
fruitful approach to study brane inflation in the frame-
work proposed in [7], where the inflaton field is identified
with the mobile brane position deep inside the inflation-
ary throat. In an attempt to find slow-roll single field
inflationary models we investigated probe brane dynam-
ics in various local de Sitter deformed warped throat
geometries. Specifically, we studied D3 probe dynamics
in de Sitter deformed N = 2* throat [19,39], as well as
exotic inflationary models with a D5 inflationary brane
wrapping a two-cycle of the de Sitter deformed MN
geometry [23], or de Sitter deformed GKMW geometry
constructed in this paper. While the probe brane dynam-
ics in local geometries cannot address the question of the
physics responsible for the generation of the four-
dimensional Hubble scale, it has an advantage of being
a rigorous analytical tool to probe the dynamics of the
effective four-dimensional inflation. We found that
“wrapped braneworld inflationary” models based on D5
branes wrapping a two-cycle of the resolved conifold
cannot lead to slow-roll inflation. On the other hand,
inflation from mobile D3 branes in de Sitter deformed
N = 27 throats can be slow roll. Thus, it is interesting to
further study the latter scenario.

In view of this, the most outstanding question is under-
standing the compactification of the de Sitter deformed
N = 27 throats. A possible phenomenological setup is
proposed in Fig. 6. To recapitulate, consider a Calabi-Yau
threefold with fluxes generating a KS throat. These fluxes,
and the compactification manifold can be chosen in such
away [4,5] that the only remaining modulus would be the
overall Kdhler modulus of the compactification manifold.
The latter can be further fixed by nonperturbative string
instanton effects [6]. Further introducing a de Sitter brane
at the end of the KS throat can lead to a four-dimensional
de Sitter vacuum [6]. A stack of a large number of D3
branes away from the KS throat of the compactification
manifold would produce additional throat with zero red-
shift factor at the bottom.'* At this stage this will be a
standard AdSs throat with four-dimensional de Sitter
slicing and the Hubble scale as produced by the D3 brane
in the KS throat. As such, slow-roll inflation in this “de
Sitter deformed”'> N =4 throat is yet impossible.
Local N =4 throat (AdSs X S background) can be
deformed into N = 2* throat (supergravity flow of
Pilch and Warner [36]) by turning on 3-form fluxes and
appropriately deforming the original background geome-
try. Likewise, local N = 4 throat with four-dimensional
de Sitter slicing can be deformed into de Sitter N = 2*
throat [39]. It is natural to expect that one can turn on an

“We are assuming that sufficient number of the orientifold
planes and/or 3-form fluxes is introduced to satisfy RR 5-form
Bianchi identity.

15«Deformation” here is a misnomer, as all that is required is
a different slicing of the same manifold.
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analogous deformation parameter (denoted p, in Fig. 3)
for the stack of D3 branes located on a compact manifold
away from the KS throat with a D3 brane sitting at its
bottom. This procedure would ‘““compactify” the local de
Sitter 2N = 2" throat, inside which we argued slow-roll
inflation is possible. In a sense, this is parallel to the
construction of GKP [5] where a local (noncompact) KS
throat was embedded inside a Calabi-Yau manifold. As a
result of compactification, py, which was a parameter of
the local geometry, will be promoted to a dynamical field.
An important question is whether dynamics is such that
pPo can be stabilized in the region where the slow roll is
allowed, see Fig. 3.

Phenomenologically, inflation in the de Sitter deformed
N = 2% throat will be characterized by having a rela-
tively low Hubble scale (H ~ 108-10'° GeV), negligible
(unobservable) power in the gravity wave perturbations,
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and larger than 1 tilt in the spectrum of density pertur-
bations. It will be interesting to explore models for the
exit from inflation in this scenario (we mentioned that
this might require placing D3 brane in the inflationary
throat as well). Also, assuming that the Standard Model
fields live in the KS throat, they will not couple directly
to the inflaton. Thus finding efficient mechanisms for
reheating might be challenging as well.
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