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Adventures in thermal duality. I. Extracting closed-form solutions
for finite-temperature effective potentials in string theory
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Thermal duality, which relates the physics of closed strings at temperature T to the physics at the
inverse temperature 1=T, is one of the most intriguing features of string thermodynamics.
Unfortunately, the classical definitions of thermodynamic quantities such as entropy and specific
heat are not invariant under the thermal duality symmetry. In this paper, we investigate whether there
might nevertheless exist special solutions for the string effective potential such that the duality
symmetry will be preserved for all thermodynamic quantities. Imposing this as a constraint, we derive
a series of unique functional forms for the complete temperature dependence of the required string
effective potentials. Moreover, we demonstrate that these solutions successfully capture the leading
temperature behavior of a variety of actual one-loop effective potentials for duality-covariant finite-
temperature string ground states. This leads us to conjecture that our solutions might actually represent
the exact effective potentials when contributions from all orders of perturbation theory are included.
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I. INTRODUCTION

Some of the most intriguing features of string theory
have been the existence of numerous dualities which
connect physics in what would otherwise appear to be
vastly dissimilar regimes. Such dualities include strong/
weak coupling duality (S duality) as well as large/small
compactification radius duality (T duality), and together
these form the bedrock upon which much of our under-
standing of the full, nonperturbative moduli space of
string theory is based.

There is, however, an additional duality which has
received far less scrutiny: This is thermal duality, which
relates string theory at temperature T with string theory
at the inverse temperature T2

c=T where Tc is a critical (or
self-dual) temperature related to the string scale. Thermal
duality follows naturally from T duality and Lorentz
invariance, and thus has roots which are as deep as the
dualities that occur at zero temperature. Given the im-
portance of dualities of all sorts in extending our under-
standing of the unique features of nonperturbative string
theory, we are led to ask what new insights can be gleaned
from a study of thermal duality.

In this paper, we shall focus on the first feature that
immediately strikes any student of this subject: Classical
thermodynamics, as currently formulated, is not invari-
ant (or covariant) under thermal duality. While certain
thermodynamic quantities such as the free energy and the
internal energy of an ideal closed string gas exhibit
invariances (or covariances) under thermal duality trans-
formations, other quantities such as entropy and specific
heat do not.
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In this paper, we shall investigate whether thermal
duality might nevertheless happen to be preserved for
special choices of the effective potential. In other words,
we shall investigate whether it is possible to construct an
effective potential such that all corresponding physically
relevant thermodynamic quantities will turn out to be
duality covariant. Thus, in this way, we seek to exploit
thermal duality in order to constrain the effective poten-
tial in a manner that transcends a direct order-by-order
perturbative calculation.

Remarkably, we shall find that there exist a unique
series of functional forms which have this property.
Moreover, we shall demonstrate that these solutions suc-
cessfully capture the leading temperature dependence of
the one-loop effective potentials for a variety of finite-
temperature string ground states involving time/tempera-
ture compactifications on S1 (circles) and S1=Z2 (orbi-
folds) in all dimensions D � 2. The precision with which
this occurs leads us to conjecture that our solutions might
actually represent the exact solutions for the correspond-
ing string effective potentials when results from all orders
of perturbation theory are included.

Note that a preliminary summary of some of these
results has appeared in Ref. [1]. Our goal here is
to provide a more complete and self-contained dis-
cussion and derivation of these results. There are,
however, numerous topics pertaining to string thermody-
namics which we will not address in this paper.
These include the nature of the Hagedorn phase transition
as well as the Jeans instability and general issues con-
cerning the interplay between gravity and thermodynam-
ics. It would be interesting to explore the extent to which
our results concerning thermal duality can shed light on
these issues, and we hope to address these questions in
future work.
05-1  2004 The American Physical Society
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II. THERMAL DUALITY AND THE RULES
OF THERMODYNAMICS

Let us begin by quickly presenting some of the key
ideas that will be relevant for our discussion. Our goal
will be to highlight the manner in which the rules of
standard thermodynamics generally tend to break ther-
mal duality.

Just as in ordinary statistical mechanics, the funda-
mental quantity of interest in string thermodynamics is
the one-loop thermal string partition function
Zstring��; T�. This partition function generally exhibits
the symmetries of the underlying theory. For example,
we shall assume that Zstring is invariant under modular
transformations:

Zstring��� 1; T� � Zstring��1=�; T� � Zstring��; T�; (2.1)

where � is the complex modular parameter describing the
shape of the one-loop (toroidal) world sheet. Modular
invariance is required for the consistency of the corre-
sponding closed string model, and arises from the as-
sumption of conformal invariance at the one-loop level.

More importantly, however, we shall also assume that
Zstring is invariant under thermal duality:

Zstring��; T
2
c=T� � Zstring��; T�; (2.2)

where Tc is the self-dual temperature. Thermal duality
also has deep roots (for early papers, see Refs. [2–7]). In
general, finite-temperature effects can be incorporated
into string theory [8] by compactifying an additional
time dimension on a circle (or orbifold [9]) of radius
RT � �2
T��1. However, Lorentz invariance guarantees
that the properties of this extra time dimension should be
the same as those of the original space dimensions, and T
duality [10–12] tells us that closed string theory on a
compactified space dimension of radius R is indistin-
guishable from that on a space of radius R2

c=R, where
Rc �

�����
�0

p
is the self-dual radius. Together, these symme-

tries then imply thermal duality, with Tc 	 Mstring=2
.
Note that the thermal duality symmetry holds to all
orders in perturbation theory [5].

All thermodynamic quantities of interest are generated
from Zstring. The finite-temperature vacuum amplitude
V �T� is given by [2,8,13]

V �T� 	 �
1

2
MD�1

Z
F

d2�

�Im��2
Zstring��; T�; (2.3)

where M 	 Mstring=2
 is the reduced string scale; D is
the number of noncompact spacetime dimensions; and
F 	 f�:jRe�j � 1

2 ; Im� > 0; j�j � 1g is the fundamental
domain of the modular group. Note that Tc � M. In
general, V �T� plays the role usually taken by the loga-
rithm of the statistical-mechanical partition function.
Because of its role in governing the dynamics of the
theory, we shall occasionally refer to the vacuum ampli-
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tude V �T� as the ‘‘effective potential’’ even though this
terminology is often used instead to describe the free
energy F. Given this definition for V , the free energy
F, internal energy U, entropy S, and specific heat cV then
follow from the standard thermodynamic definitions:

F � TV ; U � �T2 d
dT

V ;

S � �
d
dT

F; cV �
d
dT

U: (2.4)

It is easy to see that the thermal duality invariance of
Zstring is inherited by some of its descendants. Since V is
just the modular integral of Zstring, V is also invariant
under thermal duality transformations:

V �T2
c=T� � V �T�: (2.5)

Likewise, it is easy to verify that the free energy F and
the internal energy U transform covariantly under ther-
mal duality:

F�T2
c=T� �

�
Tc
T

�
2
F�T�; U�T2

c=T� � �

�
Tc
T

�
2
U�T�:

(2.6)

Thus, these quantities also respect the thermal duality
symmetry; in fact, this symmetry sets a zero for the
internal energy such that U�Tc� � 0.

Unfortunately, the entropy and specific heat fail to have
any closed transformation properties under the thermal
duality symmetry. Specifically, we find

S�T2
c=T� � �S�T� � 2F�T�=T;

cV�T2
c=T� � cV�T� � 2U�T�=T: (2.7)

This failure to transform covariantly suggests that en-
tropy and specific heat are improperly defined from a
string-theoretic standpoint. At best, they are not the
proper ‘‘eigenquantities’’ which should correspond to
physical observables.

It is easy to diagnose the source of this problem. In
general, a function f�T� will be called thermal duality
covariant with weight k and sign � � �1 if, under the
thermal duality transformation T ! T2

c=T, we find

f�T� ! f�T2
c=T� � ��Tc=T�kf�T�: (2.8)

Thus, V has �k; �� � �0; 1�, while F and U have �k; �� �
�2; 1� and �2;�1�, respectively. Note that � � �1 are the
only two possible choices consistent with the Z2 nature of
the thermal duality transformation. In general, multipli-
cation by T is a covariant operation, resulting in a func-
tion with weight k� 2 and the same sign for �. However,
the temperature derivative d=dT generally breaks duality
covariance. To see this, let us imagine that f�T� has
weight k and sign �. Evaluating df=dT at temperature
T2
c=T, we then find
-2
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�
df
dT

�
�T2
c=T� �

d

d�T2
c=T�

f�T2
c=T�

� ��
�
T
Tc

�
2 d
dT

��Tc=T�kf�T��

� ��
�
Tc
T

�
k�2

�
df
dT

�
kf
T

�
: (2.9)

Thus, as a result of the second term above, we see that
df=dT fails to transform covariantly under the thermal
duality transformation unless f itself has k � 0. Since the
vacuum amplitude V has k � 0, this explains why the
internal energy U continues to be duality covariant (with
k � 2) even though it involves a temperature derivative.
However, since the free energy F and the internal energy
U each already have k � 2, we see that subsequent de-
rivatives yield quantities (such as the entropy S and spe-
cific heat cV) which are no longer duality covariant.
III. SPECIAL SOLUTIONS FOR STRING
EFFECTIVE POTENTIALS

Let us now consider whether there might exist special
finite-temperature vacuum amplitudes V �T� in which
thermal duality covariance is preserved for all thermody-
namic quantities. In other words, we shall seek special
solutions for V �T� such that all of its thermodynamic
descendants turn out to be duality covariant, even though
the rules by which these quantities are calculated explic-
itly break this symmetry. We emphasize that, in choosing
this line of attack, we are necessarily losing generality;
we are essentially limiting our attention to special, highly
symmetric string ground states. Nevertheless, as we shall
see, it is important to investigate this possibility.

A. General approach

In order to proceed along these lines, we first need to
address a general mathematical question: From among all
duality-covariant functions f�T� of weight k and sign �,
are there any special functions f�T� for which df=dT
‘‘accidentally’’ turns out to be covariant?

Given the derivative in Eq. (2.9), we see that there is
only one way in which df=dT can possibly be thermal
duality covariant: We must have

df
dT

�
kf�T�
T

� ��
�
Tc
T

�
‘ df
dT

(3.1)

for some sign � and exponent ‘. If Eq. (3.1) is satisfied,
then we see from Eq. (2.9) that df=dT will indeed be
covariant, with sign �� and weight k� ‘� 2. Note that
we must have � � �1 in order to produce a consistent
sign for df=dT. (The minus sign in front of � has been
inserted for future convenience.)

It is not difficult to find solutions for f�T� in Eq. (3.1),
since this is nothing but a linear first-order differential
equation. For ‘ � 0, we thus obtain the general solution
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f� �T‘ � �T‘c �k=‘; (3.2)

where we are disregarding an overall, arbitrary,
T-independent normalization factor. However, in this
derivation we assumed that f has weight k and sign �.
Checking the solution in Eq. (3.2), we find that this does
not restrict the value of ‘, but does require that �k=‘ � �.

By contrast, if ‘ � 0 in Eq. (3.1), we obtain a nonzero
solution for f�T� only if � � 1 and � � �1:

f� Tk=2: (3.3)

As required, this also has weight k.
Thus, from among all possible covariant functions

f�T� with weight k and sign �, we have found that only
an extremely restrictive form for f�T� guarantees that
df=dT is also thermal duality covariant: Either f�T�
must have the form given in Eq. (3.2) where ‘ � 0 is
arbitrary and where �k=‘ � �, with � � �1, or f�T� must
have the form given in Eq. (3.3), which can occur only if
� � 1. Of course, overall multiplicative factors of Tc can
always be introduced in either expression as needed on
dimensional grounds.

B. Preserving duality covariance for entropy and
specific heat: a thermal duality ‘‘bootstrap’’

Using this, let us now reconsider our original thermo-
dynamic problem. We begin with a vacuum amplitude V ,
which we assume invariant under thermal duality trans-
formations. Thus, V necessarily has k � 0 and � � 1.
From this, we proceed to derive F and U. Once again,
these quantities are also automatically duality covariant;
they each have weight k � 2 and their signs are � � �1
and �1, respectively. Up to this point, the functional
forms for V , F, and U are completely arbitrary (subject
to the above constraints on their weights and signs).
However, it is in calculating S and cV that potential
difficulties arise, for we must demand that S and cV be
simultaneously covariant as well. This then provides two
new nontrivial constraints on the forms of F and U, as
discussed above. Working backwards, this then provides a
very restrictive set of possibilities for the vacuum ampli-
tudes V from which both F and U are derived. In other
words, we will have essentially used a bootstrap formed
by demanding the covariance of S and cV to deduce a
particular form (or set of forms) of the vacuum amplitude
V .

Carrying out this calculation is relatively straightfor-
ward. We first focus on the entropy S. In order for S to be
thermal duality covariant, the free energy F (which must
have weight k � 2 and sign � � 1) is required to take the
form

F�T� � �
�T‘ � �T‘c �

2=‘

Tc
; (3.4)

where
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�2=‘ � 1: (3.5)

Note that the factor of Tc in the denominator of Eq. (3.4)
has been inserted on dimensional grounds (where we
implicitly express our thermodynamic quantities in units
of MD�1); likewise, we have also inserted an overall
minus sign for future convenience. Also note that
Eq. (3.5) restricts us to � � �1 for even ‘, but allows � �
�1 for odd ‘. This form for F guarantees that S, which
takes the form

S�T� � 2
T‘�1

Tc
�T‘ � �T‘c �2=‘�1; (3.6)

is covariant with weight ‘ and sign �.
We are of course deliberately disregarding the ‘ � 0

possibility, stemming from Eq. (3.3), that F�T� � T. We
reject this possibility not only because this would make
F�T� independent of Tc (which is unexpected from a
string calculation), but also because it leads to an entropy
which is completely temperature independent and, hence,
unphysical.

Given F�T� in Eq. (3.4), we immediately determine
that V �T� must take the general form

V �T� � �
�T‘ � �T‘c �2=‘

TTc
: (3.7)

Note that this is indeed invariant under thermal duality
transformations, as required. This in turn implies that
U�T� must have the general form

U�T� �
1

Tc
�T‘ � �T‘c �

2=‘�1�T‘ � �T‘c �; (3.8)

which is of course consistent with our requirement that U
have weight 2 and sign �1. Thus, up to this point, we have
found that the entropy will be thermal duality covariant
(along with the effective potential, the free energy, and
the internal energy) if and only if V �T� takes the form
(3.7).

We now impose our requirement that cV also be ther-
mal duality covariant. As we shall see, this will provide a
constraint on the value of ‘. Since U�T� is given in
Eq. (3.8), we can immediately calculate the specific
heat, obtaining

cV�T��2
T‘�1

Tc
�T‘��T‘c �

2=‘�2�T‘��‘�1��T‘c �: (3.9)

Clearly, this quantity fails to be duality covariant unless
the final factor in square brackets takes the form T‘ �
�T‘c with � � �1, or unless this factor takes the form T‘

(in which case this factor joins with the overall T‘�1

prefactor to modify the duality weight of cV). These
two options occur only for ‘ � 2 or ‘ � 1, respectively.

Note that the ‘ � 1; 2 cases provide maximal duality
symmetry for our solutions. Indeed, in these cases, our
solution for U�T� also simultaneously takes the form
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U�T� �
�Tm � �Tmc �2=m

Tc
; (3.10)

for some m and sign � � �1 (with �2=m � �1), as re-
quired from Eq. (3.2) in order to yield a covariant specific
heat cV � dU=dT. Moreover, since the specific heat is
also given by the relation cV � TdS=dT, our solution for
S�T� also takes this same special form in these cases.

Thus, summarizing, we see that our requirement of
preserving general covariance for our thermodynamic
quantities forces them to have a particular form:

V �‘��T� � ��T‘ � �T‘c �2=‘=TTc;

F�‘��T� � ��T‘ � �T‘c �2=‘=Tc;

U�‘��T� � �T‘ � �T‘c�
2=‘�1�T‘ � �T‘c�=Tc;

S�‘��T� � 2T‘�1�T‘ � �T‘c �
2=‘�1=Tc;

c�‘�V �T� � 2T‘�1�T‘ � �T‘c �2=‘�2�T‘ � �‘� 1��T‘c �=Tc;

(3.11)

where

� �

�
�1 ‘ even
�1 ‘ odd:

(3.12)

These solutions are plotted in Fig. 1, and ensure that V ,
F,U, and S are all thermal duality covariant for any value
of ‘. While V , F, and U have duality weights �k; �� �
�0; 1�, �2; 1�, and �2;�1� respectively, the entropy S has
duality weight and sign �k; �� � �‘; ��. Observe that the
traditional relation U � F� TS continues to hold for all
‘.

However, cV will also be thermal duality covariant if
and only if ‘ � 1 or ‘ � 2. The explicit solutions in these
cases reduce to

‘ � 2 : V �2��T� � ��T2 � T2
c �=�TTc�;

F�2��T� � ��T2 � T2
c �=Tc;

U�2��T� � �T2 � T2
c�=Tc;

S�2��T� � 2T=Tc;

c�2�V �T� � 2T=Tc;

(3.13)

and

‘ � 1 : V �1��T� � ��T � �Tc�2=�TTc�;

F�1��T� � ��T � �Tc�
2=Tc;

U�1��T� � �T2 � T2
c�=Tc;

S�1��T� � 2�T=Tc � ��;

c�1�V �T� � 2T=Tc;

(3.14)

where � � �1. Note that cV has weight kc � 2 and sign
�c � 1 for both the ‘ � 2 and ‘ � 1 solutions.
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FIG. 1. The thermodynamic quantities V , F, U, S, and cV in Eq. (3.11), plotted as functions of T for 1 � ‘ � 10 and � � �1, in
units of M 	 Mstring=2
 � Tc. All quantities except for cV are thermal duality covariant for all ‘, while cV is covariant only for
‘ � 1; 2. For these values of ‘, the entropy and specific heat are exactly linear functions of T. Note that cV develops a discontinuity
as ‘! 1, suggesting the emergence of a second-order phase transition in this limit.
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Clearly, the ‘ � 1 and ‘ � 2 solutions are closely
related. They share the same expressions for U and cV ,
yet their expressions for V , F, and S are shifted by
constants or extra linear terms:

V �‘�1� � V �‘�2� � 2�; F�‘�1� � F�‘�2� � 2�T;

S�‘�1� � S�‘�2� � 2�: (3.15)

This shift symmetry will be important in the following.
126005
These ‘ � 1; 2 solutions also exhibit other intriguing
symmetries. For example, since F�T� � ��T2 � T2

c�=Tc
and U�T� � �T2 � T2

c �=Tc for ‘ � 2, we see that F�iT� �
U�T� and U�iT� � F�T�. In other words, we have the
formal symmetry

T ! iT : F $ U: (3.16)

Since F � TV and U � �T2dV =dT, this immediately
leads to a symmetry for V �T�:
-5
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iTV �iT� � �T2 dV
T
; (3.17)

or, equivalently,

dV
dT

�
V �iT�
iT

: (3.18)

This symmetry is remarkable because it relates the trou-
blesome temperature derivative dV =dT to V itself.
Since V �T� is defined through a modular integral as in
Eq. (2.3), this implies that quantities involving the tem-
perature derivative of V can now be written as

dV
dT

� �
1

2
MD�1 1

iT

Z
F

d2�

�Im��2
Zstring�iT�: (3.19)

Moreover, it is easy to show that, just as the symmetry
(3.16) leads to the symmetry (3.18), it also leads to a
symmetry for the second derivative:

d2V

dT2
�

V �T�

T2 �
1

T
dV
dT

�
1

T2 �V �T� � iV �iT��:

(3.20)

It is, in fact, this identity that enforces S � cV for our ‘ �
2 solutions. Similar symmetries also hold for the ‘ > 2
solutions.
1Since we are defining Zcirc to represent the sum over
Matsubara frequencies, we do not include the Dedekind
�-function denominators which would traditionally be required
in order to interpret Zcirc as the partition function of a boson
compactified on a circle of radius RT 	 �2
T��1. This does not
represent a violation of modular invariance, since the extra
factor of

���������
Im�

p
in Eq. (4.4) compensates for their absence. Note

that this factor offsets the similar factors in Zmodel ( just as the
summation in Zcirc combines with the lattice sums in Zmodel),
thereby effectively reducing by one the dimensionality of the
resulting finite-temperature string model compared with the
dimensionality of the original string model at zero
temperature.
IV. COMPARISON WITH EXPLICIT ONE-LOOP
CALCULATIONS: TEMPERATURE

DEPENDENCE OF EFFECTIVE POTENTIALS

We now seek to determine the extent to which our
closed-form solutions match the results of explicit one-
loop modular integrations of the sort that can emerge
from actual finite-temperature string ground states. Such
comparisons are extremely important because our deri-
vation of the functional forms given in Sec. III was ‘‘top-
down,’’ based entirely on thermal duality symmetries,
and did not make reference to any perturbative, order-
by-order calculation. Moreover, our discussion was com-
pletely model independent.

Nevertheless, as we shall now discuss, our expressions
successfully capture the leading temperature dependence
of the one-loop effective potentials for a variety of modu-
lar integrals involving time/temperature compactifica-
tions on S1 (circles) and S1=Z2 (orbifolds). Moreover,
this will occur for all spacetime dimensions D � 2. As
we shall see, the precision with which this occurs will
ultimately lead us to conjecture that our solutions actually
represent the exact solutions for the corresponding string
effective potentials when results from all orders of per-
turbation theory (and perhaps even nonperturbative ef-
fects) are included.
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A. Calculating the one-loop effective potential

Let us first recall the calculation of the one-loop effec-
tive potential for a finite-temperature string ground state
in which the time/temperature direction is compactified
on a circle. This is appropriate, e.g., for compactifications
of the bosonic string, and we shall consider such circle
compactifications for most of what follows. In D space-
time dimensions, the one-loop effective potential for such
compactifications takes the form in Eq. (2.3), where

Zstring��; T� 	 Zmodel���Zcirc��; T�: (4.1)

Here Zmodel represents the trace over the Fock space of
states (i.e., the partition function) of the string model in
question, formulated at zero temperature. For example, in
the case of the bosonic string compactified toD spacetime
dimensions, Zmodel takes the general form

Zmodel � �Im��1�D=2
�26�D�26�D

�24�24 ; (4.2)

where the numerator �26�D�26�D schematically repre-
sents a sum over the 2�26�D�-dimensional compactifi-
cation lattice for left and right movers. Note that, in
general, Zmodel is the quantity which appears in the cal-
culation of the one-loop cosmological constant (vacuum
energy density) of the model:

� 	 �
1

2
MD

Z
F

d2�

�Im��2
Zmodel: (4.3)

By contrast, the remaining factor Zstring represents the
sum over Matsubara frequencies. For extended objects
such as strings, this includes not only ‘‘momentum’’
Matsubara states but also ‘‘winding’’ Matsubara states.
For time/temperature circle compactifications, Zstring is
given by1

Zcirc��; T� �
���������
Im�

p X
m;n2Z

q�ma�n=a�
2=4q�ma�n=a�

2=4: (4.4)

Here the double sum tallies both the Matsubara momen-
tum and winding states, with q 	 exp�2
i�� and a 	

2
T=Mstring � T=Tc, where Tc 	 Mstring=2
 � M.
Thus, thermal duality symmetry is nothing but the sym-
metry (a$ 1=a;m$ n) in Eq. (4.4).
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FIG. 2. The effective dimensionalities Deff of our thermody-
namic solutions, plotted as functions of T for 1 � ‘ � 10 and
� � �1. All of our solutions successfully interpolate between
Deff � ‘ for T � Tc and Deff � 2 for T � Tc. Only the ‘ � 2
solution has Deff � 2 for all T.
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It is important to emphasize that a factorization of the
form given in Eq. (4.1) holds only for the simplest finite-
temperature string constructions (such as for the bosonic
string). In more realistic setups, simple factorizations
such as this are not possible, and one typically has more
complicated configurations (see, e.g., Refs. [3,4,14–16]).
In this section, however, we shall confine our attention to
this simplest case because it is the situation in which
thermal duality is most directly manifest.

B. Asymptotic behavior for low and high temperatures

Given the form of these partition functions, it is
straightforward to deduce the leading behavior in the
T ! 0 and T ! 1 limits, and verify that this behavior
matches the corresponding behavior of our solutions in
Sec. III. Taking the T ! 0 limit of Zcirc, we find

Zcirc !
1

a
as a! 0: (4.5)

This implies the limiting behavior

V �T� �
�

T
as T=Tc ! 0; (4.6)

where � is the one-loop cosmological constant in
Eq. (4.3). This in turn implies that F�T� ! � as
T=Tc ! 0.

However, this leading behavior for V �T� and F�T�
coincides exactly with the T ! 0 temperature depen-
dence of the solutions found in Sec. III for arbitrary ‘.
In fact, this agreement allows us to go one step further
and deduce the overall normalization of our solutions for
arbitrary ‘ with � � �1:

V �‘��T� �
�

Tc

�T‘ � T‘c �2=‘

TTc
: (4.7)

We can also consider the opposite, high-temperature
limit T ! 1 in Eq. (4.7), obtaining [4,6,7]

V �‘��T� �
�

Tc

T
Tc

as T ! 1: (4.8)

This implies that F�‘��T� � T2 as T ! 1, correctly re-
producing the celebrated high-temperature behavior
which signals the reduced number of degrees of freedom
in finite-temperature string theory relative to field theory
[4]. Note that these correct limiting behaviors are ob-
tained for all values of ‘.

Having thus verified that our solutions V �‘��T� in
Sec. III correctly reproduce the expected, leading T !
0 and T ! 1 behaviors for all ‘, we now turn to a more
detailed study of this scaling behavior as a function of
temperature. It turns out that this will enable us to under-
stand the role played by the free parameter ‘.

In ordinary quantum field theory, the free energy F�T�
at large temperatures typically scales like TD, where D is
the spacetime dimension. This in turn implies that the
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entropy S should scale like TD�1. However, as already
noted above, in string theory we have F�T� � T2 as T !
1, implying that S�T� � T as T ! 1. Thus, string theory
behaves asymptotically as though it has an effective
dimensionality Deff � 2.

Of course, the field-theory limit of string theory is
expected to occur for T � Tc. Given this, it is interesting
to examine the effective dimensionality (i.e., the effective
scaling exponent) of our solutions as a function of tem-
perature. In general, it is easiest to define this effective
dimensionality Deff�T� by considering the entropy: Since
S�‘��T� is a monotonically increasing function of T, we
can define Deff�T� as the effective scaling exponent at
temperature T, setting S�‘��T� � TDeff�1. We thus have, as
a general definition,

Deff 	 1�
d lnS
d lnT

� 1�
T
S
dS
dT

� 1�
cV
S
; (4.9)

where the last equality follows from the thermodynamic
identity cV � TdS=dT.

These results for Deff�T� are plotted in Fig. 2. As we
see, each of our solutions successfully interpolates be-
tween Deff � ‘ for T � Tc and Deff � 2 for T � Tc.
Indeed, only the ‘ � 2 solution has Deff � 2 for all T.

Given this observation, it is now possible to interpret
our solutions physically. For small temperatures T � Tc,
the entropy behaves as we expect on the basis of field
theory, growing according to the power law S�‘��T� �
T‘�1. Indeed, this is nothing but the high-temperature
-7
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Eq. (4.2) since we can equivalently write Zmodel �
j#2#3#4j

16=�216j�j48�, where #i are the Jacobi theta functions
satisfying #2#3#4 � 2�3.
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limit of the low-energy effective field theory, which leads
us to interpret ‘ as the spacetime dimension D. However,
as T approaches the reduced string scale Tc, we see that
this asymptotic behavior begins to change, with the T‘�1

growth in the entropy ultimately turning into the ex-
pected linear growth for T � Tc. This is then the asymp-
totic string limit.

Of course, our identification of ‘ as the spacetime
dimension D is subject to one important caveat. Since
D can be defined only through the high-temperature limit
of the underlying field theory, our identification of ‘ with
D assumes that we can properly identify the high-
temperature field-theory limit with the low-temperature
string-theory limit for which S�‘��T� � T‘�1. In other
words, this identification of ‘ with D is sensitive to the
manner in which the high-temperature limit of field
theory matches onto what ultimately becomes the low-
temperature limit of string theory. However, we see from
Fig. 2 that, in all our solutions, Deff remains very close to
‘ for almost all of the temperature range up to Tc. Thus,
we expect our association of ‘ with D to be reasonably
accurate. Moreover, in the special case with ‘ � 2, we
know thatDeff � 2 for all T. We thus expect that this case
should correspond to D � 2 exactly.

If we consider the same issue from the perspective of
the free energy, we can also immediately see the origin of
this difference between the high-temperature scaling be-
haviors in field theory and in string theory. Note that our
solution for the free energy can be written as

F�‘��T� � �
�
1�

�
T
Tc

�
‘
�
2=‘
; (4.10)

where we have inserted the normalization factor � deter-
mined above. Expanding this solution for small tempera-
tures, we find

F�‘��T� ���
2�

‘

�
T
Tc

�
‘
� � � � for T � Tc: (4.11)

Thus, as already observed above, F�‘��T� begins with a
constant term �; the field-theoretic power-law scaling T‘

appears only at subleading order. However, it is precisely
this constant term which ultimately determines the high-
temperature scaling behavior in string theory. Recall that
if f is a general weight-k covariant function scaling as
f�T� � Tp at small temperatures, then f must scale as
f�T� � Tk�p at high temperatures. Thus, the unusual
string-theoretic scaling behavior F�T� � T2 at high tem-
peratures can ultimately be attributed to the fact that F�T�
leads with a constant term � at small temperatures.

Many of these facts are already well known as general
statements in the string literature (see, e.g., Ref. [7]).What
we are observing here, however, is that our functional
forms correctly exhibit all of these properties
simultaneously.
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C. Direct comparison for all temperatures

Since we have already determined that our solutions
exhibit the expected low- and high-temperature scaling
behaviors for all ‘, the question now boils down to
whether these solutions correctly match the expected
temperature dependence at intermediate temperatures
where T � Tc. In other words, we now wish to do a direct
comparison at all temperatures.

For simplicity, we begin in D � 2 by considering
model-independent situations in which we set2 Zmodel to
1. Since Zmodel does not contain any temperature depen-
dence of its own, this simplification enables us to focus
directly on the temperature dependence arising from Zcirc.
Our expression for V �T� from Eqs. (2.3), (4.1), and (4.4)
then reduces to

V �D�2��T� � �
1

2
M

Z
F

d2�

�Im��3=2

�
X

m;n2Z

q�ma�n=a�
2=4q�ma�n=a�

2=4; (4.12)

with a corresponding ‘‘cosmological constant’’ given by

� � �
1

2
M2

Z
F

d2�

�Im��2
� �



6
M2: (4.13)

Since D � 2 in this case, we expect that our expression
for V �D�2��T� should directly match onto our ‘ � 2
solution. Remarkably, this is exactly what occurs:
V �D�2��T� is exactly equal to our ‘ � 2 solution
V �‘�2��T� with � � �1:

V �D�2��T� � �


6

T2 � T2
c

T
; (4.14)

where we have used the fact that Tc � M. Note that
Eq. (4.14) holds for all temperatures T. Thus, our
closed-form ‘ � 2 solution from Sec. III exactly repro-
duces the complete temperature dependence correspond-
ing to the D � 2 circle compactification in Eq. (4.12).

Mathematically, this is a rather surprising result. In
Eq. (4.12), the temperature dependence of V �D�2��T�
enters only through the quantity a 	 T=Tc which appears
in the exponents of q and q; this temperature dependence,
taking the form of a sum of �-dependent exponentials, is
then integrated over the fundamental domain of the
modular group. Nevertheless, we find that the net result
of this integration is to produce the simple, closed-form
result given in Eq. (4.14). Moreover, as we have already
seen in Sec. III, this temperature dependence is given by
precisely the functional form which is necessary in order
to ensure that all thermodynamic quantities, including
-8
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both the entropy and the specific heat, are thermal duality
covariant.

This agreement provides an important link between
the top-down analysis of Sec. III and our direct ‘‘bottom-
up’’ string calculation. This agreement is especially illu-
minating, given that our top-down derivation made use of
a powerful, nonperturbative duality symmetry, while our
bottom-up string calculation represents only a one-loop
result. Taking this agreement seriously, we are tempted to
view the one-loop result for this D � 2 example as ‘‘ex-
act,’’ receiving no further contributions at higher loops.
Of course, in the absence of an actual string model under-
lying the expression in Eq. (4.12), this statement is only
meant to be suggestive.

Before leaving the D � 2 special case, we remark that
time/temperature circle compactifications are not the
only possibility in the construction of finite-temperature
string ground states. Another choice (perhaps even a
preferred choice phenomenologically [9]) is to compac-
tify on an S1=Z2 orbifold, i.e., a line segment. Indeed,
under our factorization assumption in Eq. (4.1), these two
choices represent the only two consistent geometries on
which a finite-temperature string ground state may be
formulated [17]. In the case of an orbifold compactifica-
tion, we simply replace Zcirc in Eq. (4.4) with [17]

Zorb��; T� �
1
2Zcirc��; T� � Zcirc��; Tc� �

1
2Zcirc��; Tc=2�:

(4.15)

In this expression, the first term represents the contribu-
tions from the untwisted states, while the remaining
terms are temperature independent (i.e., they are eval-
uated at fixed specified temperatures which are indepen-
dent of T) and represent the contributions from the
twisted states. Since we already know the complete tem-
perature dependence arising from Zcirc in Eq. (4.14), we
immediately find that the effective potential in the orbi-
fold case has the exact closed-form solution

V �D�2�
orb � �



12

�
T2 � T2

c

T
�

3

2

�
: (4.16)

Of course, this is nothing but our Zcirc solution, re-
scaled and shifted by an additive constant. However,
recall from Eq. (3.15) that the ‘ � 1 solution differs
from the ‘ � 2 solution merely through such an additive
shift. Since the circle solution corresponds to ‘ � 2, this
suggests that our orbifold solution in Eq. (4.16) can be
expressed exactly as a linear combination of the ‘ � 2
and ‘ � 1 solutions in Eq. (4.7), and this is indeed the
case:

V �D�2�
orb � 3

4V
�‘�1� � 1

4V
�‘�2�; (4.17)

where we have taken � � �1 in the ‘ � 1 solution. Once
again, we stress that this is an exact representation for the
complete temperature dependence of the D � 2 orbifold
case. Note that, in writing this expression, we have iden-
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tified the normalization constant � � �circ=2; this fol-
lows from the low-temperature limit of Eq. (4.15), even
though this � is no longer the cosmological constant of
the original zero-temperature model. Also note that even
though the ‘ � 1; 2 solutions are shifted relative to each
other by an additive constant, we cannot write V orb

purely in terms of either of the ‘ � 1 solutions (with � �
�1) because the additive shifts in these ‘ � 1 solutions
are �2 relative to the ‘ � 2 solution. According to
Eq. (4.16), however, our shift constant is 3=2 relative to
the ‘ � 2 solution. This fact has some important conse-
quences which we shall discuss in Sec. VI.

Given the exact orbifold solution in Eq. (4.16), we can
immediately see the thermodynamic effects of compac-
tifying the time/temperature dimension on an orbifold
rather than a circle.While the internal energy and specific
heat are unaffected by this choice, the free energy picks
up an additional linear term and the entropy picks up an
additive constant. The latter has been called a ‘‘fixed-
point’’ entropy [9] since it arises from the fixed points
of the S1=Z2 orbifold and survives even in the T ! 0
limit; in the present case this fixed-point entropy is given
exactly as

Sfixed-point � 
=8: (4.18)

Let us now proceed to consider the case in higher
dimensions D> 2. As might be expected, things are
more complicated. For arbitrary D, the expression in
Eq. (4.12) now generalizes to

V �D��T� � �
1

2
MD�1

Z
F

d2�

�Im���D�1�=2

�
X

m;n2Z

q�ma�n=a�
2=4q�ma�n=a�

2=4; (4.19)

where we incorporate the D-dependent prefactor
�Im��1�D=2 from Zmodel but continue to disregard the
rest of this function for simplicity. While Eq. (4.19) is
not modular invariant, it captures the dominant T and D
dependence that we wish to explore.

As evident from Eq. (4.19), the net effect of altering the
spacetime dimension is to change the power of the �Im��
factor that appears in the measure of the integral. If we
view the Zcirc integrand as a power series in q and q, with
each term separately integrated and then summed to
produce the effective potential V �D�, we see that the
dominant effect of changing the spacetime dimension is
to reweight the contributions from each term in the Zcirc

power series because they are now being integrated over
the modular-group fundamental domain with an altered
measure. Thus, it is not immediately apparent how the
temperature dependence found in the ‘ � 2 case should
change.

Nevertheless, we find that our functions V �‘��T� from
Sec. III continue to successfully capture the dominant
-9
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temperature dependence of the resulting integrals, with
‘ � D. Unlike the case with D � ‘ � 2, this agreement
is only approximate rather than exact. Nevertheless, we
find that this agreement holds to within 1% or 2% over the
entire temperature range 0 � T � 1. Indeed, if we were
to superimpose a plot of V �D��T� over the plot of V �‘��T�
in Fig. 1, taking ‘ � D, we would not be able to discern
the difference at the level of magnification in Fig. 1.

Once again, this is a rather striking result, suggesting
that our functional forms continue to capture the domi-
nant temperature dependence, even in higher dimensions.
Of course, for D> 2, our solutions and the above one-
loop results do not agree exactly. However, given the
significant role played by thermal duality in constraining
the form of the effective potential to the specific func-
tional forms that we have found in Sec. III and, given the
precision with which the above one-loop results appear to
match these functional forms, it is natural to attribute the
failure to obtain an exact agreement for D> 2 to the fact
that V �D��T� in Eq. (4.19) is itself only a one-loop ap-
proximation. We thus are led to conjecture that our func-
tional forms V �‘��T� indeed represent the exact solutions
for the finite-temperature effective potentials, even in
higher dimensions, and that these solutions will emerge
only when the contributions from all orders in perturba-
tion theory are included. Viewed from this perspective, it
is perhaps all the more remarkable that we found an exact
agreement for D � 2, suggesting that the one-loop result
is already exact in this special case, with no further
renormalization.

Let us now consider what happens if we do not make
the simplification that Zmodel � 1 [or Zmodel �

�Im��1�D=2]. Of course, in order to select an appropriate
Zmodel, we must actually construct a bona fide string
model (e.g., a specific bosonic string compactification);
moreover, this model must be tachyon free if our effective
potential is to be finite. These constraints force Zmodel

to take the form Z� 1�
P
mnamnq

mqn, where amn � 0
if m � n < 0 (no physical tachyons). The presence of
the leading constant term in the power expansion means
that the leading temperature dependence of V �D�

will continue to be the same as we had when we
merely set Zmodel � 1. Indeed, the contributions from
the higher terms in Zmodel are exponentially sup-
pressed relative to the leading term, which means that
the net effect of the extra, model-dependent terms
in Zmodel is to provide an exponentially suppressed
reweighting of the contributions from the different
terms in the power-series expansion of Zcirc. Thus,
the net effect of inserting a nontrivial Zmodel into V �D�

is merely to change the subleading temperature depen-
dence in a model-dependent way. Thus, we conclude that
the leading temperature dependence continues to be cap-
tured by our solutions V �‘��T� even when Zmodel � 1;
indeed, this is the universal, model-independent contri-
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bution. Moreover, if our conjecture is correct, then we
expect these subleading model-dependent contributions
to be washed out as higher-order contributions are in-
cluded in the perturbation sum. Just as for the D � 2
special case, similar remarks apply if we replace the
thermal compactification geometry from a circle to an
orbifold.

Finally, let us briefly comment on the most general
cases of all, namely, those in which the finite-temperature
partition functions do not factorize as in Eq. (4.1). Such
cases include compactifications with temperature-
dependent Wilson lines, and are expected to emerge in
heterotic or Type II theories where nontrivial phases must
be introduced in the combined thermal partition function
(ultimately due to presence of spacetime fermions). For
example, nonfactorized thermal partition functions
emerge for finite-temperature string theories whose
zero-temperature limits are spacetime supersymmetric;
these theories necessarily have thermal partition func-
tions in which the cancellations inherent in supersymme-
try are nontrivially mixed with the Matsubara sums (see,
e.g., the examples in Refs. [3,4,14–16]). In such cases,
however, the effective potentials do not generally exhibit
thermal duality—indeed, such theories may be consid-
ered to be finite-temperature string ground states in which
thermal duality is spontaneously broken. Such theories
are therefore beyond the scope of this paper. We shall,
however, present an analysis of such theories in Ref. [18],
where we will show that an analogue of this bootstrap
approach can be developed for such theories as well.
V. EFFECTIVE SCALING DIMENSIONALITIES:
CONNECTION TO HOLOGRAPHY?

In Eq. (4.9), we defined the notion of an effective
dimensionality Deff which governs the scaling behavior
of the entropy S�T�, with S�T� � TDeff�1. As we have
seen, this scaling coefficient generally ranges from
Deff � D as T ! 0 to Deff � 2 as T ! 1. The limiting
behavior as T ! 0 is precisely as expected on the basis of
ordinary quantum field theory, while the opposite limit-
ing behavior as T ! 1 is precisely as required by thermal
duality.

This reduction in the effective dimensionality of the
system at high temperatures is extremely reminiscent of
holography (such an interpretation can also be found, e.g.,
in Refs. [9,19]). Indeed, the scaling of our thermody-
namic quantities departs from the ordinary
D-dimensional scaling that would be expected on the
basis of quantum field theory, and begins to behave as
though the number of accessible degrees of freedom pop-
ulates not the full D-dimensional spacetime, but rather a
subspace of smaller dimensionality. Of course, an analysis
formulated in flat space (such as ours) cannot address
questions pertaining to the geometry of this subspace,
and thus cannot determine whether the surviving degrees
-10



FIG. 3. The effective dimensionality Deff of our four-
dimensional thermodynamic solutions, plotted as a function
of T. These solutions behave holographically in the range 0 �
T � Tc, with the effective scaling dimensionality falling ex-
actly from Deff � 4 to Deff � 3. The dotted line indicates the
behavior that would be expected within quantum field theory.
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of freedom are really to be associated with a subspace or
boundary of the original geometry. However, from the
restricted perspective emerging from a mere counting of
states, we see our scaling behavior differs significantly
from field-theoretic expectations, suggesting some sort of
reduction in the effective dimensionality associated with
thermally accessible degrees of freedom as T ! 1.

Of course, taking the T ! 1 limit is merely of formal
interest. In a theory with thermal duality, there is no
difference between the range T > Tc and the range T <
Tc since these ranges capture the same physics and are
thus indistinguishable. Or, phrased another way, thermal
duality tells us that there is a ‘‘maximum’’ temperature in
the same sense that T duality tells us there is a minimum
radius. This is also consistent with our expectation that
there should be a Hagedorn-type phase transition at or
near Tc, with the theory ultimately entering a new phase
marked by new degrees of freedom. Thus, we should
really consider only the range 0 � T � Tc.

Given this, let us consider the value of Deff not as T !
0 or T ! 1, but as T ! Tc. As discussed above, this is
truly the ‘‘high-temperature’’ limit of string theory. With
our specific closed-form solutions V �‘��T� in Eq. (3.11),
the general definition in Eq. (4.9) yields

Deff�T� �
2TD �DTDc
TD � TDc

; (5.1)

where we have identified ‘ � D. We thus obtain

Deff�Tc� �
1
2�2�D�: (5.2)

This result indicates thatDeff�Tc�<D for allD> 2. In
other words, for all D> 2, the effective scaling of the
number of degrees of freedom at high temperatures is
reduced compared with our field-theoretic expectations
at low temperatures. However, taking the predictions of
holography seriously, we can ask when this reduction in
Deff is truly ‘‘holographic’’ in the sense that Deff is
reduced by exactly one unit as T ! Tc, dropping from
D to D� 1. This would be analogous, for example, to
what occurs for black holes, where quantities such as
entropy scale not with the three volume of the black
hole, but with its area. Remarkably, demanding that
Deff drop by precisely one unit yields

Deff�Tc� � D� 1 ) D � 4: (5.3)

Thus, we see that it is precisely in four dimensions that
our solutions behave ‘‘holographically’’ in the range 0 �
T � Tc, with the effective scaling dimensionality falling
exactly by one unit from Deff � 4 to Deff � 3. This
behavior is plotted in Fig. 3.

While it is tempting to interpret this reduction in Deff

as a holographic effect, we again caution that our setup
(based on a flat-space calculation) is incapable of yielding
the additional geometric information that this claim
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would require. Such an analysis is beyond the scope of
this paper, and would require reformulating the predic-
tions of thermal duality for string theories in nontrivial
D-dimensional backgrounds, and then determining
whether we could formulate a map between degrees of
freedom in the bulk of the D-dimensional volume and
those on the �D� 1�-dimensional boundary of this vol-
ume. Nevertheless, we find this reduction in Deff to be an
extremely intriguing phenomenon, especially since our
exact solutions lead to a strictly holographic reduction in
Deff forD � 4. We thus believe that this approach towards
understanding the relation between thermal duality and
holography is worthy of further investigation.
VI. DISCUSSION

In this paper, we set out to address a very simple issue:
Even though thermal duality is an apparent fundamental
property of string theory, emerging as a consequence of
Lorentz invariance and T duality, the rules of classical
thermodynamics do not appear to respect this symmetry.
Even when the vacuum amplitude V �T� exhibits thermal
duality, thermodynamic quantities such as entropy and
specific heat do not. Given this situation, we sought to
determine whether special string ground states might
exist such that thermal duality will nevertheless be ex-
hibited by all of the usual thermodynamic quantities of
interest.
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We began by deriving specific solutions V �T� such that
thermal duality is preserved not only for the free and
internal energies, but also for the entropy and specific
heat. The complete set of such solutions is itemized in
Eqs. (3.11), (3.13), and (3.14). While the solutions for
general ‘ preserve thermal duality for all thermodynamic
quantities except the specific heat, the ‘ � 1; 2 solutions
preserve thermal duality for all of the thermodynamic
quantities.

We then investigated the extent to which these solutions
might emerge from modular integrals of the sort that
would be expected in one-loop calculations from actual
string ground states. Remarkably, we found that our ‘ �
1; 2 closed-form solutions provide exact representations
for D � 2 modular integrals corresponding to time/tem-
perature compactifications on circles and orbifolds. This
agreement is particularly encouraging from a mathemati-
cal standpoint, since our derivation of these functional
forms is entirely top-down, proceeding only from ther-
mal duality symmetry principles, and has nothing to do
with specific bottom-up constructions involving specific
one-loop modular integrations. The fact that these two
approaches agree exactly, yielding the same results even
in highly simplified cases, suggests that thermal duality is
likely to play an important role governing self-consistent
string ground states. Indeed, as we saw in Sec. III, these
‘ � 1; 2 solutions also ensure that modular invariance is
also preserved for all relevant thermodynamic quantities.

By contrast, our remaining ‘ > 2 closed-form solu-
tions do not serve as exact representations of appropriate
D> 2 modular integrals. Nevertheless, we found that
they provide extremely accurate approximations to such
integrals in a wide variety of cases. This led us to con-
jecture that our ‘ > 2 functional forms may indeed pro-
vide exact solutions for the effective potentials
corresponding to wide classes of finite-temperature string
ground states once the contributions from all orders of
perturbation theory (and perhaps even nonperturbative
effects) are included. After all, our method of deriving
these solutions rests solely on the requirement of thermal
duality, a symmetry which (like the T duality from which
it is derived) holds to all orders in perturbation theory,
and even nonperturbatively. Thus, if this conjecture is
correct, it is perhaps not surprising that our ‘ > 2 solu-
tions transcend the results of intrinsically one-loop
calculations.

In this connection, it is important to stress that the free
energy F�T� exhibits thermal duality order by order in
string theory. Our conjecture does not alter this behavior.
What we are conjecturing, however, is that the sum of
these order-by-order perturbative functions F�T� actually
exhibits an additional symmetry, one which guarantees
that the entropy S�T� is also duality covariant. Thus,
while thermal duality is indeed preserved order by order
for the string free energy, we are conjecturing that the
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entropy, which normally fails to exhibit this symmetry at
any order, actually will exhibit this symmetry when all of
these separate order-by-order contributions are summed
together.

Of course, this conjecture requires not only a special
temperature behavior at each order, but also a specific
value of the string coupling ". To see this, recall that the
full free energy F�"; T� depends not only on the tempera-
ture T but also on the string coupling ". Specifically, if
Fg�T� is the genus-g contribution to the total free energy
F�"; T�, then

F�"; T� �
X1
g�1

"2�g�1�Fg�T�: (6.1)

In general, the genus-g free energy transforms as a
weight-2g duality-covariant function,

Fg�T2
c=T� � �Tc=T�2gFg�T�; (6.2)

which is why the total free energy, like its genus-one
contribution, transforms as a weight-two duality-
covariant function:

F�"; T2
c=T� � �Tc=T�2F�"Tc=T; T�: (6.3)

The corresponding shift in the string coupling is precisely
analogous to what occurs in T duality. However, since the
string coupling " parametrizes the relative weightings of
the contributions from each genus, any new symmetry
which appears only in the sum over all genera must hold
only for a specific value of the string coupling. Our
conjecture, which claims that the full free energy
F�"; T� must have the exact temperature dependence
given by F�‘��T� with ‘ � D, must therefore hold only
for a specific value of the string coupling which in turn
must presumably be fixed by other, nonperturbative
effects.

While these are exciting speculations, we are never-
theless left with our original question as to whether there
exist special finite-temperature string ground states for
which all relevant thermodynamic quantities exhibit
thermal duality. For D> 2, it seems that such states do
not exist: Even if the above conjecture is correct and the
exact effective potentials of such string models match our
‘ > 2 functional forms, these functional forms do not
preserve thermal duality covariance for the specific
heat. Only the ‘ � 1; 2 solutions have this property.
However, for D � 2, the answer to this question may be
somewhat more positive, for the case of time/temperature
circle compactifications with Zmodel � 1 appears to yield
exactly what we require. Thus, even when we take
Zmodel � 1, our above conjecture suggests that the correc-
tions that are induced by the nontrivial Zmodel might
ultimately disappear when contributions from all orders
are included. Indeed, in this way, our conjecture would
lead to a model-independent universal form for the ef-
-12
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fective potentials corresponding to such compactifica-
tions. However, it is important to realize that even if
the circle case leads to a duality-covariant entropy and
specific heat, the corresponding orbifold case certainly
does not. Since the additive shift in the effective potential
that accrues in passing from the circle to the orbifold is
given by 3=2 rather than � � �1, the orbifold case cor-
responds not to the ‘ � 1 solution but rather to a linear
combination of the ‘ � 1 and ‘ � 2 solutions, as indi-
cated in Eq. (4.17). The resulting entropy is thus a linear
combination of two terms with different duality weights,
and fails to be covariant at all. Of course, the specific heat
continues to be covariant, since the specific heat is un-
affected by the contributions from the orbifold fixed
points.

What then are we to conclude from this analysis?
Clearly, if string theory is to resurrect thermal duality
for quantities such as entropy and specific heat, the mir-
acle is not likely to lie in the clever choice of a string
126005
ground state. Rather, the miracle is more likely to lie in
the structure of thermodynamics itself, as a possible
string-theoretic modification of the usual rules of classi-
cal thermodynamics according to which quantities such
as entropy and specific heat are calculated. Indeed, as we
shall see in Ref. [20], such an approach is capable of
restoring thermal duality to all thermodynamic quanti-
ties—regardless of the specific ground state —and leads
to a new, manifestly duality-covariant string thermody-
namics. The development of such a theory will be ex-
plored in Ref. [20].
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