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Microscopic entropy of nondilatonic branes: A 2D approach
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We investigate nondilatonic p-branes in the near-extremal, near-horizon regime. A two-dimensional
gravity model, obtained from dimensional reduction, gives an effective description of the brane. We show
that the AdS,,,,/CFT,,; correspondence at finite temperature admits an effective description in terms of a
AdS,/CFT, duality endowed with a scalar field, which breaks the conformal symmetry and generates a
nonvanishing central charge. The entropy of the CFT, is computed using Cardy formula. Fixing in a
natural way a free, dimensionless, parameter introduced in the model by a renormalization procedure, we
find exact agreement between the CFT; entropy and the Bekenstein-Hawking entropy of the brane.

DOI: 10.1103/PhysRevD.70.126003

I. INTRODUCTION

The brane solutions of string and M-theory are important
for several reasons. The nondilatonic p-brane solutions
play a crucial role in the formulation of the antide Sitter/
Conformal Field theory (AdS/CFT) correspondence [1-3].
For instance, in the 3-brane case, the low energy limit of
string theory is found to have two different descriptions,
each of them splitting into two decoupled pieces. The first
is free bulk supergravity and the near-horizon geometry of
the extremal 3-brane (AdSs X S°) and the second is free
bulk supergravity and N =4, U(N) super Yang-Mills
theory (SYM) in four dimensions. This led Maldacena to
identify string theory on AdSs X S° and the SYM theory as
duals. Similar arguments led Maldacena to propose a dual-
ity between string theory on the near-horizon geometry of
extremal nondilatonic p-branes in D-dimensions
(AdS .+, X SP7P72) and a conformal field theory in p +
1 dimensions.

Brane solutions are also interesting from a slightly dif-
ferent, albeit related, point of view. p-branes are classical
solutions of supergravity (SUGRA) theories in D dimen-
sions. Being gravitational configurations, they may be
endowed with an event horizon and become black
p-branes. From this point of view they can be considered
as a generalization of charged black hole solutions of
general relativity. In particular, one can associate to them
a thermodynamical entropy using Bekenstein-Hawking
area law. Similarly to the black hole case, one has to face
the problem of giving a microscopical interpretation of the
Bekenstein-Hawking entropy of the brane.

In view of the AdS/CFT correspondence, one is tempted
to use the CFT,; dual theory to compute the microscop-
ical entropy of the near-horizon, near-extremal p-brane.
However, this is not so easy. The AdS/CFT duality is
assumed to hold at zero temperature, corresponding to
the extremal brane, which has also zero entropy. Near-
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extremal branes have nonvanishing temperature and en-
tropy, but finite temperature effects break conformal in-
variance. If the AdS/CFT duality survives finite
temperature effects, the near-extremal brane should be
described by a CFT at finite temperature. Indications that
this could be the case come from calculations for the 3-
brane.

Klebanov et al. compared the entropy of the 3-branes
with that of finite temperature, weak-coupled U(N) gauge
theory. They found an agreement of the two results up to a
numerical factor [4,5]. The origin of the discrepancy factor
is qualitatively well understood. The gauge theory compu-
tation is performed at weak 't Hooft coupling, whereas the
gravity description is assumed to be valid at strong ’t Hooft
coupling. Also the result for the 1-brane in D = 6 indicates
that near-extremal branes can be described by a finite
temperature CFT. In this latter case, the near-extremal
brane can be identified as a Bafiados-Teitelboim-Zanelli
(BTZ) black hole, whose entropy can be exactly repro-
duced using a two-dimensional (2D) CFT at finite tem-
perature [6].

For M-branes (the 2,5-brane) the situation looks rather
different. Here the AdS/CFT duality is of little help. The
Klebanov et al. calculation, which uses a dual, weak-
coupled, field theory, reproduces correctly the scaling be-
havior of the brane entropy with the temperature but not
that with the number of branes N. Thus, for the 2,5-brane
we have rather weak indications that the near-extremal
brane can admit a description in terms of a finite tempera-
ture CFTp 4.

Other attempts to explain the entropy of nonextremal
p-branes use a generalization of the approach proposed by
Strominger and Vafa to compute the entropy of extremal
BPS black holes [7]. One tries to explain the entropy of the
brane is terms of states of the string living on the brane [8—
12].

Considering this situation it is worth exploring other
possibilities to describe near-extremal nondilatonic
p-branes, which can be used to give a microscopic inter-
pretation of the brane entropy. In Ref. [13] has been
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proposed an effective description of the near-extremal 3-
brane in terms of a AdS,/CFT; duality endowed with a
scalar field which breaks the conformal symmetry and
generates a nonvanishing central charge. The Bekenstein-
Hawking entropy of the 3-brane could be matched by CFT;
calculations up to a numerical factor.

In this paper we improve the method used in Ref. [13]
and generalize it to all the relevant nondilatonic branes. In
particular, we will be able to reproduce exactly the ther-
modynamical entropy of the near-extremal nondilatonic
p-branes fixing in a natural way a dimensionless, renor-
malization parameter, which appears as free parameter in
our calculations.

In Sec. I we briefly review some basic facts about black
p-branes. Later on (Sec. III) we perform a dimensional
reduction of the brane to obtain a 2D gravity model, which
gives an effective description of the near-horizon, near-
extremal brane. In Sec. IV we study the group of asymp-
totical symmetries (ASG) of the 2D solutions. A one-
dimensional CFT will emerge as dual description of the
2D bulk gravity theory. The central charge of the associ-
ated Virasoro algebra is computed in section V. Making use
of a renormalization procedure, we will be able to find
finite charges associated with the ASG, at the price of‘
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introducing a dimensionless free parameter 3. The entropy
of the p-brane is then calculated via the Cardy formula.
Fixing the parameter 8 we reproduce exactly the thermo-
dynamical entropy of the brane.

I1. NON-DILATONIC BLACK p-BRANES

In this section we briefly review some well known facts
about p-branes. Black p-branes are classical Ramond-
Ramond (RR) charged solutions of SUGRA theory in D
dimensions [14—-19]. They can be also considered as the
low energy limit of string and M-theory.

In the Einstein frame the bosonic part of the action
reads:

R R I I L s AR L g
5 dx\/_g[R S (V) =5 Fie } (1)

where ¢ is the dilaton, F, is the field strength of an (n —
1)-form potential F,, = dA,,_;, and a is a constant depend-
ing on the dimensional reduction that produces the action
in D dimensions. The metric part of the electric solution of
the action (1) is [20—22] (the magnetic solution is obtained
using Hodge duality)

45> = [HOT 2400 f(di + Y dudid] + [HOPO VL1 (dr + 2d0 ] H() = 1+ <_>“,
=1 2

rod—2
f(r)=1—(—> D=d+p+1, 5=(p+1)d—2)+

r

where Q is the RR charge, ry and h, are integration
constants related to the mass and charge of the brane.
The solution (2) can be regarded as a generalization of
the Reissner-Nordstrom charged black hole solution, for
this reason it is called black p-brane.

We are interested in nondilatonic branes: M-branes (the
2-brane and 5-brane in 11 dimensions) and dyonic branes
with equal magnetic and electric charges in D = 2p + 4,
with p odd (1-brane in D = 6 and 3-brane in D = 10). M-
branes are nondilatonic simply because there is no dilaton
in 11 dimensions. Dyonic branes with equal charges in
D =2p + 4 and p odd are self-dual solutions of theories
with self-dual (p + 2)-field strengths. They are character-
ized by a constant dilaton and can be thought of as intrinsi-
cally nondilatonic. In what follows we will consider only
nondilatonic branes.

In the extremal limit (ry = 0) the metric (2) becomes:

ds? = [H(r)]*Z/PH(—dzZ + i dxidxi> + [1‘1(’”)]2/0172
i=1

2 2 2 d—2 — Q
X (dr* + r*dQj_)), h, 7\/5(61 o)
_ 2D-2)
T ®)

50?

a*(D —?2)
’ 2(d —2)*(D —2)’

5 Wyt 4 e =

\
The brane tension 7, and the D-dimensional Newton
constant G, can be written as follows,

27 _ (Qmlp)P g}

- 2 = 16mG,y = 2L S5
P Qalyyrilg TP TP 2
)

where for D = 10 [ is the string length and g, is the string
coupling constant, whereas for D = 11 [ is the Planck
length and g, = 1. We can also define,

1 00y
e, = F,_ = . 5)
p \/EkD '/;dfl d—1 \/ikD (
For a single p-brane the flux of the RR field is \/szTp.
If we consider N coincident p-branes we have
N = ep — Qd*lQ d-2 _ (27TZD)d72NgS )
2kpT,  2kpT, "7 Jald —2)Q

The AdS/CFT duality arises considering the near-
horizon limit,

(6)

(r,Ip) — 0 keeping fixed uP*D/(d=2) = rll_)o‘(erl)/2
@)

of the brane solution. In this limit the extremal brane (3)
becomes [1,21]:
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2 4 32,2 2 - ' du’
ds? = 2 22 —dP2 + Y dx;dx') +
s D pu< FZ] X; x) /\%uz
+ R3,dQ2_, ®)

where Ry, =h, and A, =(d —2)/[(p + 1)Ry,]. The
near-horizon region has the AdS,,, X §9-1 geometry.
This was the starting point of the Maldacena conjecture
about a duality between string theory in this background
and conformal field theory in (p + 1) dimensions. The
isometry group of AdS, ., is identified with the conformal
symmetry of (p + 1)-dimensional Minkowski space.
Excitations above extremality break the conformal sym-
metry and the brane acquires finite temperature and en-
tropy. The near-horizon, near-extremal form of the solution
can be easily obtained by taking in Eq. (2) the near-horizon
limit (7) and the energy above extremality finite. One finds

+1 P
ds? = B2l = 1= (22)" a2 + S dxdxi
S i v B R XT
4 du?
I

+ Rg,dQ%_,, 9)

where u and u, are defined as in Eq. (7).

Using the Bekenstein-Hawking formula, we can easily
calculate the entropy of the brane (9). Working in the
canonical ensemble, we can express the entropy S, as a
function of the temperature 7 and volume V of the brane,

S, =a,VT?, (10)
where a, depends on the number N of coincident branes

and is given for the 1, 2, 3, 5-brane under consideration as
follows,

27/2 2
a, = wN? a,= il N3/2,
27
- 5 (11)
a3=7N2, a5:¥7T3N3.

Klebanov et al. tried to give a microscopic interpretation
of the thermodynamical entropy of the brane using a
system of weak interacting brane excitations [4,5]. They
could reproduce the scaling behavior (10), but they found
an expression for the coefficients a, depending on a pa-
rameter 71, which characterizes the field content of the
model:

.
(12)

For the 3- and 1-brane the AdS/CFT correspondence
allows an easy identification of parameter 7i. The CFT,
dual to AdSs is well known, itis N = 4, U(N) SYM. This
fact enables us to identify 7i = 8N? [4]. In this way the
statistical entropy is in agreement with the thermodynam-
ical one up to a 3/4 factor. The origin of the discrepancy

T 7 -
a, = En; a, = %{(3)’1’ as =
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factor is well understood. The gauge theory computation is
performed at zero 't Hooft coupling, whereas the gravity
description is assumed to be valid in the strong coupling
regime [23,24]. For the 1-brane the AdS/CFT correspon-
dence allows us to reproduce exactly the thermodynamical
result (11). In this case, neglecting the 3-sphere of constant
radius, the brane solution (9) is nothing but the Bafiados-
Teitelboim-Zanelli (BTZ) black hole, whose microscopic
entropy has been calculated by Strominger [6], leading to
the identification 7i = 2N?

For the 2 M-branes the situation is more involved. The
AdS/CFT correspondence is here of little help, because the
dualities AdS,/CFT; and AdS,/CFTg are poorly under-
stood. Moreover, in order to explain the dependence on
N in Eq. (11) we need a behavior /i ~ N*/% and /i ~ N3,
respectively, for the 2- and five brane, which is very hard to
achieve using a field theory. In spite of some progress,
achieved considering a D-brane-D-antibrane system [25—
29], this still remains a puzzling point, which is related
with our lack of knowledge about M-theory.

In this paper we will use a 2D approach to the problem of
giving a microscopical interpretation for the entropy of
nondilatonic branes. The first step in this direction is to
perform a dimensional reduction in order to obtain a 2D
effective description of the brane. This will be the subject
of the next section.

ITI. DIMENSIONAL REDUCTION

The near-horizon, near-extremal nondilatonic brane so-
lution (9) factorizes as direct product of a (p +
2)-dimensional spacetime, which is asymptotically
AdS, 17, and a (d — 1)-sphere S of constant radius.
This fact allow us to derive, by dimensional reduction, a
2D effective gravity model, which describes the spherically
symmetric excitations of the brane above extremality. We
can perform the dimensional reduction from D to two
dimensions using the ansatz:

p
ds? = ds% + ¢2/p deidxi + Répdﬂé_l, (13)
i=1

where ¢ is a scalar field , which parametrizes the volume
V of the brane embedded in the (p + 2)-dimensional
spacetime,

V = ¢V. (14)

For the RR field strength we have F2/n! = Q2/h2*™ V.
Performing the dimensional reduction in the
D-dimensional action (1) we get the 2D effective model,

— I\ (V)

Ayp = k'/-dzx«/_—qu{R + <p>( d;) + A}, (15)
p ¢

where the cosmological constant A = Ry, — (F2/2n!),

R(4—1) being the scalar curvature of $~! and the constant k
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k: Qd_le;IV _ 27TNVR0P ‘
2k2, Jald —2)Q2wlp)rtg,

(16)

The class of 2D gravity models described by the action (15)
has been already investigated in the literature [30—32]. In
particular, they admit the, asymptotically AdS, 2D black
hole solutions,

dr?

b2rt — A2(br)t—P’
(17)

ds? = —[b*? — A2(br)!Plde +

¢ = bo(br)?,

where b2 = A/[p(1 + p)] and ¢, A are integration con-
stants. The thermodynamical behavior of the 2D black hole
is characterized by mass m,,;,, temperature 7,,;, and entropy
S bh>

p b(p +1)
My, = 5¢0A2b, Ty, = TAZ/”H

Sbh = 27T(I)0A2p/p+1.

T 318

The 2D black hole solution (17) gives an effective
description of the D-dimensional brane solution (9). The
2D integrations constant A and ¢, can be identified in
terms of the physical parameters of the brane. Comparing
Eq. (9) with Eq. (17), we can easily see that A is related to
energy of the brane excitations above extremality:

A2 = \bF bt (19)

We can fix the value of ¢, using a (classical) scale sym-
metry of the 2D action (15). Rescaling the scalar field ¢ —
M ¢ the action changes as A,p — wA,p. In this way we can
change the normalization factor in front of the action.
Choosing the normalization of Ref. [30] (k = 1/2) we
have ¢, = 2k. One can easily check that the thermody-
namical behavior of the 2D black hole solution reproduces
exactly the thermodynamics of the near-extremal brane (9).
In fact, we have Spane = Sohs Evrane = Mpn and Tpane =
Ty, where Ey.n. 18 the energy of a brane excitation above
extremality. This fact has a natural interpretation. The
thermodynamics of the brane is determined by the behav-
ior on the horizon of the 2D (r, ) section of metric (9),
which is exactly given by the 2D black hole.

On the other hand both the nondilatonic brane and the
2D black hole seem to have a dual descriptions in terms of
a conformal field theory. For the brane the dual theory is a
CFT,,,, whereas for the 2D black hole it is a CFT,
[30,33—38]. This gives a strong indication that the CFT,
can be used both to give an effective description of the
CFT,,, and to obtain a microscopic derivation of the
entropy of the brane, in agreement with the philosophy
of the holographic principle. To achieve this goal we first
need to investigate the asymptotical symmetries of the 2D
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solutions, which will be the topic discussed in the next
section.

IV. ASYMPTOTICAL SYMMETRIES

The group of asymptotical symmetry (ASG) of the
metric (17) is the group of transformations which leaves
the asymptotic, » — o0, behavior of the metric invariant.
The case p = 1 is well known; it corresponds to 2D antide
Sitter spacetime (AdS,). Its ASG was investigated in vari-
ous papers and the problem of the microscopical explana-
tion of the entropy of the corresponding 2D black hole has
been completely solved [33—37]. In this paper we focus
our attention on the other three cases (p = 2, 3,5). The
asymptotical symmetries of the metric (15) were investi-
gated in Ref. [30]. In that paper the ASG was identified
with the group of reparametrizations of the 1-dimensional,
r — oo, timelike boundary of the AdS, spacetime (the
dif f, group). It was shown that the generators of the group
satisfy a Virasoro algebra. Unfortunately, the charges as-
sociated with the generators and the central extension of
the Virasoro algebra were found to be divergent. A renor-
malization procedure was not applicable directly because it
erases identically the charges. The divergence is due to the
power behavior ¢ ~ r” of the scalar field for r — co. In
this paper we propose a general method to renormalize the
charges in a consistent way. Our method is a generalization
of the renormalization procedure proposed in Ref. [13].

We can separate a finite from a divergent part in the
charges performing the change of coordinate:

(br)P~ ' — (br)P~! + C. (20)

The parameter C is a free dimensionless parameter. It must
be related to A, the only physical dimensionless parameter
appearing in the 2D metric (17). In general we will there-
fore have C = Bf(A), where B is a dimensionless parame-
ter not depending on A and f(A) is an arbitrary function of
the parameter A. The form of the function f(A) can be
determined using scale symmetry arguments. The metric
part of the 2D black hole vacuum ( the metric ((17) with
A = 0) is invariant under the scale transformation r — ur
and t — u~'t, which is a subgroup of the full isometry
group of 2D AdS spacetime. The scale transformation
changes the solution for the dilaton in Eq. (17) but this
change is just a scale factor, which can be absorbed in the
arbitrary integration constant ¢,. The scale transformation
maps one into the other the classical vacuum solutions
(17). This is a consequence of the on-shell scale symmetry
of the 2D action (15) discussed at the end of the previous
section. The symmetry of the vacuum solution can be
maintained for the massive black hole states if the parame-
ter A transforms as A — u?*1/2A. After the change of
coordinates (20), the black hole vacuum will be invariant
under the scale transformation only if

126003-4



MICROSCOPIC ENTROPY OF NONDILATONIC...

C = ’3A2(p—1)/p+1_ (1)

Notice that our scale symmetry argument fixes C up to an
arbitrary dimensionless parameter 3, whose value cannot
be fixed by the renormalization procedure

A uniform treatment of both even and odd branes is not
possible. In the following we will distinguish the two cases.
Performing the change of coordinate (21) and expanding

the solution (17) near r — oo we have for p = 2,
|

gn = —b*r? — BAXP=V/PF(pr)3=P + A2(br)' P —
(p—1)
1 2BA2(p_1)/p+1 A2 3B2A4(p_1)/p+1
= - +
Err = 22 (br)P*1 (br)r™3 (br)2
_ 4 2Ap—1)/p+1 p
= bPrP + —= BA2P=D/pH1(py) +
b= o b+ Lop o1 + 5T

In both cases the metric is asymptotically AdS. In view of
Egs. (22) and (23), we are led to impose the following
boundary conditions,

r
gu = —b*r? = 2BAY3br + y, + Ta” +0[r 2],
r

L2848y, T,

_ -6
8 = 22 b3 b + P +0[r°]

Yre —4 (24)
grt = b3r3 + 0[r ]J

r
¢ = q’>0<pb2r2 + 2p,8A2/3br + Voo + —b¢¢ + O[r_2]>,
r

for p = 2, whereas for p = 3,5 we have

Flt 0[[

8 = —b*r* + Yo+ D22 A + 0[7_6],
1 Yrr Frr Hrr -10
8rr =22 T A AT 16,6 + b8 + 0[],
25
7rt 1—‘lrt + 0[}’_7], ( )

8t = 13,3 P
¢ = dolp(br)P + ¥4 (br)P~2 + Ty (br)P~*
+ 0¢,¢(br)”_6 + O(rp—S)]

In Egs. (24) and (25), p, v, I, 6 are boundary fields, which
depend only on the coordinate ¢ and describe deformations
of the metric and of the scalar ¢.

The Killing vectors that preserve the boundary condi-
tions (24) and define the ASG, are

/
X = —é(t)<r + Bf 3) +0[r ']
X' = e+ 2((;74r2<1 o ) + Oo[r 4],

those that preserve the boundary conditions (25) are in-
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. A?
gu = —b*r? — 2BAbr — BAT + oot o]
r

1 2BAT 38247 (1 —4B3)A2 _
8rr = 22 bis + b + b3, +0[r™°)
b = ¢o[b?r* + 2BAN(br) + B2AT), (22)

whereas for p = 3,5 we get

(3_1117)2/32A4<p—1>/p+1(b,)—<p+1> + o[P1-P],
=
+ O[r~2r+D] (23)

,82A4(p_1)/p+1(b1")2_p:| + 0[}’3_2’7].

T
stead,

(1)

2b% 2

x = —&(Or+0[r?] + 0[r 4],

27)

where &(¢) is an arbitrary function of time and the dot
denotes derivative with respect to time. Notice that for p =
2 both the boundary conditions (24) and the Killing vectors
(26) depend on the parameters A, 8. This dependence is a
consequence of the coordinate transformation (21). For p
odd, there are contributions to the unnormalized charge
coming from terms of order higher than r~* in Eq. (27).
However, these terms do not contribute to the renormalized
charges. We can consistently neglect them. The generators
L, of the ASG span a Virasoro Algebra:

X' =)+

C
[Ln’ Lm] = (I’l - m)Ln+m + E(”3 - n)5n+m,0’ (28)

where we allow for a nonvanishing central charge c¢. We
can therefore identify the ASG as the diff, group, the
conformal group in one dimension. The dif f| group is an
asymptotical symmetry only for the metric part of the
solution (17). The ASG of the metric is broken by the
nonconstant solution for the scalar ¢. However, it has
been shown, for the p = 1 case, that this breaking of the
conformal symmetry just generates a nonvanishing central
charge in the Virasoro algebra (28) [35]. The arguments of
Ref. [35] can be straightforwardly extended to the generic
2D gravity model considered in this paper. Translated in
terms of the one-dimensional CFT living on the boundary
of our 2D spacetime this means that we have a “soft”
breaking of the conformal symmetry generated by a con-
formal anomaly. We can still use (at least at the classical
and semiclassical level) the centrally extended conformal
algebra to constrain states and build representations for the
one-dimensional boundary theory. In particular, at the
semiclassical level one can show the validity of Cardy’s
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formula [39], relating the degeneracy of states of the one-
dimensional boundary CFT with its central charge.

The boundary fields p, v, I', 6 transform under the
action of the diff; group as conformal fields of definite
weight. The only boundary field that contributes to the
renormalized central charge is p, whose transformation
law is:

op = &p — pép. (29)

The extremal brane (8) has the AdSp + 2 X §?~! geome-
try and is mapped by the dimensional reduction into the
AdS, spacetime, which is given by Eq. (17) with A = 0.
Neglecting the scalar field ¢, we see that the isometry
group of AdS,,, the group SO(2, p + 1), locally isomor-
phic to the conformal group in (p + 1) dimensions, is
mapped by the dimensional reduction into the ASG of
AdS2, namely, the diff; conformal group. The nonconst-
ant configuration for the scalar ¢ breaks the conformal
symmetry and generates a nonvanishing central charge in
the Virasoro algebra. The dimensional reduction allows us
to find an effective description of the AdS p+2/ CFTp 4,
duality at finite temperature in terms of a AdS,/CFT),

|

p—1
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duality with the conformal symmetry broken by the scalar
field ¢.

V. CENTRAL CHARGE AND ENTROPY

Because the dual theory of the effective 2D gravity
theory is an one-dimensional CFT, knowledge of the cen-
tral charge in the Virasoro Algebra, allows us to calculate
the entropy of the 2D black hole (hence of the near-
extremal brane) via the Cardy formula. We can compute
the central charge appearing in the Virasoro algebra (28)
using a canonical realization of the ASG.

The gravitational Hamiltonian H is easily computed
using the ADM parametrization of the metric :

ds* = —N2%di* + o*(dr + N'dt)?, (30)

where N and N’ are, respectively, the lapse and shift
functions. According with the Regge-Teitelboim procedure
[40—-42] we must add surface terms J to H, needed to
obtain well-defined variational derivatives. In the case
under consideration we obtain:

57 = —lim,_,oo{N<a'_15¢’ S TU“¢_1¢’8¢> — N'o'8¢ + N'(I1,8¢ — aang)}, 31

where Il and II,, are, respectively, the momenta conju-
gate to ¢ and o. The “orthogonality problem” [43,44]
typical of two dimensions, can be solved introducing the
time-integrated charges [33]:

_ b 27/b
=3/,

~>

Jdt. (32)

The central charge ¢ can be computed using the commu-
tator

8,0(e) = [J(e), J(w)] (33)

However, in our case the time-integrated charges (32) are
divergent and the final outcome of the calculation is a
divergent central charge [30]. A renormalization procedure
is needed in order to have finite charges.

After some manipulations we can write Eq. (31) in the
following form,

8J = 8J, + €M, (34)

where M is the charge associated with time translations
(e = 1), while 8J; is a complicate function of the bound-
ary fields and of &, which for shortness we do not quote
here. Equation (34) presents several divergences. The mass
term 6M is divergent because arbitrary excitations of the
boundary fields have infinite energy [30]. We can eliminate
this kind of divergences considering deformations of the
boundary fields near the classical solution (on-shell
deformations).

\

One could wonder why we limit ourself to consider only
on-shell deformations. In the spirit of the AdS/CFT corre-
spondence one expects the dual boundary theory to be
quantum mechanical, and hence to involve arbitrary fluc-
tuations of the boundary fields. The AdS,/CFT; correspon-
dence discussed in this paper is based on the notion of
asymptotic symmetries and is slightly different from the
usual formulation of the AdS/CFT duality. In our case the
conformal symmetry is generated by deformations that
have a twofold interpretation. They can be seen both as
deformations of the bulk metric and as deformations of the
timelike boundary of AdS. As bulk degrees of freedom we
can treat them classically. In this sense we can also define a
classical boundary dynamics for the deformations. For the
1-brane it has been shown that this classical boundary
theory has the form of a De Alfaro-Fubini-Furlan model
coupled to an external source [36]. The quantum boundary
theory can be obtained upon quantization of the classical
boundary theory.

On-shell boundary deformations can be selected using
appropriately the equations of motion induced on the
boundary by the equation of motion for the bulk degrees
of freedom. For p =2 we make use of the following
boundary equation of motion

p2
4b%p

=5B%A*3p — y,.p — 2744 (35)

while for p odd we use,
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. p—1p° p—1(p
ppb*yh — (p = 3)pby, + —— =y, — —(—
2p p 2p
15(p — 1) (p—=3)p
—— + —
4p Yrr7¢¢ D)

Equation (35) is obtained from the leading and Egs. (36)
from the leading and subleading, terms in the r = o
expansion of the bulk field equations coming from the
g, variation of the action (15). Taking the variation of
Egs. (35) and (36), evaluated on the classical solution (22)
and (23), respectively, one finds that the divergent terms in
the mass term of Eq. (34) vanish. Moreover, the finite part
of M is equal to the mass m of the solution calculated using
the prescription of Ref. [45].

This is not the end of the story. The term 8J; in Eq. (34)
contains also divergent parts. The presence of these diver-
gences can be traced back to the large r behavior of the
scalar field, ¢ ~ r?. Because this behavior is shared by all
the classical solutions of the 2D bulk theory, the most
natural way to remove the divergences is to subtract the
contribution of the massless background solution (A = 0 in
Egs. (22) and (23)),

2

ds? = —b2r2d + —:zrz,
;

¢ = PobPrP. (37
Indicating with J,, the charges obtained evaluating
Eq. (31) on the massless background and defining the
renormalized charges Jg = J — J,,,, we get, respectively,

for p even and odd,

A2/3 .
Y L R X P p—1_ .
= — 5 <2p_3 op + TR 88p>
+ gém. (38)

Notice that we use here a renormalization prescription that
is slightly different from that used in Ref. [13]. In that
paper the charges have been renormalized subtracting only
their divergent part. Here, we have chosen a more natural
procedure, which in general gives a different finite result
for the charges. We can recover the results of Ref. [13] for
the entropy of the 3-brane, by fixing appropriately the
value of the renormalization parameter 3.

Taking into account that the time-integrated charges are
defined only up to a total time derivative, we can integrate
the variations 6Jp in Egs. (38) to obtain,

pdoBAXP~D/pF1

Jrle] = np

ep, (39)

b?pl,, + (p = 3)(p — DbTyy +
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pZ
pb*p
2 20p — 1 2 -1 52
)7 L2 =) Ve P L yep?
P p 2p p
p7rr + P~ 1 p’)/(ﬁ(b —0
2 p p

+ PPYrr + 4’}/(/)(15 = 0’

(36)

‘Where n = (0, 1) respectively, for p = (even,odd). The
term proportional to m in Eq. (38) has been canceled by
choosing appropriately the integration constant. Jg(g) in
Eq. (39) is related to the energy-momentum tensor 7, of
the one-dimensional CFT, Jix(g) = &T,. Using the confor-
mal transformation of the field p given in Eq. (29), ex-
panding in Fourier modes and using Egs. (28) and (33),
near the classical p = 1 solutions, we find the value of the
central charge in the virasoro algebra:

2p—1)/p+1

o _$opA (p=1/p P 40)
12 2"
For p # 1, the result for central charge we have obtained
involves the parameter A. Because A? is essentially the 2D
black hole mass, this implies that there is a different CFT
(characterized by a different value of the central charge)
for every state in the black hole spectrum (characterized by
the black hole mass). This is completely different from
Strominger’s AdS;/CFT, calculation of the entropy of the
BTZ black hole [6] (Corresponding to the p = 1 case of
Eq. (40)). In this latter case the central charge of the CFT,
depends only on the 3D Newton constant G and cosmo-
logical constant A, the black hole mass enters only in the
eigenvalue of the Virasoro operator L,. The BTZ black
hole is described by a single CFT whose excitation are in
correspondence with states in the black hole spectrum.

The dependence of the central charge (40) from the
state-dependent parameter A seems a general (and proba-
bly unavoidable) consequence of using a dimensionally
reduced AdS,/CFT; correspondence to describe higher
dimensional AdS/CFT dualities. More in general, it is
likely that any attempt to use Cardy-like formulas to
compute the entropy of a CFT, with d = 3 (see for in-
stance Ref. [46]) will lead to the dependence of the central
charge from some state-dependent parameter. The dimen-
sional reduction (13) introduces in the 2D gravity theory a
scalar field ¢p. Owing to its scalar character the nonconst-
ant background solution for ¢ breaks the conformal sym-
metry of the AdS background and produces a nonvanishing
central charge. Obviously the central charge can only
depend on the parameters appearing in the background
solution for ¢. In the most favorable situation, the 1-brane
when renormalization is not necessary, ¢ depends only on
the dimensionless constant ¢, entering in the solution (17)
for ¢. In the general case, owing to the coordinate trans-
formation (20), the background solution for ¢, hence also
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the central charge ¢, will also depend on the parameter A.
The dependence of the central charge from the black hole
mass in the AdS,/CFT, correspondence can be also under-
stood just by power-counting. In two dimensions Gy is
dimensionless, if we want to produce a dimensionless
quantity such as the central charge using A we must also
use the black hole mass. This is not the case for the BTZ
black hole, in three dimensions G, has the dimensions of a
length, so that one can construct ¢ out of Gy and A.

The central charge (40) depends on the renormalization
parameter (. The presence of this arbitrary dimensionless
constant is a consequence of our renormalizations proce-
dure. From the point of view of the 2D gravity theory, B is
just a free parameter. However its value can be constrained
using arguments stemming from the AdS/CFT duality. The
central charge in the Virasoro algebra is a rational function
of the conformal weights of the boundary fields, so that we
can expect 8 to be a rational number. Moreover, all the
information about physical parameters of the p-brane is
contained in the 2D parameters A and ¢,. The dimension-
less parameter in Eq. (40) must encode the information
about the degrees of freedom of the CFT,; living on the
brane, leading again to a rational value for 8. We fix 3,
choosing the value

B=—. 41
The central charge takes the simple form,
c= B Do AP~ D/pH1, (42)
p

The entropy associated with the boundary CFT,; charac-
terized by eigenvalue [, of the operator L, and central
charge c, is given by the Cardy formula S = 2./cl,/6,
[39]. The eigenvalue of L is given in terms of the mass of
the 2D black hole, I, = m,;, /b, whereas ¢ can be read from
Eq. (42). We get for the entropy,

S = 2 epy AP/ P, (43)

Equation(43) holds for all the nondilatonic branes dis-
cussed in this paper. Using Eqgs. (16) and (18) to express
¢o and A in terms of the brane temperature 7 and brane
parameters N, V, we reproduce exactly the thermodynam-
ical entropy (10), S, = a,VT?, with coefficients a, given
by Eq. (11). By fixing appropriately the value of the
renormalization parameter 8 our microscopical calcula-
tion of the brane entropy, which uses an effective
AdS,/CFT,; duality, is in perfect agreement with the ther-
modynamical result.

Notice that our general formula for the brane entropy
(43) holds also for p = 1, although in this case no renor-
malization procedure, hence no fixing of the parameter S is
needed. In our 2D approach, the 1-brane (the BTZ black
hole) becomes after dimensional reduction the AdS, black
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hole, whose microscopical entropy has been already calcu-
lated in Ref. [33-37].

It is important to stress that even if we leave the parame-
ter B unfixed, our method allows to reproduce the right
dependence of the thermodynamical entropy (10) from T
and N. From this point of view our CFT; results represent
an improvement with respect to those obtained in Ref. [4]
using the CFT, ;. In fact the CFT,; calculations do not
have the predictive power to determine, for the 2- and 5-
brane, the right dependence of the entropy from the pa-
rameter N.

The weak point in our derivation is the fact that we do
not have any compelling reason to fix 8 as in Eq. (41).
However, we can argue that Eq. (41) may not be a simple
coincidence. First, this value of B seems to be rather
special. With this choice the central charge (42) takes a
simple form for all branes and the dimensionless factor in
the entropy (43) becomes p-independent. Second, the fac-
tor 12/ p appearing in the central charge (42) seems related
to the number of degrees of freedom of the CFT,,; living
on the brane. The way how the information about CFT
degrees of freedom is encoded in the central charge of the
CFT, may be extremely non trivial. However, our result
seems to support recent attempts fo find generalization of
the Cardy formula for CFTs in d > 2 [46].

If we do not fix the renormalization parameter 3, the
entropy (43) will depend on it. The dependence of the
entropy from a dimensionless parameter can be also under-
stood in terms of the classical scale symmetry of the 2D
action (15) mentioned in Sec. III. Rescaling the scalar field
¢, the 2D action changes by an overall factor. This scale
symmetry appears as a subgroup of the isometry group of
AdS,. In fact, the metric (37) is invariant under the trans-
formations

r—ur, t— u 't (44)
This scale symmetry is broken by the scalar field, which
encodes the information about the embedding of the brane
in the D-dimensional space-time. In fact ¢ transforms as
¢ — ul¢. If we want to preserve the scale symmetry, the
parameter ¢, must scale as ¢o— u ”¢o. Using this
transformation law into Eq. (43) we see that also the
entropy scales in a similar way. This explains the depen-
dence of the entropy from a dimensionless parameter,
which is undetermined, at least at the classical level.
Conversely, for the AdS,; spacetime in Eq. (8) the scale
transformation (44) can be promoted to an exact isometry
transforming the brane coordinates x' — u = 'x'.

VI. CONCLUSION

In this paper we have used a 2D approach to study the
microscopic entropy of near-extremal nondilatonic
p-branes and, more in general, to investigate the AdS/
CFT correspondence at finite temperature. Performing a
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dimensional reduction, we have found a 2D gravity model
that gives an effective description of the p-brane in the
near-horizon, near-extremal regime. The AdS/CFT duality
survives the dimensional reduction. An AdS,/CFT; duality
gives an effective description of the AdS, ,/CFT,, cor-
respondence at finite temperature. Finite temperature ef-
fects are taken into account in the 2D model as a breaking
of the conformal symmetry, which generates a nonvanish-
ing central charge in the Virasoro algebra. Using this
procedure, we have calculated the entropy of the boundary
CFT;,. Fixing in a natural way a dimensionless free renor-
malization parameter, we have reproduced exactly the
Bekenstein-Hawking entropy of all relevant nondilatonic
p-branes in the near-extremal, near-horizon regime.

Our results represent an important improvement, in
particular, for what concerns the 2- and 5-brane. For these
branes methods based on the AdS,,,/CFT,; duality can-
not explain the dependence of the entropy from the number
of branes N. This is probably due to our lack of knowledge
about M-theory and about the AdS,,,/CFT, | duality for
p =2,5. Our 2D approach is more successful simply
because it is almost completely based on 2D gravitational
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physics, therefore largely independent from the details of
the fundamental theory in 11 dimensions.

On the other hand, the fact that a 2D model can be used
as a unifying framework to describe all the relevant non-
dilatonic branes, indicates that the 2D description could be
more general then it could seem at first sight. The reason
behind this generality can be easily recognized. Similarly
to what happens for black holes, also for black branes the
thermodynamical behavior is essentially determined by the
2D (r, t) sections of the spacetime and largely independent
from the transverse dimensions.

The weakness of our 2D approach is that it is not fully
predictive. The microscopic entropy of the brane is deter-
mined up to a dimensionless renormalization constant,
which from the 2D point of view is a free parameter.
However, the values of this parameter that lead to agree-
ment between statistical and thermodynamical entropy are
natural from the point of view of the brane and seem to
have an universal character. This may be the consequence
of the existence of a general and deep relationship between
the central charge of the one-dimensional CFT and the
number of the degrees of freedom of the brane.
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