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The theory of statistical mechanics is studied in the presence of Lorentz-violating background fields.
The analysis is performed using the Standard-Model Extension (SME) together with a Jaynesian
formulation of statistical inference. Conventional laws of thermodynamics are obtained in the presence
of a perturbed hamiltonian that contains the Lorentz-violating terms. As an example, properties of the
nonrelativistic ideal gas are calculated in detail. To lowest order in Lorentz violation, the scalar
thermodynamic variables are only corrected by a rotationally invariant combination of parameters that
mimics a (frame dependent) effective mass. Spin-couplings can induce a temperature-independent
polarization in the classical gas that is not present in the conventional case. Precision measurements in
the residual expectation values of the magnetic moment of Fermi gases in the limit of high temperature
may provide interesting limits on these parameters.
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I. INTRODUCTION

The notion that the minimal standard-model serves as
a low energy limit to a more fundamental theory which
includes a quantum description of gravity has led to the
development of theories which extend the standard model
and predict qualitatively different physical phenomena
[1]. In this context, a framework for studying the effects
of spontaneous Lorentz symmetry breaking and possible
resulting CPT violation within the context of conven-
tional quantum field theory has been developed [2,3]
and studied intensively [4]. This framework formally
contains all possible operators utilizing standard model
fields that satisfy coordinate reparametrization invari-
ance and is called the Standard-Model Extension
(SME). The minimal version of the SME is restricted to
exhibit a number of useful properties: it preserves energy-
momentum conservation, observer Lorentz invariance,
conventional quantization, hermiticity, microcausality,
positivity of the energy, gauge invariance and power
counting renormalizability. In addition, the framework
provides a generic model for any theory which extends
the standard model and provides for spontaneous Lorentz
symmetry breaking and CPT violation. For example,
Lorentz violation may arise in noncommutative field
theory [5] or random dynamics models [6].

To date, there has been no confirmed evidence for
Lorentz violation, hence it is reasonable to assume that
any violation must be small in conventional laboratory
frames (concordant frames) [7]. Various experiments uti-
lizing mesons [8–10], baryons [11–13], electrons [13–
15], photons [16–20], and muons [21] have reached a
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precision that probes these parameters at Planck-
suppressed scales. Recent analysis have also been ex-
tended to the neutrino sector [22,23], instantons [24],
supersymmetric models [25], and the gravitational sector
[26].

Statistical mechanics has been applied to rotationally
invariant CPT-violating terms in the SME to provide a
mechanism for baryogenesis in thermal equilibrium [27],
but a detailed exposition of the formalism for general
Lorentz violation is lacking. It is the goal of this paper
to address this issue.

A general framework is provided in this paper for
performing statistical mechanics calculations within the
context of the SME. The required assumptions regarding
statistical inference and the definitions of relevant ther-
modynamic quantities are given. A complete analysis of
the effects of all Lorentz-violating terms on a nonrela-
tivistic ideal gas is performed. The corresponding ther-
modynamics is studied and the various changes in
thermodynamic quantities are analyzed. In Sec. II, the
notation and the relevant formalism for performing sta-
tistical mechanics calculations within the context of the
SME is presented. Section III contains calculations of the
relevant thermodynamic quantities for single-particle
systems. Section IV generalizes the result to a classical
gas with a variable particle number and incorporates the
chemical potential. Section V generalizes the result to a
quantum gas of fermions and Sec.VI gives corresponding
results for spin-0 bosons. The conclusions are gathered in
Sec. VII.
II. NOTATION AND FORMALISM

Classically, the foundation of statistical mechanics was
based on underlying assumptions concerning the laws of
-1  2004 The American Physical Society
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motion, equal a-priori probabilities, and the ergodic hy-
pothesis. Guided by thermodynamic phenomenology, one
is then led naturally to an expression for entropy. By
comparison, in the Jaynesian approach [28], the formula-
tion is again based on an underlying assumption regard-
ing the laws of motion, but the other hypotheses are
replaced by maximal lack of information regarding the
system subject to observable constraints. In this case, the
entropy is identified with information and plays a funda-
mental role in the theory. As noted below, both theories
reproduce the same thermodynamics. In the following,
we adopt the Jaynsian approach as it is more straightfor-
ward for our purposes.

Let f ig1i�1 be a collection of states and suppose that
ffjg

l
j�1 is a finite collection of real valued functions on the

collection of states. Given a distribution of states, qi �
q� i�; we denote by brackets the corresponding expecta-
tions; hfji �

P
ifj� i�qi: We denote the (information)

entropy associated to the distribution qi by

S � 	k
X
i

qi ln�qi�; (1)

where k is a positive constant that will later be identified
with Boltzmann’s constant.

Suppose we are given an observation of the mean
values fhfjiglj�1 and we seek a distribution that best fits
our observation. In his approach to statistical inference,
Jaynes [28] argues that one should choose a distribution
which maximizes (1) subject to the constraints on expec-
tations given by the observations. In so doing, a now
standard argument via variational calculus leads imme-
diately to the solution

qi �
e	

P
l
j�1

jfj� i�

Z
; (2)

where the Lagrange multipliers, j; are real constants and

Z is the partition function, Z�� �
P
ie

	
P

l
j�1

jfj� i�:
From (2) it follows that

hfji � 	
@
@j

ln�Z�: (3)

If, in addition to being functions of state, the fj are
permitted to depend on a finite collection of parameters,
aj; 1 
 j 
 m; then it is easy to see that

X
j

j

�@fj
@ak

�
� 	

@
@ak

ln�Z�: (4)

The resulting maximal entropy is given by

Smax � k lnZ� k
X
j

jhfji: (5)

Variation of the maximal entropy with respect to the
125007
parameters j, �j, and hfji yields the relation

dS �
X
k

@ lnZ
@�k

d�k �
X
j

jdhfji: (6)

As is clear from our development, (2) and (3) are
formal rules of inference which follow for any system
described as above, under the assumption of maximum
entropy. Jaynes applies these formal rules to the study of
equilibrium thermodynamics. More precisely, suppose
that we consider a system of identical particles con-
strained to lie in a box of volume V. Suppose that f1 �
E denotes the energy levels corresponding to the possible
states of the system and that f2 � N denotes the number
of particles in the system. Given observations of the mean
values, hEi; hNi; one obtains the partition function for the
grand canonical ensemble:

Z��;�� �
X
i;j

e	�Ej	�Ni ; (7)

where we have identified the Lagrange multiplier 1 with
the scaled inverse temperature � � 1

kT and the Lagrange
multiplier 2 � � with 	��; where � is the chemical
potential.

Allowing the energy to depend on the volume V and
setting a1 � V in (4) we get the usual description of
pressure

P � 	

�
@E
@V

�
�

1

�
@
@V

ln�Z�: (8)

Equations (1)–(8) give the central features of thermody-
namics including expressions for the entropy as a func-
tion of temperature, volume and particle number, and the
usual first law of thermodynamics. The standard expres-
sion for average energy and particle number are given by
(3) and the expressions for specific heat at constant vol-
ume and at constant pressure follow by taking the appro-
priate derivatives of the entropy:

CV � T
�
@S
@T

�
hNi;V

�

�
@hEi
@T

�
hNi;V

; (9)

CP � T
�
@S
@T

�
hNi;P

: (10)

Thermodynamic potentials such as the Helmholtz free
energy are defined in the usual way.

As was emphasized by Jaynes, the method of maxi-
mum entropy provides accurate predictions of thermody-
namic properties, assuming empirically accurate mean
values and laws of motion embodied in the associated
hamiltonian. For the purpose of probing the thermody-
namics of systems of particles with symmetry violations,
the method offers a simple framework for generating
results. All that remains is to specify the relevant under-
lying hamiltonian.
-2
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In the case of free spin- 12 Dirac fermions  of mass m,
the SME is determined by the lagrangian [2]

L �
1

2
i � 	�@�

$
 	 � M ; (11)

where

	� � �� � c���
� � d���5�

� � e� � if��5

�
1

2
g��!�;M

� m� a��� � b��5�� �
1

2
H��!��:

In the above expressions a�; b�; c��; d��; e�; f�; g��
and H�� are real fixed background parameters which
determine the Lorentz violation. For low energy applica-
tions the associated nonrelativistic hamiltonian H has
been obtained using a generalized Foldy-Wouthuysen
transformation [29]. To second order in p=m, this hamil-
tonian is given by[30]

H �
p2

2m
�HLV; (12)

with

HLV � A� Bj!j � Cj
pj
m

�Djk
pj
m
!k � Fjk

pjpk
2m

�Gjkl
pjpk
2m

!l; (13)

where common terms in the original lagrangian (11) are
collected:

A � �a0 	mc00 	me0�; (14)

Bj �
�
	bj �mdj0 	

1

2
m+jklgkl0 �

1

2
+jklHkl

�
; (15)

Cj � aj 	m�c0j � cj0� 	mej�; (16)

Djk �

�
	b0,jk �m�dkj � d00,jk� �m+klm

�

�
1

2
gmlj � gm00,jl

�
� +jklHl0

�
; (17)

Fjk � 	2
��
cjk �

1

2
c00,jk

��
; (18)

Gjkl � 2
�	
�d0j � dj0� 	

1

2

�
bj=m� dj0 �

1

2
+jmn

� �gmn0 �Hmn=m�
�

,kl �

1

2

�
bl=m�

1

2
+lmngmn0

�

� ,jk 	 +jlm�gm0k � gmk0�
�
: (19)

The hamiltonian is invariant under spatial translations,
therefore the logarithm of the associated grand partition
125007
function scales with volume as in the conventional case.
Using Eq. (8) together with this property yields the
relation

PV
kT

� ln�Z�: (20)
III. SINGLE-PARTICLE SYSTEMS

We first consider a system consisting of a single free
spin- 12 particle governed by the hamiltonian H appearing
in (12), constrained to a cube of side length L. For small
violations of Lorentz symmetry, we derive the corre-
sponding perturbations to the statistical mechanics using
the single-particle partition function. This simplifies the
initial analysis by eliminating the need to discuss the
chemical potential.

The standard unperturbed solutions are written in the
form

 �0�
n;s�x� �

Y
sin

�
ni/xi
L

�
1s; (21)

where n � �n1; n2; n3� is a triple of positive integers and
s 2 f1;	1g denotes a sign. Note that the two-component
spinor 1s may depend on n. The corresponding unper-
turbed energy levels are written as

E�0�
n;s �

/2 �h2

2mL2 n
2: (22)

The first order correction to the energy levels due to the
Lorentz-violating terms are found using standard degen-
erate perturbation theory as:

h n;sjHLV j n; si �
/2 �h2

2mL2

�
An2 �

X
i

Fiin
2
i � sjG�n�j

�
;

(23)

where the vector G�n� is defined with components

G�n��j �
2mL2

/2 �h2
Bj �

X
i

Giijn
2
i : (24)

The n dependent spinors 1s have been chosen to satisfy
G�n� � !1s � s1s and therefore diagonalize HLV . Note
that C and D perturbations depend linearly on momen-
tum and therefore do not contribute a correction to the
energies.

The perturbed energy is written as

En;s � E�0�
n;s � ,En;s; (25)

with ,En; s given by the matrix elements (23). The par-
tition function for a single-particle becomes

Z�1� �
X
n
e	�En;� � e	�En;	 : (26)

Approximating the sum on the right hand side of (26) by
-3
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the appropriate integrals, we obtain expressions for par-
tition functions corresponding to hamiltonians with
Lorentz-violating terms. The partition function is even
in the spin-dependent correction terms and therefore
there are no lowest order corrections contributed by B
or G. The A and F terms correct the partition function as

Z�1� ’ 2e	�A
4/
8

Z 1

0
n2e	��/2 �h2=2mL2��n2�

P
Fiin2i �dn

’ 2e	�AnQV
�
1	

1

2
Tr�F�

�
; (27)

where V is the volume of the box, nQ � �m=2�/ �h2�3=2 is
the quantum concentration, and Tr�F� �

P
Fii.

Using the relationship hE�1�i � 	�@=@�� ln�Z�1�� (cf
(3)), it follows from (27) that only the A term corrects
the energy. The A term corresponds to a constant shift in
all of the energy levels, hence it is possible to redefine the
zero point of the energy [31] to eliminate this
contribution.

The correction to the partition function due to the F
term can be incorporated into an effective mass for the
fermion

m� �

�
1	

1

3
Tr�F�

�
m; (28)

because only the rotationally invariant trace component
contributes. The Tr�F� term appears to be a trivial scaling
that can be absorbed into the mass, but this is not quite
true because the effective mass violates boost invariance.
This means that the effective mass can be different in
various laboratory frames. However, such effects will be
relativistically suppressed and therefore difficult to ob-
serve using Earth-based experiments.

More interesting is the correction to the expectation
value of the spin. In this case, only the B andG terms will
contribute. The expectation is calculated as

hs�1�i � �Z�1��	1
X
n;s

sG�n�
jG�n�j

e	��/2 �h2=2mL2�n2�sjG�n�j�

’ 	�nQV�	1�
/2 �h2

2mL2

X
n
G�n�e	��/2 �h2=2mL2�n2

’ 	�B	
1

2
Tr�G�; (29)

where the vector Tr�G��k �
P
iGiik is defined. Note that

while it is not in general possible to simultaneously di-
agonalize the contribution from B and G terms, the same
computation allows us to treat the case where both terms
occur. The corresponding spin expectations decouple.

IV. CLASSICAL GAS

We now introduce the chemical potential and consider
a classical gas of free spin- 12 Dirac Fermions. As in
Sec. II, N denotes the (variable) particle number for the
system. The grand partition function for the system can
125007
be written in terms of the single-particle partition func-
tion as

Z�C� � expe	�
�C�
Z�1�����; (30)

where ��C� � 	���C� and ��C� is the chemical potential
of the classical gas. Thus Eq. (27) also gives the first order
corrections for the grand partition function. Using the
grand partition function, the resulting expressions for
expected particle number and energy are

hN�C�i � e	�Z�1�; (31)

hE�C�i �
3

2
hN�C�ikT: (32)

Since PV � kT lnZ�C�; it follows that there is no change in
the classical ideal gas law, even in the presence of Lorentz
violation.

Solving for the chemical potential��C� (to lowest order
in Lorentz-violating parameters) yields

��C� � 	kT
�
ln
�
2nQ
n�C�

�
	

1

2
Tr�F�

�
; (33)

where nQ is the quantum concentration and n�C� �
hN�C�i=V is the concentration of the classical gas. We
conclude that in the presence of Lorentz violation there
is a change in the chemical potential as expected from the
effective mass argument presented in the previous
section.

The corresponding entropy S�C� is found using Eq. (5)
as

S�C� � ��C�hN�C�ik�
5

2
hN�C�ik: (34)

Using (33), the modified Sackur-Tetrode equation is

S�C� � hN�C�ik
�
5

2
	

1

2
Tr�F� � ln

�
2nQ
n�C�

��
: (35)

From (35) and (9) and (10) it is clear that there is no
change to the specific heat.

Finally, we verify that the expectation of the spin is in
fact the single-particle result in Eq. (29) times the ex-
pected particle number

hs�C�i � 	hN�C�i

�
�B�

1

2
Tr�G�

�
: (36)
V. QUANTUM GAS-FERMIONS

Next, the quantum occupancy of the orbitals is re-
stricted to be 0 or 1 and the low-temperature limit is
analyzed. With notation from previous sections, the par-
tition function for the grand canonical ensemble associ-
ated to a Fermi gas is
-4
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Z�Q���� �
Y
n;s

�1� e	�e	�En;s�: (37)

In the unperturbed case, the grand partition function is
calculated using the appropriate integral approximation
as (zero subscripts represent unperturbed quantities)
�/2 �h2=2mL2

lnZ�Q�
0 ��0�� � /

Z 1

0
n2 ln

�
1� e	�0	��/2 �h2=2mL2�n2

�
dn

�
2

3
Vf5

2
�e	�0�; (38)

where  � h=�2/mkT�1=2 is the thermal wavelength (re-
lated to the quantum concentration by 1=3 � nQ) and
f��e	�� is the Fermi-Dirac integral

f��e	�� �
1

	���

Z 1

0

x�	1

e�ex � 1
dx: (39)

Using (3) gives the standard results

hN�Q�
0 ��0�i �

2

3 Vf3=2�e
	�0�; (40)

hE�Q�
0 ��0�i �

3

2
hN�Q�

0 ��0�ikT
f5=2�e

	�0�

f3=2�e	�0�
; (41)

and the quantum ideal gas law

P
nkT

�
f5=2�e

	�0�

f3=2�e	�0�
: (42)

As in the classical case, there are no first order correc-
tions to the partition function for Lorentz-violating terms
given by the coefficients B;C;D and G appearing in (13).
For violating terms of type F; a change of variables in the
integral (38) gives first order corrections for the partition
function which we write as

lnZ�Q����� ’
�
1	

1

2
Tr�F�

�
lnZ�Q�

0 ����: (43)

As in the classical case, only the rotationally invariant
component of F contributes, therefore it is possible to
absorb the term into an effective mass as before.
Standard calculations then immediately give the results

hN�Q����i �
�
1	

1

2
Tr�F�

�
2

3
f3=2�e

	��; (44)

hE�Q����i �
3

2
hN�Q����ikT

f5=2�e
	��

f3=2�e
	��

; (45)

as well as the ideal gas law

P

n�Q�kT
�
f5=2�e

	��

f3=2�e
	��

; (46)

where n�Q� is the concentration of the quantum gas (not to
be confused with the quantum concentration nQ defined
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earlier). Note that the ideal gas law is in fact modified in
the quantum case due to its dependence on � � �0. The
correction due to F may be incorporated easily by replac-
ing �m� by �m�� using the effective mass given in
Eq. (28).

From (39) it is clear that the map �! f3=2�e	�� is
strictly monotonic and thus invertible.Writing the inverse
as F ; we have a formal expression for the chemical
potential

��Q� ’ 	kTF
�
3�m��n�Q�

2

�
: (47)

Equation (47) demonstrates that conventional formulas
can be used to obtain the relevant quantities. These for-
mulas can be found in a standard statistical mechanics
text such as [32]. For instance, the chemical potential at
zero temperature defines the Fermi energy and is modified
as

��Q��T � 0� � EF ’ EF
�0�

�
1�

1

3
Tr�F�

�
; (48)

where EF
�0� � � �h2=2m��3/2n�Q��2=3 is the conventional

Fermi energy. Approximating to the next highest order
in temperature gives

��Q� ’ EF

�
1	

/2

12

�
kT
EF

�
2
�
: (49)

Using (44) and (45), an asymptotic expansion for f5=2 and
(49) we obtain

hE�Q�i

hN�Q�i
’
3

5
EF

�
1�

5/2

12

�
kT
EF

�
2
�
: (50)

From (9) and (50) a we get an expression for the specific
heat in the limit of low-temperature

CV
hN�Q�ik

’
/2

2

kT
EF

’
/2

2

kT

EF
�0�

�
1	

1

3
Tr�F�

�
: (51)

Writing the entropy using (5) gives the perturbed entropy
in the low-temperature limit as

S�Q� ’ CV; (52)

as expected from the integrated equation for specific heat.
The low-temperature ideal gas law perturbation is

P ’
2

5
n�Q�EF

�
1�

5/2

12

�
kT
EF

�
2
�
: (53)

The expectation value for the spin can be calculated in
the quantum regime using the fractional occupancies

f�n; s� �
1

e�e�En;s � 1
; (54)

where En;s � E�0�
n;s � ,En;s and the perturbation is as

given in (23). With notation as above, the expectation of
-5
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the spin is given by

hs�Q�i �
X
n;s
s
G�n�
jG�n�j

f�n; s�

’ 	2�
/2 �h2

2mL2

X
n
G�n�

e�e��/
2 �h2=2mL2�n2

�1� e�e��/
2 �h2=2mL2�n2�2

’ 	hN�Q�i

�
2
�

3 f1=2�e
	��B�

1

2
Tr�G�

�
: (55)

This calculation demonstrates the surprising fact that the
contribution of the G term is temperature-independent
and does not randomize at high temperature. At low
temperatures, the contribution from the B term can be
written as

hs�Q�B i ’ 	hN�Q�i
3

2

B
EF

�
1	

/2

12

�
kT
EF

�
2
�
: (56)

This is identical to the result for a quantum Fermi gas in
an external magnetic field when only spin interactions are
relevant. Note that the parameter B is a fixed background
vector that does not rotate with the experiment.
VI. QUANTUM GAS-BOSONS

It is possible to generate a model for a free spin-0 boson
gas by combining two fermions into a singlet representa-
tion of the spin group. This means that the expectation
value of all spin-couplings vanish in the hamiltonian
(13). The resulting hamiltonian is given by

H �
p2

2m
� A� Cj

pj
m

� Fjk
pjpk
2m

: (57)

Choosing the ground state energy to be zero and employ-
ing the notation of the previous sections, the associated
grand partition function for the unperturbed case is

lnZ�QB�
0 ��0�� � 	

X
n
ln�1	 e	�0e	�E

�0�
n � 	 ln�1	 e	�0�;

(58)

where E�0�
n � �/2 �h2=2mL2�n2 as before, and the ground

state has been separated out to allow for Bose-Einstein
condensation at low temperatures. Approximating the
sum as an integral gives the standard result

lnZ�QB���0�� �
1

3
Vg5=2�e

	�0� 	 ln�1	 e	�0�; (59)

where  is the thermal wavelength and g5
2
�e	�� is the

Bose-Einstein integral

g��e	�� �
1

	���

Z 1

0

x�	1

e�ex 	 1
dx: (60)

Using (3) we obtain the expected number of particles in
the excited states and the associated energy as
125007
hN�QB�
0 ��0�i 	 hNG0i �

1

3
Vg3=2�e	�0�; (61)

hE�Q�
0 ��0�i �

3

2
kT

V

3
g5=2�e	�0�; (62)

where hNG0i � e�0 	 1�	1 is the expected number of
particles condensed into the ground state.

The only nontrivial leading order perturbation in (57)
arises from the F term. A calculation which follows that
done for the case of fermions gives

lnZ�QB�����’
�
1	

1

2
Tr�F�

�
1

3Vg5=2�e
	��	 ln�1	e	��:

(63)

It follows from (3) and (40)–(43) that for the perturbed
case we have

hN�QB����i 	 hNG0i �
�
1	

1

2
Tr�F�

�
1

3
g3=2�e	��;

hE�QB����i �
3

2
kT

V

3 g5=2�e
	��:

(64)

As in the Fermi case, the chemical potential can be ex-
pressed as a function of the number of particles in excited
states. The computations, modulo obvious modifications,
are similar to (47)–(53). Because only Tr�F� enters into
the grand partition function, it is possible to use the
concept of effective mass to absorb the effect as before.
Standard results of Bose-Einstein condensation therefore
hold in a given laboratory frame. The effect is nontrivial,
as in the fermion case, because boosting the experiment
will change the effective mass. Modifications of these
calculations are required if the ground state wave func-
tion does not exhibit rotational symmetry, such as is the
case in actual condensate experiments due to some optical
and magnetic trapping configurations [33]. In this case,
the zero point of energy can depend on orientation of the
apparatus and induce rotational variations in the conden-
sate properties. An analysis of this type for specific ex-
periments would be interesting, but is beyond the scope of
the paper.

VII. CONCLUSION

The formalism of statistical mechanics in the presence
of symmetry violation parallels the conventional situ-
ation. The laws of thermodynamics are the same as in
the conventional case, although the specific expectation
values of thermodynamic quantities can be modified by
the Lorentz-violating terms. Our approach involves an
assumption of a maximal lack of information (or entropy)
regarding a system subject to various constraints imposed
by the physical observables. The temperature and chemi-
cal potentials can be defined simply as the lagrange multi-
pliers associated with the constraints, hence two systems
in equilibrium automatically have the same temperature
and chemical potential as there is only one lagrange
-6
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multiplier for each overall constraint. This method in fact
produces equivalent results to the more conventional as-
sumption of equal a-priori statistics, however, it has the
advantage of providing straightforward definitions of
thermodynamic variables with conventional equilibrium
properties.

As an explicit example, the unperturbed system was
assumed to be an ideal gas in the absence of any external
applied fields (such as magnetic or gravitational fields).
Expectation values for scalar thermodynamic quantities
such as energy and particle number were unaltered except
for an overall scaling factor Tr�F�. This happens because
the unperturbed system is rotationally invariant and sca-
lar expectation values can only be corrected by perturba-
tions with commensurate symmetry. This can also be
incorporated as an effective mass m� � 1	 1

3 Tr�F��m
in the hamiltonian, although the effective mass defined in
this way depends on the observer’s Lorentz frame. For
instance, a gas in motion on the surface of the Earth
would exhibit slight sidereal variations in effective mass
due to changes in Tr�F�. This effect is relativistically
suppressed and unlikely to be observable for physically
reasonable values for the violation parameters.

More interesting is the net spin expectation value con-
tributed by the terms that couple to the spin. The pure-
spin coupling Bj mimics a constant background magnetic
field and induces a corresponding magnetic moment per
125007
unit volume in the gas. Any additional applied magnetic
field could be added to this term to calculate the net result
on an actual experiment. For example, an Earth-based
experiment will rotate in space and the constant back-
ground vector will interfere with the applied magnetic
field to produce a sidereal variation.

The derivative-spin coupling Gijk generates a funda-
mentally new type of effect that induces a temperature-
independent polarization in the classical gas that is pro-
portional to Tr�G�. This means that even at very high
temperatures there will be a net residual polarization that
does not randomize. This is a reasonable result, consid-
ering that the Tr�G� term couples the spin to the conven-
tional kinetic energy term in the hamiltonian and
indicates that any physical effects should scale accord-
ingly. An effect of this type should be clearly distinguish-
able from stray magnetic field effects that have an inverse
temperature dependence.

In the zero temperature limit, both the Bj and Gijk

terms contribute a polarization to the Fermi gas. The B
contribution depends on n1=3 while the Tr�G� depends
linearly on particle density n. This means that the effects
of the Tr�G� term can grow significantly faster with
increasing density than conventional magnetic field ef-
fects. Such a term may therefore have important effects
for very dense astrophysical systems such as dwarf stars,
but an explicit analysis is beyond the scope of this paper.
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[7] V. A. Kostelecký and R. Lehnert, Phys. Rev. D 63,

065008 (2001).
[8] KTeV Collaboration, H. Nguyen, in Ref. [4];OPAL

Collaboration, R. Ackerstaff et al., Z. Phys. C 76, 401
(1997); DELPHI Collaboration, M. Feindt et al., report,
1997 (to be published); BELLE Collaboration, K. Abe
et al., Phys. Rev. Lett. 86, 3228 (2001); BaBar
Collaboration, B. Aubert et al., hep-ex/0303043;
FOCUS Collaboration, J. M. Link et al., Phys. Lett. B
556, 7 (2003).

[9] D. Colladay and V. A. Kostelecký, Phys. Lett. B 344, 259
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091701 (2002); M. S. Berger, Phys. Rev. D 68, 115005
(2003).
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