
PHYSICAL REVIEW D 70, 125003 (2004)
D � 2, N � 2 supersymmetric � models on non(anti)commutative superspace

B. Chandrasekhar*
Institute of Physics, Bhubaneswar 751 005, India

(Received 30 August 2004; published 3 December 2004)
*Electronic

1550-7998=20
I extend the results of hep-th/0310137 to show that a general classical action for D � 2, N � 2
sigma models on a non(anti)commutative superspace is not standard and contains infinite number of
terms, which depend on the determinant of the non(anti)commutativity parameter C��. I show that
using Kähler normal coordinates the action can be written in a manifestly covariant manner. I introduce
vector multiplets and obtain the N � 1=2 supersymmetry transformations of the theory in the
Wess-Zumino gauge. By explicitly deriving the expressions for vector and twisted superfields on
non(anti)commutative superspace, I study the classical aspects of gauged linear sigma models.
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I. INTRODUCTION

Supersymmetric field theories defined on deformed
superspaces have been studied for quite some time [1–
6]. The recent interest in such theories is due to the
realization that they arise naturally in certain limits
of string theory in exactly the same way as noncommu-
tative field theories arise in the Seiberg-Witten low energy
limit [7].

In the context of Dijkgraaf-Vafa correspondence [8], it
was shown that the deformation of the algebra of super-
space coordinates allows the computation of nonpertur-
bative contributions to the N � 1 superpotential by
summing over certain nonplanar diagrams on the matrix
model side.

To be precise, using the pure spinor approach, the D �
4 sigma model action for D branes of type II superstring
theory compactified on Calabi-Yau three-folds was con-
sidered in [9]. It was shown that, turning on a constant
graviphoton background field in four dimensions (or more
generally Ramond-Ramond (RR) two-forms in ten di-
mensions itself [10]), leads to a deformation of correlation
functions of the superspace coordinates as:

f��; ��g � 2�02F��: (1.1)

Here �0 is related to the inverse of string tension and F��

is the self-dual graviphoton field strength.
Note that the anticommutation relations of the remain-

ing superspace coordinates, �� _�, are not modified. This is,
however, only possible in a Euclidean space, where set-
ting the anti-self-dual part F _� _� to zero, does not affect
the string equations of motion. Further, it can be shown
that this configuration of fluxes is stable and does not
backreact on the metric, due to the vanishing of the
energy-momentum tensor.

It was noted that the deformation in Eq. (1.1) does not
survive the field theory limit �0 ! 0, as long as F�� is a
constant. But, the boundary term generated by the grav-
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iphoton vertex operator survives the field theory limit (as
it turns out to be independent of �0) and also breaks half
of the supersymmetries. Nevertheless, it was shown in [9]
that a suitable deformation of the gluino anticommutation
relations cancels the boundary term and this restores the
N � 1 supersymmetry on the brane. This also restores
the standard anticommutation relations of the fermionic
coordinates �� and ��. Crucial to their analysis were the
covariant quantization techniques developed in [11,12],
for studying superstrings in Ramond-Ramond back-
grounds in a manifestly superpoincaré invariant manner.

Mechanisms of supersymmetry breaking which come
from superspace deformation and also survive in the field
theory limit are very interesting. Hence, for the theory on
the brane, the limit �0 ! 0; F�� ! 1; �02F�� � C�� �
fixed was considered in [13,14], so as to preserve the
nontrivial anticommutation relations (1.1). As mentioned
before, an important consequence of the deformation in
Eq. (1.1), is that half of the supersymmetry generators,
due to their dependence on ��’s, become nonlinear. As a
result, they are no more the symmetries of the back-
ground. The surviving supertranslational symmetry
along the �� directions has been termed as the N � 1=2
supersymmetry.

It is useful to note that one still continues to use the full
superspace, but with the understanding that the transla-
tional symmetry in the � directions is broken. Regardless
of this aspect, it was shown in [13] that the classical
action of four dimensional N � 1 supersymmetric field
theories with the superspace deformation as in Eq. (1.1),
is still Lorentz invariant [in the sense that the non(anti)-
commutativity parameter C�� appears only as �detC� in
the action]. Further, the F terms were also shown to be
invariant under the surviving N � 1=2 supersymmetry
transformations.

This was followed by a number of works on the clas-
sical and quantum aspects of the Wess-Zumino models in
four dimensions, both perturbative and nonperturbative.
Other interesting features [15–35] and generalizations to
models with N � 2 supersymmetry in four [36–40], as
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well as in two dimensions [41,42], have also been
discussed.

In [42], we studied the consequences of the superspace
deformation (1.1) for D � 2;N � 2 supersymmetric
theories characterized by a general Kähler potential and
arbitrary superpotential. The classical action was shown
to have a power series expansion in the determinant of
the non(anti)commutativity parameter. The analysis
was only for the case of a single chiral multiplet.
Generalization to include several chiral multiplets, and
hence to a sigma model, is of great importance.

Formulating sigma models in two dimensions is also
interesting from the target space point of view. To be
precise, the fact that the worldsheet is deformed by the
relations (1.1), does not necessarily imply that the target
space shares the same properties. Thus, it is of great
interest to study N � 2 theories on non(anti)commuta-
tive superspace, with Kähler manifolds as target spaces.

Further, it is well known that N � 2 supersymmetric
nonlinear sigma models [43– 46] have provided invalu-
able insights in the physics of lower dimensional systems,
dynamics of string theory in general curved backgrounds,
mirror symmetry and Calabi-Yau geometries, topological
field theories, etc. These theories are characterized by an
underlying Kähler geometry which constrains the form of
the classical action and, at the quantum level, puts severe
restrictions on their ultraviolet structure [45,46].
Motivated by the above facts, in this paper, I first general-
ize the analysis of [42] to study N � 2 supersymmetric
nonlinear 
 models characterized by a Kähler potential
K�i; �j�, where there are several chiral multiplets, i,
i � 1; . . . ; k. This setup naturally leads to the formulation
of sigma models with Kähler manifolds as target spaces.

On another front, chiral multiplets in the presence of
gauge fields in two dimensions have been considered
before, for providing interesting insights into various
aspects of Mirror symmetry. Thus, we extend the analysis
to include several chiral multiplets charged under a single
vector multiplet and study gauged linear sigma models
(GLSM) on non(anti)commutative superspace.

As discussed above, the motivation for studying
GLSM’s are many fold. First, a distinct feature that ap-
pears in two dimensions, compared to four dimensions, is
that in addition to the chiral multiplets it is also possible
to have twisted multiplets [47]. Sigma models having both
kinds of multiplets are quite fascinating, as mirror sym-
metry interchanges the two. Thus, they allow a concrete
understanding of the Landau-Ginzburg and Calabi-Yau
phases of N � 2 theories [48,49]. Further, mirror sym-
metry in the presence of fluxes is also being pursued. The
fluxes coming from string theory can either be of Neveu-
Schwarz–Neveu-Schwarz type or RR type. Since, the
superspace deformation in Eq. (1.1) is coming from the
study of superstrings in the RR backgrounds, it might
be interesting to understand mirror symmetry in this
set up.
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Second, superstring compactifications on Calabi-Yau
manifolds can generate nontrivial superpotentials in the
effective four dimensional theory. It is of interest to get a
better understanding of this superpotential, as it encodes
important information about the vacuum structure of the
theory. It has been known for a while that this super-
potential can be studied by looking at the associated
sigma model. But, for these sigma models to be useful,
they have to be either conformally invariant or flow to
conformally invariant theories in the IR limit. Never-
theless, it is still possible to deduce useful information
from these models by twisting them to get topological
theories. The observables and correlation functions in
these topological sigma models do not depend on the
metric and are also invariant under scale transformations.

Because of such varied applications, N � 2 GLSM’s
have been studied by many authors. Further, one can add
world sheets to the boundary by putting appropriate
boundary conditions on the fields in the vector multiplet
and study D branes via these models [50]. With this
motivation, in this paper, I study the classical aspects of
D � 2, N � 2 sigma models defined on a non(anti)com-
mutative superspace.

The rest of the paper is organized as follows. In Sec. II,
I begin with the dimensional reduction of the relevant
formulas from D � 4 to D � 2. In the following subsec-
tion, I discuss the various supersymmetry multiplets in
the theory and also explicitly derive the supersymmetry
and gauge transformations in the Wess-Zumino gauge. In
Sec. III, I discuss the construction of classical action of
the theory, while pointing out the emergence of a series
expansion in �detC�. Here, I use a certain normal coor-
dinate expansion to write the action in a manifestly
covariant fashion.

In Sec. IV, I present the classical action of the gauged
linear sigma models, show the invariance under N �
1=2 supersymmetry transformations, and also make some
remarks about the superpotential of the theory. I present
conclusions and discussion in Sec. V .
II. N � 2 SUPERSPACE AND
SUPERMULTIPLETS

In this section, I start by establishing our notations and
conventions, while also reviewing certain general prop-
erties of non(anti)commutative superspace in two dimen-
sions. Some relevant details can also be found in [42], but
most of the results have been rederived so that the con-
nection with four dimensional case [13] is more clear and
also to ensure that the notations are compatible with the
ones in [48]. In Sec. II B, I discuss the definitions of the
matter and gauge multiplets, gauge transformation prop-
erties of the component fields, and explicitly construct the
supersymmetry transformations in the Wess-Zumino
gauge.
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Before proceeding, it is useful to mention that we work
in a Euclidean space, but continue to use Lorentzian
signature for convenience [13]. The reason why the under-
lying space is Euclidean can be understood by going back
to the four dimensional relations in Eq. (1.1). As dis-
cussed before, the deformation is imposed only over
half of the fermionic coordinates, while the remaining
half still satisfy the same old Grassmannian algebra. This
is only possible in Euclidean space where the self-dual
component F�� can be turned on, while setting its anti-
self-dual part F _� _� to zero.

In a Minkowski spacetime, the self-dual and (anti)self-
dual components of the graviphoton field strength are
related by a complex conjugation. However, in a
Euclidean space the two components transform indepen-
dently under the two different SU(2) subgroups, which
come from SO�4� � SU�2�L 	 SU�2�R [25,51].

Thus, compared to N � 1 supersymmetric theories in
Minkowski spacetime, the number of bosonic and fermi-
onic fields of the theory are doubled and complexified in
the corresponding Euclidean space. Now, in order to
preserve reality conditions, one is forced to introduce
the second supersymmetry. In other words, the only
way to put consistent reality conditions on the fields of
the theory is to extend the superspace to D � 4, N � 2
theories. However, we continue to work with N � 1
Euclidean superspace, given the understanding that all
the fields of the theory are complex with no reality con-
ditions on them.

A. D � 4! D � 2 dimensional reduction

We now start by discussing the dimensional reduction
fromD � 4 toD � 2. The superspace coordinates inD �
4 as given in [13] are: ��; �� _�, and y�, where�; _� represent
the two chiralities of spinor indices. Raising and lowering
of spinor indices is done as  � � ��� �,  � � ��� �,
where � is the antisymmetric tensor whose nonzero com-
ponents are given as �01 � 
�10 � 1. y� denotes the
chiral coordinates and is related to the standard IR4

coordinates as:

y� � x� � i��
�� _�
�� _�: (2.1)

The need for using chiral coordinates can be understood
as follows. Once we introduce the deformation:

f��; ��g � C��; (2.2)

the standard IR4 coordinates x� do not commute [13].
However, the coordinates y� can be taken to commute. In
fact, all (anti)commutators of y�; ��, and �� _� vanish,
except (2.2).

It will be useful to obtain the D � 2, N � 2 super-
space by dimensional reduction of the above formulas, so
that later on, the results obtained here can be directly
compared to the ones in D � 4.
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In making the reduction, we take the 2D fields to be
independent of x1 and x2 and label the fermionic coor-
dinates as ��0; �1� � ��
; ��� and ��0; �1� � ��
; ���.
Here, the upper and lower components are further related
as �
 � ��; �� � 
�
. Similar identifications hold for
the dotted indices as well. For the tensors 
�� _� we use
[52]:


0 �

1 0
0 
1

� �
; 
1 �

0 1
1 0

� �
;


2 �
0 
i
i 0

� �
; 
3 �

1 0
0 
1

� �
:

(2.3)

After dimensional reduction, we find it convenient to use
the following combination of chiral coordinates:

�
 �
1

2
�x0 
 x3� 
 i�
 ��
;

�
 �
1

2
�x0 � x3� 
 i�� ���;

(2.4)

where �
 � 1
2 �y

0 
 y3� and �
 � 1
2 �y

0 � y3�. Our non(-
anti)commutative superspace can be obtained by trans-
lating the relations (2.2) to D � 2 as:

f�
; �
g � C00; f�
; ��g � C01;

f��; �
g � C10; f��; ��g � C11:
(2.5)

Functions of �
 and ��, say f��
; ��� and g��
; ���, are
Weyl-ordered using the following definition of star prod-
uct:

f � g � f exp
�


C00

2
@�

 

@�

!


C01

2
@�

 

@��
!


C10

2
@��
 

@�

!



C11

2
@��
 

@��
!

�
g: (2.6)

The generators of supersymmetry transformations,
written in the chiral basis (2.4) are,

Q� � 

@
@��

; �Q� � 

@

@ ���

 2i��

�
@

@y0
�

@

@y3

�
;

(2.7)

and these anticommute with the remaining set of deriva-
tives, written in chiral basis as:

D� �
@
@��


 2i ���
�
@

@y0
�

@

@y3

�
; �D� � 


@

@ ���
:

(2.8)

In the chiral basis (2.4), the algebra of the supercovariant
derivatives (2.8), does not get modified due to the defor-
mation (2.5), as seen below:

f �D�; D�g � 2i
�
@

@y0
�

@

@y3

�
and the rest all zero:

(2.9)
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However, the algebra of supercharges given in Eqs. (2.7)
gets modified:

fQ�; �Q�g � 
2i
�
@

@y0
�

@

@y3

�

f �Q
; �Q
g � 
4C
00

�
@

@y0



@

@y3

�
2

f �Q�; �Q�g � 
4C11

�
@

@y0
�

@

@y3

�
2

f �Q
; �Q�g � 
4C01

�
@2

�@y0�2



@2

�@y3�2

�
;

(2.10)

and the rest all zero. As stated before, due to the depen-
dence of �Q ’s on the non(anti)commutative coordinates
��, it is no more a symmetry of the theory. From the
algebra (2.10), the only unbroken symmetry generators
are Q�. Hence, we only use these N � 1=2 supersym-
metry generators to study the theory.

B. N � 2 multiplets

Let us start by discussing the N � 2 matter and gauge
multiplets in two dimensions. For the C � 0 case, the
results are summarized in [48]. For the case with C � 0,
the definition of the vector superfield and the subtleties in
defining gauge transformations in D � 4 has been dis-
cussed in [13]. The discussion has been further extended
to include chiral multiplets in [24]. Thus, the simplest
way to obtain the vector and chiral multiplets in two
dimensions is to do a dimensional reduction of the rele-
vant formulas given in four dimensions.

As we will see, a naive dimensional reduction may not
show some critical aspects associated with the definition
of the multiplets. Thus, I choose to derive the proper
definitions of vector and chiral superfields in D � 2 for
the caseC � 0. Later on, I compare these definitions with
the ones obtained by a dimensional reduction and point
out the differences. What we will see is that a direct
reduction of the definition of vector superfields from D �
4 may give some additional terms, which can be ignored
in D � 2.

1. Vector multiplet

Since, one of my interests is in formulating a gauge
theory, I first introduce the vector superfield V. For sim-
plicity, in this work I only consider Abelian gauge groups,
in which case V is a single real function on the superspace.
Towards the end, I comment on the generalization to the
case of non-Abelian gauge groups.

Even after imposing the reality condition, there is a
residual gauge invariance under which the vector super-
field transforms infinitesimally as:

�eV � 
i �� � eV � ieV ��; (2.11)

where � � 
���
; �
� and �� � 
����; ��� are the
gauge parameters with �� � �
 � 2i�
 ��
 and �� �
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�
 � 2i�� ���. This residual gauge invariance can be
partially fixed by going to a Wess-Zumino gauge, in
which case, V takes the form:

Vwz � 
 ��
�
�� 
 ������� �
���
2
p

����

�
���
2
p

��
�� �


� 2i�
��� ��� ��� � ��
 ��
�


 2i ��
 �����
�
 � �����


 2�
�� ��
 ���
�
D�

i
2
@�
�� �

i
2
@�
��

�
: (2.12)

In the above definition of the vector multiplet, for gauge
fields �0; �1, we have introduced the notation �� � ��0 

�1� and �� � ��0 � �1�, as this combination will occur
quite frequently in chiral basis. Further, in Eq. (2.12)
; �

are complex scalars, ��; ��� are the gauginos, andD is an
auxiliary field.

To find out the gauge transformation properties of the
component fields, we write �� in terms of ��
; �
� coor-
dinates as:

�� � 
�
 2i�
 ��
@�
�
 2i�� ���@�
�


 4�
 ��
�� ���@�
@�
�; (2.13)

and calculate the right-hand side (RHS) of Eq. (2.11),
where for V, we use the definition derived in Eq. (2.12).
Some terms in the calculation, namely, the ones depend-
ing on C, are given below (identities used in the calcu-
lation are given in the appendix):


i �� � eV � ieV �� � ��
 ����i@�
����C00 � �
C01� ���
� @�
���
C11 � ��C10� ��


� 2�

���
2
p
C00
@�
�� C01��@�
�


 C10��@�
��
���
2
p
C11 �
@�
���:

(2.14)

Now, comparing the variation of the vector superfield and
the result in Eq. (2.14), one can directly obtain the gauge
transformations of the component fields of the vector
multiplet, as given below:

�g�� � 
2@�
� �g�� � 
2@�
�

�g�
; �
� � 0 �gD � 0 �g ��� � 0

�g�
 � 

i
2
�C01 ���@�
�� C11 ��
@�
��

�g�� � 

i
2
�C00 ���@�
�� C10 ��
@�
��: (2.15)

These are not the standard gauge transformation proper-
ties of the component fields, due to the new C-dependent
terms present in �g��. However, as suggested in [13], it is
possible to cancel the new terms seen in �g�� by mod-
ifying the definition of Vwz to include certain new
C-dependent terms. In fact from Eq. (2.11), it is possible
to guess the kind of terms that need to be added to Vwz.
-4



D � 2, N � 2 SUPERSYMMETRIC 
 MODELS ON. . . PHYSICAL REVIEW D 70, 125003 (2004)
The new terms to be added are of the following kind:

Vc � i ��
 �����
�C01 ����� � C
11 ��
�� �

� ���C00 ����� � C
10 ��
�� ��: (2.16)

Below I argue that modifying the definition of vector
superfield as in Eq. (2.18), has the effect of canceling the
first two terms in the quantity given in Eq. (2.14). This in
turn corresponds to restoring the standard gauge trans-
formation property of the gauginos, i.e., �g�� � 0.

The way to guess the new terms given in Eq. (2.16), is
to note that @�
� and @�
� appearing in �g�� are noth-
ing but the gauge transformations of the gauge fields ��
and �� . Thus, the terms in Vc have been chosen in such a
way that �gVc looks similar to the terms appearing in
�g��. The rest is to adjust the coefficients by making this
ansatz.

The remaining terms in the second line of Eq. (2.14),
can also be understood to be coming from a modification
of the gauge parameter as shown below:

�� � 
�
 2i�
 ��
@�
�
 2i�� ���@�
�


 4�
 ��
�� ���@�
@�
�

�
i ��
 ����

���
2
p
C00
@�
�� C01��@�
�


 C10��@�
��
���
2
p
C11 �
@�
��: (2.17)

To summarize, choosing the final form of vector super-
field in the C-deformed case to be

Vcwz � Vwz � Vc; (2.18)

with Vc given as in Eq. (2.16) and modifying the gauge
parameter as in Eq. (2.17), the standard gauge transfor-
mation properties of the component fields are restored.

We note that the additional terms added to the defini-
tion of the vector superfield in four dimensions [13] are a
bit different from the ones given in Eq. (2.16). If we
dimensionally reduce the definitions given in [13], we
get terms of the kind:

i ��
 ����
�C01 ���
� C
11 ��
 �
�; (2.19)

which may contribute to Eq. (2.16). However, these terms
contain 2D scalars (coming from 4D gauge fields) which
do not vary under gauge transformations in D � 2 and,
hence, do not affect the gauge transformation properties
of any of the component fields. Thus, these terms do not
play any role in the present analysis. Further, in [13], the
vector superfield was a priori assumed to be matrix
valued and the theory was non-Abelian. Since, for the
present case, we only consider Abelian gauge groups,
these terms do not occur. However, it is useful to note
that if there are several vector multiplets, there is a
restriction on the allowed gauge groups in the theory [25].

Before proceeding, it will be useful to write down the
powers of the vector superfield (2.18), as shown below:
125003
V2
� � V � V � 2 ��
 �����
���
���� � 2
 �
�


 �detC� ��
 ����;

V3
� � 0: (2.20)

One can see that, as in the standard C � 0 case, star
product of more than two vector superfields vanishes
[13], and this will be needed while writing down the
action.

2. Twisted multiplets

It has been known for quite some time that N � 2
sigma models having both chiral and twisted chiral mul-
tiplets are helpful in understanding mirror symmetry.
Hence, for the present case, we follow [48] and construct
the twisted chiral superfield for an Abelian gauge theory
as [48,53]:

� �
1���
2
p �D�D
V; (2.21)

where the modified vector superfield V is defined in
Eq. (2.18). Using the algebra of the supercovariant deriva-
tives given in Eq. (2.9), it is possible to show that the
twisted chiral superfield satisfies the conditions, D
� �
0; �D�� � 0 and can be written in terms of its compo-
nents as:

� � 
� i
���
2
p
�� ��� � i

���
2
p

��

�

�
 �

1

2
C01��� ���

� 2i�� ���@�
 ���� �
1

2
C11�� � ��
 � 2i�� ���@�
 ��
�

�



���
2
p

��
��
�
D


i
2
���

�

 2i ��
�
@�




 2
���
2
p

��

�
���
 


1

2
C10

�
@�
 ���; (2.22)

where ��� � @�
�� 
 @�
�� is the gauge field strength.
Twisted antichiral superfield satisfying D� �� � 0 and
�D
 �� � 0 can be obtained in an analogous way from �� �
1��
2
p �D
D�V, and is given below:

�� � �

 i
���
2
p
�
 ��
 � i

���
2
p

���
�
�� 


1

2
C00��� ���

� 2i�
 ��
@�
 ���� 

1

2
C10�� � ��


� 2i�
 ��
@�
 ��
�
�



���
2
p

����

�
D�

i
2
���

�


 2i �����@�
 �
� 2
���
2
p

���
�
�
�� 


1

2
C01

�
@�
 ��
:

(2.23)

All the component fields of twisted superfields are func-
tions of ��
; �
�. It is useful to compare the definitions of
twisted superfields given in Eqs. (2.22) and (2.23) with
the ones given in [48]. The only difference is the new
-5
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C-dependent terms, some of which arise from the addi-
tional terms added to the definition of vector superfield.
These terms have also been expanded around ��
; �
�
coordinates. Other C-dependent terms, for instance, the
term in the fourth line of Eq. (2.22) can be obtained from
the twisted chirality condition.

A vector superfield by itself is not a gauge invariant
object and, hence, is not directly used to construct the
action for the gauge fields. Rather, the twisted superfields
derived from V are used in writing down a gauge invari-
ant action for gauge fields. In other words, twisted super-
fields play the role of gauge invariant field strength for the
superspace U(1) gauge fields.

We now write down the supersymmetry transforma-
tions of the component fields of the vector multiplet. It is
easier to derive them from the twisted multiplets as
follows:

�� � ���Q� � �
Q
��; (2.24)

with similar relations for the twisted antichiral multiplet.
Comparing the RHS of the above equation with the
variation of the component fields in the definition of �
given in Eq. (2.22), we get:

�
 � i
���
2
p
�� ��� � �
 � 
i

���
2
p
�
 ��
 � ��� � 0

� ��
 � 0 ��� � 2i�
 ��� ��� � 
2i�
� ��
:

(2.25)

The above transformations are the same even for the C �
0 theory. However, the transformation properties of the
remaining component fields get modified by certain new
terms, as seen below:

��� � 

���
2
p
��@�
 �
� i�


�
D�

i
2
���

�

� i�C00�� � C10�
� ��� ��


��
 �
���
2
p
��@�


 i�

�

�
D


i
2
���

�
� i�C01��

� C11�
� ��� ��
: (2.26)

It is useful to compare the above results with the ones
obtained by dimensional reduction from [13].

3. Chiral multiplets

Now, the chiral and antichiral superfields satisfying
�D� � 0 and D� �o � 0, respectively, can be written

in a Weyl-ordered form, as shown below [13,42]:

 � "�
���
2
p
�
 
 �

���
2
p
�� � 
 2�
��F; (2.27)
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�o � �"

���
2
p

��
 � 
 

���
2
p

��� � � � 2i�
 ��
@�
 �"

� 2i�� ���@�
 �"� ��
 ����2 �F


 2
���
2
p
i�
@�
 � � � 2

���
2
p
i��@�
 � 


� 4�
��@�
@�
 �"�: (2.28)

Note that we have used C01 � C10 in Weyl-ordering the
above expressions. Also, the definitions given in Eq. (2.4)
have been used in writing the antichiral superfield. All the
component fields are taken to be functions of �
 and �
,
unless specified otherwise.

The N � 1=2 supersymmetry transformations of the
component fields in the chiral and antichiral multiplet are
standard and were also derived in [42]. We give them
below for later use:

�" �
���
2
p
�� � �

���
2
p
�
 
 � 
 � 


���
2
p
��F

� � �
���
2
p
�
F �F � 0 � �" � 0

� � � � i
���
2
p
��@�
 �" � � 
 � i

���
2
p
�
@�
 �"

� �F � i
���
2
p
��@�
 � 
 
 i

���
2
p
�
@�
 � �: (2.29)

Note that the above transformations do not take
into account the coupling with the vector multiplet.
Supersymmetry transformations for the matter multiplet
coupled to the gauge multiplet will be derived explicitly
in the following subsection.

Now we couple the matter and the vector multiplets by
making the chiral and antichiral superfields transform in
a certain representation of the gauge group. Thus, under a
gauge transformation, the matter superfields transform as
0 � e
i� �, �0o � �o � ei

�� or infinitesimally as:

� � 
i� �; � �o � i �o �
��; (2.30)

where � � 
� and �� gets modified due to the additional
C-dependent terms added to the vector superfield as given
in Eq. (2.17).

Following the discussion in the case of the vector
multiplet, one can compare the left-hand side (LHS)
and RHS of each of the equations in (2.30), to get the
gauge transformation properties of the (anti)chiral mul-
tiplet. As it turns out, and is also pointed out in [24], the
component fields of the matter multiplet do not have
standard transformation properties, due to certain addi-
tional C-dependent terms. For instance, the transforma-
tion of the auxiliary field takes the form:

�g �F � 
i� �F�
��
2
�C10��@�
�


���
2
p
C00
@�
�

�
���
2
p
C11 �
@�
�
 C01��@�
�� � iC01@�
 �"@�
�


 iC10@�
 �"@�
�: (2.31)

However, as discussed in the case of the vector multiplet
above, it is possible to guess the terms that should be
added to the chiral superfields, so that the component
-6
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fields have the standard gauge transformation properties.
Thus, we modify the definition of the antichiral super-
field by adding certain C-dependent terms as � � �o �
�c, where �o is defined in Eq. (2.28) and �c is given as:

�c � 
i ��

 ����

���
2
p
C00@�
�
 �"� 


���
2
p
C11@�
� �
 �"�


 C10@�
��� �"� � C01@�
��� �"��: (2.32)

One can again check that the new terms �c are such that
the C-dependent terms appearing in �g �F are canceled. It
turns out that the definition of the chiral superfield need
not be modified. With the modified definitions of the
matter superfields, we write down the gauge transforma-
tions of the component fields as shown below:

�g" � �i�"; �g � � �i� �; �gF � �i�F;

(2.33)

�g �" � 
i� �"; �g � � � 
i� � �; �g �F � 
i� �F:

(2.34)

It is important to note that the additional C-dependent
terms that have been added to the antichiral superfield do
not spoil the chirality conditions. Thus, the new field �
still satisfies D� � � 0.

C. Wess-Zumino gauge

Supersymmetry transformations for the component
fields of the vector multiplet, in the Wess-Zumino (WZ)
gauge were derived in Sec. II. Here, I discuss the super-
symmetry transformation properties of the chiral
multiplet.

It is well known that the WZ gauge breaks supersym-
metry. In other words, the supersymmetry transforma-
tions do not leave the gauge-fixing conditions invariant.
For this reason, in the WZ gauge, every supersymmetry
transformation has to be supplemented by an appropriate
gauge transformation. The supersymmetry transforma-
tions of the chiral and antichiral multiplets are already
given in Eqs. (2.29).

Before doing anything, one can guess that the N �
1=2 supersymmetry transformations of the chiral multi-
plet remain unchanged even after the coupling with vec-
tor multiplet. This can be understood by noting that the
modification for the chiral multiplet comes from varia-
tions under �� �Q . However, as discussed earlier, �Q’s are
no more the symmetries of the theory and, hence, the
supersymmetry transformations of chiral multiplet do not
change and are the same as the ones given in Eqs. (2.29).
However, the supersymmetry transformations of the anti-
chiral multiplet get modified in the WZ gauge and we
derive them below.

There are various ways to realize the supersymmetry
transformations in the WZ gauge. The straightforward
way to derive the transformations is to note that, in the
125003
presence of gauge fields, the antichiral superfield takes the
form:

� 0 � � � eV: (2.35)

Since in this work I only consider a single vector multi-
plet, the superfield �0 transforms under a U(1) gauge
group and satisfies the condition D�

�0 � 0, where D�

denotes a gauge covariant derivative (the explicit form of
which I introduce later). The RHS of Eq. (2.35) can be
evaluated straightforwardly. Then, one can calculate
� �0 � ���Q� � �


Q
� �
0 and compare it with the

variation of the RHS of Eq. (2.35).
The above procedure will give the combined supersym-

metry and gauge transformations of the component fields.
We will, however, resort to another method by which one
can calculate the appropriate gauge transformation corre-
sponding to every supersymmetry transformation. Since
we have already calculated the supersymmetry transfor-
mations of the antichiral multiplet in Eqs. (2.29), all we
need to do is to determine the appropriate gauge trans-
formations. We follow the method discussed in [54].

A general vector superfield on a non(anti)commutative
superspace can be written as:

V � Vcwz � i�
�~�
 ~��; (2.36)

where the fields which survive in the WZ gauge and the
other fields which can be set equal to zero have been
separated out in Eq. (2.36). Here, Vcwz is the vector super-

field in the WZ gauge, as given in Eq. (2.18) and ( �~�) ~� is
the (anti)chiral superfield containing other fields, as
shown below:

~� � ~"�
���
2
p
�
 ~ 
 �

���
2
p
�� ~ � 
 2�
�� ~F; (2.37)

�~� � ~�"

���
2
p

��
~� 
 

���
2
p

���~� � � 2 ��
 ���~�F: (2.38)

For the rest of the analysis, we set all the component fields
of ~� in Eq. (2.37) to zero. This is consistent with the WZ
gauge choice due to the reasons already discussed above.
Now, if one naively sets all the component fields appear-
ing in Eq. (2.38) to zero, then that is not enough to
preserve the gauge choice. This is due to the fact that
some of the component fields may transform under N �
1=2 supersymmetry transformations. As a result, the
fields which have been set equal to zero can be recovered
back by a supersymmetry transformation.

Thus, for the antichiral multiplet, one can make a

choice for the component fields of �~� appearing in
Eq. (2.38). For some of the fields, the choice does not
involve any C-dependent pieces and they are already
known in the standard literature. For instance, for some
of the fields one can guess the terms by looking at the
analogous expressions given in [54], for the C � 0 case in
four dimensions. Thus, we choose:
-7
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�~" � 0; ~� 
 �
���
2
p
�
�� �"
 2�� �
 �";

~� � �
���
2
p
���� �"
 2�

 �":

(2.39)

For the auxiliary field �~F, the choice involves adding
certain C-dependent pieces apart from the usual pieces.
There is a way to guess the terms, but what I will do is to
give the relevant terms below and then at the end, it will
be clear as to why this particular choice has been made:

�~F � 2C01�
 ����� � 2C11�
 ��
�� � 2C00�� �����
� 2C10�� ��
�� : (2.40)

Note that �~F will have some C � 0 pieces as well. Further,
the gauge parameter has been chosen in such a way that
the sum of a supersymmetry and a gauge transformation

vanishes, i.e., ��s � �g�
�~� � 0.

Hence, the sum of supersymmetry and gauge trans-
formations for the component fields of the antichiral
multiplet in the WZ gauge can now be calculated. The
ones which remain the same as in the C � 0 theory are
given below:

��s � �g� �" � 0;

��s � �g� � 
 � i
���
2
p
�
 �D�


�"
 2Q�� �
 �";

��s � �g� � � � i
���
2
p
�� �D�


�"
 2Q�

 �":

(2.41)

It is understood that the supersymmetry transformation
for the auxiliary field will be modified, and is given as:

��s � �g� �F � 
i
���
2
p
�
 �D�


� � � i
���
2
p
�� �D�


� 

� 2Q��� � � �

 �
 � 

� 
 2iQ �"�����

 �
�
� 
 2QC00�� �D�
� ��� �"�


 2QC11�
 �D�
� ��
 �"�


 2QC10�
 �D�
� ��� �"�


 2QC01�� �D�
� ��
 �"�: (2.42)

Now, one can justify the choice of the terms given in
Eq. (2.40). The first thing to note is that the only modi-
fication one expects for the supersymmetry variation of �F
is from additional terms added to the definition of the
antichiral superfield which are proportional to ��
 ���.
These are precisely C-dependent terms given in
Eq. (2.32). Under supersymmetry variation, the terms in
Eq. (2.32) transform as:

� �c � 2 ��
 ����C00��@�
� ��� �"� � C11�
@�
� ��
 �"�

� C10��@�
� ��
 �"� � C01�
@�
� ��� �"��:

(2.43)

B. CHANDRASEKHAR
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From Eq. (2.42), one can understand that the unique
choice of terms in Eq. (2.40) is such that they add to the
terms in Eq. (2.43) and form a gauge covariant derivative.
This, as we know, is the ultimate aim of writing super-
symmetry transformations in the WZ gauge. Thus, the
choice of C-dependent terms made in Eq. (2.40) is correct
and unique.

Thus, Eqs. (2.41) and (2.42) summarize the N � 1=2
supersymmetry transformations of the antichiral multi-
plet, and the corresponding transformations of the fields
in the chiral multiplet are given by the first four equations
in Eqs. (2.29). Now, as an explicit check, one can directly
calculate these supersymmetry transformations from
Eq. (2.35) and show that they are indeed correct.

These supersymmetry transformations will be used in
Sec. IV to check the invariance of the gauged linear
sigma model action.
III. SIGMA MODELS WITH ARBITRARY
KÄHLER POTENTIAL

In previous work [42], I studied N � 2 supersymmet-
ric theories in two dimensions, characterized by an arbi-
trary Kähler potential and superpotential with the
superspace deformation as in Eqs. (2.5). The discussion
was limited to the case of a single chiral multiplet. It is
interesting to generalize the discussion to include several
multiplets, as this generalization leads to the construction
of a sigma model and is also useful in analyzing the target
space geometry.

Thus, in this section, I first generalize the results of
[42] and study sigma models characterized by an arbi-
trary Kähler potential. I show that the classical action
admits a series expansion in the determinant of the non(-
anti)commutativity parameter. In fact, it is possible to
write terms in this series expansion, at an arbitrary order,
in a closed form. In the later part, I use a normal coor-
dinate expansion to write the action in a covariant fash-
ion. In [55], a specific Kähler potential was considered,
and CPn models were analyzed in four dimensions.

A. Expansion of the Kähler potential

Let us start by giving the most general form of the
classical action for supersymmetric sigma models on
general Kähler manifolds:

I �
Z
d2yd4�K�i; �j�; (3.1)

where K�i; �j� is the Kähler potential with i, �j

denoting N chiral and antichiral superfields, respectively.
To obtain the action in terms of the component fields,

the Kähler potential is Taylor-expanded around the bo-
sonic fields "; �" as:
-8
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K�; �� �K�"i; �"j� � LiKi � RiK; �j �
1

2!
Li � LjK;ij �

1

2!
Ri � RjK;�i �j �

1

2!
�Li � Rj�K;i �j �

1

3!
�Li � Lj � Rk�K;ij �k

�
1

3!
�Li � Rj � Rk�K;i �j �k � � � � �

1

n!
Ln�K;i1i2���in �

1

m!
Rm�K; �j1 �j2��� �jm � � � �

�
1

�n�m�!
�Ln� � Rm� �K;i1i2���in �j1 �j2��� �jm � � � � : (3.2)

A few remarks are in order regarding the expansion of the Kähler potential given above. First, in Eq. (3.2), n;m are
integers and we use the shorthand notation:

K ;i1i2���in �j1 �j2��� �jm �
@�n�m�K

@i1@i2 � � � @in@ �j1@ �j2 � � � @ �jm

��������i�"i; �i� �"i
; (3.3)
for the derivatives of the Kähler potential with respect to
the chiral and antichiral superfields evaluated at i � "i

and �i � �"i. Note that the order of taking derivatives of
the Kähler potential with respect to the chiral or anti-
chiral superfields does not matter. In other words,
K;i1i2���in �j1 �j2��� �jm is symmetric under any interchange of i
indices or j indices or an i index with a j index. This
symmetry will be useful while writing down the action.
Further, in Eq. (3.2), the square brackets �� � �� stand for
all possible combinations of star product of Ln with Rm,
where Ln� � Li1 � Li2 � :::::: � Lin and Rm� � Ri1 � Ri2 �
:::::: � Rim . Explicitly,1

Li � i 
"i � �
���
2
p
�
 i
 �

���
2
p
�� i� 
 2�
��Fi;

(3.4)

Ri � �i 
 �"i

� 

���
2
p

��
 � i
 

���
2
p

��� � i� � 2i�
 ��
@�
 �"i

� 2i�� ���@�
 �"i � ��
 ����i2
���
2
p
��@�
 � i



 i2
���
2
p
�
@�
 � i� � 2 �Fi � 4�
��@�
@�
 �"i�;

(3.5)

where we have suppressed the functional dependence of
the component fields on ��
; �
�. The need for consider-
ing all possible combinations (square brackets) in
Eq. (3.2) has been explained in great detail in [42], and
I do not repeat it here. However, in the present case, there
is an additional permutational symmetry which I illus-
trate below.

Consider for instance, a term of the form Li � Lj in the
expansion of the Kähler potential in Eq. (3.2). If there
was only one chiral multiplet, this term would just be L �
L. However, if there are many chiral multiplets, then Li �
1The notations used in [42] to write down similar expres-
sions are a bit different. One can use the following coordinate
changes to recover the results in [42] : A! "; �A! �"; � L !
i

���
2
p
 
; � R ! i

���
2
p
 �;  L ! i

���
2
p

� 
;  R ! i
���
2
p

� �; F !
2iF; �F ! 
2i �F. For the Grassmannian coordinates, the map
is �! 
�
; +! ��; ��! 
 ��
; �+! ���. Further, one also has
to take @�
 ! 2@�
 and @�
 ! 2@�
 .
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Lj is not the same as Lj � Li due to the additional
C-dependent terms coming from the star product. This
can be seen by explicitly calculating the two terms as
shown below:

Li � Lj � 
C00 i
 j
 
 C11 i� 
j
� 
 2

�
�
��



1

2
C01

�
 i
 

j
� � 2

�
�
�� �

1

2
C10

�
 i� 

j





���
2
p
�C00�� � C01�
� � i
F

j �
���
2
p
�C00��

� C01�
� � j
Fi �
���
2
p
�C10�� � C11�
� � i�F

j



���
2
p
�C10�� � C11�
� � j�F

i 
 �detC�FiFj;

(3.6)

and Lj � Li can be obtained by interchanging the indices i
and j in the above equation. Now, one can check that,
considering the permutation �Li � Lj� � Li � Lj � Lj �
Li, there are a lot of cancellations and only a few terms
survive, as seen below:

�Li � Lj� � 
2f2�
��� i
 
j
� �  

j

 i�� � �detC�F

iFjg:

(3.7)

Thus, it is useful to repeat that, apart from all possible
combinations of L ’s and R’s considered in the expansion
of the Kähler potential in Eq. (3.2), one has additional
symmetry factors coming from the permutation of indi-
ces in either L’s or R’s. This will be discussed further later
on, while writing down the action.

Hence, in what follows, we consider such permutations
as in Eq. (3.7) to write down the action. First, using the
definitions of L given in Eq. (3.4), one can generalize the
result in Eq. (3.7) to calculate �Li � Lj � Lk�. One can
again show that there are many cancellations by consid-
ering all possible permutations. Proceeding in this man-
ner, one can check that the result in Eq. (3.7) can be
generalized to derive a general formula for the star prod-
uct of arbitrary number of L ’s as shown below [42]:

�L2n
� � � �
1�

n�detC�n
1�4n�
��fFi1Fi2 � � �Fi2n
2 i2n
1
  i2n�
� perm:g� �2n�!�detC�Fi1Fi2 � � �Fi2n�; (3.8)
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�L2n�1
� � � �
1�n�detC�n�2nfFi1Fi2 � � �Fi2n
1 i2n
  

i2n�1
�

� perm:g � fFi1Fi2 � � �Fi2nLi2n�1 � perm:g�:

(3.9)

Note that in Eqs. (3.8) and (3.9) and in what follows, the
permutations are understood to be among the i1 � � � in
indices. In obtaining the identities given in Eqs. (3.8)
and (3.9), we have also made use of the fact that certain
terms involving fermions are antisymmetric under the
interchange of two indices where as the derivatives of the
Kähler potential are symmetric under such interchange of
indices.

For the star product of R ’s, we derive the following
results using Eq. (3.5):

�R2
�� � 
4 ��


 ����2 � i
 � j� 
 i
���
2
p
�� � i
@�
 �"j

� i
���
2
p
�
 � i�@�
 �"j 
 2�
��@�
 �"i@�
 �"j

� perm:�; (3.10)

Rm� � 0; for m> 2: (3.11)

B. CHANDRASEKHAR
2Note that when we calculate terms of the kind �L2n�1
� � Rl�

and the ones to follow, we are actually writing down ��L2n�1
� � �

Rl�, where the additional square bracket corresponds to permu-
tations of indices of L. However, in what follows we do not
write this additional square bracket explicitly.
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The other terms appearing in the expansion of the
Kähler potential correspond to the star product of arbi-
trary powers of L ’s and R’s. It is convenient to calculate
the star product of even and odd powers of L with R and
R2
� separately. First we have:

�Li � Rj�j ��
 ����
�� � 
8�i 
i

@�
 � j
 � i i�@�
 � j�

� Fi �Fj�; (3.12)

�Li � Rj � Rk�j ��
 ����
�� � 
24ifiF
i� � j
 � k� � perm:�

�  i
� � 
j

@�
 �"k � perm:�

�  i�� � 
j
�@�
 �"k � perm:�g:

(3.13)

Note that in Eqs. (3.12) and (3.13), we have only written
the terms which are proportional to ��
 ����
��, as only
these terms contribute to the action after integration over
the Grassmannian coordinates. Now, the identities in
Eqs. (3.12) and (3.13) can be generalized to2:
�L2n�1
� � Rl�j ��
 ����
�� � 4�2n� 2��
1�n�detC�n�2nfFi1Fi2 � � �Fi2n
1 i2n
  

i2n�1
� � perm:g@�
@�
 �"l

� ifFi1Fi2 � � �Fi2n i2n�1
 � perm:g@�
 � 
 � ifF
i1Fi2 � � �Fi2n i2n�1� � perm:g@�
 � �

� �2n� 1�!Fi1Fi2 � � �Fi2n�1 �Fl�; (3.14)

�L2n�1
� � Rj � Rk�j ��
 ����
�� � 
4�2n� 3��2n� 2��
1�ni�detC�n�
2ni�Fi1Fi2 � � �Fi2n
1 i2n
  

i2n�1
� � perm:�

	 �@�
 �"j@�
 �"k � perm:� 
 i�Fi1Fi2 � � �Fi2n i2n
1
 � perm:�� � j
i@�
 �"k � perm:�


 i�Fi1Fi2 � � �Fi2n i2n�1� � perm:�� � j�@�
 �"k � perm:� � �2n� 1�!Fi1Fi2 � � �Fi2n�1� � j
 � k�
� perm:��: (3.15)

Similarly, the star product of even powers of L with R and R2
� can be shown to be:

�L2n
� � Rk�j ��
 ����
�� � 4�2n� 1��
1�n�detC�n
1�2n �Fk�Fi1Fi2 � � �Fi2n
2 i2n
1
  �;i2n � perm:�

� �2n�!�detC�Fi1Fi2 � � �Fi2n@�
@�
 �"k�; (3.16)

�L2n
� � Rj � Rk�j ��
 ����
�� � 
4�2n� 2��2n� 1��
1�n�detC�n
1�2n�Fi1Fi2 � � �Fi2n
2 i2n
1
  �;i2n � perm:�

	 � � j
 � k� � perm:� 
 �2n�!�detC�Fi1Fi2 � � �Fi2n�@�
 �"j@�
 �"k � perm:��: (3.17)
One can check that all the identities derived in Eqs. (3.8),
(3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.15), (3.16),
and (3.17) go over to the ones derived in [42] for the case
of a single chiral and antichiral supermultiplet, apart
from some permutational factors.

Now, substituting the results given in Eqs. (3.8), (3.9),
(3.10), (3.11), (3.12), (3.13), (3.14), (3.15), (3.16), and
(3.17) and performing integration over the
Grassmannian coordinates in the usual way, it is possible
to derive the full classical action for the N � 2 super-
symmetric sigma model on a non(anti)commutative
superspace.
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Before proceeding, we note that the sole effect of the permutations seen in the identities in Eqs. (3.8), (3.9), (3.10),
(3.11), (3.12), (3.13), (3.14), (3.15), (3.16), and (3.17) is to contribute an overall symmetry factor which cancels in the
action. We illustrate this aspect for a couple of terms in the action and it will be clear that the argument can be
generalized to all the terms in the action. A term in the expansion of the Kähler potential (3.2) of the form �Li � Rj �
Rk�j ��
 ����
��K;i �j �k can be rewritten as 1

2! �L
i � �Rj � Rk��j ��
 ����
��K;i �j �k. This can in turn be written as:

1

2!
24i�Fi� � j
 � k� � � k
 � j�� �  

i

� � j
@�
 �"k � � k
@�
 �"j� �  i�� � 

j
�@�
 �"k � � k�@�
 �"j��K;i �j �k; (3.18)

where in writing the above equation, we have used the result in Eq. (3.13) and permuted terms have been explicitly
written down. However, as discussed before, one can use the symmetry of the Kähler potential under the interchange of
j and k indices, i.e., K;i �j �k �K;i �k �j. Using this symmetry, the result in Eq. (3.18) can be rewritten as:

24i�Fi� � j
 � k�� �  
i

� � j
@�
 �"k� �  i�� � 

j
�@�
 �"k��K;i �j �k: (3.19)

One can notice that the permutations in Eq. (3.18) contributed an overall symmetry factor of 2 which canceled with 2! in
the denominator in Eq. (3.19). Since there are only two possible permutations of the terms of the kind � j
 � k�, etc. in
Eq. (3.18), the symmetry factor one gets is 2.

The above arguments can be easily generalized to get rid of the permutations appearing in all the identities in
Eqs. (3.8), (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.15), (3.16), and (3.17). In fact, after using this symmetry of the
Kähler potential, the identities in Eqs. (3.8), (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.15), (3.16), and (3.17) will then
go over to the ones derived in [42] for the case of a single chiral and antichiral supermultiplet, multiplied by appropriate
overall symmetry factors.

One can illustrate the above discussion by considering a more general term in the action. After using the symmetry of
the Kähler potential as discussed above, we have:

�L2n�1
� � Rl�j ��
 ����
��K;i1i2���i2n�1 �j � 4�2n� 1�!�2n� 2��
1�n�detC�nFi1Fi2 � � �Fi2n
1�2n i2n
  

i2n�1
� @�
@�
 �"l

� iFi2n i2n�1
 @�
 � 
 � iF
i2n i2n�1� @�
 � � � F

i2nFi2n�1 �Fl�K;i1i2���i2n�1 �j; (3.20)

where �2n� 1�! is the symmetry factor obtained after eliminating the permutations. However, this symmetry factor
will cancel after writing the LHS of Eq. (3.20) as 1

�2n�1�! ��L
2n�1
� � � Rl�. This is nothing but the identity given in

Eq. (3.14). Similarly, various terms in the action can be rearranged and the rest of the identities given in Eqs. (3.8), (3.9),
(3.10), (3.11), (3.12), (3.13), (3.14), (3.15), (3.16), and (3.17) can be used in an analogous fashion, while writing down the
action.

We further note that, in writing down the general identities given in Eqs. (3.8), (3.9), (3.10), (3.11), (3.12), (3.13),
(3.14), (3.15), (3.16), and (3.17), we have used the fact that for terms in the action proportional to ��
 ����
�� it is
possible to push all the L’s to one side and all the R’s to the other side. The proof for the case of a single chiral multiplet
has been given in [42] and can also be rigorously shown to be valid in the case of several chiral multiplets as well.

B. Classical action in normal coordinates

Following the discussion in the previous subsection and collecting all the results derived in Eqs. (3.8), (3.9), (3.10),
(3.11), (3.12), (3.13), (3.14), (3.15), (3.16), and (3.17), and substituting them in the expansion of the Kähler potential
given in Eq. (3.2), we find that the action can be divided into two parts as I � I0 � IC, with I0 and IC corresponding to
the C-independent and C-dependent parts, respectively. First I0 can be deduced to be:
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I0 �
Z
d2x

��
1

2
@�
"

i@�
 �"j �
1

2
@�
"

i@�
 �"j � i i
@�
 � j
 � i 
i
�@�
 � j� � F

i �Fj
�
K;i �j �  

i

 

j
�
�FkK;ij �k

� �i i
 � j
@�
 �"k � i i� � j�@�
 �"k 
 Fi � j
 � k��K;i �j �k � � 
i


� k
 

j
�
� l��K;ij �k �l

�
; (3.21)

where the derivatives of the Kähler potential are defined in Eq. (3.3). This action should be compared to the one in
standard literature [56]. IC can be derived in a similar fashion and is given as [42]:

IC � 

X1
n�2

�
1�n�detC�n
1
Z
d2x

Fi1Fi2 � � �Fi2n
2

�2n
 1�!
� i2n
1
  i2n� �FjK;i1i2���i2n �j �  

i2n
1



� j
 
i2n
�

� k�K;i1i2���i2n �j �k�

�
X1
n�1

�detC�n�
1�n
Z
d2xFi1Fi2 � � �Fi2n
1

�
1

�2n�!
Fi2n@�
@�
 �"jK;i1i2���i2n �j

�
1

�2n� 1�!
�2n i2n
  

i2n�1
� @�
@�
 �"j � iFi2n i2n�1
 @�
 � j
 � iF

i2n i2n�1� @�
 � � � F
i2nFi2n�1 �Fj�K;i1i2���i2n�1 �j

�
1

�2n�!
Fi2n@�
 �"j@�
 �"kK;i1i2���i2n �j �k �

1

�2n� 1�!
�2n i2n
  

i2n�1
� @�
 �"j@�
 �"k 
 Fi2nFi2n�1 � j
 � k� 
 F

i2n � j
 i2n�1
 @�
 �"k


 Fi2n � j� 
i2n�1
� @�
 �"k�K;i1i2���i2n�1 �j �k

�
: (3.22)
The full action for the N � 2 supersymmetric sigma
model on a non(anti)commutative superspace is thus
given by Eqs. (3.21) and (3.22). Note that certain overall
factors have been taken out in writing the actions given
above. Further, the actions given above differ from the
ones in [42] by some overall factors and also by signs of
some terms. One can explicitly see the correspondence, by
using the map given in the footnote above, between the
variables used in [42] and ones used here. Once these
notational differences are taken into account, the action
given by Eqs. (3.21) and (3.22) is the same as the one given
in [42].

In [42], the action has been shown to preserve the N �
1=2 supersymmetry of the theory in great detail. I do not
repeat the calculations here. However, I have checked that
the actions given in Eqs. (3.21) and (3.22) are invariant
under the N � 1=2 supersymmetry transformations
given in Eqs. (2.29).

The power series expansion we see in the C-dependent
part of the action given in Eq. (3.22) is because of the
arbitrariness of the Kähler potential. The fact that the
series can be summed and written in a closed form is
important. In fact, terms to an arbitrary order in �detC�
can be easily deduced from Eq. (3.22). However, at this
stage, it is not clear whether the full action can be written
in terms of covariant quantities. This will have to be
taken care while studying the quantum aspects of the
theory. In other words, the question is, whether it is
possible to see that the quantities like K;i1i2���i2n �j �k, etc.
can be written in terms of proper geometric tensors.

In the C � 0 case, one can eliminate the auxiliary
fields by their equations of motion and see that the action
can be written in terms of proper geometric quantities. To
125003
be precise, from Eq. (3.21) one can deduce that Fi �

 j
 k��

i
jk with similar relation for �F. Substituting these

back in Eq. (3.21), one arrives at:

I0 �
Z
d2x��@�
"i@�
 �"j � i i
D�


� j


� i i�D�

� j��gi �j 
  

i


� k
 

j
�
� l�Rj �ki�l�; (3.23)

with covariant derivative defined as D�

� i� � @�
 � i� �

��i
�jk
� j�@�
 �"k and with a similar relation for the covariant

derivative of � i
. Note that we have done a partial inte-
gration in Eq. (3.23). Further, we have used the fact that,
for Kähler manifolds, the metric can be obtained from the
Kähler potential as:

gi �j �
@
@i

@

@ �jK�;
��: (3.24)

And further, many components of the curvature tensor
are zero. The only nonzero components are of the kind
Rj �ki�l or R �jk�il. There are many further simplifications,
and a brief collection of relevant formulas has been given
in Sec. 2.2 of [42].

In the C � 0 case, it is not clear whether the auxiliary
fields can still be eliminated. The equation of motion of F
and �F which was found for the C � 0 case may not be
valid when the full action in Eq. (3.22) is considered
because of the infinite number of terms in the action.
Since it is difficult to work with the nth order action,
below we first analyze the action only to order �detC�.
From Eq. (3.21) and (3.22), one can write down the full
action I � I0 � IC, to order �detC� as:
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I �
Z
d2x

��
1

2
@�
"i@�
 �"j �

1

2
@�
"i@�
 �"j � i i
@�
 � j
 � i i�@�
 � j� � F

i �Fj
�
gi �j �  

i

 

j
�
�Fk�ij �k � �i 

i


� j
@�
 �"k

� i i� � j�@�
 �"k 
 Fi � j
 � k���i �j �k � � 
i


� k
 

j
�
� l��@i�j �k �l � �detC�F

p
�


Fq

6
f l
 

m
�
�Fj@p@q�lm �j

�  l
 � j
 
m
�
� k�@p@q@l�m �j �kg 


1

2
Fq@�
@�
 �"j�pq �j 


1

6
�2 q
 

l
�@�
@�
 �"j � iFq l
@�
 � j
 � iF

q l�@�
 � �

� FqFl �Fj�@p�ql �j 

1

2
Fq@�
 �"j@�
 �"k@p�q �j �k 


1

6
�2 q
 l�@�
 �"j@�
 �"k 
 FqFl � j
 � k� 
 F

q � j
 l
@�
 �"k


 Fq � j� 
l
�@�
 �"k�@p@q�l �j �k

��
; (3.25)
with the notation �ij �k � gl �k�
l
ij. Further, the affine con-

nections are obtained from the Kähler potential as:
�ij �k �

@
@i

@
@j

@
@ �k K.

One can notice that various terms in the action in
Eq. (3.25) are noncovariant and the equation of motion
of auxiliary fields may be hard to find. Thus, it is not
possible to eliminate the auxiliary fields even from the
action (3.25) to first order in �detC�, due to various non-
covariant terms. In other words, the action (3.22) to all
orders in �detC� has to be expressed in terms of proper
geometric quantities. Here, we show that it is possible to
employ a normal coordinate expansion and express the
action in a manifestly covariant way.

In [55], a specific Kähler potential was considered and
the case of CPn models was discussed. After gauging the
sigma model by introducing vector multiplets, it was
possible to write the action in a closed form and the
number of terms in the action was also finite. Hence,
the auxiliary field equations of motion were simple to
obtain. Thus, in Sec. IV we consider a simple Kähler
potential and show that the auxiliary fields appearing in
the chiral 2D superfields can be eliminated by their
equations of motion. However, we do not treat the fields
of the vector multiplet as auxiliary and, hence, they are
not eliminated, unlike the case in [55].

To ensure the covariance of various terms coming from
the background field expansion of the sigma model ac-
tion, Riemann normal coordinates were used in [57,58].
This analysis was further used in the study of ultraviolet
structure of the bosonic and supersymmetric nonlinear
sigma models [46]. The need for using normal coordi-
nates was at the quantum level in doing a background
field expansion. Further, the discussion was explicitly for
the case of N � 1 sigma models. Although the method
can be applied to N � 2 sigma models, the results were
not manifestly covariant under N � 2 supersymmetry.
Recently, progress has been made in this direction and the
analysis has been generalized to N � 2 supersymmetric
sigma models on Kähler manifolds [59]. In [59], new
normal coordinates were introduced and it was shown
that the background field expansion of the action can be
written in a covariant manner. However, it was pointed
125003
out that a manifestly supersymmetric expansion in these
new coordinates is still not possible. The new coordinates
are holomorphic and hence are, nevertheless, more suit-
able for Kähler manifolds.

Thus, below we show that using the Kähler normal
coordinates introduced in [59] the action can be written
in terms of covariant geometric quantities. Since the
origin of these noncovariant terms is in the expansion
of the Kähler potential, we try to identify the terms in
this expansion which give us the action (3.25). Thus, we
find that the sigma model action to first order in �detC�
given in Eq. (3.25), can be obtained from the following
terms in the expansion of the Kähler potential:

I �
Z
d2yd4�

�
RiK;�i �

1

2!
�Ri � Rj�K;�i �j

�
1

2!
�Li � Rj�K;i �j �

1

3!
�L2
� � Rk�K;ij �k

�
1

3!
�Li � R2

��K;i �j �k �
1

4!
�L3
� � Rk�K;ijl �k

�
1

4!
�L2
� � R

2
��K;ik �j �l �

1

5!
�L4
� � R

k�K;ijlm �k

�
1

5!
�L3
� � R2

��K;imk �j �l �
1

6!
�L4
� � R2

��K;ikmp �j �l

�
� � � � ;

(3.26)

where ( � � � ) in the above Eq. (3.26) corresponds to other
higher order terms in �detC� in the expansion of the
Kähler potential. Now, as we discussed, the sigma model
action (3.25), obtained from Eq. (3.26) above, is not
invariant under general coordinate transformations.
Thus, to write the Eq. (3.26) in a covariant form, we
rearrange the expansion of the Kähler potential and claim
that the action can be written as:

I �
Z
d2yd4�� �f� �0� � gi �j�0; �0�0

i � �0j

�Ri �jk�l0
i � �0j � 0k � �0l � � � ��; (3.27)

where we have introduced new superfields 0i and �0j,
which are given in terms of the old superfields as:
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0i � Li �
1

2!
Ll � Lmgi �kK;lm �k �

1

3!
Ll � Lm � Lngi �kK;lmn �k

�
1

4!
Ll � Lm � Ln � Lpgi �kK;lmnp �k � � � � ; (3.28)

�0 j � Rj �
1

2!
Rk � Rlgm �jK; �k �lm: (3.29)

Note that, in terms of these new coordinates, one does not
have to consider various permutation and combination of
indices. However, in new coordinates, one still continues
to use the star product as given in Eq. (2.6). As a con-
sequence, from Eq. (3.29), one can show that the star
product of more than three �0’s vanishes. Further, in
Eq. (3.27), the function �f is completely antiholomorphic
and is given in terms of the old variables as [first two
terms on the right hand side of Eq. (3.26)]:

�f � RiK;�i �
1

2!
�Ri � Rj�K;�i �j: (3.30)

To write the above function in terms of the new variables,
one has to invert the relations given in Eq. (3.29) as
shown:

Rj � �0j 

1

2!
�0k � �0lgm �jK; �k �l m: (3.31)

Now, using the above relations, the function �f can be
written in terms of the new superfields. Generally speak-
ing, what one can actually do is to rearrange the expan-
sion of the Kähler potential given in Eq. (3.2) as:

K�; �� �K�0; �0� � f�0� � �f� �0� � gi �j0
i � �0j

�Ri �jk�l0
i � �0j � 0k � �0l � � � � ; (3.32)

where the functions f and �f are holomorphic and anti-
holomorphic, respectively. The function �f is defined in
Eq. (3.30) above and f is given as:

f�0� � LiK;i �
1

2!
�Ll � Lm�K;lm

�
1

3!
�Ll � Lm � Ln�K;lmn

�
1

4!
�Ll � Lm � Ln � Lp�K;lmnp � � � �

� �Ln��K;i1i2���in � � � � : (3.33)

Now, one can write the function f in terms of new super-
fields 0 by inverting the relations given in Eq. (3.28) as:

Li � 0i 

1

2!
0l � 0mgi �kK;lm �k � � � � ; (3.34)

and using this relation in Eq. (3.33). Notice that the
functions f and �f explicitly contain many noncovariant
quantities. However, these functions can be absorbed into
a redefinition of the Kähler potential by a Kähler gauge
transformation:
125003
K 0�0; �0� �K�0; �0� � f�0� � f� �0�: (3.35)

Now, one can check that the expansion of the Kähler
potential given in Eq. (3.27) generates all the terms in
Eq. (3.26) to order �detC�. In addition, the term 0i � �0j �
0k � �0l in Eq. (3.27) will also give terms proportional to
�detC�2, etc. The proof that an expansion of the kind given
in Eq. (3.27) generates all the terms in the action has been
discussed in detail in [59] and can be checked in our case
as well by explicit calculation. The only difference com-
pared to the case given in [59] is the presence of star
products instead of the ordinary product. The expansion
in new variables has the advantage that all the terms
coming from it are covariant. This can be explicitly
checked by writing the transformations of various
component fields under holomorphic coordinate transfor-
mations and using the fact that the coordinates (3.28)
transform as holomorphic tangent vectors on target
space [59].

It is important to note that the Riemann normal coor-
dinates introduced in [46] are inherently nonchiral. In
other words, at a time, only one of the old or new coor-
dinates can be made chiral superfields. This problem
carries over to the case of Kähler normal coordinates as
well, although various quantities are evaluated with re-
spect to the bosonic background. For instance, our old
superfield L is evaluated with respect to the bosonic
background as it is given by 
" and satisfies �D�L �
0. However, the expansion in new coordinates (0; �0) will
not preserve chirality as various geometric quantities will
have both holomorphic and antiholomorphic indices [59].

The coordinate transformations given in Eq. (3.30)
include all the terms in the expansion of the Kähler
potential. Hence, the full nth order action given in
Eq. (3.22) can be written in a covariant manner. Fur-
ther, it is possible to use the expansion of the Kähler
potential in terms of the new variables given in
Eq. (3.27) to write the action in terms of the component
fields. This action (3.22), written in terms of the new
coordinates, will be useful while employing background
field methods to study the quantum structure of the
theory. For this purpose, one needs to calculate covariant
expressions for the expansion of various geometric quan-
tities. Explicit expressions to a certain order are given in
[59] for the C � 0 case. It should be interesting to find out
similar expressions in our case as well. Further, once the
component form of the covariant action is calculated
from Eq. (3.27), it might be possible to find the equations
of motion of the auxiliary fields F and �F.

Further, one can do a background field expansion for
the simple case of a constant background, @"0 � 0. This
background field expansion of the action can be argued to
be manifestly invariant under general holomorphic coor-
dinate transformations [59]. However, in the present case,
it may not be manifestly invariant under N � 1=2 su-
persymmetry transformations [59]. In this section, we
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have outlined how the N � 2 sigma model action on a
non(anti)commutative superspace can be written in a
covariant manner by transforming to the new normal
coordinates. It would be interesting to pursue these issues
further.

IV. GAUGED LINEAR SIGMA MODELS

In this section, I derive the classical action for gauged
linear sigma models. I show that the action is invariant
under N � 1=2 supersymmetry transformations. The
matter content of the theory is as follows. We have k
chiral superfields Si which transform with charges Qa

i
under the s vector multiplets Va. As stated before, we
only consider Abelian gauge groups, which for our pur-
poses will be U�1�s.

The superspace action corresponding to above multip-
lets can be written as a gauged linear sigma model and
consists of four parts [48]:

I � Ikin � IW � Igauge � Ir;�; (4.1)

where the terms are, respectively, the kinetic term of the
chiral superfields, the superpotential interaction, the ki-
netic term of the gauge fields, and the Fayet-Illiopoulos
and theta terms. The construction of all these terms is
125003
discussed below. In writing the formulas, at some places I
suppress the indices corresponding to the number of
multiplets for convenience.

A. Chiral superfield action

The gauge invariant kinetic term for the Chiral super-
fields takes the form:

Ikin �
Z
d2yd4� � � eV �; (4.2)

where d2y � d�
d�
, d4� � d ��
d ���d�
d�� and the
integrand can be evaluated owing to the results in
Eq. (2.20), as shown below:

� � eV � � � �� � � V ��
1

2
� � V2

� �:

(4.3)

I calculate each of the terms in Eq. (4.3) separately and
use them in the action (4.2). The calculations are given
in Appendix B. Thus, using the formulas derived in
Eqs. (B1) and (B2) in Eq. (4.2), and performing integra-
tion over the Grassmannian coordinates in the usual way,
we find that the action can be written as:
Ikin �
X
i

Z
d�
d�


�
1

2
�D�
"iD�


�"i �
1

2
�D�
"iD�


�"i � i � 
;iD�
 
;i � i � �;iD�
 �;i � Fi �Fi


 2
X
a

�
a
aQi;a
2 �"i"i 


���
2
p X

a

Qi;a� �
a � �i 
i � 
a � 
i �i� �
X
a

DaQi;a
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where D�
 � @�
 �
i
2��, D�
 � @�
 �

i
2�� are the

gauge covariant derivatives and �D�
 ; �D�
 denote the
corresponding complex conjugates, respectively. The C �
0 part of the kinetic action for the chiral superfields is
seen to be equivalent to the standard action given in [48].
By using the transformation properties of the component
fields, it can be shown that the full kinetic action for the
chiral superfields is gauge invariant.

Now, since the C � 0 part of action (4.4) is the same as
the one given in [48], one need not explicitly show that
this part is invariant under the N � 1=2 supersymmetry
transformations. One can still check this by using the
supersymmetry transformations given in Eq. (2.41) and
also the one obtained by putting C � 0 in Eq. (2.42).

For the case with C � 0, we know from Eq. (2.42) and
(2.26) that only the supersymmetry variation of �F and ��
have C-dependent terms. Thus, these terms are expected
to cancel the variation of all the C-dependent terms of the
action (4.4). This is exactly what we show below.

Let us name the terms in the action depending on C as
Ic. Then, the supersymmetry variation of these terms is:

�Ic � �C
00�� � C10�
��i ��� ��
 � 2 �D�
� ��� �"��

� �C11�
 � C01����i ��� ��
 � 2 �D�
� ��
 �"��:

(4.5)

Note that we have ignored the pieces whose variations are
trivially zero. For instance, the variation of the term
proportional to �detC� in the action (4.4) is zero identi-
cally. Now, one can guess that the terms obtained in
Eq. (4.5) are exactly canceled by the C-dependent terms
coming from the following terms of the action (4.4):


i
���
2
p

�"� 
����� 
  ����
�� � F�� �F�: (4.6)
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Using the supersymmetry transformations given in
Eq. (2.42) and (2.26) in the above equation, one can
explicitly show that the terms in Eq. (4.5) are exactly
canceled. Thus, the chiral superfield action (4.4) is invari-
ant under the N � 1=2 supersymmetry of the theory.

B. Gauge kinetic part

A gauge invariant action for the vector superfields can
be constructed from the twisted chiral superfields as
shown below [48]:

Igauge � 

X
a

1

4e2a

Z
d2yd4� ��a�a; (4.7)

where ea a � 1; . . . ; s are the gauge coupling constants in
case one has several vector multiplets. Using the defini-
tions of the twisted superfields given in Eqs. (2.22) and
(2.23), the action can be written in the component form
as:

Igauge � 

X
a

1

e2a

Z
d2y

�
1

2
���;a

2 �
1

2
D2
a � i ���;a@�
��;a

� i ��
;a@�
�
;a 
 @�

a@�
 �
a



i
2
C01���;a ���;a ��
;a

�
: (4.8)

The kinetic energy for the gauge fields given above is,
apart from some new C-dependent terms, the same as the
one given in [48]. The C-dependent term involving the
gauge field strength is gauge invariant on its own. It is
useful to compare this action with the dimensional re-
duction of the action in [13]. Thus, the C � 0 part can be
taken to be invariant under the N � 1=2 supersymmetry
of the theory. This can as well be explicitly checked by
using the transformations given in Eq. (2.41).

The C � 0 part of the action can also be shown to be
N � 1=2 supersymmetric as follows. We note that only
the variations of �� contain certain C-dependent terms.
Thus in Eq. (4.8), the C-dependent terms obtained from
i ���;a@�
�����;a � i ��
;a@�
����
;a are:


 ���@�
��C
00�� � C10�
� ��� ��
� 
 ��
@�
��C

01��

� C11�
� ��� ��
�: (4.9)

One can see that the terms given in the above are iden-
tically zero. Thus, one can guess that the C � 0 part of
the action has to be supersymmetric on its own. It is
straightforward to check that the C � 0 part of the action
is invariant under N � 1=2 supersymmetry transforma-
tions as � ��� � 0 and the other term also vanishes. Thus,
the gauge kinetic part of the action is invariant under the
N � 1=2 supersymmetry of the theory. Further, the
gauge invariance of the action can also be explicitly
checked.

It should be interesting to take the e2 ! 1 limit where
the fields of the vector multiplet become auxiliary and
can be eliminated by their equations of motion. The
125003
auxiliary field equations of motion might have many
C-dependent pieces [55], which might effect the target
space metric. In this manner, it would be possible to study
the consequences of various new C-dependent terms in
the classical action on the sigma model metric in UVand
IR (see Appendix B of [60]).

C. r and � terms

The Fayet-Iliopoulos (FI) and the theta angle terms can
be obtained from the twisted superfields as in [48]. The FI
term is the vector superfield integrated over the whole of
superspace. This term should still be the same, since we
have not added any C-dependent term proportional to
�2 ��2 to the definition of vector superfield given in
Eq. (2.18). Thus, we have:

Ir;� � 
ra
Z
d2yDa �

�a
20

Z
d2y���;a; (4.10)

where, as defined before, ��� � @�
�� 
 @�
��.

D. Superpotential terms

If we assume an arbitrary superpotential, then the
interaction terms in the action turn out to have the form:

IW �
Z
d2xd2�W�� �

Z
d2xd2 �� �W� ��: (4.11)

As was shown in [42], the component form of the super-
potential can be obtained by expanding around the bo-
sonic fields " and �" as:

W��j�
�� � 

X1
n�0

�
1�n

�2n� 1�!
�detC�nFi1Fi2 � � �Fi2n�Fi2n�1

	W;i1���i2n�1 �  
i2n�1

  i2n�2� W;i1���i2n�2�; (4.12)

where as before, we use the notation W;i �
@W
@i evaluated

at  � ". In the above equations, we have only written
down the terms proportional to ���
 and ��� ��
, respec-
tively. It is important to note that the hermiticity of the
theory is spoiled due to the asymmetry of the holomor-
phic and the antiholomorphic parts of the superpotential
[15]. This can in fact be noted by looking at the asym-
metric way in which F and �F terms appear in the kinetic
action. Following the examples in four dimensions [15],
in the present case also, it may be possible consider
supersymmetric vacua which come from �W� �� only, as
W�� may not be stable due to radiative corrections.

The antiholomorphic part of the superpotential in the
component form is:

�W� ��j ��
 ��� � 
 �Fi �W;i � � i
 � j� �W;ij; (4.13)

where �W;i �
@ �W
@ �i j �� �".

It is possible to eliminate the auxiliary fields and write
down the F term constraints as follow from their equa-
tions of motion:
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(4.14)
The �F constraint contains new C-dependent pieces com-
pared to the standard case. In the present case, it was
possible to solve for the auxiliary field, unlike the case in
the previous section, where the Kähler potential was
arbitrary.

We eliminate the auxiliary fields from the action and
write down the potential energy for the bosonic fields of
the theory as:

U �
X1
n�0

�
1�n�detC�n

�2n� 1�!
��2n� 1�� �W;i�

2n�1W;i1���i2n�1 � �2n�

	 � �W;i�
2n i2n�1
  i2n�2� W;i1���i2n�2�

�

�
D2
a

2e2
� 2
a �
aQi;a

2"i �"i
�
: (4.15)

The potential seen above is again an expansion in powers
of �detC�. Further, there are also many higher powers of
the @ �W

@ �"i . So, if �W� �"� is chosen to be zero, then no matter

what W�"� is, the F terms are zero and one is only left
with D terms in the potential.

To draw more conclusions, let us look at the potential
given in Eq. (4.15) to first order in �detC�:

U �
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@ �"i
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@"i 
 �detC�
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@ �W

@ �"j

�
1

2

@ �W

@ �"k

@3W

@"i@"j@"k

�
1

3
 k
 l�

@4W

@"i@"j@"k@"l

�

�

�
D2
a

2e2
� 2
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aQ2

i;a"
i �"i

�
: (4.16)

First, we see that the potential for the scalar fields also
contains some fermionic pieces. In the C � 0 case, these
fermionic pieces are absent and one can independently
look at the F-flatness andD-flatness conditions. However,
in the present case, the pieces depending onC come with a
negative sign and, hence, it is important to understand
their role while looking for supersymmetric vacua. In
some simple cases, by suitable choice of W and �W, the
fermionic pieces can be dropped.

Before proceeding, we note that in Eq. (4.16), the D
term can be set to zero independently, as there are no
other terms which depend on the gauge coupling:

D � e2
�X

Q" �"
 r
�
� 0: (4.17)

Notice that the D-flatness condition is the same as in the
125003
C � 0 theory. It is the analogue of this condition in [48]
that gives the target space as CPn
1.

Now, one can make an appropriate choice for the super-
potentials and impose further conditions on the target
space geometry. For instance, following [48], one can
take the matter content to be, say, two chiral superfields
1, 2 of charge 1 each and one chiral superfield P of
charge 
2, such that the superpotential W�� �
P �G�1;2� is gauge invariant, quasihomogeneous,
and satisfies the constraints coming from R-symmetry
invariance. Further, we can also choose �W� �� �
�P � �G� �1; �2�. In this case, one can show that the fermi-
onic terms drop out.

Once again, the D term can be set equal to zero inde-
pendently. The analogue of this condition in terms of [48]
would give the target space to be CP1. Further, with the
above choice of the superpotentials, evaluating Eq. (4.16),
one can have new terms in the potential which depend on
�detC�. For instance, the potential can have terms of the
kind �detC� � �p2 �G @G

@"1
@G
@"2�, apart from the standard terms

which one normally gets [48]. Here, �p;"1; "2 are the
lowest components of corresponding superfields. It should
be interesting to vary the Fayet-Illiopoulos parameter r
and study the phases of the above theory. In particular, to
study the additional restrictions put by the terms depend-
ing on C on the target space geometry.

V. DISCUSSION

To conclude, in this paper, I have extended the results
of my previous work [42] to write down the action for
D � 2, N � 2 sigma models characterized by an arbi-
trary Kähler potential on a non(anti)commutative super-
space to include several chiral multiplets. Despite the fact
that there are an infinite number of terms, a general term
in the action can be written down in a closed form. This is
due to the fact that the action turns out to be a series
expansion in �detC�F.

It was shown that the action can be written in a man-
ifestly covariant manner by using the Kähler normal
coordinates. This will be needed while analyzing the
quantum structure of the theory. It would be interesting
to apply the background field methods to study the action
using normal coordinates. Since the Kähler normal coor-
dinates transform as holomorphic tangent vectors on the
target manifold, one expects that the background field
expansion will also be manifestly covariant. However, the
background field expansion may not preserve chirality
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and in this process invariance under the N � 1=2 super-
symmetry transformations may also be lost. It is impor-
tant to further study these features so as to address the
question of renormalizability of the theory.

In the second part, the analysis was extended to include
vector multiplets as well. I wrote down the classical
action for gauged linear sigma models on non(anti)com-
mutative spaces. The gauge transformations and the su-
persymmetry transformations for the vector and chiral
multiplets were derived explicitly in the Wess-Zumino
gauge. To ensure the correctness of component calcula-
tions, the action was explicitly shown to be invariant
under the N � 1=2 supersymmetry transformations.
The bosonic potential of the theory was shown to contain
various higher powers of the derivatives of the super-
potential. The D-term constraint is still the same as in
the C � 0 theory. It would be interesting to turn on super-
potentials considering various number of chiral multip-
lets and see what kinds of restrictions can be put on the
target space geometry. This would be the first step to study
the phases of this model, in parallel to [48].

It is known [13] that supersymmetric theories defined
on non(anti)commutative superspace do not have a chiral
ring structure due to the absence of the �Q supersymmetry.
This can also be inferred from the fact that the product of
an arbitrary number of the chiral superfields does not
vanish, in general. This has some straightforward impli-
cations for topological field theories. In the C � 0 theory,
it is known that if the left and (nonanamolous) right R
symmetries are unbroken, then it is possible to have A and
B twists. Many important properties of the untwisted
models and several aspects of mirror symmetry have
been studied from the topological A and B models. For
the present case, the absence of the chiral ring suggests
that it may not be possible to have the standard B twist.
However, it is possible to have the A twist, where the
operators are in Q � Q� �Q
 cohomology. It should be
interesting to study these topological models.

There are other avenues one can explore. Taking the
e2 ! 1 limit, one can look at the boundary terms gen-
erated from the gauged linear sigma model action. Since,
there are newC-dependent terms in the GLSM action, one
expects new terms to be generated at the boundaries.
These terms will play a crucial role while studying sigma
models with boundaries and, hence, will be relevant in the
study of D branes using GLSM’s [50]. On another front,
one can look to solve the D-flatness conditions and study
the sigma model metric in the UV and IR. Further, it
should also be interesting to study closed string tachyon
condensation [61] in this setting. I hope to come back to
these issues in future.
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APPENDIX A: SOME IDENTITIES USED IN THE
TEXT

Some of the identities used in the text are given below.
They can be derived using the definition of star product
given in Eq. (2.6):
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C00; (A1)
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C11; (A2)
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�� 
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(A7)
APPENDIX B: DETAILS OF GLSM ACTION

Below are given some details of the calculation corre-
sponding to the chiral superfield action. We write down
the ��
 ����
�� terms coming from each of the pieces
appearing on the RHS of Eq. (4.3):
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