PHYSICAL REVIEW D 70, 125002 (2004)

Critical phenomena from the two-particle irreducible 1/N expansion
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The 1/N expansion of the two-particle irreducible (2PI) effective action is employed to compute
universal properties at the 2nd order phase transition of an O(N)-symmetric N-vector model directly in
three-dimensions. At next-to-leading-order the approach cures the spurious small-N divergence of the
standard (1PI) 1/N expansion for a computation of the critical anomalous dimension n(N), and leads to
improved estimates already for moderate values of N.
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L. INTRODUCTION

New methods for the quantitative description of ther-
mal equilibrium as well as nonequilibrium aspects of
critical phenomena have a wide range of important ap-
plications. Topical examples are the active experimental
searches and theoretical explorations of properties of the
QCD critical point in the phase diagram of strongly
interacting matter [1], or the description of the critical
dynamics of Bose-Einstein condensates in laboratory ex-
periments with ultracold quantum gases [2]. On extremely
different energy scales their quantitative understanding
requires a field theoretical description of the equilibrium
and nonequilibrium properties in the vicinity of critical
points associated to 2nd order phase transitions. The latter
exhibit anomalously large fluctuations and are character-
ized by universal quantities such as critical exponents.

There are few nonperturbative methods in thermal
equilibrium that can describe the large fluctuations in
the vicinity of a 2nd order phase transition [3].
However, the number of methods becomes even more
limited once nonequilibrium dynamics and the approach
to thermal equilibrium is considered. It is important to
note that mean-field-type or leading-order large-N ap-
proximations are insufficient. They are known to fail to
describe thermalization and do not properly distinguish
the different universality classes for critical phenomena.
Efforts to go beyond leading-order in a standard 1/N
expansion of the one-particle irreducible (1PI) effective
action fail because of spurious secular terms, which grow
with time and invalidate the approximation for nonequi-
librium physics. In addition, the 1PI 1/N expansion shows
a rather poor convergence in thermal equilibrium for
moderate values of N, and at low order important quan-
tities such as the critical anomalous dimension n(N) are
known to exhibit a spurious divergence as N — 0 [4].
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It has recently been pointed out that a controlled de-
scription of nonequilibrium dynamics and thermalization
of quantum fields can be based on a 1/N expansion of the
two-particle irreducible (2PI) effective action beyond
leading-order [5-10]. For nonequilibrium dynamics the
rapid convergence of this expansion has also been ob-
served in classical statistical field theories, where com-
parisons with exact results are possible [11]. This
nonperturbative approach provides a promising candidate
for a uniquely suitable description of both the nonequi-
librium as well as equilibrium physics in the vicinity of
critical points, since it provides a controlled expansion
even in the presence of large fluctuations. An important
step towards such a conclusion is, therefore, to show that
the 2PI 1/N expansion indeed reliably describes the
thermal equilibrium properties at the critical point of a
2nd order phase transition. In this work we calculate
universal properties, employing the 2PI 1/N expansion
to next-to-leading-order (NLO). We consider the
O(N)-symmetric scalar N-vector model in three-
dimensions. For N = 4 this model is expected to belong
to the universality class of the high temperature QCD
phase transition in the limit of two massless quark flavors
[12], and for N =1 to the QCD critical point at high
baryon density and temperature [13]. In the context of
Bose-Einstein condensation in quantum gases N =2
characterizes the relevant universality class [2]. Here it
is important to note that the equilibrium universality
classes agree in the relativistic and the nonrelativistic
case, and we will only consider the former.

To show the capabilities of the method we calculate the
properties of the theory directly at the critical tempera-
ture of a 2nd order phase transition. This is notoriously
difficult within perturbative approaches since the corre-
lation lengths are diverging. All the universal properties
at this point are encoded in a single critical exponent,
which can be associated to the anomalous dimension 7.
In this case the knowledge of 7 also fixes all universal
information about the effective potential, which encodes
the information about the critical equation of state. We
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show that the 2PI 1/N expansion cures the spurious
small-N divergence of the standard (1PI) 1/N expansion,
and leads to improved estimates already for moderate
values of N. We finally compare the method with related
approaches that have been employed in the literature.

II. MODEL

We consider a Euclidean field theory for a real,
N-component scalar field ¢, (@ = 1, ..., N) with classical
action

2

stel= [ ataf 50,0, 0,00 + 5 ¢,

Q2.1

A
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where summation over repeated indices is implied. All
information about the equilibrium field theory can be
obtained from the partition function, or more efficiently
from an n-particle irreducible effective action [14], which
are related by Legendre transforms in the presence of
sources.

The familiar one-particle irreducible (1PI) effective
action is the generating functional for 1PI Green’s func-
tions. The partition function Z[J] in a presence of a source
J is given by

Z[J] = fngo eXp|:—S[¢)] + ]ddxja(x)¢a(x):| — ]

2.2)

where W[J] is the generating functional for connected
Green’s functions. The classical field ¢,(x) is defined by
the expectation value of ¢, in the presence of a source
J,(x) and is related to W[J] by

SWIJ]
8.J,(x)"

The 1PI effective action I'jp[ ] is given by a Legendre
transformation of W[J]

T\mld] = — WL+ [ 4T (0) b o).

b4 (x) = (@, (x)) =

2.3)

2.4)

The momentum-independent part of I'p[ @] is known as
the effective potential U(¢). The effective potential plays
an important role in investigations of spontaneous sym-
metry breaking and its minimization defines the true
ground state including the effects of fluctuations.

Here we consider the two-particle irreducible (2PI)
effective action [15]. Its construction is similar to that
of the 1PI effective action. However, the 2PI effective
action is obtained from a double Legendre transformation
of the partition function with respect to sources J,(x) and
K, (x, y) that couple linearly and bilinearly to the fluctu-
ating field, respectively. The partition function is de-
scribed by
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+ [dtedlyo (9K bt s |
= WK, (2.5)
Accordingly the 2PI effective action is a functional of
both, ¢,(x), the expectation value for the field ¢,(x) and,
G, (x, y), the expectation value of the time ordered field
bilinear T¢,(x) ¢, (y):

Tanlb, G] = —WIJ, K] + ] ] () b ()
#5 [[dtadtyd Kl 3)0)

1
+5 [ddyCu K. 20

The most general Euclidean 2PI effective action can be
written as

Copilop, Gl = S[o] + %Tr InG™' + %TrGo‘l(d))G

+ I'[ @, G] + const. 2.7
Diagrammatically the contribution I',[ ¢, G] is given by
all two-particle irreducible' graphs with propagator lines
set equal to G [15]. The classical inverse propagator
Goly(x,y: ) = 825[81/5b, (x5, () reads

Goopx, yi ) = |:—6M8M + m?
A

+ ey 690 |30 =)

A
3N ba(X) by (x)8(x — y). (2.8)
In the presence of an external source J,(x) coupling

linearly to the fluctuating field, the equations of motion
for ¢ and G are [15]

8lopl b, G] _
8¢y (%)

The relationship of the 2PI effective action to the 1PI
effective is straight forward. The 1PI effective action is
given by I'ypi[ @, G] when G satisfies the second equation
of motion in (2.9), i.e.,

olpld, G]

L@ Gy

0. (2.9)

8 2pi[ @, G]
8G (%, y) G=Gyy
(2.10)

Cipil @] = Topil b, Gy, =0.

'A diagram is said to be two-particle irreducible if it does
not become disconnected by opening two lines.
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IIL TWO-PARTICLE IRREDUCIBLE 1/N
EXPANSION

In this work we consider a systematic expansion of the
2PI effective action I',p[ ¢, G] in the number of field
components or powers of 1/N beyond leading-order?
[5,6]. We write

[o[¢; G] = T5O[G] + IO 3 GT + THNO[¢; G + ...

3.1
where I'5O denotes the leading-order (LO) contribution
which scales proportional to N, while 'Y€ is the next-to-
leading-order (NLO) contribution ~N?, and TiN-O[G] ~
1/N etc. For the O(N)-model these contributions have

been derived in Ref. [5,6].> The LO and NLO contribu-
tions, which we will consider here, read (cf. Figure 1)

A

I3°[G] = N . G aa(x, )Gy (x, X), (3.2
1004, G] = Trn[B(G)]
“ o | LEr08,09Gu (e )90).
(3.3)
In the above equation we have defined
B(13:6) = 89(x = 1) + 1 Gupl )Gus(n ), (34)

6N

and the logarithm in Eq. (3.3) sums the infinite series

e [B(@)] = [ [%N Gunt G5 |

_%f [6/1\\]

A
X [@ Ga’h/(y: x)Gu’h/(y’ X)i| +

ab(x y)Gab(x y)i|

(3.5)

The function I(x, y; G) is defined by

I(x, y;G) = — G4 (x, ¥)G g (x, )

A
N

_ A f I(r 22 G)Gu (2 Gur(ay),  (3.6)
6N /. ’ anie avis rn

and resums an infinite number of ‘“‘chain” graphs, which
can be seen by iteratively expanding (3.6). The function

>The 2PI effective action at LO in 1/N is equivalent to the
1PI effective at LO in 1/N. At higher orders, as considered
here the approaches differ.

3Note that in Ref. [5,6] a Minkowskian space-time is con-
sidered, whereas here a Euclidean metric is used.
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FIG. 1. Diagrammatic representation of the LO and NLO
contributions to I';[@, G]. The solid lines and small dots
represent the full propagator and the bare vertex, respectively,
and the indices run from a = 1,..., N. Diagram (a) is F%O
given by (3.2). (b) is FgLO, which is schematically expressed as
a three-loop diagram with an effective four-vertex containing a
chain of bubbles. This form of I'Yt© can been seen from (3.3)

with the aid of (3.5) and (3.6). The effective vertex is shown in
(©).

I(x, y; G) and the inverse of B(x, y; G) are related by
B (x,y;G) = 8%x —y) — I(x,y; G), (3.7)

which follows from convoluting Eq. (3.4) with B~! and
using Eq. (3.6). Note that B and I do not depend on ¢, and
I';[ @, G] is only quadratic in ¢ at NLO.

IV. UNIVERSAL BEHAVIOR AT THE CRITICAL
POINT

In the following we concentrate on d = 3, relevant for
high temperature quantum field theories or classical sta-
tistical models with three spacial dimensions. For this
case the model is known to exhibit a 2nd order phase
transition at a critical mass parameter m> = m2(N, A) for
all N. In Fourier space we will use the notation
[&q/Qm) = [, 4 To show the capabilities of the
method we calculate the properties of the theory directly
for the critical value m2. In this case the correlation
lengths are diverging, which spoils standard perturbative
approaches. All the universal properties at this point are
encoded in a single critical exponent.” In the absence of
external sources this exponent can be associated to the
anomalous dimension 7. It characterizes the critical be-
havior of the propagator or two-point function:

Glp) = é(p—zy/ ’

X @.1)

“If not stated otherwise most formulas are valid for general d
and the restriction to three-dimensions will only be relevant for
some specific momentum integrals below.

>Note that deviations from the critical point are described by
a further independent critical exponent.
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which is valid in the limit p>/A? — 0". Here A corre-
sponds to an (arbitrary) high momentum scale which
regularizes the theory. All universal properties are inde-
pendent of A as we will show explicitly for the anomalous
dimension 7.°

We note that the knowledge of 7 also fixes all universal
information about the effective potential U(¢), which
encodes the complete information about the critical equa-
tion of state in the presence of an external (static) source
~J, (cf. (2.9) and below). At the critical point one has

au(e)
I

valid for ¢ — 0 with a nonuniversal proportionality con-
stant that depends on the specific details of the model.
Here the universal critical exponent o is not independent
but related to n by the scaling relation [3]

P

1+17
for d = 3. The presence of scaling relations such as (4.3)
is a consequence of the limited number of relevant pa-
rameters, which can regulate the diverging correlation
lengths at the critical point. For the O(N)-model there is
only one independent relevant parameter at the critical
point for m?> = m2, which can either be associated to a
nonvanishing momentum or source. As a consequence,

®°, (4.2)

4.3)
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one may either extract the universal behavior from (4.1) or
from (4.2). We emphasize that the scaling relation (4.3) is
a robust property of the theory in the absence of addi-
tional relevant parameters. In contrast, the error involved
in an approximate estimate for a difficult quantity such as
the anomalous dimension is typically large. In the follow-
ing we derive the relevant equations for both n and 6,
employing the 2PI 1/N expansion to NLO. We will then
choose the simpler (former) case for an explicit solution
of the equations in order to obtain a quantitative estimate
of the universal behavior.

Firstly, for a computation of the effective potential it is
sufficient to consider a constant field expectation value.
By virtue of O(N) rotations the most general field con-
figuration in this case can be chosen as

6
¢a(-x) = \/E(baaly

Gab(x, y) = dlag{G”(x - y)’ GJ_(X - Y)’ L) GJ_(-X - y)}r
4.5)

where we have rescaled the field for later convenience. For
N > 1 the stationarity condition (2.9) for the composite
field G with (3.2) and (3.3) translates into two coupled
equations for the longitudinal and transverse components.
In Fourier space one finds

(4.4)

Gy '(p)=p>+m’+3¢°+ L(%N[SGu(q) +(N-1G (@] —2¢°L(q) — %{I(q) +2¢°Gy(q)[1 — L@ P}Gy(p — q)>,

61 @ =p 2+ 02+ [ (L0G@+ V+ 6L @]~ 55 {1(@ +20°Gy @l - T FIGL e~ )

Here the resummation function I is given by (3.6) for the
configuration (4.5), in Fourier space. We will discuss the
resummation function in more detail below.” The effec-
tive potential U(¢) is determined by the effective action
for a constant field:

U(¢) = Vi3r[¢, Gl y—conse 4.8)

where V; is the three-dimensional volume. Here G(¢) =
{G|(¢), G (¢)} denotes the solutions of (4.6). We then
obtain from (2.7) with (3.2) and (3.3) the relevant equa-
tion for determining the equation of state:

°In particular it is not necessary to consider renormalization.

"The equation of motion for the field expectation value is not
required since one considers U(¢) for all ¢. For completeness
we note that the stationarity condition for the field (2.9) leads
for ¢ =0 to

A d¢
» == ﬁ[”“(q) + (N = 1DGL(g)
- 2I(¢)Gy(—q)]. 4.7

(4.6)

aU($)_6No
ap A

+<N—1>GL<q;¢>—2I<q>c|.<—q;¢>}} 4.9)

[m2+¢2+%ﬁ{3(;n(q;¢)

We emphasize that the Egs. (4.6) and (4.9) are valid also
away from the critical point of a 2nd order phase tran-
sition. In particular, the effective potential can be used to
compute the different longitudinal and transverse suscep-
tibilities in the phase with spontaneous symmetry break-
ing for N > 1:

o PUe) LU
N gae M T g ae

Note that Goldstone’s theorem is fulfilled for the 2PI 1/N
expansion, which has been pointed out previously in
Ref. [6]. To compute the universal properties at the critical
point, i.e., to obtain the exponent o from (4.2), one has to
specify in (4.9) the critical value of the mass parameter
m? = m?. The latter can be obtained for ¢ = 0 from
either equation of (46) by the condition

G”’](p =0=G/'(p=0)=0.

(4.10)
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An alternative calculation of the universal properties at
the critical point determines the anomalous dimension 7.
For our current purposes it is sufficient to perform this
calculation explicitly, which is a considerably simpler
task. By virtue of O(N) rotations, at the critical point
the most general field configuration in the absence of
sources is given by

Gab(p) = G(p)6ab- (411)
Eqgs. (4.6) then reduce to the single expression
G !(p) = p* + m* + X(p) (4.12)

where the self-energy contains a momentum-independent
O(N° part and both momentum-independent and
momentum-dependent O(1/N) parts,

E(p) = /\N_+2

A
v J.0@ -5y [ o —atw

(4.13)

and the chain sum is

I(q)=1—[1+%ﬁG(q—k)G(k)}l. (4.14)

The equivalence of the explicit form for the resummation
function (4.14) with the implicit form of Eq. (3.6) for the
configuration (4.11) can be observed by expansion in a
geometric series. Equations (4.12), (4.13), and (4.14) pro-
vide a closed set of self-consistent equations to determine
the full propagator G(p). Figure 2 shows them in dia-
grammatic form.

According to (4.1) at the critical point the inverse
propagator at zero momentum vanishes, ie., G '(p =

W < = + - +-66- + -
>
b S = QJF@

|
© eeee = <>+<><>+.--

FIG. 2 (color online). Diagrammatic representation of self-
consistent equations for the full propagator G(p) obtained from
a 1/N expansion of the 2PI effective action to NLO for ¢ = 0.
Diagram (a) is (4.12), which expresses the full propagator in
terms of the classical propagator G (thin line) and the self-
energy (p) (shaded blob). Diagram (b) is (4.13), which shows
how the self-energy, the amputated one-particle-irreducible
two-point function, can be expressed in terms of a one-loop
contribution containing the LO contribution, and a NLO con-
tribution that involves the chain sum. Diagram (c), correspond-
ing to (4.14), shows how the chain sum can be expressed in
terms of the full propagator.
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0) = 0. Using this and subtracting from (4.12) the same
expression for zero momentum we can write

6w =p* 5y [ 166 -0 - G@l@. @)

This equation is valid at the critical point and can be
conveniently employed to extract universal properties.
With the help of (4.14) this gives

_ . A _
G =+ 5y [ 160 -0
—G(q)][l+%ﬁG(q—k)G(k)}_l, (4.16)

where we used that the integral involving the constant
part of I(q) vanishes for p>/A? — 0. The latter limit
characterizes the momenta for which the universal expo-
nent n of the critical form for the propagator (4.1) is
defined. It remains to be shown that (4.1) indeed solves the
above equation in this limit. To show this, we insert (4.1)
into (4.16) and obtain an equation for the anomalous
dimension 7). The latter equation has a unique solution
for given N as is demonstrated in the following.

Using (4.1) the one-loop subintegral in Eq. (4.16) can
be performed for —1 < 5 < 1/2 to give®

% ﬁ G(q — k)G(k) = % ﬁ /A<(qj—x*2k)2>n/zl

k2\n/2—1
* (%)

A 2\n-1/2
- 6—A<%>” Alx), (4.17)
with
1_ 1+m\72
A — 1 I'G—I'ED] @.18)

872 [T(1 = DPT(1 + )

With this notation the Eq. (4.16) takes the form

81t can be conveniently obtained using the Feynman parame-
trization for noninteger exponents «, [3:

1 1 xaflxﬁ_l
— = | dxdxdg +x - )12
AaBB j(; T1ax (XI 2 )(XlA + .XQB)CH—B

I'a + B)
X .
L(@)I'(B)

The momentum integration can then be performed for n <
1/2, and the subsequent integration over the Feynman parame-
ter for n > —1 with the result (4.17). Note that we have
evaluated the integral without regulator. One can show that
subleading corrections obtained from keeping the momentum
integration finite are irrelevant for the universal low momen-
tum behavior.

125002-5



MARK ALFORD, JURGEN BERGES, AND JACK M. CHEYNE

p’\I=n2_p’ . A (p—q)*\n/2!
<A2> A* 3NA q/A[< A? )

)]

A (g3 \n—1/2 -1
x[1+6A<A2> ﬂl(n)} . 419
This provides a self-consistency equation for n which
may be solved numerically for given N and A/A. We have
done this for a check which is discussed below.

However, one can proceed further analytically to ob-
tain 7. For the low momentum range of critical phe-
nomena, p?/A*?— 0%, the remaining momentum
integral is dominated by small q> ~ p? (cf. above that
1 < 1/2 for the allowed range). In this limit we can,
therefore, write

PP\l _ p_2+ 2 (p — q)*\n/2-1
<A2> A2 AN q/A[< A? )

q>\7/2-17/q>\1/2-n
() R

One observes that the dependence on the coupling A
dropped out completely from the equation. This is a
manifestation of universality, which implies that the
anomalous dimension for the three-dimensional
O(N)-model is only a function of the number of field
components N. After performing an elementary angle
integration one finds with n # 0 and using the notation
p =Ipl/A and g = |q|/A:

(4.20)

P =P f | d‘1<q2—2n [([p + qP)"?
27 AN Jo np

~(p— P77 -2'7). (421)
The remaining momentum integral can be performed
with the help of hypergeometric functions. This is de-
scribed in the appendix. The result can be written as a
sum of an anomalous term ~p?~ 7 and a regular function
F,(p?) of momentum squared:

p* "= p*+ B(n)p* " + F,(p?), (4.22)
with
_ 4n(1 — 27) cos(nm) 1
B0 =G = msmmm/on * <W>

(4.23)

The regular function can be expanded in powers of the
critical momentum p — 0 as

1-m2-n ,

2y — _ 4 i
Fy(p) = = +(9<p,N2>. (4.24)

Since the behavior of F,(p?) for small momenta is ~ p?,
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this function along with the p?-term in (4.22) are sub-
leading for a positive anomalous dimension. In this case,
the p — 0 behavior is dominated by the anomalous term
~p?~". Comparing the left and the right hand side of
Eq. (4.22), one observes that n has to fulfill

B(n)=1. (4.25)
We observe from this constraint with (4.23) that the
anomalous dimension indeed has to be positive for the
allowed range n < 1/2, and (4.25) can be used to extract
the critical exponent 7. In addition, we have numerically
determined 7 directly from Eq. (4.19) for selective values
of N, which agree.’

In Fig. 3 we have displayed the results for 7 obtained
from (4.25) as a function of N (solid line). For compari-
son, we also show the corresponding results from the
conventional (1PI) 1/N expansion to NLO (dashed line)
[4]. In contrast to the latter, one observes that the expan-
sion of the 2PI effective action leads to a well-defined
limit 5 — 0.5~ as N — 0*.'" It therefore cures the spu-
rious small-N divergence of the standard (1PI) 1/N ex-
pansion, which is reflected in the improved estimates of 7
for moderate values of N. The reason for this improve-
ment stems from the increase in number of momentum-
dependent diagrams considered in the NLO 1/N expan-
sion of the 2PI effective action as opposed to equivalent
expansion of the 1PI effective action. In the 2PI effective
action diagrams contain the full propagator G. We can
expand this in terms of the bare propagator G, in order to
make a comparison to the diagrams of the 1PI effective
action. For example, if we consider the “setting sun”
contribution to the self-energy then recursively substitut-
ing this into one of the full propagators in the second term
of Fig. 1(b) yields an infinite series of “ladder” diagrams.
These do not contribute at any finite order in a conven-
tional 1/N expansion and are therefore not present in the
NLO 1/N expansion of the 1PI effective action. Despite
this qualitative and quantitative improvement, the NLO
approximation within the 2PI 1/N expansion still cannot
compete with the more elaborate estimates from alterna-
tive methods for small N. For instance, the 2PI result for
N = 4is n = 0.061, which is still about 35-40% too high
compared to alternative estimates [3].

“We note that an approximate estimate for n may also be
obtained from enforcing that the subleading terms ~p? in
(4.22) cancel, which leads with (4.24) to the condition

(1 =2 —n) = 6m>nA(n)N.

The solution of this equation and of (4.25) agrees to good
accuracy for N = 1, and have the same limit n — 0.5~ as N —
0*. However, only the leading contributions for p — 0 were
calculated properly since they determine the critical behavior,
and this is described by the solutions of (4.25).

"The limit N — O describes the universality class for the
critical swelling of long polymer chains [16].
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FIG. 3. The anomalous dimension =7 for the three-
dimensional O(N)-model as a function of N. The figure com-
pares the results obtained from the 2PI 1/N expansion to next-
to-leading-order (NLO) with the conventional 1PI 1/N expan-
sion to NLO. In the conventional 1PI 1/N expansion to NLO 75
is given by 7 = 8/(37%N) [4]. One observes that the expansion
of the 2PI effective action cures the spurious N — 0 divergence
of this approach. This is reflected in the improved estimates of
7 for small N if compared to results from alternative methods
for which 7 is of order 1072 [3]. In contrast, for large enough N
both expansions converge to the same results and
limy_,,1(N) = 0.

In the following we compare the 2PI 1/N expansion
with previous approximations based on an ansatz for the
exact Schwinger-Dyson equation for the propagator. We
note that the result from the 2PI 1/N expansion at NLO
(4.25) agrees with the expression obtained by Bray [17]
from his “‘Self-Consistent Screening Approximation”
(SCSA). The latter approximation scheme corresponds
also to the so-called ‘“Bare Vertex Approximation”
(BVA), which has been employed in the context of time
evolution problems [7]. For BVA/SCSA one introduces an
auxiliary field for a composite operator into the
O(N)-model. In addition to the original propagator G,
the effective theory then contains a propagator for the
composite field and a two-point function mixing the
original and composite field. The exact Schwinger-
Dyson equations for the two-point functions are then
approximated by keeping the interactions of the corre-
sponding effective theory bare. As has been pointed out in
Ref. [6], the BVA is not consistent with the 1/N expansion
of the 2PI effective action in the presence of a source term
or for ¢ # 0, since BVA sums NLO and only part of the
NNLO contributions. For ¢ = 0, the 2PI 1/N expansion
to NLO and the BVA/SCSA are identical, which is the
reason for the agreement observed above. We emphasize
that the 2PI 1/N expansion can be systematically im-
proved and going beyond this order requires the inclusion
of the NNLO corrections described in Ref. [5,6].
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V. CONCLUSIONS

The 2P1 1/N expansion represents one of the few non-
perturbative methods that can calculate critical behavior
directly in three-dimensions. In particular, there are no
improvement procedures involved such as Borel trans-
formation and conformal mapping underlying results
from expansions in 4 — € dimensions (cf. the first Ref.
of [3]). In view of the improved behavior of the 2PI 1/N
expansion as compared to the standard (1PI) 1/N expan-
sion, the former seems to provide a promising candidate
for quantitative estimates. Here it is important that the
1/N expansion of the 2PI effective action can be system-
atically improved. A very interesting further step would
take into account the NNLO corrections as described in
Ref. [5,6]. But already the NLO approximation provides a
valuable quantitative tool for studying critical phe-
nomena. This concerns, in particular, real-time properties
of quantum field theories. It should be stressed that the
2PI 1/N expansion presents, so far, a uniquely suitable
method that can deal with both nonequilibrium [5-10] as
well as equilibrium problems even in the presence of
large fluctuations. Our results are very encouraging for
an application of these methods to dynamical properties
of critical phenomena.
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APPENDIX

In this appendix we discuss the analytical evaluation of
the momentum integral in Eq. (4.21). Writing the equa-
tion as

1

2—-m — 2 +
p p 27> A(n)N

(Ry + R, + Ry) (AD)

we decompose the integral into three terms. The first
integral is

Rlzp

which in terms of the hypergeometric function
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I'(c) 1 xP7I(1 = x)ebd The hypergeometric function can be transformed further
2F((a,b,¢,2) = =/ X using [18]
T —b) Jo (1 — xz) &
(A3) Tl —a) u
F td b’ ’ VYN -
2ilab e d ==Y
becomes 1
><2F1<a,1+a—c,1+a—bﬁ>
pn! 1 ) 4 1 Z
R, = —F(3—2n,—n, —217,——), _
1 n 3-27> 1( P +F(C)F(a b)(_z)_sz1

1
o . X(b,1+b—c,1+b—a,—>. (A6)
where we have simplified products of I'-functions and z

relied upon the relation

This yields hypergeometric functions suitable for a small
,F\(a, b, ¢, z) = ,F|(b,a,cnz). (A5)
|

p expansion, i.e.,

(@4 —2nl(-3+ n)) N _,7[3 —2n n3—2n)  n@3-— 217)p2

2F1<3 ST AT AT %) - pHn( T(=7) 3-m @2-n 7 2
(3 —-29)1 6— 72— n) E @(p4)} (A7)
The second integral is
Ry — — pn! fl dqq2_2’7<[1 _ ET>W/Z, (AS)
n 0 p

which may be evaluated with the aid of the following relation where z > 1:

Lo T(—1—a—2B)T(1+2b)  T(1+a)T(1+2b)
]dex (1—xg)?b =71 ( Ta + FGtataD) )

Z2b

FararappnC1mam2b72b—a=2b1/2) (A9)

So we obtain

P TE3plUty) TE-29T0+x)\ 1 1
n ( [(-2+27) I —mn) ) mp G-’

Expanding the hypergeometric function in small p one finds

R, = F((=3+4+mn —n -2+ p). (A10)

nB3—n)  nB-n) e B—n)1—n2—mn) 2+ 00,

F(=3+n-m-2+np=1- All
2B ( n, =1 n, p) p— 5 ) (A1)
The third integral is straightforward and gives
1 -2
Ry = —/ dq2q' ™" = ——. (A12)
0 2-n7

Collecting the results one observes that terms containing odd powers of p cancel and up to @(p*) one finds (4.22) with
(4.23) and (4.24).
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