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Path integral approach to residual gauge fixing
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In this paper we study the question of residual gauge fixing in the path integral approach for a general
class of axial-type gauges including the light-cone gauge. We show that the two cases—axial-type
gauges and the light-cone gauge —lead to very different structures for the explicit forms of the
propagator. In the case of the axial-type gauges, fixing the residual symmetry determines the propagator
of the theory completely. On the other hand, in the light-cone gauge there is still a prescription
dependence even after fixing the residual gauge symmetry, which is related to the existence of an
underlying global as well as local symmetry.
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I. INTRODUCTION

Light-front field theories [1] have been studied vigo-
rously in the past. Quantization on the light front (as
opposed to equal-time quantization) leads to a larger
number of kinematical generators of the Poincaré algebra
resulting in a trivial vacuum state of the theory [2].
Therefore, nonperturbative calculations can, in principle,
be carried out in a simpler manner in such theories.

More recently, it has been observed both in the con-
ventional light-front frame as well as in a generalized
light-front frame [3–5] that canonical quantization
(within the Hamiltonian formalism) of a gauge theory
in the light-cone gauge

n � A � 0; n2 � 0; (1)

where A� can be thought of as a matrix in the adjoint
representation of the gauge group in the case of a non-
Abelian theory, leads to a doubly transverse propagator
[6,7]. For example, in this case the propagator has the
explicit form (with the identity matrix neglected in the
case of a non-Abelian theory)

D�DT�
�� �n; p� � �

1

p2

�
g�� �

n�p� � n�p�

�n � p�

�
p2

�n � p�2
n�n�

�
; (2)

and satisfies

n�D�DT�
�� �n; p� � 0 � D�DT�

�� �n; p�n� � p�D�DT�
�� �n; p�

� D�DT�
�� �n; p�p�: (3)

On the other hand, when calculated in the path integral
formalism using the naive Faddeev-Popov procedure, the
inverse of the two point function in the light-cone gauge
(1) takes the form (once again, we neglect the identity
matrix in the case of a non-Abelian theory)
04=70(12)=125001(11)$22.50 125001
���PI���1���n; p� � �
1

p2

�
g�� �

n�p� � n�p�

�n � p�

�
: (4)

While this is transverse with respect to n�, it is not
transverse with respect to the momentum, namely,

n����PI���1���n; p� � 0 � ���PI���1���n; p�n
�;

p����PI���1���n; p� �
n�

�n � p�
;

���PI���1���n; p�p� �
n�

�n � p�
:

(5)

It is, of course, not clear a priori whether, in the light-
cone gauge, the inverse of the two point function corre-
sponds exactly to the propagator of the theory. We will
show explicitly (in an appendix) that such an identifica-
tion can, in fact, be made in the light-cone gauge.
Therefore, there is a manifest difference between the
two structures in (2) and (4) in addition to the fact that
one has to further specify a prescription for handling the
unphysical poles at n � p � 0. This difference has led to
several papers [8] where the Lagrangian density of the
(Abelian) theory is modified arbitrarily by hand in order
to reproduce the propagator (2).

We note that such a difference is not restricted to light-
front theories alone. In fact, even in a gauge theory
quantized at equal-time in the light-cone gauge, such a
difference does appear. Furthermore, even in the tempo-
ral gauge in a theory quantized at equal-time, such a
phenomenon arises. Normally, one ascribes this to a re-
sidual gauge invariance in the path integral approach.
More specifically, in the canonical analysis of a gauge
theory, two first class constraints arise which necessitate
two gauge fixing conditions [6,7], while in the naive path
integral approach one only imposes a single gauge fixing
condition such as in (1) which leaves behind a residual
gauge symmetry. However, a residual gauge invariance
has a very different effect in the sense that while the
original gauge invariance constrains the structure of the
-1  2004 The American Physical Society
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theory strongly enough to make the two point function
noninvertible, this is not the case when there is a residual
gauge invariance. Rather, in the case of the temporal
gauge, we know that residual gauge fixing removes the
arbitrary prescription dependence of the unphysical poles
in the propagator [9,10]. It is for this reason that we would
first like to understand the path integral formulation of
the theory in the light-cone gauge as much as is possible
without fixing the residual gauge invariance before going
into a systematic analysis of residual gauge fixing. The
paper is organized as follows. In Sec. II, we study sys-
tematically various properties of the theory in the naive
gauge fixing of the light-cone gauge in the path integral
formalism. We show, in particular, that the free theory in
this gauge has in general a global symmetry which allows
for an arbitrary term involving the tensor structure n�n�
in the propagator. However, in this case, there arises an
additional Becchi-Rouet-Stora (BRS) symmetry in the
free action which restricts the path integral propagator
of the naively gauge fixed theory to have the form (4). The
same arbitrariness of the tensor structure in the propa-
gator can also be understood as merely arising as a result
of a field redefinition which, in fact, is more along the
lines of a residual gauge fixing. In Sec. III, we study the
question of fixing the residual gauge symmetry for the
gauge n � A � 0 in a Yang-Mills theory for both axial-
type gauges as well as the light-cone gauge. The two cases
have quite different features and so we discuss them
separately. We derive the forms of the completely gauge
fixed propagator in both the cases. In the case of axial-
type gauges the propagator has no further prescription
dependence while the unphysical poles in the propagator
in the light-cone gauge do require a prescription even
after fixing the residual gauge symmetry. We trace the
origin of such a behavior in the light-cone gauge to an
underlying global as well as local invariance of the free
theory. We present a brief conclusion in Sec. IV. In
Appendix A, we show that the inverse of the two point
function in the naive light-cone gauge indeed corresponds
to the propagator, while in Appendix B, we compile some
useful formulas for transformations into light-cone
variables.
II. NAIVE LIGHT-CONE GAUGE FIXING

In this section, we will study various properties of a
light-cone gauge fixed theory in the path integral formal-
ism. Although the entire analysis in this paper will be
carried out in the usual Minkowski spacetime for sim-
plicity, all of our discussions hold for a theory quantized
either on an equal-time surface or on the light-front, both
in the conventional as well as generalized light-front
frames (which are related by a change of frame) [2–
5,7]. Furthermore, since our interest lies in studying the
structure of the propagator, we will restrict ourselves to
analyzing the free Maxwell theory in this section and
125001
comment on possible differences which may arise in a
fully interacting non-Abelian theory. In the next section,
our systematic analysis of residual gauge fixing will be
carried out within the context of a fully interacting non-
Abelian gauge theory.

The gauge invariant action for the Maxwell theory has
the form

Sinv �
Z
d4xLinv � �

1

4

Z
d4xF��F

��: (6)

The path integral for the theory with a naive light-cone
gauge fixing (1) has the form [11]

Z � N
Z

DA�FP�A���n � A�eiSinv ; (7)

where N is a normalization constant and FP�A� repre-
sents the Faddeev-Popov determinant which can, in gen-
eral, be field dependent in a non-Abelian theory. However,
in a general axial-type gauge (including the light-cone
gauge that we are analyzing here), it is known that the
Faddeev-Popov determinant is independent of the field
variables even in a non-Abelian theory [12].

It is clear from the structure of the generating func-
tional in (7) that any n-point Green’s function involving
the gauge fields will be transverse with respect to the
lightlike vector n�, namely,

n�1h0jT�A�1 � � �A�n
�j0i �N

Z
DA�FP�A�

���n �A�n �AA�2 � � �A�n
eiSinv

� 0: (8)

In particular, this would imply that the propagator would
satisfy

n�D���n; p� � 0; (9)

which is satisfied by both (2) and (4).
We note that when n2 � 0, the gauge fixing condition as

well as the invariant action Sinv in (6) are invariant under
the infinitesimal global transformation

�A� � �n�@ � A; (10)

where � represents the constant infinitesimal parameter
of transformation. The change in the path integral mea-
sure under such a field redefinition is easily seen to be a
field independent constant. Conversely, if we incorporate
the gauge fixing condition as well as the Faddeev-Popov
determinant into the action, we can write the generating
functional in the form

Z � N
Z

DA�DFDcDceiS; (11)

where

S � Sinv �
Z
d4x�Fn � A� cn � @c�; (12)
-2
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and F represents an auxiliary field implementing the
gauge condition. It is easy to verify that the action as
well as the generating functional in this case are invariant
under the infinitesimal global transformations

�A� � �n�@ � A; �F � ��@ � A; �c � 0 � �c:

(13)

If we add sources into the path integral as

Z�J�; J; �; �� � eiW�J�;J;�;��

� N
Z

DA�DFDcDcei�S�Ssource�;

Ssource �
Z
d4x�J�A� � JF� i��c� c���;

(14)

then, the Ward identity for the global invariance of (13)
can be easily derived to beZ

d4x
�
n � J�x�@�

�W
�J��x�

� J�x��@�
�W

�J��x�

�
� 0:

(15)

This leads to a constraint on the form of the gauge
propagator of the form

n�@�x��
�2W

�J��x��J��y�
� n�@�y��

�2W
�J��y��J��x�

� 0: (16)

Together with (9), this determines the general form of the
propagator for the gauge field in the light-cone gauge (1)
to be

D���n; p� � �
1

p2

�
��� �

n�p� � n�p�

�n � p�

� �
p2

�n � p�2
n�n�

�
; (17)

where � is arbitrary. We note that when n2 � 0, this
satisfies n�D���n; p� � 0 as is expected from (9). For
� � 1, this corresponds to the doubly transverse propa-
gator of (2) while for � � 0, this coincides with the path
integral propagator of (4). It is worth noting here that if
we identify the tensor structure in (17) with the sum over
polarization vectors,X

�

���p; �����p; �� � ���� �
n�p� � n�p�

�n � p�

� �
p2

�n � p�2
n�n�; (18)

where we have chosen the polarization vector ���p; �� to
be real, then, when n2 � 0, we see that for any value of �,
we have X

�

���p; �����p; �� � �2: (19)

This does not, however, imply that the polarization vec-
125001
tors are summed over only the physical ones in (18). In
fact, the arbitrariness in the n�n� term in (18) signifies
that the polarization sum does contain polarization vec-
tors proportional to the lightlike vector, ���p; ��  n�.
On the other hand, such polarization vectors would lead to
zero norm states and, therefore, cannot represent physical
polarizations.

This issue can be further understood by noting that
while

P�T�
�� � ��� �

n�n�
n2

; P�L�
�� �

n�n�
n2

; (20)

define transverse and longitudinal projection operators
with respect to a vector n� when n2 � 0, they are not
defined for a lightlike vector. In fact, one can define
transverse and longitudinal projection operators for a
lightlike vector only in conjunction with another vector
with a nonzero inner product. Thus, for example, if we
take the second vector as the gradient operator, then for a
lightlike vector n� we can define [7]

P�T�
���n; @� � ��� �

n�@� � n�@�
�n � @�

�
@2

�n � @�2
n�n�;

P�L�
�� �

n�@� � n�@�
�n � @�

�
@2

�n � @�2
n�n�:

(21)

It can be checked that these define orthogonal projection
operators and satisfy

n�P�T�
�� � 0 � P�T�

��n� � @�P�T�
�� � P�T�

��@�;

n�P�L�
�� � n�; P�L�

��n� � n�; @�P�L�
�� � @�;

P�L�
��@� � @�; P�T�

�� � P�L�
�� � ���:

(22)

This allows us to decompose any vector and, in particu-
lar, the gauge field as

A� � A�T�
� � A�L�

� ; A�T�
� � P�T�

��A�;

A�L�
� � P�L�

��A�:
(23)

We note that by construction,

n � A�T� � 0 � @ � A�T�; n � A�L� � n � A;

@ � A�L� � @ � A:
(24)

Therefore, each of the four vectors A�T�
� , A�L�

� carries only
2 degrees of freedom. Furthermore, under a gauge trans-
formation,

�A� � @� �x�; (25)

it follows, using (22), that

�A�T�
� � 0; �A�L�

� � @� �x�: (26)

Consequently, we see that A�T�
� is gauge invariant and

carries only the physical degrees of freedom while A�L�
�
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consists of the two unphysical (gauge) degrees of free-
dom. From the definition of A�L�

� in (23) and (21), we see
that it is completely determined from a knowledge of n �
A and @ � A. While the gauge fixing condition (1) specifies
one of the components, @ � A remains arbitrary and the
transformation (10) [or (13)] merely reflects the arbitra-
riness in this component.

So far we have discussed the consequences on the
structure of the propagator following from the global
invariance in (10). Such a global invariance will be quite
important in the analysis of the form of the propagator
after residual gauge fixing to be discussed in the next
section. The Ward identity (15) is quite general and does
not depend on the particular structure of the theory. For
example, if the action had an additional term of the form

Sadditional � �
1

2!

Z
d4x�@ � A�2; (27)

it would still be invariant under the global transformation
(10) and the Ward identity (15) would continue to hold.
Thus, it is quite curious as to why the path integral
propagator has a unique form corresponding to � � 0.
This constraint, in fact, comes from an additional BRS
invariance that the free theory develops. In fact, it can be
checked that in addition to the usual BRS transformations
[13] under which the action (14) is invariant, it is also
invariant under a new BRS transformation of the form

~�A� � ~!n�c; ~�c � 0; ~� c � ~!@ � A;
~�F � ~!�c;

(28)

where ~! represents an anticommuting global parameter.
This transformation anticommutes with the usual BRS
transformation and is also nilpotent (like the conven-
tional BRS transformation), but only on-shell (when the
ghost equations of motion are used) which is a reflection
of the absence of some auxiliary field in the theory. This
new BRS invariance leads to a Ward identity of the formZ
d4x

�
@�

�W
�J��x�

��x� � n � J�x�
�W
���x�

� J�x��
�W
���x�

�
� 0: (29)

It is clear that unlike the global transformation (10), the
BRS invariance is very specific to a specific theory and,
correspondingly, the resulting Ward identity is also. From
(29), it can be easily derived that

@�x��
�2W

�J��x��J��y�
� n�

�2W
���y����x�

� 0: (30)

This relates the divergence of the gauge propagator to the
ghost propagator (it does not say that the gauge propa-
gator is transverse) and thereby determines � � 0.

It is worth pointing out here that the global invariance
of (10) or the new BRS invariance of (28) cannot be
125001
incorporated into a fully interacting theory which would
include a non-Abelian theory. However, the violation of
the invariance will occur only at the higher order terms in
the number of fields. Namely, the violation of the Ward
identities in (15) or (29) will manifest only in the struc-
ture of the higher point functions. As far as the structure
of the propagator is concerned, all of our discussions will
hold in a fully interacting theory as well.

There is yet another interesting and suggestive way to
see the arbitrariness in the n�n� term in the propagator.
For example suppose we start with the path integral
propagator in (4) in the momentum space, namely,

h0jT�A��x�A��y��j0i ! �
1

p2

�
��� �

n�p� � n�p�

�n � p�

�
:

(31)

Then, under a field redefinition

A0
��x� � A��x� �

1

2#
n�

1

n � @
@ � A; (32)

which preserves the gauge fixing condition, the propaga-
tor would change in the momentum space to (# is a
constant)

h0jT�A0
��x�A0

��y��j0i ! �
1

p2

�
��� �

n�p� � n�p�

�n � p�

� �
p2

�n � p�2
n�n�

�
; (33)

where we have identified � � 4#�1
4#2 . This has the same

structure as (17). This derivation, however, is quite sug-
gestive for the following reason. Let us consider a field
redefinition of the form (32) in the path integral (7).
While the gauge fixing condition is invariant under such
a redefinition, the action is not. In fact, under this rede-
finition

Sinv�A� � Sinv�A0� �
1

2!

Z
d4x�@ � A0�2; (34)

where we have identified ! � �2#�1�2

1�4# . This shows that the
field redefinition induces an additional term in the action
which is reminiscent of a covariant gauge fixing term. In
fact, it can be written in the path integral in the form of a
delta function ��@ � A0 �

���
!

p
f�. While this is suggestive

and seems to imply that the field redefinition must some-
how correspond to fixing the residual gauge invariance of
the theory, it is not quite complete for a variety of reasons.
First, the field redefinition is meaningful only over a
limited range of the parameters !. In fact, the Jacobian
of the field transformation which has the form

J � det

��������@A�

@A0
�

��������� 2#
2#� 1

; (35)

becomes singular for # � 1
2 exactly at the point where
-4
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! � 0. Furthermore, we do not quite see the Faddeev-
Popov determinant arising from such a field redefinition.
Thus, we conclude from all this analysis that a systematic
understanding of the residual gauge fixing is necessary in
order to fully appreciate the structure of the propagator in
the path integral formalism and we will do this in the next
section.
III. RESIDUAL GAUGE FIXING

The question of residual gauge fixing within the path
integral approach for the temporal gauge has previously
been studied in some detail in [9,14]. In this section, we
will systematically study the question of gauge fixing for
the residual gauge invariance in a Yang-Mills theory in a
general class of axial-type gauges including the light-
cone gauge. However, we will divide the study into two
cases—axial-type gauges and the light-cone gauge —
because as we will see the two cases lead to quite different
results.

A. Axial-type gauges

Let us consider a Yang-Mills theory described by the
gauge invariant action

Sinv � �
1

4

Z
d4xTrF��F��; (36)

where the gauge fields are assumed to belong to the
adjoint representation of the gauge group and the field
strength is defined to be

F�� � @�A� � @�A� � i�A�; A��: (37)

For simplicity, we have scaled the coupling constant to
unity. The action in (36) is invariant under the infinitesi-
mal gauge transformation

�A� � D� �x� � @� �x� � i�A��x�;  �x��; (38)

where  �x� is the infinitesimal parameter of
transformation.

Let us consider an axial-type gauge of the form

n � A � 0; jn2j � 1: (39)

This can, therefore, describe the temporal gauge or the
axial gauge depending on the choice of the vector n�.
Furthermore, since the gauge condition (39) involves a
Lorentz scalar, it can hold in any frame including the
general light-front frame (which is not related to the
Minkowski frame through a Lorentz transformation,
for details see [7]). The naive generating functional

Z � N
Z

DA�e
iSinv ; (40)

does not exist because of the gauge invariance of the
theory. We would like to impose the general axial gauge
(39) and following Faddeev-Popov [11], we introduce the
125001
identity

�1
FP �A� �

Z
D ��n � A� ��; (41)

where A� �
� represents a gauge transformed potential [see

(38)]

A� �
� �x� � A��x� �D� �x�: (42)

The Faddeev-Popov determinant in (41) is manifestly
gauge invariant and the standard procedure of Faddeev-
Popov can be followed to separate the volume of gauge
orbits as

Z � N
Z

DA�FP�A�
Z

D ��n � A� ��eiSinv

� N
�Z

D 
�Z

DA�FP�A���n � A�eiSinv : (43)

In the derivation above, we have inserted the identity
from (41) in the first step while we have made an inverse
gauge transformation and used the gauge invariance of
the Faddeev-Popov determinant in the second step. This
would, therefore, seem to have separated out the infinite
gauge volume element from the path integral. However,
this is not entirely true.

In fact, let us note that the delta function constraint in
(43) is invariant under gauge transformations of the form
(the Faddeev-Popov determinant is gauge invariant)

A��x� ! A��x� �D� �x�; n � @ �x� � 0; (44)

where  �x� is an arbitrary function independent of n � x.
Namely, in the case of axial-type gauges, the gauge
transformation parameters can be grouped into two
classes— ones that do not depend on the coordinate
n � x and others that do—and the gauge fixing condi-
tion (39) cannot determine the transformation parameters
which do not depend on the coordinate n � x. This is the
reason why the separation of the infinite gauge volume is
incomplete in (43) and manifests in a residual gauge
symmetry of the generating functional since each factor
in the path integral is invariant under gauge transforma-
tions of the form (44).

To separate out the volume associated with the residual
(restricted) gauge transformations, we will follow again
the method of Faddeev-Popov and fix a gauge. We note
that a covariant gauge condition such as

@ � A �
���
!

p
f�x�; (45)

where ! is an arbitrary constant and f�x� is an arbitrary
function, can be implemented through a gauge transfor-
mation of the type (44) provided

 �x� �
1

@ �D
��@ � A�x� �

���
!

p
f�x��: (46)

However, since  �x� does not depend on n � x, such a
-5
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condition (46) makes sense only at a given value of n �
x � % where % is an arbitrary fixed constant. Thus, the
residual gauge fixing condition (45) can be implemented
only at a fixed n � x � %. In this case, we can use the
identity,

��1
FP �A�jn�x�% �

Z
D ��@ � A� � �

���
!

p
f�x��n�x�%: (47)

This second Faddeev-Popov determinant in (47) is man-
ifestly invariant under a restricted gauge transformation
(44) and is defined on the space of functions annihilated
by n � @ [see (44)]. Following the earlier derivation in
(43), we can now write the generating function as

Z � N

 Z
D 

!Z
DA�FP�A���n � A� �FP�A�jn�x�%

�
Z

D ��@ � A� � �
���
!

p
f�x��n�x�%e

iSinv

� N

 Z
D 

! Z
D 

!Z
DA�FP�A� �FP�A�jn�x�%

� ��n � A���@ � A�
���
!

p
f�n�x�%e

iSinv : (48)

The gauge volume is now completely extracted and can be
absorbed into the normalization factor N.

The second delta function can be exponentiated using
the ’t Hooft trick of using a Gaussian weight factor [15]
leading to

S � Sinv �
1

2!

Z
d4x��n � x� %��@ � A�2; (49)

which resembles (34) except for the fact that it is defined
only for a fixed value of n � x. The generating functional
takes the form

Z � N
Z

DA�FP�A� �FP�A�jn�x�%��n � A�eiS; (50)

where we have absorbed the gauge volume elements into
the normalization constant. As is well known, in an axial-
type gauge, the Faddeev-Popov determinant FP�A� is
trivial [12]. However, the determinant coming from the
second gauge fixing is not and can be written in the form
of an action of the form

�FP�A�jn�x�% �
Z

DcDceiSghost ;

Sghost � �
Z
d4x��n � x� %�c@�D�c:

(51)

To determine the propagator, we note that in the axial-
type gauges (39) with the second gauge fixing term (49)
in the action, the Green’s function for the theory has to
satisfy the equation
125001
�
��& �

n�n&
n2

��
�&�� � @&@� �

1

!
��n � x� %�@&@�

�
�D���x; y�

�

�
��� �

n�n�
n2

�
�4�x� y�;

n�D�� � 0 � D��n�:

(52)

We note that with the available tensor structures, we can
construct two linearly independent, orthogonal second
rank symmetric projection operators which will be trans-
verse to the vector n�. Namely,

P�� � ��� � ��n2�n�n�

�
�@� � ��n2�n�n � @��@� � ��n2�n�n � @�

�� � ��n2��n � @�2�

Q�� �
�@� � ��n2�n�n � @��@� � ��n2�n�n � @�

�� � ��n2��n � @�2�
;

(53)

where ��n2� represents the sign of n2. Each of these two
structures satisfies

n�P�� � 0 � n�Q�� � P��n
� � Q��n

�: (54)

However, it is easy to check that the first structure, in
addition, is transverse to @�,

@�P�� � 0 � P��@�: (55)

Since the propagator has to be transverse to n�, we can
expand it as

D���x; y� � P��a�x; y� �Q��b�x; y�; (56)

where we can think of a�x; y�; b�x; y� respectively as the
transverse and the longitudinal components of the propa-
gator. Substituting (56) into (52), it is easily determined
that a�x; y� and b�x; y� satisfy

�a�x; y� � �4�x� y�;�
��n2��n � @�2 �

1

!
��n � x� %��� � ��n2� �

�n � @�2�
�
b�x; y� � �4�x� y�:

(57)

The first equation is straightforward to solve and gives (in
four dimensions)

a�x; y� � �
Z d4k

�2+�4
eik��x�y�

k2
: (58)

The second equation in (57) is a bit more involved be-
cause of the delta function, but leads to a solution of the
form
-6
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b�x; y� �
Z d3kT

�2+�3
e�ikT ��xT�yT �

�
�

!

k2T
� ��n2�

� �jn � x� n � yj � jn � x� %j � jn � y� %j�
�
:

(59)

Here we have defined the transverse coordinates and
momenta as

x�T � x� � ��n2�n��n � x�;

kT� � k� � ��n2�n��n � k�: (60)

This defines the completely gauge fixed propagator
which is well behaved without any unphysical pole for
any finite value of !. In particular, for ! � 0, we note that
the longitudinal part of the propagator (59) vanishes for
n � x � % or n � y � % as we would expect from the resid-
ual gauge fixing. In the temporal gauge, for example,
n� � �1; 0; 0; 0� and with the transverse and the longitu-
dinal parts given in (58) and (59) respectively, the propa-
gator (56) takes the form

Dij�x; y� � �
Z d4k

�2+�4

�
�ij �

kikj
~k2

�
eik��x�y�

k2

�
Z d3k

�2+�3
kikj
~k2

e�i ~k�� ~x� ~y�

�

�
!
~k2
� jx0 � y0j � jx0 � %j � jy0 � %j

�
:

(61)

For ! � 0, the form of the propagator in the temporal
gauge in (61) had already been obtained in [9] where it has
also been argued that the longitudinal part of the propa-
gator is quite crucial in obtaining the correct value for the
Wilson line. It is worth recalling that the propagator for
the theory in the path integral in the temporal gauge
(without the residual gauge fixing) has the form

Dij�x; y� � �
Z d4k

�2+�4
eik��x�y�

k2

�
�ij �

kikj
k20

�

� �
Z d4k

�2+�4
eik��x�y�

�
1

k2

�
�ij �

kikj
~k2

�

�
1

k20

kikj
~k2

�
: (62)

We note from the above expression that while the trans-
verse part of the propagator is well defined without any
unphysical pole and coincides with that in (61), the lon-
gitudinal part depends on the prescription for handling
the pole at k0 � 0. The residual gauge fixing has removed
this arbitrariness in the longitudinal part in (61) for any
125001
finite value of !. This is, in fact, a very general result. As
we have argued in the last section, any residual invari-
ance of the quadratic part of the action—local or
global— does lead to an arbitrariness in the definition
of the propagator which reflects in some form of prescrip-
tion dependence. In the case of axial-type gauges, this is
completely fixed by the residual gauge fixing. However, as
we will show next, the behavior is quite different in the
light-cone gauge.

B. Light-cone gauge

Let us next study the action (36) in the light-cone gauge

n � A � 0; n2 � 0; (63)

which has been studied by various groups from different
points of view [10,16]. The discussion for the gauge fixing
in the path integral approach, in this case, follows exactly
as discussed for the axial-type gauges and we obtain the
generating functional in (43) as a result of the naive light-
cone gauge fixing. The analysis of the residual symmetry,
however, differs from the earlier case.

Let us note that given a lightlike vector n�, one can
define a dual lightlike vector ~n� such that

~n 2 � 0; n � ~n � 0: (64)

For example, with n� � �1; 0; 0;�1�, we can define
~n� � �1; 0; 0; 1�. Correspondingly, one can label the co-
ordinates as x� � �n � x; ~n � x; x�T � where x�T is transverse
to both n� and ~n�. In such a case, the delta function
constraint in (43) can again be seen to be invariant under a
residual gauge transformation (44)

A��x� ! A��x� �D� �x�; n � @ �x� � 0: (65)

However, because of the lightlike nature of n�, the im-
plications of (65) in this case are different and, in par-
ticular, it implies that the parameter of gauge
transformation must be independent of ~n � x. This differ-
ence from the earlier case leads to the essential difference
in the structure of the propagator in the light-cone gauge.

Once again, as in the axial-type gauges, if we would
like to impose a covariant gauge fixing, for the residual
gauge symmetry, of the form

@ � A�x� �
���
!

p
f�x�; (66)

we can implement it only at a fixed value of ~n � x � %
since the parameter of the residual gauge transformation
does not depend on ~n � x. Therefore, incorporating the
second covariant gauge fixing term into the action, we
can write the generating functional in the form (50)

Z � N
Z

DA�FP�A� �FP�A�j~n�x�%��n � A�eiS; (67)

where
-7
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S � Sinv �
1

2!

Z
d4x��~n � x� %��@ � A�2: (68)

We note once again that FP�A� is trivial in the light-cone
gauge, but the second Faddeev-Popov determinant leads
to a ghost action much like (51) where the ghost action is
defined only for ~n � x � %.

To define the propagator, we note that in the light-cone
gauge (63), the Green’s function of the theory described
by (68) would satisfy�

��& �
n�~n&
n � ~n

��
�&�� � @&@� �

1

!
@&

� ��~n � x� %�@�
�
D���x; y�

�

�
��� �

n�~n�
n � ~n

�
�4�x� y�;

n�D�� � 0 � D��n�:

(69)

There are two linearly independent second rank symmet-
ric projection operators which vanish when contracted
with either n� or n� [one was already given in (21)],

P�� � ��� �
n�@� � n�@�

�n � @�
�

@2

�n � @�2
n�n�

Q�� � ��� �
n�@� � n�@�

�n � @�
:

(70)

It is easy to check that while both vanish when contracted
with n� or n�, the first structure is in addition transverse
to @�, namely,

@�P�� � 0 � P��@�: (71)

Thus, much like the case of the axial-type gauges, we
can decompose the propagator as

D���x; y� � P��a�x; y� � �P�� �Q���c�x; y�

� P��a�x; y� � n�n�b�x; y�; (72)

where we can think of a�x; y�, b�x; y� respectively as the
transverse and the longitudinal components of the propa-
gator. Substituting (72) into (69), we can derive the equa-
tions for the coefficient functions to be

�a�x; y� � �4�x� y�;

n � @
�
1�

1

!
��~n � x� %�

�
n � @b�x; y� � ��4�x� y�:

(73)

The first equation is easy to solve as in the case of the
axial-type gauges and leads to

a�x; y� � �
Z d4k

�2+�4
eik��x�y�

k2
: (74)

The equation for the longitudinal component, on the
other hand, is quite different from that in (57) and this
brings in new features for the light-cone gauge. For
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example, we note that to be able to solve [see (73)]�
1�

1

!
��~n � x� %�

�
n � @b�x; y� � �

1

n � @
�4�x� y�;

(75)

we need a prescription for 1
n�@ . Let us represent

1

n � @
��~n � x� ~n � y� � ��~n � x� ~n � y�; (76)

where � represents a generalized step function satisfying

n � @��~n � x� ~n � y� � ��~n � x� ~n � y�: (77)

For example, we can have the naive representation of (76)
as the ordinary step function or an alternating step func-
tion if we choose the principal value prescription or the
Mandelstam-Leibbrandt prescription [10]. This prescrip-
tion dependence, even after fixing the residual gauge
symmetry, is a new feature of the light-cone gauge and
reflects the fact that there is still some underlying global
invariance of the theory, such as the one discussed in the
last section, which leads to this arbitrariness. It is easy to
check that the global transformation of (10) becomes only
an on-shell symmetry of the quadratic action because of
the ��~n � x� %� term in the gauge fixing action. However,
if we generalize the transformation of (10) as

�A� � �n�

�
1�

1

!
��~n � x� %�

�
@ � A; (78)

this defines a global symmetry of the quadratic part of the
action (68) and this is the origin of the arbitrariness
(prescription dependence) in the definition of the propa-
gator. One needs to treat ��x� and in particular ��0� in this
derivation in a regularized manner from a definition such
as

��x� � lim
�!0

1����
+

p
�
exp

�
�

x2

�2

�
; (79)

with the understanding that the limit � ! 0 has to be
taken only at the end.

It is well known that, in the light-cone gauge, prescrip-
tions such as the principal value for the unphysical poles
lead to incorrect results and the only consistent prescrip-
tion that works correctly is the Mandelstam-Leibbrandt
prescription [10]. Therefore, choosing this prescription,
we can write

��~n � x� ~n � y� � lim
�!0

Z d�n � k�
2+i�n � ~n�

ei�n�k��~n�x�~n�y�

�n � k�� i�~n � k��

��
1

�n � ~n�
��~n � k� ��~n � k�~n � x� ~n � y��:

(80)

With such a prescription, it is straightforward to check
that the solution of (75) or (73) has the form
-8
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b�x; y� � ���n � ~n�
�
~n � x��~n � x� ~n � y�

� ~n � y��~n � y� ~n � x�

�
n � ~n��%� ~n � x���%� ~n � y�

�!� ��0��

�
� �2�x? � y?���n � x� n � y�; (81)

where the ��0� term is necessary to impose the correct
boundary condition satisfied by the propagator and should
be understood in a regularized manner from a represen-
tation such as in (79). The longitudinal part of the propa-
gator is now uniquely determined from (81) and the
Mandelstam-Leibbrandt prescription (80) then defines
the unphysical poles of the transverse part of the propa-
gator as well.
IV. CONCLUSION

In this paper we have analyzed the question of residual
gauge fixing in the path integral approach in a systematic
manner and have determined the completely gauge fixed
propagator in the axial-type gauges as well as in the light-
cone gauge. In both the cases, the propagator can be
defined without fixing the residual gauge symmetry, but
then one has to specify a prescription for handling the
unphysical poles in the propagator. In the case of the
axial-type gauges, the residual gauge fixing determines
the propagator completely without any problem of un-
physical poles. In the light-cone gauge, however, there is
still a prescription dependence in the propagator even
after fixing the residual gauge symmetry. This reflects
the existence of a global invariance (78) of the quadratic
part of the theory which is the source of the arbitrariness
in the definition of the propagator. However, if we take the
Mandelstam-Leibbrandt prescription (80) which is the
conventional prescription in the light-cone gauge, it de-
termines both the transverse as well the longitudinal
parts of the propagator completely. We note here that the
completely gauge fixed propagator in the path integral
approach in axial-type gauges as well as the light-cone
gauge in general continue to be different from that in the
Hamiltonian formalism (for similar gauge fixing terms).
Namely, in the Hamiltonian formalism the propagator is
doubly transverse (this is true in axial-type gauges as
well) while the completely gauge fixed propagator in the
path integral approach is, in general, transverse with
respect to n�, but has a longitudinal component with
respect to p�. Such a difference is, in fact, natural and
can be easily understood on physical grounds as follows.
In the Hamiltonian formalism, the constraints can be set
strongly equal to zero (after calculating the Dirac brack-
ets) thereby eliminating certain components of the fields.
This leads to analogues of nonlocal ‘‘instantaneous
125001
Coulomb’’ type interaction terms in the Hamiltonian.
On the other hand, in the path integral formalism, one
does not explicitly eliminate components of the fields and
correspondingly, such interactions arise only through the
exchange of longitudinal gluons (longitudinal compo-
nents of the gauge propagator) and the ghosts. The longi-
tudinal components of the propagator are, therefore,
absolutely essential in the path integral approach together
with the ghost terms (ghosts are necessary to cancel out
any dependence of physical quantities on %) as has been
stressed within the context of the calculation of the
Wilson line in the temporal gauge [9].

In summary, we note that in this paper, our goal has
been to compare the form of the path integral propagator
with that obtained from a Hamiltonian analysis. To that
end, we have chosen the residual gauge fixing to be the
covariant gauge in a manner completely parallel with the
Hamiltonian analysis. As we have shown, with this
choice in the light-cone gauge, there is a residual global
symmetry of the free action (both in the Hamiltonian as
well as the path integral formalisms). In fact, there is as
well an Abelian local gauge invariance

A��x� ! A��x� � @� ̂�n � x�; (82)

of the free action where  ̂�n � x� depends only on n � x.
The presence of these residual symmetries leads to the
prescription dependence in the propagator, both in the
Hamiltonian as well as in the path integral formalisms.
The prescription dependence can be eliminated in the
path integral formalism much like in the axial-type
gauges if one chooses a residual gauge fixing term which
leaves no further global/local invariance in the free ac-
tion. The choice of such a residual gauge in the context of
the light-cone gauge is presently under study and the
results will be reported in future.
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APPENDIX A: PROPAGATOR AND THE
INVERSE TWO POINT FUNCTION

IN THE LIGHT-CONE GAUGE

In this appendix, we will show very briefly that the
propagator in the naive light-cone gauge in the path
integral approach corresponds to the inverse of the two
point function given in (4). Let us consider the generating
function (7) in the presence of sources.
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Z�J�; J� � N
Z

DA�DFei�S�Ssource�;

S � Sinv �
Z
d4xTrFn � A;

Ssource �
Z
d4xTr�J�A� � JF�:

(A1)

Here we have absorbed the nondynamical Faddeev-Popov
determinant into the normalization constant and have
exponentiated the delta function constraint with the
help of an auxiliary field.

It is straightforward to determine the classical fields
from the form of the action S in (A1) and they take the
forms

Fc �
1

n � @
@�J

�;

Ac
� �

1

�

�
g�� �

n�@� � n�@�
n � @

�
J� �

1

n � @
@�J

� ���PI���1���n; @�J
� �

1

n � @
@�J;

(A2)

where ���PI���1���n; @� is the inverse of the two point func-
tion given in (4) in the coordinate space. Shifting the
fields in the generating function (A1) by

A� ! A� � Ac
�; F ! F� Fc;

we obtain

Z�J�; J� � ei
R
d4xTr��1=2�J����PI���1���n;@�J��J�1=n�@�@�J��

� N
Z

DA�DFeiS: (A3)

This determines that the propagator for the gauge field in
the naive light-cone gauge in the path integral approach
has the form

D�PI�
�� � �

1

Z
�2Z

�J��J�

��������J�;J�0
� ���PI���1���n; @�; (A4)

as claimed in the text.
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APPENDIX B: SOME USEFUL FORMULAS

In this appendix, we compile some formulas that are
quite useful in dealing with light-cone variables. First, let
us assume that the lightlike vectors n�, ~n� have vanishing
components along i � 1; 2 (transverse) directions. In that
case, we can introduce a new set of coordinates

�x � � �n � x; xi; ~n � x� � L�
�x

�; (B1)

where x� represents the usual Minkowski coordinates and

L�
� �

n0 0 0 �n3

0 1 0 0
0 0 1 0
~n0 0 0 �~n3

0BBB@
1CCCA: (B2)

The metric tensors for the new coordinates take the forms

�g�# �

0 0 0 n � ~n

0 �1 0 0

0 0 �1 0

n � ~n 0 0 0

0
BBBB@

1
CCCCA;

�g�# �

0 0 0 1
n�~n

0 �1 0 0

0 0 �1 0
1
n�~n 0 0 0

0
BBBBB@

1
CCCCCA:

(B3)

The integration measure correspondingly can be written
as

Z
d4x �

1

jn � ~nj

Z
d4 �x: (B4)

Furthermore, the delta functions would transform as

�4�x� � jn � ~nj�4� �x�: (B5)

These are some of the formulas that have been used in the
derivations in the paper.
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