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Quasinormal modes and stability of the rotating acoustic black hole: Numerical analysis

Vitor Cardoso*
Centro de Fı́sica Computacional, Universidade de Coimbra, P-3004-516 Coimbra, Portugal
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The study of the quasinormal modes (QNMs) of the 2� 1 dimensional rotating draining bathtub
acoustic black hole, the closest analogue found so far to the Kerr black hole, is performed. Both the real
and imaginary parts of the quasinormal (QN) frequencies as a function of the rotation parameter B are
found through a full nonlinear numerical analysis. Since there is no change in sign in the imaginary part of
the frequency as B is increased we conclude that the 2� 1 dimensional rotating draining bathtub acoustic
black hole is stable against small perturbations.
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I. INTRODUCTION

A guitar string in vacuum vibrates in normal modes.
However, a guitar string immersed in air vibrates truly in
quasinormal modes (QNMs) since it looses energy to
sound waves. The same happens to an acoustic black
hole. Because of energy losses to the medium in sound
wave acoustic perturbations, its modes of vibration are
quasinormal (QN). This QN behavior is expected, as
acoustic black holes are real analogues of true general
relativistic black holes which are known to vibrate in a
QN form due to losses in gravitational and other types of
radiation to infinity.

Acoustic black holes and their analogies with true black
holes were found by Unruh by noticing that the equations
of motion for sound waves in a background fluid flow and
the equations of motions for a scalar field in a black hole
background are similar [1]. The background fluid flow acts
as an effective black hole metric implying the existence of
a sound horizon, the surface where the velocity of the flow
is equal to the velocity of sound in the medium. A number
of phenomena that occurs with true black holes also occurs
with acoustic black holes. For instance, Hawking radiation
is now phonon radiation [2–5]. Geodesic and causal struc-
ture can also be studied as was done in [6] where Penrose-
Carter diagrams for several effective acoustic spacetimes
were drawn. Black holes in other analogue systems, like
condensed matter ones, can also be studied (see [7–9] to
name a few).

In the study of true general relativistic black holes
QNMs are important for a number of reasons. The most
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important is that they provide means to identifying black
hole parameters like the mass and angular momentum,
since the real and imaginary part of the QN frequencies,
which give the vibration frequency and the exponential
damping frequency, respectively, depend only on those
parameters. Through their study one further tests the stabil-
ity of the system, as any imaginary frequency with the
wrong sign would mean an exponentially growing mode,
rather than damping. QNMs have also been connected to
the quantization of the black hole area, where it seems that
the highly damped modes, those that are almost instanta-
neous, are associated with transitions between area levels
at large quantum numbers (see [10] for a review on QNMs
and a list of complete citations therein). Since QNMs
appear naturally in general relativistic black holes, they
also should appear in their analogues, the acoustic black
holes.

The study of QNMs of the 2� 1 dimensional rotating
draining bathtub acoustic black hole [4,11], the closest
analogue found so far to the Kerr black hole (see [12] for
developments on this subject), was initiated in [13] through
the use of a WKB approximation, valid for small black
hole rotation. Various interesting points besides QNM
behavior, like late-time tails and superradiance, were also
discussed. In relation to large damped QNMs it was found
that there are no asymptotic QN frequencies, a puzzling
result if connected to the area quantization issue.
Moreover, the WKB scheme used in [13] gave indications
that, due to a possible change in the sign of the imaginary
part of the frequency !, this 2� 1 acoustic black hole
could become unstable at large rotation parameter B, or at
large azimuthal number m. Recent work on this [14],
making use of a matching procedure, is also not appropri-
ate to give a convincing stability proof. Is the Im! part
lower, equal or greater than zero for B or m large? In this
-1  2004 The American Physical Society
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paper we make a full numerical analysis to settle this issue.
We note that if this geometry was found to be unstable, then
a linear analysis (which is the scheme used here) would no
longer be valid, and nonlinear terms would have to be
studied. In the path from the linear regime to the nonlinear
regime the behavior of the acoustic geometry will separate
from that of an equivalent geometry in standard general
relativity. Fortunately, we show that the instability never
sets in.
II. FORMALISM

The draining bathtub model is a 2� 1 dimensional flow
with a singular vortexlike sink (or source) at the origin. The
acoustic metric describing the propagation of sound waves
in this fluid flow is [4]:

ds2 � �

�
c2 �

A2 � B2

r2

�
dt2 �

2A
r
drdt� 2Bd�dt

� dr2 � r2d�2: (1)

Here A and B are arbitrary real positive constants related to
the radial and angular components of the background fluid
velocity:

~v �
�A~r� B ~�

r
; (2)

where ~r and ~� are orthogonal unit basis vectors pointing
along the axes. It is however better to work with a more
transparent metric. Some physical properties of our drain-
ing bathtub metric are more apparent if we cast the metric
in a Kerr-like form performing the following coordinate
transformation (see [11,13]):

dt! d~t � dt�
Ar

r2c2 � A2 dr (3)

d�! d ~� � d��
BA

r�r2c2 � A2�
dr; (4)

Then the effective metric takes the form

ds2 � �

�
1�

A2 � B2

c2r2

�
c2d~t2 �

�
1�

A2

c2r2

�
�1
dr2

� 2Bd ~�d~t� r2d ~�2: (5)

As explained in [13], this metric and the Kerr metric differ
in an important aspect, in that whereas the rotation for the
Kerr black hole is bounded from above, here it is not, at
least in principle. Thus, B could be as large as desired.

The propagation of a sound wave in a barotropic inviscid
fluid with irrotational flow, which is assumed to be the
case, is described by the Klein-Gordon equation
r�r

�� � 0 for a massless field � in a Lorentzian acous-
tic geometry. Separating variables by the substitution

��~t; r; ~�� �
���
r

p
��r�ei�m ~��!~t�; (6)
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implies that ��r� obeys the wave equation

�;r̂	 r̂	 �Q� � 0; (7)

where the generalized potential is given by

Q 


�
!̂�

B̂m

r̂2

�
2
�

�
r̂2 � 1

r̂2

��
1

r̂2

�
m2 �

1

4

�
�

5

4r̂4

�
: (8)

The tortoise coordinate is defined by

dr̂	
dr̂

� ; (9)

where  
 �1� 1=r̂2��1. Explicitly,

r̂ 	 � r̂�
1

2
log

��������
r̂� 1

r̂� 1

��������: (10)

We have also performed the following rescaling: r̂ �
rA=c, !̂ � !A=c2, B̂ � B=A. The rescaling effectively
sets A � c � 1 in the original wave equation, and picks
units such that the acoustic horizon r̂H � 1. From now on
we shall omit hats in all quantities. The rescaled wave
equation (7) will be the starting point of our analysis of
QNMs. The characteristic QNMs of the rotating acoustic
black hole can be defined in the usual way, imposing
appropriate boundary conditions and solving the corre-
sponding eigenvalue problem. Close to the sound horizon
we seek solutions of Eq. (7) behaving as

�� e�i�!� Bm�r	: (11)

Classically, only ingoing waves—that is, waves falling
into the acoustic black hole—should be present at the
horizon. This means (according to our conventions on the
time dependence of the perturbations) that we must choose
the minus sign in the exponential. At spatial infinity the
solutions of (7) behave as

�� ei!r	: (12)

In this case we require that only outgoing waves (waves
leaving the domain under study) should be present, and
correspondingly choose the plus sign in the exponential.
This boundary condition at infinity may be cause for
objections. Indeed, no actual physical apparatus will be
accurately described by these boundary conditions: a real
acoustic black hole experiment will certainly not extend
out to infinity. However, we may imagine using some
absorbing device to simulate the ‘‘purely outgoing’’ wave
conditions at infinity (for another example in which an
absorbing device modeling spatial infinity could be re-
quired cf. Section XI of [15]—in particular their Fig. 5).

The boundary conditions (11) and (12) are satisfied by
only a discrete number of frequencies !, the QN frequen-
cies !QN . The QN frequencies are in general complex
numbers, and the imaginary part is usually negative, which
means that perturbations die exponentially as time goes on
(recall that the time dependence of the field is e�i!t, and a
negative imaginary part for ! means exponential decay
-2
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with time). If all the QN frequencies have a negative
imaginary part, we say that the system is stable. Note
also that, for a given m there will in general be an infinite
number of !QN satisfying the boundary conditions. We
shall order these !QN by imaginary part: the !QN having
smallest (in magnitude) imaginary part will be called the
fundamental (n � 0) frequency, the one having the second
lowest imaginary part will be the first overtone n � 1, and
so on.
III. NUMERICAL PROCEDURE

A. Frobenius expansion

In order to numerically obtain the QN frequencies, in the
present investigation, we make use of Leaver’s method
[16,17], which is known to yield excellent results.

Let us introduce a new independent radial variable x,
defined as x � r�1. In terms of the new variable x, the
tortoise coordinate is then reduced to

r	 � x�1 �
1

2
ln�1� x� �

1

2
ln�1� x�: (13)

The perturbation function � may be expanded around the
horizon as

� � ei!x
�1

�
1� x
1� x

�
�i�!�Bm�=2 X1

k�0

ak�1� x�k; (14)

where a0 is taken to be a0 � 1. The expansion coefficients
ak in Eq. (14) are determined via the four-term recurrence
relation (it is just a matter of substituting expression (14) in
the wave equation (7)), given by

�0a1 � �0a0 � 0;

�1a2 � �1a1 � �1a0 � 0;

�kak�1 � �kak � �kak�1 � �kak�2 � 0;

k � 2; 3; . . . ;

(15)

where

�k � �8�1� k��1� k� iBm� i!�;

�k � 4f1� 5k2 �m2 � k�5� 4iBm� 8i!�

� 4i!� 4!2 � 2Bm�i� 2!�g;

�k � 2�3� 8k2 � 4ik�Bm� 2!��;

�k � �3� 4k� 4k2:

Since the asymptotic form of the perturbations as r	 ! 1
�r	 ! �1� is written in terms of the variable x as

ei!r	 � ei!x
�1
�e�i�!�Bm�r	 � �1� x��i�!�Bm�=2�; (16)

the expanded perturbation function � defined by Eq. (14)
automatically satisfy the QNM boundary conditions if the
power series converges for 0 � x � 1. Making use of a
Gaussian elimination [16], we can reduce the four-term
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recurrence relation to the three-term one, given by

�0
0a1 � �0

0a0 � 0;

�0
kak�1 � �0

kak � �0
kak�1 � 0;

k � 1; 2; . . . ;

(17)

where �0
k, �

0
k, and �0

k are given in terms of �k, �k, �k and
�k by

�0
k � �k; �0

k � �k; �0
k � �k; for k � 0; 1; (18)

and

�0
k � �k;

�0
k � �k � �0

k�1�k=�
0
k�1;

�0
k � �k � �0

k�1�k=�
0
k�1; for k � 2:

(19)

Now that we have the three-term recurrence relation for
determining the expansion coefficients ak, the convergence
condition for the expansion (14), namely, the QNM con-
ditions, can be written in terms of the continued fraction as
[17,18]

�0
0 �

�0
0�

0
1

�0
1�

�0
1�

0
2

�0
2�

�0
2�

0
3

�0
3�

. . . 
 �0
0 �

�0
0�

0
1

�0
1 �

�0
1�

0
2

�0
2�

�0
2
�0
3

�0
3
�:::

� 0;

(20)

where the first equality is a notational definition commonly
used in the literature for infinite continued fractions. Here
we shall adopt such a convention.

An analysis of the large k behavior of the expansion
coefficients ak shows

lim
k!1

ak�1

ak
� 1�

��2i!�1=2

k
1
2

�
3� 4i!

4k
� � � � : (21)

The series expansion (14) will converge uniformly only if
the sign of the second term in the right hand side of (21) is
chosen such that Re����2i!�1=2�< 0, which will happen
only for the QN frequencies !. In case that the conver-
gency of the continued fraction (20) is not very good, one
can use Nollert’s technique to avoid this difficulty of the
convergence [19]. In Nollert’s technique, Eq. (21) plays an
essential role.
IV. NUMERICAL RESULTS

Our numerical results, which are all consistent with the
results in [13], are shown in Figs. 1–8.

(i) m> 0: In Fig. 1–4 we show results pertaining to
perturbations having positive m, i.e., corotating waves. In
Figs. 1 and 2 we show the real part of the QN frequencies
for m � 1 and m � 2 modes, respectively, as a function of
the black hole rotation. Higher m modes follow a similar
pattern. One can see from these plots that for low black
hole rotation parameter B the different overtones are
-3



FIG. 1. The real part of the QN frequency as a function of the
rotation parameter B=A, for several overtones of a m � 1 mode.
Here, rH � A=c is the horizon radius. Note how all the several
lowest overtones ‘‘coalesce’’ in the high rotation regime, all
growing linearly with B=A.

FIG. 3. The imaginary part of the QN frequency as a function
of the rotation parameter B=A, for several overtones of a m � 1
mode. It is clear from this plot that the imaginary part of the QN
frequencies of m> 0 modes is very insensitive to the rotation of
the black hole.
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clearly distinguished, but that as the rotation increases they tend to cluster and behave very similarly. For very large
rotation B, all the overtones behave in the same manner, and in this high rotation regime the real part of the QN frequency
scales linearly with the rotation. Indeed we find that the slope is also proportional to m so that

R e�!QN� ’
mBc2

A2 as B! 1; for m> 0: (22)
FIG. 2. The real part of the QN frequency as a function of the
rotation parameter B=A, for several overtones of a m � 2 mode.
Again, all different overtones have the same behavior for high
rotation.

FIG. 4. The imaginary part of the QN frequency as a function
of the rotation parameter B=A, for several overtones of a m � 2
mode.

124032-4



FIG. 5. The real part of the QN frequency as a function of the
rotation parameter B=A, for several overtones of a m � �1
mode. Notice that for each overtone number n there is a critical
rotation at which the mode crosses the axis, i.e., there is a critical
rotation B=A at which the real part of the QN frequency is zero.
Higher overtones cross the axis at a slower rotation. We have not
been able to follow the mode beyond this point.

FIG. 7. The imaginary part of the QN frequency as a function
of the rotation parameter B=A, for several overtones of a m �
�1 mode. We have not been able to follow the modes beyond a
certain critical point (defined as the rotation B=A for which the
real part of the QN frequency is zero- see Figs. 5 and 6).
Nevertheless, an judging by the modes we did manage to follow,
namely, the fundamental mode, it seems that Im�!QN� never
crosses the axis, i.e., it is always negative, and therefore the
mode is stable.
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We notice that this behavior was already present in the WKB investigation in [13]. In Figs. 3 and 4 we show the imaginary
part of the QN frequencies as a function of the rotation parameter, for m � 1 and m � 2 respectively. Different overtones
have different imaginary parts. Note also that for high B the real part of the modes coalesce whereas the imaginary part
does not. The magnitude of Im�!QN� increases with B, which was observed also in the WKB approach [13]. Thus, as the
FIG. 6. The real part of the QN frequency as a function of the
rotation parameter B=A, for several overtones of a m � �2
mode.

FIG. 8. The imaginary part of the QN frequency as a function
of the rotation parameter B=A, for several overtones of a m �
�2 mode.
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rotation increases the perturbation dies off quicker. This
also means that the black hole is stable against m> 0
perturbations, because the imaginary part is always
negative.

(ii) m< 0: In Figs. 5–8 we show results concerning
perturbations having negative m, i.e., counter-rotating
waves. The behavior of the QN frequencies for m< 0 is
drastically different from the m> 0 perturbations. In
Figs. 5 and 6 we plot the dependence of Re�!QN� as a
function of the rotation of the black hole B. As B increases
the magnitude of the real part of the QN frequency de-
creases. The oscillation frequencies for the fundamental
modes, labeled by n � 0, indeed get close to the horizontal
axis as B goes to infinity. However, we have not been able
to track some overtone modes with negative m for very
high rotation since, as can be seen in Figs. 5 and 6, the real
part of these modes eventually change sign. It is extremely
difficult, using the method employed here, to compute
modes having Re�!QN� � 0. Nevertheless, supposing that
(as the numerical studies for the fundamental modes in-
dicate) the QN frequencies asymptote to zero for very large
B, a WKB [20] analysis shows that !QN � k=B, where k is
some m-dependent constant. The imaginary part of the QN
frequencies behaves in a similar manner, as seen in Figs. 7
and 8.

(iii) m � 0: For circularly symmetric (m � 0) modes,
our numerical method shows no sign of convergence. For
m � 0, the Eq. (7) can be written in the simpler form

�;r̂	r̂	 � �!2 � V�� � 0; (23)

where

V �

�
r̂2 � 1

r̂2

��
�

1

4r̂2
�

5

4r̂4

�
: (24)

The potential V is not positive definite, and this precludes
also a simple stability proof.
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V. CONCLUSIONS

In this paper we have studied numerically the quasinor-
mal modes of the �2� 1�-dimensional draining bathtub
metric, which describes a rotating acoustic black hole.
Our results indicate that this is a metric stable against small
perturbations, although one would like to have also an
analytical proof of this statement. Notice that this proof,
would most certainly encompass also the the stability of
the usual general relativistic black holes against perturba-
tions of a charged scalar field; In fact, for such a field it is
possible to show [21] that the generalized potential goes
like �!� eq=r�2 � V, where e is the scalar field charge, q
the charge of the black hole, and V an !-independent
potential. This is of the same form as the generalized
potential dealt with here, equations (7) and (8). Ever since
the first studies on the Kerr geometry (see for example
[22,23] for numerical results regarding the QN frequencies
of rotating Kerr black holes), one knows that it is extremely
difficult to prove stability when !2 �Q is not positive
definite (or when it is !-dependent), and therefore the
special case Q � �!� eq=r�2 � V could shed some light
on this problem. To conclude we would like to draw
attention to the fact that the results presented here are
similar in many respects to the results concerning higher
dimensional rotating black holes [24].
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[6] C. Barceló, S. Liberati, S. Sonego, and M. Visser, New J.

Phys. 6, 186 (2004).
[7] B. Reznik, Phys. Rev. D 62, 0440441 (2000).
[8] L. J. Garay, J. R. Anglin, J. I. Cirac, and P. Zoller, Phys.

Rev. A 63, 023611 (2001).
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