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We provide a mechanism by which, from a background-independent model with no quantum
mechanics, quantum theory arises in the same limit in which spatial properties appear. Starting
with an arbitrary abstract graph as the microscopic model of spacetime, our ansatz is that the
microscopic dynamics can be chosen so that (i) the model has a low-energy limit which reproduces
the nonrelativistic classical dynamics of a system of N particles in flat spacetime, (ii) there is a
minimum length, and (iii) some of the particles are in a thermal bath or otherwise evolve stochastically.
We then construct simple functions of the degrees of freedom of the theory and show that their
probability distributions evolve according to the Schrödinger equation. The nonlocal hidden variables
required to satisfy the conditions of Bell’s theorem are the links in the fundamental graph that connect
nodes adjacent in the graph but distant in the approximate metric of the low-energy limit. In the
presence of these links, distant stochastic fluctuations are transferred into universal quantum
fluctuations.
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I. INTRODUCTION

It is often stated that the goal of research in quantum
gravity is to find the way in which nature unifies quantum
theory with general relativity. One way to try to accom-
plish this is by a more or less standard quantization of the
gravitational field equations, as in loop quantum gravity
[1]. Another is to consider some quantum theory in differ-
ent backgrounds, as in string theory [2].

In loop quantum gravity, one discovers that the appro-
priate basis states for quantum spatial geometry are spin
networks, graphs whose edges are labeled by spins. While
a great deal of progress has been achieved, there remain
open issues. One is that the theory is not unique. A second
is that, to test whether a given loop quantum gravity
theory is correct, one needs to show how general relativity
and flat spacetime arise in the appropriate limit. Spin
foams, the path-integral evolution of spin networks, arose
as a tool in this effort [3].

In many approaches to quantum gravity, the expecta-
tion is that the classical space and time of general rela-
tivity are not fundamental but rather they arise as the low-
energy approximate description of the fundamental
Planck scale theory. Quantum theory, on the other hand,
is almost invariably expected to hold unmodified all the
way down to Planck distances, although it is often
pointed out that a continuous spacetime is already built
into quantum theory.

The question we raise in this paper is whether both
general relativity and quantum theory may be only ap-
proximations to the as-yet unknown quantum theory of
gravity. We provide a mechanism by which, from a
ress: fotini@perimeterinstitute.ca
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background-independent model with no quantum me-
chanics, quantum theory arises in the same limit in which
spatial properties appear.

More specifically, we start with a simple model of the
fundamental theory, based on the adjacency matrix of an
abstract graph. We assume that the underlying model has
an approximation in which classical physics emerges. In
particular, we assume that the theory has a nonrelativistic
low-energy limit in which some of the nodes of the graph
correspond to the positions of particles in three-
dimensional space, which we call xai �t�, where 1 �
1; . . . ; N labels the particles and a is a spatial index, and
that the xai �t� evolve according to Newtonian dynamics
with some potential V�jxi � xjj�. We further ask that
some of the embedding coordinates are subject to sto-
chastic fluctuations, for example, by being embedded in a
heat bath.

We do not discuss here for what choices of dynamics
and under what conditions this classical, low-energy limit
will emerge. Our goal in this paper is different; it is to
show that quantum mechanics may also appear in the
same limit. In particular, we show that quantum theory
for all the particles appears only in the limit described
above: certain quantities can be defined, functions of both
the embedding coordinates and the original graph, whose
probability distributions evolve in time according to the
Schrödinger equation. Planck’s constant then turns out to
be a derived quantity.

From the perspective of the issues in the foundations of
quantum theory, this is a stochastic hidden variable
model. From the work of Bell [4], we know that any
hidden variable theory has to be nonlocal. However, in
all these works and the relevant experimental tests, local-
ity is of course defined with respect to the causal struc-
ture of spacetime. If the smooth 3� 1 spacetime we live
-1  2004 The American Physical Society
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in is only approximate, all kinds of possibilities present
themselves. Indeed, in our model, there are two notions of
locality. There is a notion of locality in the graph of the
fundamental theory: two nodes are nearby if they are
connected in the graph. A separate notion of locality
holds in the embedding of the graph used in the low-
energy limit. Two particles, represented by the embed-
ding of two nodes in the graph, are nearby if they are
close in the metric of the embedding space.

These two notions of locality will not, in general,
coincide. We shall see that the nonlocality needed to
derive quantum theory from a deterministic model arises
exactly because of this. The nonlocality required to re-
cover quantum theory from a nonquantum fundamental
theory is nonlocality in space. But if space itself is an
emergent property, relevant only at a coarse-grained
level, the fundamental theory can still be local, if by
that we mean local in the topology in which the funda-
mental degrees of freedom are defined. Microscopic lo-
cality is a generic property of quantum gravity theories
such as spin foams, in which smooth spacetime is ex-
pected to be emergent.

What we present in this article is only an outline of
such a mechanism in which quantum theory arises be-
cause of the discrepancy between microscopic locality
and locality in the emergent spacetime. Much remains to
be filled in before one has a complete model. We discuss
some possibilities and open issues in the conclusions.

The outline of this paper is as follows. In the next
section we introduce our model and the precise assump-
tions about its low-energy limit. The main method of this
paper is stochastic differential equations [5], the elements
of which we need are reviewed in Sec. III.We make use of
a formulation of quantum theory due to Nelson, and in
Sec. IV we review the conditions he gives for a stochastic
dynamics to reproduce the predictions of quantum theory
[6]. In Sec. V we present the main result of this paper,
which is the derivation of Nelson’s conditions from our
model. This is followed by a brief statement of conclu-
sions and questions for future work.
1For example, in loop quantum gravity and spin foam
models, matter fields such as fermion and scalar fields live on
spin network nodes and these are expected to be identified as
particles in the low-energy limit under discussion.
Alternatively, it may be the case that part of the approximation
procedure involves a process of coarse graining of a spin
network or a spin foam, so that what corresponds to classical
spacetime is a coarse-grained spin network or spin foam. If so,
again, we do not need, for the purpose of this paper, to know
any details of the coarse graining procedure except that it takes
as input a combinatorial structure and gives, for certain states
or histories required to describe the nonrelativistic limit of
general relativity, an embedding of that structure in R3. Similar
remarks apply to other discrete formulations of quantum grav-
ity, including causal sets and dynamical triangulations. If the
theory has a low-energy approximation that recovers general
relativity, it will have a further approximation which recovers
Newtonian dynamics of point particles in R3.
II. THE MODEL

We start with the fundamental theory given by a very
simple model: a graph � with a finite set of N nodes. Two
nodes can be connected by at most one edge and there are
no self-loops (edges from a node to itself).

Two vertices are called adjacent if they are connected
by an edge. The adjacency matrix Q of � is an N � N
symmetric matrix, with Qij � 1 if there is an edge in the
graph connecting nodes i and j, and 0 otherwise. For
example, the adjacency matrix of the graph

1 2 3 4
124029
is

Q �

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

0
BBB@

1
CCCA:

The graph can be thought of as a simple model of a
universe of N fundamental building blocks, where the
only information we are given is the adjacency of these
subparts of the universe.

The simplest possible way to set up a correspondence
between the graph and a flat three-dimensional space is to
embed the graph in R3. The nodes of � then acquire
coordinates xai ; a � 1; 2; 3; i � 1; . . . ; N. We will not dis-
cuss here the mechanism by which the embedding of the
graph into R3 arises. Such mechanisms have been dis-
cussed elsewhere in the spin foam literature.1

The argument of this paper assumes the existence of
that approximation and asks what becomes of the infor-
mation discarded in taking the limit, having to do with
the original combinatorial structure. We shall show that,
under certain mild assumptions, variables which are
functions of both the embedding variables and the origi-
nal combinatorial degrees of freedom evolve quantum
mechanically. We do not need to specify the dynamics
of the model or the process by which Newtonian dynam-
ics is extracted in a low-energy and nonrelativistic limit.
We need only a few assumptions concerning the limit,
which we now specify.

We first require that there is a minimum length in the
embedding, namely, that

jxai � xaj jmin � l; (1)

l being that minimum distance. For example, l could be
the Planck length. Let us also call L the average distance
between two nodes:

h�xai � xaj �
2i �: L2: (2)
-2
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The graph is subject to some microscopic rules of
evolution (that is, the microscopic model is a spin foam
with a single in and out graph and presumably a single
interpolating history) such that:
(1) T
FIG. 1 (color online). A sketch of how locality in the graph
may not be preserved in the embedding. In the abstract graph on
the left, the nearest neighbors of i are j, k, l, and m. In the
embedded graph on the right, a local neighborhood of i defined
by the metric of R3 is drawn, and k is far outside it.

2It su
for cal
nodes.
he model possesses a low-energy limit, for L�
l, in which the node coordinates evolve according
to Newtonian mechanics as if they were massive
particles2:

Sl �
Z
dt

2
4XN
i�1

m
2
� _xai �

2 � V�x�

3
5: (3)

For simplicity, we take all the masses to be the
same.
(2) S
ome of the node positions are subject to a
Brownian motion, namely, in addition to Eq. (3),
some of the fxai g obey the stochastic differential
equation

dxai �t� � bai �x�t�; t�dt� dwa
i �t�; (4)

where the dw�t� are Gaussian with mean 0, mutu-
ally independent, and

hdwa
i �t�dw

b
j �t�i � 2�xi dt�

ab�ij; (5)

where �i is the diffusion coefficient for xai . We will
give the details of the fluctuations of the x’s in
Sec. III A.
This stochastic part of the evolution of some of the
node coordinates could be due to either the corre-
sponding nodes being in a thermal bath (i.e., there
are hot regions in the embedded model) or some
other source of uncertainty in assigning coordi-
nates to the nodes (i.e., the coordinates could be a
coarse-grained description of several of the under-
lying nodes).
(3) T
here is no requirement that the adjacency of the
graph translates into locality in the embedding.
That is, in the graph the nearest neighbors of
node i are the nodes in � that can be reached
from i by traveling along a single edge. Similarly,
the next-nearest neighbors are those nodes that can
be reached using two edges, and so on. In the
embedding description, given the coordinate fxai g
of the same node, we may ask for its neighbors up
to distance r from fxai g, namely, all the nodes which
lie inside a ball with center fxai g and radius r.
Clearly, it is possible for two nodes to be nearest
neighbors in the graph and arbitrarily far apart in
the embedding (see Fig. 1).
(4) F
inally, we will assume for the purposes of this
paper that the edges of the graph, and hence the
ffices for some nodes to evolve according to Eq. (3), but
culational simplicity we take the sum in (3) over all N
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elements of the adjacency matrixQij, do not evolve
in time.
We may summarize the features of this model as a
fundamental finiteness, a Newtonian limit in which an
external time parameter can be identified and stochastic
fluctuations when the spatiotemporal description is used.
We will see that the very surprising feature is that quan-
tum theory is also contained in this model; in fact, we
will derive it from it. That is, quantities can be defined
that are simple functions of the graph and the embedding
geometry which, as we will show, satisfy the Schrödinger
equation.
III. STOCHASTIC DYNAMICS

Let us define the matrix

Ma � Xa � lQa; (6)

where Qa � Q and Xa is the N � N matrix with diagonal
elements Xaii � xai , the positions of theN particles in the a
component, and zeros elsewhere. As before, l is the mini-
mal length. The matrixM evolves in time according to the
dynamics in Eq. (3), which affects only the first term X.

This is the simplest function that contains both the
information about the graph, i.e., the graph’s adjacency
matrix, and the information of the embedding of the
graph, i.e., the coordinates of the nodes. The physical
intuition is that the eigenvalues �ai of Ma represent cor-
rections to the positions xai arising from the nodes which
are adjacent in the graph but nonlocal with respect to the
embedding. The motivation for this stems from the fol-
lowing result, which we will prove in the next sections:

Let n be the average valence of a node in Q. When the
xai ’s evolve according to classical mechanics, and when
n

p
�l2=L2� � 1, the evolution of the probability distribu-

tions for the �ai ’s is given, to leading order in

n

p
�l2=L2�,

by the Schrödinger equation.
The first step in showing this is to use the standard

formulas from perturbation theory to express �ai to lead-
ing order as



3If x�t� is differentiable, then Dx�t� � D�x�t� � dx=dt, but
this is not the case for the thermal motion of the nodes.
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�ai � xai � l2
X
j�i

�Qa
ij�

2

xai � xaj
� . . . : (7)

One can check that the second, fluctuating term in the
above expression is of order

��ai :� l2
X
j�i

�Qa
ij�

2

xai � xaj
�


n

p l2

L
; (8)

since it is a sum of n terms of random signs. Thus,�
��
�

�
�


n

p l2

L2 ; (9)

where h i means averaged over the nodes and the thermal
ensemble.

We will work in the regime


n

p l2

L2 � 1: (10)

Note that when

n

p
�l2=L2� ! 0, Ma ! Xa and �ai ! xai ,

so that the dynamics becomes classical. We will study the
leading order corrections around this limit. We will find
that quantum mechanics can be understood in this sense
as giving the leading order correction in


n

p
�l2=L2�

around the classical limit.

A. The thermal fluctuations of the fxai g

Recall that we allow for some of the fxai g to be subject
to stochastic fluctuations. The Brownian motion of the
fxai g is described by the stochastic differential equation
[5,6]

dxai �t� � bai �x�t�; t�dt� dwa
i �t� (11)

for dt � 0, where the dw�t� are Gaussian with mean 0,
mutually independent, and

hdwa
i �t�dw

b
j �t�i � 2�xi dt�

ab�ij: (12)

�i is the diffusion coefficient for xai . The dw�t� are inde-
pendent of the x�s� for s � t, so bai is the mean forward
velocity

bai �x�t�; t� � Dxai �t�; (13)

where the mean forward derivative D is defined by

Dx�t� � lim
�t!0�

�
x�t� �t� � x�t�

�t

�
: (14)

The process is asymmetrical in time, so for dt � 0 we
have

dxai �t� � ba�i�x�t�; t�dt� dwa
�i�t�; (15)

wherew� has the same properties asw except that the dw�

are independent of the x�s� with s � t. Similar to the
forward case,

ba�i�x�t�; t� � D�x
a
i �t� (16)
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is the mean backward velocity, where the mean backward
derivative D� is given by3

D�x�t� � lim
�t!0�

�
x�t� � x�t� �t�

�t

�
: (17)

We define the average diffusion coefficient of the x’s to
be

�x :� h�xi i: (18)
B. The resulting fluctuations of the f�a
i g

It is not surprising that the thermal fluctuations of the
x’s lead to fluctuations of the corrected values, the �’s. It is
also not surprising that even if a particular xi is not
fluctuating, the corresponding �i does, because of the
second term in Eq. (7). What will be surprising is that
the fluctuations of the �’s have a very different character
than those of the x’s, and this is the subject of our paper.
Let us first calculate the fluctuations on the corrected
positions.

We take the stochastic derivative of the perturbative
expansion (7) to find that

d�ai � dxai � l2
X
j�i

�Qa
ij�

2

�xai � xaj �
2 �dx

a
i � dxaj �: (19)

Using (11), we rewrite this as

d�ai �
�
bai � l2

X
j�i

�Qa
ij�

2

�xai � xaj �
2 �b

a
i � baj �

�
dt� dwa

i

� l2
X
j�i

�Qa
ij�

2

�xai � xaj �
2 �dw

a
i � dwa

j �: (20)

Thus, the �’s evolve by the stochastic differential equa-
tion

d�ai � �a
i dt� dyai ; (21)

where �a
i is the mean forward velocity of �ai

�a
i ��; t� � D�ai ; (22)

and the fluctuating part can be read off Eq. (20) to be

dyai � dwa
i

�
1� l2

X
j�i

�Qa
ij�

2

�xai � xaj �
2

�
� l2

X
j�i

�Qa
ij�

2

�xai � xaj �
2 dw

a
j :

(23)

As in the case of the x’s, we may also write

d�ai � �a
�idt� dya�i; (24)

where �a
�i is the mean backward velocity of �ai

�a
�i��; t� � D��ai : (25)
-4
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One reason that some of the x’s could be subject to
thermal fluctuations is if, in the low-energy limit
n

p
�l2=L2� � 1, there are regions in the universe at finite

temperature. In this case, we may expect that x’s that are
near each other in the embedding geometry will be at a
similar temperature. As we shall note in the conclusion,
this is not the only possible source of such local stochastic
fluctuations, but it may serve to give intuition.

Let us now relate the diffusion of the �’s to that of the
x’s. What is of interest in the present paper is nodes whose
x’s are not fluctuating. If a given xi is not fluctuating, i.e.,
�i � 0, what is the fluctuation of the corrected �i?

The diffusion constant of �i can be computed from the
above equation4:

2��i dt � h�dyai �
2i � l4

��X
j�i

�Qa
ij�

2

�xai � xaj �
2 dw

a
j

�
2
�

� l4
�X
j�i

�Qa
ij�

4

�xai � xaj �
4 2�

x
jdt

�
: (26)

Let us now assume that the graph connects each �ai to
nodes which are uniformly distributed in the embedding
space. This allows us to deduce that

��i � l4
�X
j�i

�Qa
ij�

4

�xai � xaj �
4 2�

x
j

�
� n�x

l4

L4 : (27)

This tells us that each � is subject to a Brownian
motion, even if its local environment (in the embedding)
is at zero temperature. This is because the origin of the
Brownian motion of the �ai ’s is noise in the xai ’s which are
distant in space but near in the graph. This Brownian
motion is irreducible, in that it cannot be decreased by
changing the local conditions, and it is universal in that it
applies to all the �’s. We will see in the next section that
the consequence of these fluctuations is that the eigenval-
ues evolve as if quantum theory is true.
IV. NELSON’S DERIVATION OF QUANTUM
MECHANICS

We have assumed that the original coordinates x are
subject to stochastic fluctuations, possibly due to hot
regions in the universe. We then interpreted the eigenval-
ues � of the embedded spin foam, given by the matrix M,
as the corrected positions of the nodes of the graph. In the
previous section, we saw that this results in a Brownian
motion for all of the �’s, transferred from the hot regions
to all the �’s via edges in the original graph (entries in
Qij) that are nonlocal connections with respect to the
embedding.
4We assume that to leading order the stochastic differentials
dwa

i are statistically independent of the matrix elements xai so
that hdwa

i x
b
j i � 0.
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Nelson, in his important work [6], considered the
stochastic evolution of a particle in position x, with
probability distribution  �x; t� and current velocity
vai �x; t�, and showed that it will evolve in a way equivalent
to a solution of the time-independent Schrödinger equa-
tion, so long as three conditions are satisfied. In this
section, we state Nelson’s conditions. In the next section,
instead of the position of a particle, we consider the
corrected positions � of the nodes of our graph. We will
show that Nelson’s equations are satisfied for the �’s in a
certain approximation which amounts to specific scaling
relations between l; L, the valence of the graph n, and the
total number of nodes N. Under these conditions, the
nodes evolve according to quantum mechanics.

Nelson’s conditions for a particle in position x, with
probability distribution  �x; t� and current velocity
v�x; t�, are [6]
(1) T
-5
he particle undergoes an irreducible and univer-
sal Brownian motion, with diffusion constant �
inversely proportional to the mass m. The propor-
tionality defines Planck’s constant �h by

� �
�h
m
: (28)
(2) E
ven though the particle’s evolution is fluctuating,
its probability density and current must evolve
according to laws that are time reversible.
(3) T
he current velocity has to be irrotational, namely,
it is proportional to a scalar S�x�,

v �x; t� �
@S�x; t�
@x

: (29)
Nelson shows that, when these conditions are satisfied,
one can define the function

��x; t� �

 �x; t�

q
e�i= �h�S�x;t� (30)

and show that the coupled nonlinear equations for  and v
reduce to a single linear equation:

i �h
d�
dt

�

�
�

�h2

2m
r2 � V�x�

�
�: (31)
V. SATISFYING NELSON’S CONDITIONS

We will now show that Nelson’s conditions are satisfied
in our system in the regime


n

p
�l2=L2� � 1.

A. The kinematics of the �’s

The evolution of the �’s in time describes the evolution
of the nodes in the embedded graph. In place of Nelson’s
particle at position x, we will check for Nelson’s condi-
tions for a node i of the graph, its position given by �ai .
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We have already seen that the �’s are subject to an
irreducible, universal Brownian motion, governed by the
stochastic Eqs. (21) and (24). We now need to describe the
process in some more detail. Let us choose a particular xai
whose corresponding �i � 0. We can say that that node is
‘‘cold.’’ We study the probability distribution  ��; t� of the
corresponding �ai �t�.

First of all, as  is a probability,
Z
�ai  ��; t� � 1 (32)

must hold. Next, as a consequence of (21) and (24) it
follows from the theory of stochastic differential equa-
tions that  satisfies the forward Fokker-Planck equation

_ � �
@��a

i  �
@�ai

� ��r (33)

and the backward Fokker-Planck equation

_ � �
@��a

�i �
@�ai

� ��r : (34)

The average of the above two equations yields the equa-
tion of continuity

_ � �
@� vai �
@�ai

; (35)

where we define vai by

vai ��; t� :�
1
2��

a
i � �a

�i�: (36)

From the equation of continuity, we identify vai as the
current velocity [6].

Subtracting the forward Fokker-Planck from the back-
ward, we find

�a
�i � �a

i � 2��
1

 
@ 
@�ai

: (37)

We define the osmotic velocity uai ��; t� as

uai ��; t� :�
1
2��

a
i � �a

�i�: (38)

Then Eq. (37) becomes

uai � ��i
@ ln ��; t�

@�ai
: (39)

B. Conditions 1 and 2

We now return to the first two of Nelson’s conditions. In
postulating (3) as the original, uncorrected evolution in
the low-energy limit, we have assumed that in that limit
the nodes behave as if they have the same mass m. Then,
to satisfy the first condition above, we simply need to take
Eq. (28) to be the definition of �h.

We now come to the second condition. We will follow
the way that is implemented by Nelson in Ref. [6]. The
trajectories of the �’s are nondifferentiable, but one can
124029
use the mean forward and mean backward derivatives D
and D� defined in Eqs. (14) and (17) to define the average
stochastic acceleration of an eigenvalue �ai by

aai ��; t� :�
1
2�DD� �D�D��

a
i : (40)

This definition is time reversible. Nelson requires that
Newton’s laws hold for this averaged acceleration,
namely, that it is proportional to the gradient of a poten-
tial:

aai � �
1

m
@V���
@�ai

: (41)

To check this second condition in our model, we will
compute the stochastic acceleration a in Eq. (40) directly
from (7). The terms we get by computing (40) from (7)
can be written as

aai � &ai � �&ai ; (42)

where

&ai �x; t� :�
1
2�DD� �D�D�xai (43)

and �&ai is similarly the symmetrized derivative of the
correction term ��ai in Eq. (8).

We already have, from Eq. (3), that

&ai �x; t� � �
1

m
@V�x�
@xai

: (44)

This can be expanded as

1

m

@V�x�
@xai

�
1

m
@V���
@�ai

� ��bj
1

m
@2V���

@�ai @�
b
j

�O�����2�:

(45)

Recall that ��ai �

n

p
l2=L2 [Eq. (8)].

For the second term �& in (42), we apply the symme-
trized derivative on (8). We use

Df�x; t� �
�
d
dt

� bai
@
@xai

�
X
ai

�i
@2

@xai@xai

�
f�x; t�; (46)

D�f�x; t� �
�
d
dt

� bai�
@
@xai

�
X
ai

�i
@2

@xai@xai

�
f�x; t�; (47)

from which it follows that Dxai � bai and D�x
a
i � ba�i:

�&ai ��
l2

2

X
k�i

�Qa
ik�

2

�xai �xak�
2 �&

a
i �&ak��2l2

X
k�i

�Qa
ik�

2

�xai �xak�
3

��bi�bk�
a�b�i�b�k�

a� l2
X
k�i

�xk�Q
a
ik�

2

�xai �xai �
2

�

�
12

vai �vak
�xai �xak�

2�2
@ak�vai �vak�
�xai �xak�

�@2ak�v
a
i �vak�

�

�24
X
k�i

��xk�
2l2�Qa

ik�
2

�xai �xak�
5
: (48)
-6
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b
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We now make a few physical assumptions, which allow
us to bound the correction terms. First, we assume that the
nonlocal connections are distributed sufficiently uni-
formly. This means that for large n there is a single
quantity R such that, for all i and a,

l2
X
k�i

Q2
ik

��ai � �ak�
2 � Rn

l2

L2 �1� �Rai �; (49)

where

�Rai <
1
n

p : (50)

As a result, we can estimate

�&ai �

n

p l2

L2

�
h �xai �

h� _x�2i
L

�
�x


h� _x�2i

p
L2 �

��x�2

L3

�
: (51)

We now consider the ratio of this to the classical
acceleration &ai . We have

�&ai
&ai

�

n

p l2

L2

�
1�

h� _x�2i
�xai L

�
�x


h� _x�2i

p
�xai L

2 �
��x�2

�xai L
3

�
: (52)

However, the ratio

h� _x�2i
�xai L

(53)

is on average proportional to twice the ratio of an average
kinetic energy to an average potential energy (because on
average the potentials are long ranged forces so that, with
L a typical interparticle distance, �xai L� V=m).
Assuming that the system is in equilibrium, we know
from the virial theorem of statistical physics that this ratio
is of order unity.

The remaining terms are order unity or less, assuming
that on average

�x <
�xai L

2
h� _x�2i

p ; ��x�2 < �xai L
3: (54)

These tell us that on average the random motion of the
xai ’s is less important than their bulk motions.

As a result, the ratio (52) is order

n

p
�l2=L2�, so that the

terms in �&ai can be neglected compared to &ai .
As a result, we have that to leading order, the stochastic

acceleration is dominated by the classical forces so that

aai ��; t� � ��
1

m
@V���
@�ai

: (55)

Hence, Nelson’s second condition is satisfied.
We note that the conditions have been satisfied only to

leading order.We expect corrections of order

n

p
l2=L2. We

may note that �h itself is by Eqs. (27) and (28) proportional
to m�xnl4=L4. This tells us that we must assume that m�x

is large for small n, so that �h is order unity.
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C. Time-independent Schrödinger equation

At this point, and before considering the third condi-
tion, we are already able to satisfy the time-independent
Schrödinger equation for the simple case in which the
probability distribution is static,

_ � 0: (56)

In this case, condition 3 is trivially satisfied since, by
Eq. (35),

vai � 0: (57)

We apply D and D� to �a
i and �a

�i to find that, in the
general case, the stochastic acceleration is given by

aai � _uai � vbj
@vai
@�bj

� ubj
@uai
@�bj

� ��i r
2uai : (58)

For the static case, this reduces to

aai � �ubj
@uai
@�bj

� ��i ru
a
i : (59)

In our approximation in which the acceleration is given by
Eq. (41), and using the definition of �h in Eq. (28), this can
be rewritten as

@
@�ai

�
1

2
u2 �

�h
m

@ubj
@�bj

�
�

1

m
@
@�ai

V: (60)

We may integrate this to obtain

1

2
u2 �

�h
m

@ubj
@�bj

�
1

m
�V � E�; (61)

where E is a constant with dimensions of energy.
Equation (60) is nonlinear in u. However, with a

change of variables5

���� �

 ���

q
(62)

in Eq. (39), it is equivalent to a linear equation, the time-
independent Schrödinger equation

�
�

�h2

2m
r2 � V � E

�
� � 0 (63)

for real �.

D. The time-dependent Schrödinger equation

We now go on to consider the general case in which the
probability distribution evolves in time. To do this, we
need to study the third condition.

We need to show that the current velocity Vai ��� has
vanishing curl, to the same order of approximation that
the time-independent Schrodinger equation holds
-7
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@vai
@�dm

�
@vdm
@�ai

<

n

p l2

L2 : (64)

We can show that the curl of the current velocity of the
�’s vanishes when the curl of the classical probability
current can be neglected. The latter quantity is defined as

Vai �x� �
1
2�b

a
i �x; t� � ba�i�x; t��: (65)

We then assume that

@Vai
@xdm

�
@Vdm
@xai

<

n

p l2

L2 : (66)

Let us start by expressing the current velocity vai ��� for
the eigenvalues in terms of the current velocity Vai �x� for
the diagonal elements.

It is straightforward to show that

vai ��� � Vai �x� �
X
j�i

l2Q2
ij

�xai � xaj �
2 �V

a
i �x� � Vaj �x�� � . . . :

(67)

Using Eq. (7), we can write this as

vai ��� � Vai ��� � l2
X
j�i

Q2
ij

��ai � �aj �
2 �V

a
i ��� � Vaj ���� � . . .

� l2
X
k

X
l�k

Q2
kl

�bk � �bl

@Vai ���

@�bk
� . . . : (68)

Under the assumptions (50) and (66), it is straightfor-
ward to compute the curl of the current velocity for the
eigenvalues

@vai
@�dm

�
@vdm
@�ai

: (69)

It contains several terms, but they can all be shown to be
smaller than the terms we neglected in the derivation of
the time-independent Schrödinger equation. The details
of the calculation are given in the appendix. Thus, we
have

@vai
@�dm

�
@vdm
@�ai

<

n

p l2

L2 (70)

and we have verified Eq. (64). Then there exists an S���
such that

Vai �
1

m
@S���
@�aI

�O

� 
n

p l2

L2

�
: (71)

By following the same logic as led to the time-
independent Schrödinger equation, we can follow
Nelson’s derivation [6]. Using (71), we construct the
wave function (30). Using Nelson’s stochastic modifica-
tion of Newton’s laws, which follow to order


n

p
l2=L2,

from the conditions we have demonstrated, we can show
124029
that (30) satisfies the Schrodinger equation (31) up to
O�


n

p
�l2=L2��.
VI. CONCLUSIONS

In this paper, we started with a graph-based model of a
quantum theory of gravity which we assumed has a
simple kind of low-energy limit in which the graph is
embedded in R3; the graph nodes acquire coordinate
positions, and they evolve like Newtonian particles with
mass m and potential V. We then showed that in the
regime

0<

n

p l2

L2 � 1 (72)

and when (i) some of the x’s are in thermal equilibrium, so
that the averaged diffusion coefficient �x is nonvanishing
and the conditions of the virial theorem are satisfied
[�h _x2i= �xai �L� 1], and (ii) the temperature in the region
of particle i vanishes, so that the diffusion constant due to
local influences is zero, the evolution of the probability
distribution for the eigenvalues �ai is described by a
solution to the time-independent Schrödinger equation
with mass m and potential V and �h given by m��.

We have also assumed that the nonlocal connections
are distributed uniformly throughout the system. This
allows us to use Eqs. (49) and (50) as well as to deduce
(27).

Furthermore, under the additional assumption that the
curl of the probability current for the classical variables
V�xa� may be neglected [Eq. (66)], the time-dependent
Schrödinger equation follows, to the same order of
approximation.

We close with a few comments about future work.
The model is not intended to be realistic. Much more

work needs to be done to understand whether or not the
basic strategy uncovered here can lead to a real physical
theory. Among the things that need to be done are
(1) W
-8
hile we show that the Schrödinger equation is
satisfied to a certain approximation by our proba-
bility distributions, we do not show that all solu-
tions to the Schrödinger equation arise this way.
This is due partly to limitations in Nelson’s ap-
proach. For this reason, it may be interesting to
recast the model in the framework of Adler’s ap-
proach to quantum theory as emergent from a
dynamics of matrices [7].
(2) I
s quantum mechanics recovered beyond the non-
relativisitic approximation? Nelson’s stochastic
quantum theory has been extended to relativistic
field theory [8], so it is possible that the present
results can also be extended.
(3) T
he corrections to the approximation in which
quantum theory emerges can be studied. It is pos-
sible that they lead to nonlinear corrections to the
Schrödinger equation. We may note that, to keep
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quantum effects large compared to terms that have
been neglected, we must keep the product m�x
large as �h�m�xnl4=L4.
(4) I
f we calculate the fluctuations of �ai ’s for whom
the corresponding xai ’s are subject to thermal noise,
is the result the correct finite-temperature quantum
theory?
(5) T
he same phenomena may occur in other discrete,
combinatorial theories of quantum gravity, such as
causal sets [9]. These share with spin foam models
the problem that the conditions necessary so that
the information in combinatorial states or histories
are well represented by embedding them in low
dimensional manifolds are, in general, very hard to
satisfy. The result presented here opens up the
possibility that these conditions do not need to be
satisfied. Instead, the obstructions that prevent a
good matching between the two notions of locality
involved in embedding a combinatorial structure in
a low dimensional manifold so as to match metric
relations may lead instead to the discovery of the
source of the nonlocal hidden variables necessary
for a realistic formulation of quantum theory.
(6) D
ifferent hypotheses can be considered regarding
the origin of the stochastic fluctions of the xai ’s.
Connecting them with temperature may, in a more
realistic model, lead to predictions of a time de-
pendence of �h that could falsify such a theory.
Other possibilities include an intrinsic uncertainty
in the embedding coordinate due to the fact that the
embedding is an emergent property of an under-
lying fundamental theory whose degrees of free-
dom are combinatorial.
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APPENDIX: VANISHING OF THE
ANTISYMMETRIC DERIVATIVES OF THE

CURRENT VELOCITY

We show here the details of the calculations that estab-
lish (70). We begin with the relationship between the two
current velocities, Vai for the xai and vai for the �ai .

vai � Vai � l2
X
k�i

Q2
ik

��ai � �ak�
2 �V

a
i � Vak �: (A1)

We use

@Vai
@�bj

�
@Vai
@xcl

@xcl
@�bj

(A2)

together with
124029
xcl � �cl � l2
X
m�l

Q2
ml

�cl � �cm
� . . . (A3)

to find

@Vai
@�bj

�
@Vai
@xbj

�
1� l2

X
m�j

Q2
mj

��bj � �bm�2

�
� l2

X
l�j

@Vai
@xbj

�
Q2
jl

��bl � �bj �
2
: (A4)

Combining this with (A1), we have

@vai
@�bj

�
@Vai
@�bj

�
1� l2

X
k�i

Q2
ik

��al i� �ak�
2

�
l2
X
k�i

Q2
ik

��ai � �ak�
2

@Vak
@�bj

� 2l2�ab�
j
i

X
k�i

Q2
ik

��ai � �ak�
2 �V

a
i � Vak �

� 2l2�ab
Q2
ij

��ai � �aj �
2 �V

a
i � Vaj �: (A5)

It is easiest to consider separately the different cases.
Beginning with i � j, we find

@vai
@�bi

�
@vbi
@�ai

�
@Vai
@xbi

�
@Vbi
@xai

�
@Vai
@xbi

�
l2
X
k�i

Q2
ik

1

��ai � �ak�
2

�

�
@Vbi
@xai

�
l2
X
k�i

Q2
ik

1

��bi � �bk�
2

�
� l2

X
k�i

Q2
ik

�

�
1

��ai � �ak�
2

@Vak
@xbi

�
1

��bi � �bk�
2

@Vbk
@xai

�
:

(A6)

We now impose conditions (50) and (66) to find that

@vai
@�bi

�
@vbi
@�ai

<

n

p l2

L2 : (A7)

Similarly, for i � j and a � b we have

@vai
@�bj

�
@vbj
@�ai

�
@Vai
@xbj

�
@Vbj
@xai

�
@Vai
@xbj

�
l2
X
k�i

Q2
ik

1

��ai ��ak�
2

�

�
@Vbj
@xai

�
l2
X
k�j

Q2
ik

1

��bj ��bk�
2

�

� l2
X
k�i

Q2
ik

1

��ai ��ak�
2

@Vak
@xbj

� l2
X
k�j

Q2
jk

1

��bj ��bk�
2

@Vbk
@xai

: (A8)

Under the same conditions, it follows directly that

@vai
@�bj

�
@vbj
@�ai

<

n

p l2

L2 : (A9)
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Finally, the reader can check the case a � b and i � j.
After a similar calculation, we find that
124029
@vai
@�aj

�
@vaj
@�ai

<

n

p l2

L2 : (A10)
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