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Binary black hole spacetimes with a helical Killing vector, which are discussed as an approximation
for the early stage of a binary system, are studied in a projection formalism. In this setting the four-
dimensional Einstein equations are equivalent to a three-dimensional gravitational theory with a
SL�2;R�=SO�1; 1� sigma model as the material source. The sigma model is determined by a complex
Ernst equation. 2� 1 decompositions of the three-metric are used to establish the field equations on the
orbit space of the Killing vector. The two Killing horizons of spherical topology which characterize the
black holes, the cylinder of light where the Killing vector changes from timelike to spacelike, and
infinity are singular points of the equations. The horizon and the light cylinder are shown to be regular
singularities, i.e., the metric functions can be expanded in a formal power series in the vicinity. The
behavior of the metric at spatial infinity is studied in terms of formal series solutions to the linearized
Einstein equations. It is shown that the spacetime is not asymptotically flat in the strong sense to have a
smooth null infinity under the assumption that the metric tends asymptotically to the Minkowski
metric. In this case the metric functions have an oscillatory behavior in the radial coordinate in a
nonaxisymmetric setting, the asymptotic multipoles are not defined. The asymptotic behavior of the
Weyl tensor near infinity shows that there is no smooth null infinity.
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I. INTRODUCTION

Binary black hole systems in the last stage before
coalescence are the most promising sources of gravita-
tional radiation to be detected with the first generation of
gravitational wave detectors. From a theoretical point of
view this is a difficult relativistic problem which can
possibly only be solved numerically since there are no
symmetries. The advantage of black hole systems is that
no matter is involved and that only the vacuum equations
have to be studied. It is generally expected that binary
systems will have an early stage of quasicircular motion
for large separation of the binaries. Radiation damping
will lead to almost circular orbits with the radius decreas-
ing in time due to the emitted radiation. For smaller
distances of the binaries this motion is expected to be
followed by a rapid inspiral. The end result will be a
single black hole which will settle to a stationary hole
in a ring down phase which can be described by black
hole perturbation theory. For a given binary system an
important characteristic quantity is the innermost stable
circular orbit (ISCO), the last almost circular orbit before
the final inspiral. In general there is no unique definition
of the ISCO, but it should be possible to define a charac-
teristic scale where the quasistationary early phase of the
binary system comes to an end.

In the case of the binary motion of two oppositely
charged particles, Schönberg [1] and Schild [2] consid-
ered an approximation to the quasistationary phase of the
system. The quasicircular motion is approximated by a
sequence of exactly circular orbits which are obtained by
exactly compensating the outgoing radiation by ingoing
radiation. The binding energy of the system as defined in
[2] decreases with the distance of the charges up to some
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minimal value which can be taken as the definition of the
ISCO: for smaller values of the distance, more and more
incoming radiation is needed to stabilize the circular
motion. The approximation thus predicts its own break-
down and allows for an unambiguous definition of the
ISCO. The quasistationary approximation corresponds to
a so-called helical Killing vector � of the system which is
in standard Minkowski coordinates given by � � @t �
�@�. The main features of such a vector can already be
inferred from this case: the vector becomes null at the so-
called light cylinder given by � � 1=� where the ob-
server rotating with the angular velocity � rotates with
the velocity of light. In the interior of the light cylinder,
the Killing vector is timelike, in the exterior spacelike. In
a general spacetime with a helical Killing vector, the light
cylinder will be deformed, but will still have cylindrical
topology.

Detweiler [3–5] suggested to use this concept to de-
scribe the quasicircular regime of binary black holes
which corresponds to studying spacetimes with a helical
Killing vector. Since Einstein’s theory is a nonlinear
theory, the incoming radiation will lead to a spacetime
which is not asymptotically flat in a strong sense (mass
and angular momentum cannot be defined in the usual
way asymptotically). It was shown in [6] that spacetimes
with a helical Killing vector cannot have a smooth null
infinity if there is no additional stationary Killing vector
close to I ; see also [7]. Though the Arnowitt-Deser-
Misner(ADM)-mass cannot be defined, Friedman et al.
[8] could show that a thermodynamical treatment as in
the single black hole case is possible and that there exists
a first law. With the help of the first law, the ISCO can be
defined for asymptotically flat spacetimes (which are
possible for instance in the case of the first post-
-1  2004 The American Physical Society
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Newtonian order) as in the Maxwell case as the minimum
of the binding energy which also marks the onset of
dynamical instability. It is not clear how this result can
be generalized to nonasymptotically flat spacetimes in
full general relativity. An important conceptional advan-
tage of spacetimes with a helical Killing vector is the fact
shown in [8] that spatially compact Killing horizons are
event horizons. This allows for a local characterization of
the event horizons in these models. It is thus not necessary
to use local concepts as an apparent horizon or the con-
cepts developed in [9].

In the study of binary black hole system, mainly
approximative and numerical methods have been used
so far. Post-Newtonian calculations have been carried
out up to the third post-Newtonian order including re-
summation techniques (see [10–14]). Within this approxi-
mation the determination of the ISCO appears to be self-
consistent since corrections to its value due to higher
order terms can be shown to be negligible. The post-
Newtonian metric, however, cannot be used close to the
horizons since black holes are the strongest relativistic
objects known. Numerical calculations so far have been
mainly performed within the Isenberg-Wilson-Matthews
(IWM) theory [15,16], an alternative theory of gravitation
without radiation. It follows from the Einstein equations
in a standard 3� 1-splitting for a conformally flat spatial
metric on the t � const hypersurfaces. Only the trace of
the six time evolution equations is considered. By con-
struction the theory coincides with the Einstein theory for
spacetimes with conformally flat spatial slices and thus
reproduces exactly the first post-Newtonian approxima-
tion. It has to be noted that the Kerr solution does not
allow conformally flat spatial hypersurfaces; see [17]. In
[18–20] initial values were constructed from the con-
straint equations via so-called Bowen-York initial data
by solving the Lichnerowicz equation numerically. This
resulted in a significant discrepancy with post-
Newtonian results for the ISCO. In [21,22], complete
IWM binary black hole spacetimes with a helical
Killing vector were constructed numerically. The results
were in good agreement with post-Newtonian results, but
suffered from an inconsistency in the model in the form
of nonregular horizons. This nonregularity appears to be
unavoidable for IWM spacetimes. To answer the question
whether the Einstein equations allow for binary black
hole spacetimes with smooth disconnected horizons in
the presence of a helical Killing vector, it therefore
appears necessary to study the fully relativistic situation.
In [23] the constraint equations are solved in the presence
of an approximate helical Killing vector on a background
which is the superposition of two Kerr-Schild metrics.

In general relativity, a helical Killing vector will lead
to Einstein equations which are of a mixed type, i.e.
elliptic in the interior of the light cylinder and hyperbolic
in the exterior. Such equations are studied in aerodynam-
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ics [24] in the case of transonic flows. For a review on
mixed problems arising in gravitation, see [25]. It was
shown by Torre [26] that the resulting equations can be
written in the form of a first order differential system
which belongs to the symmetric positive systems of
Friedrichs [27] and Lax and Phillips [28]. Classes of
boundary conditions compatible with these equations
are given in [26]. Numerical studies of two-dimensional
equations of this type were performed in [29,30]. Three-
dimensional toy models for the helically reduced
Einstein equations were considered numerically in [31].

The purpose of this paper is to study the Einstein
equations in the presence of a helical Killing vector for
a vacuum spacetime with two disconnected Killing hori-
zons of spherical topology. The idea is to derive a set of
equations which is well suited for a numerical treatment
by taking full advantage of the Killing vector. In the
vicinity of the critical points of the equations as the black
hole horizons, the metric functions will be given in terms
of formal power series which should be useful for the
numerical implementation. The approach is similar as in
the study of cosmological singularities, see e.g. [32] and
references therein. These methods are purely local and do
not imply an existence proof for a spacetime with a
helical Killing vector and two regular horizons. The use
of so-called Fuchsian methods (see [33]) in the context of
cosmological singularities would not change the situation
since even an existence proof for one regular horizon
would not imply the existence of the second regular
horizon one is interested in here. Therefore we will not
discuss the question of existence and convergence radii of
the formal series solutions in this paper, to show global
existence different methods will have to be applied.
Function counting, i.e. the identification of free functions
in the formal series solutions indicates, however, that
spacetimes with a helical Killing vector and two regular
horizons could exist: the series in the vicinity of the
horizon contains two free functions which could be fixed
in a way to allow for two regular horizons. Such an
approach is suitable for a numerical treatment which
could give—if successful—a strong indication of the
existence for corresponding solutions to the Einstein
equations. Though formal expansions do not provide ex-
istence proofs for solutions, they proved to be very useful
and reliable to establish the behavior of cosmological
solutions near singularities and served as a guide to prove
existence and uniqueness, see [32,33].

To establish the Einstein equations in the presence of a
helical Killing vector we use a projection formalism
[34,35] which leads to equations of three-dimensional
gravity with a sigma model as material source. The sigma
model is determined by a generalized Ernst equation. The
equations are discussed on the space of orbits of the
Killing vector in a 2� 1-decomposition of the three-
space. The fixed points of the Killing vector, the horizons
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and the light cylinder where the Killing vector changes
from being timelike to spacelike are singular points of
the equations. They will be studied in terms of formal
expansions of the metric functions in a chosen gauge. In
this approach the horizons are regular horizons as in the
case of the Kerr metric, but the series solutions contain
two free functions which cannot be fixed locally. At the
light cylinder the metric shows a similar behavior as at an
ergosphere. If the constraints in the 2� 1-approach are
satisfied by the regularity conditions, the only equations
to be solved are the two Ernst equations and the three
‘‘evolution’’ (with respect to the radial coordinate)
equations.

The behavior at infinity for spacetimes with a helical
Killing vector is not yet well understood. There are
indications from spherically symmetric models with
equal amounts of ingoing and outgoing null dust [36],
which can be seen as a spherically symmetric analog to a
helically symmetric spacetime, that the spacetime is not
even asymptotically flat in the weak sense that the metric
tends asymptotically to the Minkowski metric. So far the
only rigorous result due to Gibbons and Stewart [6] is that
there can be no smooth null infinity unless there is an
additional axial Killing vector. Here we show that this is
already case under the possibly too strong assumption
that the spacetime tends to Minkowski spacetime asymp-
totically. Considering the Einstein equations in the pres-
ence of a helical Killing vector for large values of the
radial coordinate, we show by using formal expansions of
the metric that the spacetime is not asymptotically flat in
the strong sense that mass and angular momentum can be
defined unless there is an additional axial Killing vector.
The Weyl scalars behave asymptotically as 1=r, but the
coefficients of the 1=r terms have an oscillatory depen-
dence on r. Thus there is no smooth I and no peeling in
accordance with [6]. In asymptotically flat spacetimes for
a stationary Killing vector, the Komar integral can be
used to determine a conserved quantity via a surface
integral calculated at finite radius, for which then the
limit of an infinite radius is taken. We show that this limit
is not defined under the above assumptions unless there is
an additional axial Killing vector.

The paper is organized as follows: In Sec. II we use the
projection formalism for the vacuum Einstein equations
in the presence of a helical Killing vector. We discuss the
resulting equations for the example of Minkowski space-
time. In Sec. III we use 2� 1-decompositions of the
three-space to study the singularities of the equations,
the Killing horizons and the light cylinder. We use a
formal expansion of the metric functions in local coor-
dinates adapted to the singularities. In Sec. IV we study
the linearized Einstein equations on a Minkowski back-
ground asymptotically in terms of formal expansions of
the metric. We discuss the Weyl tensor and the Komar
integral. In Sec. V we add some concluding remarks.
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II. QUOTIENT SPACE METRICS
AND ERNST EQUATIONS

The existence of a Killing vector can be used to estab-
lish a simplified version of the field equations by dividing
out the group action. These quotient space metrics were
first used in [34]; see also [35]. Here we will follow [37].
We use adapted coordinates in which the Killing vector �
is given by � � @t where t is not necessarily a timelike
coordinate. The norm of the Killing vector will be de-
noted by f. The decomposition we are using is not defined
at the fixed points of the group action, i.e. the zeros of f,
and the resulting equations will be singular at the set of
zeros of f. The behavior of the solutions at these singular
points will be discussed in the following section by study-
ing formal expansions of the metric in the vicinity of the
fixed points.

In contrast to a standard 3� 1-decomposition, the met-
ric is written in this approach in the form

ds2 � �f�dt� kadxa��dt� kbdxb� �
1

f
habdxadxb; (1)

Latin indices always take the values 1,2,3, corresponding
to the spatial coordinates. The Einstein equations in vac-
uum imply a Maxwell-type equation for what corre-
sponds to the momentum constraint in a standard
3� 1-decomposition (see [37]),

1

2
Da�f2kab� � 0; (2)

where kab � kb;a � ka;b (Da denotes the covariant deriva-
tive with respect to hab). Notice that all indices here are
raised and lowered with hab. If we define the twist po-
tential b via (�abc is the tensor density with �123 � 1=

���
h

p
)

kab �
1���
h

p
f2
�abcb;c; (3)

where h is the determinant of hab, then Eq. (2) is identi-
cally satisfied. The potentials f and b can be combined to
the complex Ernst potential E � f� ib [38]. The equa-
tions for f and the integrability condition for b can then
be combined to the generalized complex Ernst equation
(the Ernst equation was originally obtained for the sta-
tionary axisymmetric case in [38])

fDaD
aE � DaED

aE: (4)

The four constraint equations in the standard 3�
1-decomposition are thus replaced by a single scalar
complex equation which is an advantage both for the
analytical and the numerical treatment.

The equations for the metric hab can be written in the
form

Rab �
1

2f2
<�E;a �E;b�; (5)
-3
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where Rab is the three-dimensional Ricci tensor corre-
sponding to hab. Equation (5) describes three-
dimensional gravitation with some matter model which
turns out to be a SL�2;R�=SO�1; 1� sigma model, see [39].
It is obvious that zeros of the norm of the Killing vector
are singular points of the equations.

To illustrate the above equations in the presence of a
helical Killing vector, it is instructive to consider
Minkowski spacetime in a rotating frame. In an asymp-
totically nonrotating frame, the Minkowski metric in
standard cylindrical coordinates is in the above formal-
ism for the stationary Killing vector given by f � 1, b �
0, and hab � diag�1; 1; �2�. In a rotating coordinate sys-
tem where �0 � ���t with constant �, we get for a
helical Killing vector � � @t ��@� (notice that there is
a helical Killing vector in Minkowski spacetime for
arbitrary �)

f0 � 1��2�2; b0 � �2�z; (6)

where we have put a physically irrelevant constant in the
definition of the twist potential equal to zero. Since the
spatial metric hab in (1) is rescaled by f, we have h0ab �
f0hab except for h0�� which is invariant under a trans-
formation to a rotating frame. The light cylinder where
the rotating observers corresponding to the vector � move
with the velocity of light is given in this case by � �
1=�. In the interior of this cylinder, the Killing vector is
timelike and f is thus positive, in the exterior it is space-
like. At the cylinder the signature of the metric hab
changes from �3 to �1. In the four-dimensional picture
there is no change in the signature of the metric but t and
� change roles at the light cylinder, � being a timelike
coordinate in the exterior of the cylinder.

The Ernst equation takes in nonrotating coordinates
the simple form

f�E � �rE�2; (7)

where � and r are the standard differential operators in
cylindrical coordinates. In the rotating frame, the Laplace
operator is replaced with the linear operator L defined by

L :� @�� �
1

�
@� � @zz � �1��2�2�

1

�2 @��; (8)

which is just the helically reduced flat d’Alembert opera-
tor in a rotating frame. In the axisymmetric case (no
�-dependence) L reduces to the flat Laplace operator. In
the nonaxisymmetric case solutions to the equation LE �
0 behave for small � like solutions to the Laplace equation
and for large � like solutions to a hyperbolic equation.
Separating the angular dependence in spherical coordi-
nates in a standard way via spherical harmonics, E �P
lmRlm�r�Ylm��;��, one recognizes that the solutions of

LE � 0 behave close to the origin as rl like solutions to
the Laplace equation and for r! 1 as ei�r=r. One has
thus to expect an oscillatory behavior for large r.
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Numerical studies of this type of equations have been
carried out in [4,5,29–31]. In general, Sommerfeld con-
ditions (outgoing wave condition at finite values of r)
have been used. Existence and uniqueness of solutions
to boundary value problems for these equations were
studied in [26] using the theory of symmetric positive
systems.

In the stationary axisymmetric case the above equa-
tions can be further simplified. It can be shown (see e.g.
[40]) that the spatial metric can be written in this case in
the form hab � diag�e2k; e2k; �2�. In this case the Ernst
equation decouples from the equations for the metric
function k and takes the form (7) for a �-independent
Ernst potential. The metric function k follows for a given
Ernst potential in terms of a line integral. In this formal-
ism the Kerr solution for a single black hole with mass m
and angular momentum J � m2 sin’ takes a particularly
simple form,

E �
e�i’r� � ei’r� � 2m cos’
e�i’r� � ei’r� � 2m cos’

; (9)

where r� �
�����������������������������������������
�z�m cos’�2 � �2

p
, and where the horizon

is given by � � 0 and jzj � m cos’.
Here we consider spacetimes with a single helical

Killing vector. We adopt the definition of Friedman
et al. [8] that the Killing vector can be written in the
form � � @t0 ��@�0 where @�0 is a spacelike vector with
circular orbits of length 2� unless it vanishes. The vector
@t0 is timelike outside the history of some sphere, � is a
constant, see [8] for details. This vector generalizes the
helical Killing vector of Minkowski spacetime discussed
above. It corresponds to the introduction of observers
corotating with the binary system. Close to the black
holes this vector will be timelike, but it will become
null if these observers rotate with the velocity of light
which determines the so-called light cylinder.
III. 2� 1-DECOMPOSITION, HORIZONS AND
LIGHT CYLINDER

In this work we are interested in spacetimes with a
helical Killing vector that contain binary black holes.
Since it was shown in [8] that spatially compact Killing
horizons in this case are event horizons, we are interested
in spacetimes with two disconnected Killing horizons of
spherical topology.

With this assumption it seems convenient to introduce
two systems of spherical coordinates adapted to the hori-
zons in a way that one of them is given by r � R � const.
We assume that the spacetime can be globally foliated by
spheres which is not necessary for the analysis below
but for the planned numerical implementation. Since
Eq. (5) describes a model of three-dimensional
gravity, it seems natural to use a 2� 1 decomposition
of the three-space with respect to the radial coordinate.
-4
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Let N a � �A; 0; 0� and N a � �1;�B �=A be the unit
normal to the r � const surfaces; Greek indices take the
values two and three. Denoting the metric of the r �
const surfaces with s !, we can write the metric hab in
the form

habdx
adxb � s !�dx

 �B dr��dx! �B!dr� �A2dr2:

(10)

The Ricci tensor splits in the standard way (see e.g. [41])
in three evolution equations which contain second deriva-
tives with respect to r,

R ! � r� 
_N !� � 2K "K

"
! � _N  

_N ! �LNK !

� R�2�
 ! �K !K; (11)

where � !� denotes symmetrization, and three ‘‘con-
straint’’ equations below. Here K ! with K � K 

 is
the exterior curvature of the r � const surfaces given by

K  ! �
1

A

�
r

� B!� �
1

2
s !;r

�
; (12)

where r denotes the covariant derivative associated to
s !. The Lie derivative of K ! in the direction of N is
denoted by LNK !,

LNK ! � K !;r
1

A
�K !;"

B"

A
�K "

�
B"

A

�
;!

�K!"

�
B"

A

�
; 
; (13)

and _N  � ��lnA�; . The two equations corresponding
to the momentum constraint in the standard 3�
1-decomposition read

�Ra N a � r!K
!
 �r K

!
!; (14)

the Hamiltonian constraint is given by

RabN aN b � s !R ! � K2 �K !K
 ! � R�2�;

(15)

where R�2� � s !R�2�
 !. In the above equations, Greek in-

dices are raised and lowered with s ! and its inverse.
For concrete calculations one has to fix a gauge. Since

we are considering horizons of spherical topology and an
adapted coordinate system, a natural choice of the metric
s ! would be the standard metric of the two-sphere. This
is in general possible for smooth metrics which we are
interested in here since we are looking for regular hori-
zons. Because of the fact that the spatial metric hab is
rescaled by the norm of the Killing vector which vanishes
at the horizon, the metric hab is expected to vanish there
as well. A possible choice would then be a metric confor-
mal to the metric of the two-sphere,

s ! � fr2diag�1; sin2��: (16)
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This gauge will be convenient in the vicinity of the
horizon. As the considerations for Minkowski spacetime
in the previous section have shown, this choice is not
possible across the light cylinder because of the signature
change of the spatial metric there. Since we are interested
in setting up equations suited for numerical treatment, we
are looking for a system of coordinates which is able to
cover the whole spacetime in the exterior of the horizon
with a single coordinate patch. This could be possible
with coordinates in which the angular part g ! of the
four-dimensional metric is the standard metric of the
two-sphere as in Schwarzschild coordinates. The latter
would imply however the explicit inclusion of the vector
ka in the equations which is contrary to the philosophy of
the present approach to work only with its dual, the scalar
twist potential b.

Therefore we choose here a generalized Weyl gauge
which we call ‘‘quasi-isotropic’’. We write

s ! � diag�r2A2;C�: (17)

A possible choice for C is C � r2sin2��1� R2=r2�2. This
corresponds to standard Weyl coordinates in which the
horizon of a Kerr black hole is a sphere of radius R. These
coordinates are related to the coordinates (9) via � �
�r� R2=r� sin� and z � �r� R2=r� cos�. The quasi-
isotropic gauge thus reduces to the standard Weyl coor-
dinates in the axisymmetric case. It can be used in
principle throughout the light cylinder, but it remains to
be shown whether it can be used globally. Due to the
divergence structure of the Ernst Eq. (4) which can be
written free of covariant derivatives in the form

f�hab
���
h

p
E;a�;b � hab

���
h

p
E;aE;b; (18)

the equation has in this gauge the standard terms of the
Laplace operator for the rr and �� derivatives. This helps
in the numerical treatment of the equations since stand-
ardized differential operators can be numerically in-
verted. In this gauge we have the nonvanishing
Christoffel symbols corresponding to s !

�2
22 � �lnA�;�; �2

23 � �lnA�;�;

�2
33 � �

1

A2 �1� R2=r2�2 sin� cos�;
(19)

and

�3
22 � �

AA;�

�1� R2=r2�2sin2�
; �3

23 � cot�: (20)

The components of the Ricci tensor read R�2�
23 � 0 and

�R�2�
22 � �

A2

�1� R2=r2�2sin2�
R�2�
33

�
AA;��

�1� R2=r2�2sin2�
� 1� cot��lnA�;�: (21)
-5
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The equations for Rab can be treated as in the case of a
3� 1-decomposition: if the constraints are satisfied for
some value of r, this will be the case for solutions to the
evolution equations for all values of r. Since the horizon is
a singularity for the equations, one has to give boundary
conditions there which are compatible with the con-
straints and the evolution equations. With these boundary
conditions one has to solve the Ernst equation which
corresponds to two real equations and the three evolution
Eqs. (11)1. Thus one has to solve in total five equations as
in the case of the IWM problem in [22]. The difference is
here that the equations are not elliptic in the exterior of
the light cylinder in contrast to the IWM equations and
that the spacetime will not be asymptotically flat as
discussed in the following section.

To study the behavior of the metric at the horizon, we
use formal power series in the local coordinate y � r�
R. As in the case of ordinary differential equations, we
adopt for a function F�r; �; �� the ansatz

F�r; �; �� � ynF
X1
j�0

Fj��;��y
j; (22)

but here with coefficients Fj��;�� depending on � and �.
The question is whether there are formal solutions to the
Einstein equations of this form with vanishing norm f of
the Killing vector for y � 0 which are more general than
the Kerr solution for a single black hole. Here we are only
interested in providing formal solutions intended for the
use in the numerical treatment. Therefore we do neither
discuss the convergence of the series nor global questions.
We get (again we ignore a physically irrelevant constant
in the definition of b):

Proposition 3.1. In the gauge (17), the Eqs. (4) and (5)
have formal solutions of the form (22) with
1As in [42], a fully constraint approach can be used alter-
natively in the sense that only the constraint equations instead
of the evolution equations are solved.
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f � f0��;��y
2 � f1��;��y

3 � f2��;��y
4 � . . . ;

b � b0��;��y4 � b1��;��y5 � b2��;��y6 � . . . ;
(23)

and

A � A0��;��y

�A1��;��y2 �A2��;��y3 � . . . ;

B2 � �0��;��y
3 � . . . ;

B3 � �0��;��y
3 � . . . :

(24)

The functions f0��;�� and b0��;�� are free functions of
� and � with f0;��0; �� � 0. All other coefficient func-
tions in the expansions (23) and (24) can be expressed in
dependence of f0��;�� and b0��;��, the leading order
terms being

A0��;�� � *f0��;��;
A1

A0
� �

3

2R
;

f1 � �
f0
R
; b1 � �

2b0
R
;

(25)

where the constant * is given by * � 2=�Rf0�0; 0��.
The constant * in the relation between A0 and f0

indicates a freedom in the choice of f0�0; 0�. This free-
dom is due to the fact that a scale in the norm of the
Killing vector is not fixed, after multiplication with some
constant, � is still a Killing vector.

Proof: With (23) and (24) , we get for the exterior
curvature (12) by using (19) and (20)
K22 � �A0�R2 � 3Ry� 2y2� �A1�2R2y� 5Ry2� � 3R2A2y2 � ��0;� � �lnA0�;��0�
y2

A0

�
R2A0;��0

4sin2�
y2 � 0�y3�;

K23 �

�
1

2
�0;� � �lnA0�;��0

�
y2

A0
�

�
1

2
�0;� � cot��0

�
y2

A0
� 0�y3�;

K33 � �
4

A0
sin2�

�
1�

3

2R
y�

5y2

2R2 �
A1

A0
y
�
1�

3y
2R

�
�

A2
1

A2
0

y2 �
A2

A0
y2
�
��0;�

y2

A0
�

4 sin� cos�

R2A3
0

�0y2 � 0�y3�:

(26)
It is straight forward to check that the Hamiltonian
constraint (15) is satisfied to leading order (which is
1=y4). The momentum constraint (14) leads in lowest
order to
�lnA0�; � �lnf0�; : (27)

Thus we have A0 � *f0 with * � const.
To ensure a regular axis (� � 0) in spherical coordi-

nates, the axis must be ‘‘elementary flat’’, i.e. small circles
around the axis must have an invariant circumference of
2� times the invariant radius in the limit of vanishing
radius. This means for � � r sin�, z � r cos�,
-6
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lim
�!0

Z 2�

0

���������
g��

p
d� � 2�lim

�!0

Z �

0

��������������������������
g����

0; z; ��
q

d�0:

(28)

With the above relations this implies (ka is bounded at the
horizon)

r sin�
�
1�

R2

r2

�
1

2�

Z 2�

0

1��������������������
f�r; 0; ��

p d� �
A�r; 0; ����������������������
f�r; 0; ��

p :

(29)

Expanding this relation in y and using (23), (24), and
(27), we get in lowest order of y the condition that
f0�0; �� must be independent of � and thus be a constant.
This constant is related to * via

* �
2

Rf0�0; 0�
: (30)

The Ernst equation (4) is satisfied in leading order for
arbitrary f0��;�� and b0��;��, in the next higher order
124026
the real part implies

f1 �
f0
R

� 0; (31)

whereas the imaginary part leads to

�8b0f1 �
2

R
b0f0 � 5b1f0 � 0: (32)

This determines f1 and b1 in dependence of f0 and b0. In
order yn, the leading terms in the real part of the Ernst
equation are

�n� 2�2f0fn�2 (33)

and

n�n� 4�f0bn�4 � 8�2� n�b0fn�2 (34)

for the imaginary part. The Ernst equation can thus be
used all orders to determine fn�2 and bn�4 in dependence
of quantities of lower order.

With (26) we get for the Lie derivative of the exterior
curvature (13)
LNK22 � �
1

y

�
3R� 2R2 A1

A0

�
� 4� 7R

A1

A0
� 2R2 A

2
1

A2
0

� 6R2 A2

A0
�

4�0;�

A2
0

� 7�lnA0�;�
�0

A2
0

�
3R2�lnA0�;��0

4sin2�
� 0�y�

LNK23 �
1

A2
0

�2�0;� � 5�lnA0�;��0 � 2�0;� � 4 cot��0 � �lnA0�;��0� � 0�y�

LNK33 �
4sin2�

A2
0y

�
3

2R
�

A1

A0

�
�

4sin2�

A2
0

�
5

R2 �
9A1

2RA0
�

3A2
1

A2
0

�
2A2

A0

�
� 16 sin� cos�

�0

R2A4
0

� 4sin2��lnA0�;�
�0

R2A4
0

�
4�0;�

A2
0

� 3�lnA0�;�
�0

A2
0

� 0�y�:

(35)
Since there are second order derivatives with respect to r
in the evolution equations as in the Ernst equation, higher
order terms in the expansion of the metric functions will
appear here before they do in the constraints. Therefore
there are no further conditions on the lowest order terms.
In order 1=y the equation for R22 (there are no contribu-
tions from the Ernst potential in this order) leads to

R2

y

�
3

2R
�

A1

A0

�
� 0: (36)

This implies that there are no terms of order y in the
exterior curvature (26) and no terms of order 1=y in the
Lie-derivatives (35).

The leading terms in order yn�3 in the evolution equa-
tions are for n > 2 in R22
�R2�1� n�2
An�1

A0
�

1

A2
0

�n�n�3;� � �n� 3��lnA0�;�

��n�3 � cot��n�3� �
R2

4sin2�
��n�3;� � �n� 1�

� �lnA0�;��n�3�: (37)

Similarly we get for R23

1

2A2
0

��n� 1��n�3;� � 2n�lnA0�;��n�3

� �n� 1��n�3;� � 2�n� 1� cot��n�3

� 2�lnA0�;��n�3�; (38)

and for R33
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4sin2�

R2A4
0

��n�3;� � 2�lnA0�;��n�3 � n cot��n�3�

�
1

A2
0

�n�n�3;� � 2�lnA0�;��n�3�: (39)

It is straight forward to solve the Eqs. (38) and (39) for
�n�3 and �n�3. Function An�1 then follows from
Eq. (37). The Ernst equations (33) and (34) determine
consequently fn�2 and bn�4. We have thus shown that the
evolution equations and the Ernst equation can be solved
in this way to all orders. This completes the proof.

The fact that An�1 does not appear in Eqs. (38) and
(39) implies that � and � can be chosen to vanish for
�-independent f0 and b0. This leads as expected to the
Kerr solution. Note that fn�2, bn�4 and An�1 are deter-
mined algebraically by the above equations. Just to de-
termine �n�1 and �n�1, one has to integrate which leads
to free integration functions. The latter are related to the
fact that the used gauge conditions do not fix the gauge
completely. There are transformations of the form

r0 � r� y3P��;�� � . . . ;

�0 � �� y2S��;�� � . . . ;

�0 � �� y2T��;�� � . . .
(40)

for nontrivial P, S and T which do not change the gauge.
Since h0r� � hr� � h��2yS and similarly for hr�, there are
gauge modes in � and � which show up in the form of
free integration functions.

Remark 3.1. Because of the homogeneity of the Ernst
equation in the Ernst potential, the functions f0��;�� and
b0��;�� are not determined in the above expansions in
the vicinity of a horizon. This gives hope that there might
be a second regular horizon of spherical topology in the
spacetime for a suitable choice of these functions.
Whereas the behavior of the Ernst potential with respect
to y is the same as in the case of a single Kerr black hole,
the functions f0 and b0 may be different.

To treat the light cylinder we use a similar approach as
for the horizon. By the definition of the Killing vector of
[8] we are using here, the light cylinder will have cylin-
drical topology. We assume that the spacetime can be
foliated by cylindrical surfaces, and use cylindrical co-
ordinates in which the light cylinder is given by � �
�0 � const. In an abuse of notation we use the same
symbols for the 2� 1-decomposition as used for the
spherical case,

habdx
adxb � s !�dx

 �B d���dx! �B!d��

�A2dr2; (41)

where dx2 � dz. We use again the quasi-isotropic gauge
which reads in this case
124026
s ! � diag�A2;C�: (42)

The choice C � �2 is possible near the cylinder.
We assume that f has a zero of first order in v � ��

�0 at the cylinder since the Killing vector is supposed to
change from timelike to spacelike there. Again we con-
sider formal expansions of the metric function of the form

F��; z;�� � vnF
X1
j�0

Fj�z;��v
j: (43)

We get:
Proposition 3.2. In the gauge (42) Eqs. (4) and (5) have

formal power series solutions of the form (43) with

f � f0�z�v� f1�z; ��v
2 � . . . ;

b � b0�z� � b2�z; ��v
2 � . . . ;

A � A0�z�
���
v

p
�A1�z;��v

3
2 � . . . ;

B2 � Z0�z;��v2 � . . . ;

B3 � �0�z; ��v:

(44)

The functions b0�z�, A0�z� and f2�z;�� are free functions
of z and z; � respectively. All other coefficient functions
in the expansion (44) can be expressed in dependence of
b0, A0 and f2, the leading term being

b20;z � f20: (45)

Proof: The formulas for the 2� 1-decomposition in
Sec. II apply with the trivial change that r has to be
replaced by �. The chosen gauge is also very similar to
the one used for the horizon, the only difference being the
factor r2 in the expression for s22. Therefore we will not
give explicit formulas for the Christoffel symbols and
R�2�
 ! here. For the exterior curvature (12), we get with (44)

K22 � �
A0

2
���
v

p �
3

2
A1

���
v

p
� 0�v

3
2�;

K23 �

���
v

p

2A0
�0;z � 0�v

3
2�;

K33 � �
�

A0

���
v

p

�
1�

A1

A0
v
�
�

���
v

p

A0
�0;� � 0�v

3
2�:

(46)

This implies for the Lie derivative of the exterior curva-
ture

LNK22 �
1

4v2
�

A1

A0v
� 0�v0�;

LNK23 �
1

4A2
0v

�0;z � 0�v0�;

LNK33 �
�0

2A2
0v

2 �
1

2A2
0v

�
�0;�

2A2
0v

� 0�v0�:

(47)

In lowest order, the equation for R22 then yields (45),
whereas the relations for R23 and R33 can only be satisfied
-8
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in this case for

b0;� � 0: (48)

The z-component of the momentum constraint implies

2b0;zb2 � f0;zf0 �
Z0

A2
0

b20;z � 0; (49)

which determines b2, whereas the �-component of the
momentum constraint gives

A 0;� � 0: (50)

With condition (45) the Hamiltonian constraint is satis-
fied to leading order.

The real part of the Ernst equation gives no additional
condition in leading order, in order v it leads to

f1 �
f0
2�0

: (51)

The imaginary part gives with (45) in leading order (50).
Consequently b2 and f1 are determined in this order.

The equation for R22 reads with (11) in order 1=v

A1

A0
�

1

�0
: (52)

In the same order R23 is identically satisfied. R33 takes the
form

0 �
2A1

A0
�

1

�0
�0;�: (53)

This fixes �0 and A1. Thus the functions b0�z� and
A0�z� are not determined by the above equations. In
addition Z0 is not yet fixed.

In higher orders of the expansion, the reasoning will be
similar since the general structure of the equations is the
same: the Ernst equation in order vn�1 with n > 1 con-
tains the leading terms n�n� 3�f0fn�1 and

n�n� 3�bn � 2b0;z
Zn�2

A2
0

(54)

in the real and the imaginary part, respectively. The
evolution equations in order vn�2 contain the leading
terms

�
bn;z
b0;z

�

�
n2 � n�

1

4

�
An

A0
�

1

A2
0

��
n�

1

2

�
Zn�2;z

� �n� 2��lnA0�;zZn�2

�
; (55)

�A2
0

bn;�
b0;z

� nZn�1;� �

�
n�

1

2

�
�n�1;z; (56)

and
124026
�2n� 1�
An

A0
�

n
2�0

�n�1;� �
1

A2
0

Zn�2;z: (57)

Thus one can determine fn�1, bn, An, Zn�1 and �n�1

from the above equations unless n � 3. In this case the
real part of the Ernst equation determines the function Z0

which was still free, the function f2 remains undeter-
mined. The equations in higher order fix all expansion
functions except A0, b0 and f2. Free functions in Z and
� occurring after integration are again related to residual
gauge freedoms as was the case in the vicinity of the
horizon. Thus the series (44) provide a formal solution in
the vicinity of the light cylinder. This completes the proof.

Remark 3.2. It should be possible to apply Fuchsian
methods as in [33] to prove existence of the above solu-
tions near the horizon and the light cylinder for some
nonvanishing radius of convergence. However this would
not answer the decisive question whether there can be two
smooth horizons and a smooth light cylinder in the space-
time. Therefore we will not apply these methods here.
IV. ASYMPTOTIC BEHAVIOR

The formal solutions in terms of a series in the vicinity
of the two horizons and the light cylinder in the previous
section obviously do not imply global existence of a
solution describing a spacetime with a helical Killing
vector and two regular Killing horizons. The radius of
convergence of these series is unknown. Therefore it is
also not possible to make precise statements on the
asymptotic behavior of the metric. As shown in [6] such
spacetimes cannot be asymptotically flat in the strong
sense that they have a smooth null infinity. However
this does not exclude the possibility that the spacetime
is weakly asymptotically flat in the sense that the space-
time tends to the Minkowski spacetime. This is what we
will show in this section though the assumption of an
asymptotic Minkowski metric might be too strong as
indicated by the work of [36]. However the used tech-
niques will also be applicable for even weaker asymptotic
conditions.

Since the coordinate system we were using in the
previous sections is asymptotically rotating (see the con-
siderations for Minkowski spacetime in Sec. II), the Ernst
potential is expected to have the kinematic terms (6).
These terms will lead to technical difficulties if one wants
to consider an expansion of the metric functions in
powers of 1=r. Therefore we will consider in this section
asymptotically nonrotating coordinates �t0; r; �;�0� where
�0 � ���t, t0 � t. The metric will be studied via the
linearized Einstein equations on a Minkowski back-
ground. Because of the helical symmetry the metric
functions depend on t0 and �0 only via the combination
x � �0 ��t0.

We assume the metric to be of the form gAB � 2AB �
3AB (capital indices take the values 0,1,2,3) for r! 1
-9
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where 2AB � diag��1; 1; r2; r2sin2�� is the Minkowski
metric in spherical coordinates, and where 3AB gives the
deviation from Minkowski spacetime for large r. In
Cartesian coordinates 3AB is assumed to be of order
1=r. An analysis of the equations as in Sec. II indicates
however that the terms of order 1=r will have an oscil-
latory dependence in r (we exclude here possible loga-
rithmic terms in the metric function). We will therefore
consider a formal expansion of the metric functions of the
form

F�r; �;�� �
X1
j�0

Fj�r; �; x�

rnF�j
; (58)

where the r-dependence of the Fj is to be understood to be
purely oscillatory. In spherical coordinates we expect for
the algebraic dependence on r that 300, 301 and 311 are of
order 1=r, that 302, 303, 312 and 313 are of order r0, and
that 322, 323 and 333 are of order r. We note that this
ansatz for 303 allows for a so-called Newman-Unti-
Tamburini parameter which corresponds to a magnetic
monopole in electrodynamics. It is unclear whether such
terms have to be expected in the present context, and the
used methods are not suited to answer this question.

To fix the gauge freedom we consider coordinate trans-
formations of the form below which do not change 2AB to
leading order. The wanted gauge transformations can be
put into the form

~t � t�
T�r; �; x� �  x

r
;

~r � r� !�
R�r; �; x�

r
;

~� � ��
Q�r; �; x� � "x

r2
;

~� � ��
P�r; �; x�

r2
;

(59)

where the r- and x-dependence of the potentials T, R, Q
and P is understood as before to be purely oscillatory, and
where  , ! and " are functions of � only. This implies for
the transformed Minkowski metric in leading order

~g00 � �1�
2�

r
�T;x �  �; ~g01 � �

1

r
�T;r ��R;x�;

~g02 � ���Q;x � "�; ~g03 � ��sin2�P;x;

~g11 � 1�
2

r
R;r; ~g12 � Q;r; ~g13 � sin2�P;r;

~g22 � r2
�
1�

2!
r

�
; ~g23 � Q;x � sin2�P;�;

~g33 � r2sin2�
�
1�

2!
r

�
:

(60)

For metrics obtained by solving the linearized Einstein
equations on a Minkowski background, this implies that
the functions T to P in (60) can be used to establish a
124026
certain gauge. By an appropriate choice of P, we can
choose ~g23 to vanish under the made assumptions. By
considering higher orders of this expansion, this should
be possible to all orders. Similarly by choosing R and !
we obtain ~g22 � r2~g11. The additional freedom can be
used to have a vanishing 300 and g02. We assume that the
gauge potentials T, R, Q and P are of the form T �P
m2Z�T

�
m ���eim�x��r� � T�

m ���eim�x��r��. Therefore we
had to add the functions  , ! and " depending only on
� to make sure that terms in the 3AB which are constant
with respect to x can be compensated. This would lead,
however, to terms proportional to x in 300 and 302.
Therefore we allow for a purely �-dependent 300 and
302 which will not enter the linearized field equations
to retain periodic potentials in x and r. Dropping the
tilde, we thus choose the gauge (which is not exactly
the equivalent one used in the previous section, but close
to it)

g00 � �

�
1�

f0���
r

�
; g01 �

c
r
; g03 � a;

g33 � r2sin2�
�
1�

F
r

�
;

(61)

and
g02 � h0���; g11 �

1

r2
g22 � 1�

A
r
;

g12 �
�

r
; g13 � �:

(62)

The gauge is fixed up to a free function of r;� in a, and
functions of � only in c, �, and �, since we assume
periodicity in r and x of the terms Fn�r; �; x� in (58).
There could be a contribution in order r0 to �, but this
must be a function of � alone as a consequence of the
Einstein equations below and the periodicity condition in
r. We put this function equal to zero here to fix a gauge
freedom. This implies in leading order for the inverse
metric
g00 � �

�
1�

f0
r

�
; g01 �

c
r
; g03 �

a

r2sin2�
;

g33 �
1

r2sin2�

�
1�

F
r

�
;

(63)

and
g02 �

h0
r2
; g11 � r2g22 � 1�

A
r
;

g13 � �
�

r2sin2�
; g12 � �

�

r3
:

(64)

We obtain:
Proposition 4.1. The linearized Einstein equations on a

Minkowski background for the metric (61) and (62) lead
to two wave equations for the functions A and a,

A;rr ��2A;�� � 0; a;rr ��2a;�� � 0: (65)

The remaining metric potentials follow in terms of
quadratures.
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Proof: With relation

Rabcd �
1

2
�gad;bc � gbc;ad � gac;bd � gbd;ac� (66)

for the linearized Riemann tensor we get for the Ricci tensor in lowest order in 1=r

2rR00 � �2�c;r� � 2�2A;�� ��2F;��; 2rR01 � ��A� F�;r�; 2rR02 � c;r� ���;r� ���A� F�;��;

2R03 � ���;r� � a;rr; 2rR11 � 2�c;r� ��2A;�� � �A� F�;rr; 2rR12 � �c;�� � F;r� ��2�;��;

2R13 � �a;r� ��2�;��;
2

r
R22 � �2A;�� � A;rr; 2R23 � �a;�� ��;r�;

2

rsin2�
R33 � �2F;�� � F;rr:

(67)
It is a consequence of the equations for R03 and R13 that

��;� � a;r � G1���; (68)

where G1 is a free function of � only which is gauge
invariant under transformations of the form (59). The
equation for R23 then implies

�2a;�� � a;rr � G2�r;��; (69)

where G2 is a free function of r and � which reflects a
gauge freedom and can be put equal to zero. Equation (69)
represents the first of the two wave equations.We write the
solution in the form of a Fourier series

a �
X
m2Z

eim��a�m���ei�mr � a�m���e�i�mr�: (70)

The reality condition for a implies a��m � �a�m . Thus we
get for �

� � �
X
m2Z

eim��a�m���e
i�mr � a�m���e

�i�mr�

�G0���: (71)

The equation for R01 implies

A� F � G3��;�� �G6��; r�: (72)

It is then a consequence of R22 (R33 is identically satisfied)
that

A �
X
m2Z

eim��A�
m���e

i�mr � A�
m���e

�i�mr�: (73)

This gives the second wave equation. Again reality of A
implies A�

�m � �A�
m .

Equations R00 and R11 lead to

c � �
�

2

Z r

r0
A;�dr�G4���: (74)

These equations also determine that the right-hand side
of (72) is only a function of � if the periodicity in r and�
is taken into account. Equations R02 and R12 then imply

� � �
1

2

Z r

r0
A;�dr�G5���: (75)

This completes the proof.
124026
Remark 4.1. If the black holes have equal ‘‘mass’’, i.e.
equal combination of mass and angular momentum which
can be defined via the Komar integral below, the space-
time has an additional discrete symmetry; it is invariant
in a suitably defined coordinate system under the trans-
formation �! ��. This implies for (70) and (73) A�

m �
�A�
m and a�m � �a�m . In this case no additional boundary

conditions at infinity need to be given. A Sommerfeld
condition which is typically considered at finite radius
would only allow trivial solutions in this example if
imposed at infinity.

In case the functions a and � have leading terms of
order 1=r, i.e., if there is no NUT-parameter, the follow-
ing equations for the Ricci tensor (67) change

2rR03 � c;r� ���;r� � a;rr � 2�A;��;

2rR13 � �a;r� ��c;�� � A;r� ��2�;��;

2rR23 � �a;�� ��;r� ��;r� � A;��:

(76)

These equations again imply wave Eq. (69) for a and

� � �
1

�

Z �

�0

a;rd��
3

2

Z r

r0
A;�dr�G7��; r�: (77)

The ansatz (58) already implies that the ADM mass
and additional asymptotic multipoles cannot be defined
due to the oscillatory behavior of the metric functions.We
will show that it is also not possible to use the Komar
integral asymptotically in a standard way to define a
conserved quantity. This integral can be used to relate a
locally calculated mass to the ADM mass for an asymp-
totically flat spacetime with a stationary Killing vector.
The idea is to evaluate a surface integral at finite radius R
and then to take the limit R! 1. Basically one uses that
?d� is an exact differential which means that one can
apply Gauss’ theorem. We get for an integration over a
sphere with t � const, r � const,

Z
S
��A;B�g

0Ag1B
�������
�g

p
d�d� � 0: (78)

To calculate the integral near the horizon we need the
inverse of the four-dimensional metric
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g00 � �
1

f
� fkaka; g0a � �fka;

gab � fhab;
(79)

where spatial indices are raised and lowered with hab. In
the quasi-isotropic gauge we get with the results of
Sec. III for the surface integral that only the term

Z
S

�������
�g

p
d�d�g00g11��0;1� (80)

contributes. This leads with A0 � *f0 to

1

2

Z
S
sin�d�d�

f;r
A

�
4�
*
: (81)

For a single black hole the constant * � 1=�2m�. The
Komar integral is of course only defined up to a scaling
of the helical Killing vector, see the remarks in [8].

To check whether the surface integral can be defined
for r! 1, we determine the integral for r � r0 where
r0 � R and study whether the limit r0 ! 1 exists. This
could be possible if one uses the periodicity of the func-
tions in� in the�-integration over a complete period at a
finite value of r. As we will show below, this will not be
the case because of the bilinear terms in the integrand.
Note that the Killing vector reads in the used coordinates
� � @t0 ��@�0 . It is readily seen that the integral can
only exist ifG1 � 0, since the corresponding terms in the
integrand are of order r2. If we assume that this is the
case, we get for the surface integral

1

2

Z
S
r sin�d�d���2�F;� � a��2� F;r��: (82)

The integral can only exist if these terms vanish after
integration with respect to � since the integrand diverges
as r. Writing the integrands as a Fourier series as we have
done in the proof of proposition 4.1, we get after integra-
tion with respect to� that the integrand is proportional to

a�0 � a�0 � i�
X
m2Z

m�a�m �A�
me

2i�mr � a�m �A�
me

�2i�mr�:

(83)

This expression can only vanish if a�m �A�
m � �a�mA�

m � 0 for
m> 0. In the equal mass case, this is only possible if
either am or Am vanish. If a and � have leading contri-
butions in order 1=r as in remark 4.2, the terms of order
0�r0� in the surface integral are due to (80) and are of the
form X

m2Z

m�A�
m
�A�
me

2i�mr � A�
m
�A�
me

�2i�mr�: (84)

The integral can only exist if the terms A�
mA

�
m vanish for

all m � 0. Since there cannot be purely ‘‘outgoing’’ or
‘‘ingoing’’ waves in the case of a helical Killing vector,
this condition will lead to the axisymmetric case. Thus
the surface integral cannot be defined asymptotically in
124026
the presence of a helical Killing vector unless there is in
addition an asymptotically axial Killing vector. In this
case the integral just gives the expected value M��J,
the combination of mass and angular momentum corre-
sponding to a helical Killing vector.

Gibbons and Stewart [6] showed that periodic bound-
ary conditions are incompatible with a smooth null in-
finity. This is in accordance with the ansatz (58) as can be
seen from the following consideration: We define the
standard null-tetrad of Minkowski spacetime,

ka �
1���
2

p �@t0 � @r�; ma �
1���
2

p ��@t0 � @r�;

ta �
1���
2

p
r

�
@� �

i
sin�

@�0

�
;

(85)

We define theWeyl scalars as in [43] (we can use the above
tetrad since we are only considering a linearization on a
Minkowski background)

C1 � 2Cabcdmamctbtd;

C2 � �Cabcdm
atb�kcmd � �tctd�;

C3 � 2Cabcdmatbkc �td;

C4 � �Cabcdka �tb�kcmd � �tctd�;

C5 � 2Cabcdk
akc �tb �td:

(86)

Determining the components of the Riemann tensor
for the asymptotic metric of proposition 4.1, we get for
the Weyl scalars in leading order

C1 � �
1

2r
�Arr � 2�Ar� ��2A���;

C2 � C3 � C4 � 0;

C5 � �
1

2r
�Arr � 2�Ar� ��2A���:

(87)

Thus the Petrov type is N. The Weyl scalars vanish for
r! 1, but this limit is in general not defined for rCi, i �
1; . . . ; 5 because of the oscillatory behavior of the metric
functions. Thus in accordance with [6], there is no smooth
I and no peeling in this case even if we assume that the
metric tends asymptotically to the Minkowski metric.
V. OUTLOOK

In the previous sections we have given a set of equa-
tions describing binary black hole spacetimes with a
helical Killing vector. The equations have regular singu-
larities at the Killing horizons and the light cylinder, and
a nonregular singularity at infinity. This leads to a set of
five equations which could be useful for a numerical
implementation. The equations appear to be well suited
for the multidomain spectral method used in [22], see
also [44]. It is straight forward to include regular singu-
larities in the spectral formalism in the adapted coordi-
nates we used for the analytical discussion, since the
formal expansions we were discussing is very close to
-12
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the philosophy of a spectral expansion. The main diffi-
culty from a numerical point of view seems to be the
oscillatory behavior at infinity. Typically a cutoff at some
finite radius is used, but it is unclear which boundary
conditions have to be used there. A possibility would be
to match the solution at some large radius to an analytical
solution of the linearized Einstein equations where it is
not yet clear on which background the equations can be
linearized (the asymptotic form of the solutions is still an
open question). The main problem will be in any case the
numerical resolution of the oscillatory metric close to
infinity.

From a mathematical point of view the most interesting
question is whether there exist solutions with two regular
Killing horizons in a vacuum spacetime with a helical
Killing symmetry. In this paper we have only considered
formal expansions of the metric in the vicinity of the
singularities. The fact that the solution close to the hori-
zons contains two free functions of the angular variables
gives hope that such solutions might exist globally, but
this needs to be proven. In case such solutions exist, it
would be interesting to obtain the precise asymptotic
behavior, whether the metric tends to the Minkowski
metric asymptotically, and whether a NUT-parameter is
124026
needed. Numerical results could give hints on how to
answer these mathematical questions.

The physical relevance of the studied model is clearly
to obtain fully relativistic values for the ISCO and to get
initial data for numerical calculations of the last phase of
the binary system. In a real physical situation, the helical
symmetry will be only an approximate symmetry.
Therefore it would be interesting to study perturbations
of a spacetime with an exact helical Killing vector
studied here. There have been activities in this direction:
in [5], the Killing symmetry holds only in a finite region
of space and time, the spacetime is asymptotically
matched to a wave-zone. An approximate Killing vector
was considered in [45].
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