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Dilaton black holes in the de Sitter or anti–de Sitter universe
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Poletti and Wiltshire have shown that, with the exception of a pure cosmological constant, the solution
of a dilaton black hole in the background of de Sitter or anti–de Sitter universe, does not exist in the
presence of one Liouville-type dilaton potential. In this work we obtain the dilaton black-hole solutions in
the background of the de Sitter or anti–de Sitter universe, with the combination of three Liouville-type
dilaton potentials.
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I. INTRODUCTION

Dilaton is a kind of scalar field occurring in the low
energy limit of the string theory where the Einstein action
is supplemented by fields such as axion, gauge fields, and
dilaton coupled in a nontrivial way to other fields. Exact
solutions for charged dilaton black holes in which the
dilaton is coupled to the Maxwell field have been con-
structed by many authors. It is found that the presence of
dilaton has important consequences on the causal structure
and the thermodynamic properties of the black hole [1–9].
Thus much interest has been focused on the study of the
dilaton black holes.

On the other hand, there has also been some renewed
interest in the study of black-hole theories with the cos-
mological constant. Theories with a negative cosmological
constant can be embedded in a supersymmetric setting in
which gauged supergravity theories are obtained in various
dimensions. Gauged supergravities admit anti–de Sitter
(AdS) space-time as a vacuum state, and thus black-hole
solutions of these theories are of physical relevance to the
proposed AdS/CFT (conformal field theory) correspon-
dence [10–15]. In particular, the study of AdS black holes
can give new insights into the nonperturbative structure of
some conformal field theories. Black holes in the back-
ground with a positive cosmological constant, i.e., in
de Sitter space-time, have also attracted some interest
recently, due to the phenomenon of black-hole antievapo-
ration [16]. These black holes could also be relevant to the
proposed duality between the large N limit of Euclidean
four-dimensional U�N� super-Yang-Mills theory and the
so-called type IIB string theory in de Sitter space-time
[17]. Therefore the objective of the present paper is to
find the dilaton black-hole solutions in the de Sitter or
anti–de Sitter space-time.
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In fact, Poletti and Wiltshire [18] have shown that, with
the exception of a pure cosmological constant, no dilaton-
de Sitter or anti–de Sitter black-hole solution exists with
the presence of only one Liouville-type dilaton potential.
Okai, who made investigations using a power series [19],
has been unable to prove unequivocally that dilaton-
de Sitter or anti–de Sitter black-hole solutions do exist.
In this paper, with the combination of three Liouville-type
dilaton potentials, the solutions of dilaton black holes in
the background of de Sitter or anti–de Sitter space-time are
achieved.

The paper is organized as follows. In Sec. II, we will
derive the solution in the cosmic coordinate system with a
new method developed recently by us. In Sec. III, we find
the coordinates transformation which recasts the solution
in the Schwarzschild coordinates system. In Sec. IV, we
deduce the dilaton potential with respect to the cosmologi-
cal constant. In Secs. V and VI, we generalize the solution
to the cases of the arbitrary coupling constant and an
arbitrary number of black holes. In Sec. VII, the horizon
property of the black hole is discussed. We conclude with
some final remarks.
II. DILATON-DE SITTER METRIC IN COSMIC
COORDINATE SYSTEM

The metric of a dilaton black hole in the Schwarzschild
coordinate system is given by

ds2��

�
1�

2M
x

�
dt2�

�
1�

2M
x

�
�1

dx2�x�x�2D�d�2
2;

(1)

where M and D are the mass and dilaton charge of the
black hole, respectively; D is related to the mass M and
electric charge Q as follows:

D �
Q2e2�0

2M
; (2)

where �0 is the asymptotic constant value of the dilaton.
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In order to obtain the dilaton-de Sitter metric, we should
rewrite the metric Eq. (1) in the cosmic coordinates system.
We first make a variable transformation x ! r

x �
�r�M �D�2 � 4MD

2r
; (3)

and then we rewrite Eq. (1) as follows:

ds2 � �
�1� M

r �
D
r �

2

�1� M
r �

D
r �

2 � 4MD
r2

dt2 �
1
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r
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�
2

�
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r
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2
�
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r2

�
�dr2 � r2d�2

2�: (4)

Rescaling the variables t and s, we have

ds2 � �
�1� M

r �
D
r �

2

�1� M
r �

D
r �

2 � 4MD
r2

dt2 �
�
1�

M
r
�

D
r

�
2

�

��
1�

M
r
�

D
r

�
2
�

4MD

r2

�
�dr2 � r2d�2

2�: (5)

Following the method we developed recently [20], we
make the following replacements:

1 ! a1=2;
M
r
!

M

ra1=2
;

D
r
!

D

ra1=2
; (6)

where a � eHt; H is a constant which has the meaning of
the Hubble constant. Then the dilaton-de Sitter metric is
achieved

ds2 � �
�1� M

ar �
D
ar�

2

�1� M
ar �

D
ar�

2 � 4MD
a2r2

dt2 � a2

�
1�

M
ar

�
D
ar

�
2

�

��
1�

M
ar

�
D
ar

�
2
�

4MD

a2r2

�
�dr2 � r2d�2

2�:

(7)

Equation (7) is just the charged dilaton black-hole solution
in the background of the de Sitter universe in the cosmic
coordinates system. When M � D � 0, it recovers the
well-known de Sitter metric. On the other hand, when H �
0, it recovers the charged dilaton metric Eq. (5). In the next
section, we rewrite it in the Schwarzschild coordinates
system by coordinates transformation.
DILATON-DE SITTER OR ANTI–DE SITTER
METRICS IN SCHWARZSCHILD COORDINATE

SYSTEM

In order to present the dilaton-de Sitter metric in the
Schwarzschild coordinates system, we make a variable
transformation r ! y as follows:

r � a�1

�
y�M �D�

���������������������������������������
�y� 2M��y� 2D�

q �
: (8)

Equation (7) becomes
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ds2 � �

�
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2M
y

� 4y�y� 2D�H2

�
dt2 �

4

1� 2M
y

dy2

�
8H

����������������������
y�y� 2D�

p
��������������
1� 2M

y

q dtdy� 4y�y� 2D�d�2
2: (9)

Rescaling t and s, we have

ds2 � �

�
1�

2M
y

� 4y�y� 2D�H2

�
dt2 �

1

1� 2M
y

dy2

�
4H

����������������������
y�y� 2D�
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1� 2M

y

q dtdy� y�y� 2D�d�2
2: (10)

Equation (10) has a dtdy term. In order to eliminate this
term, we introduce a new time variable u, namely, t ! u

t � u�
Z 2H

����������������������
y�y� 2D�

p
��������������
1� 2M

y

q
	1� 2M

y � 4y�y� 2D�H2

dy: (11)

Then Eq. (10) is reduced to

ds2 � �

�
1�

2M
y

� 4y�y� 2D�H2

�
du2

�

�
1�

2M
y

� 4y�y� 2D�H2

�
�1

dy2

� y�y� 2D�d�2
2: (12)

Let H2 absorb the constant 4 and by rewriting the variables
�t; r� instead of �u; y�, we obtain the dilaton-de Sitter metric
in the Schwarzschild coordinates system

ds2 � �

�
1�

2M
r

� r�r� 2D�H2

�
dt2

�

�
1�

2M
r

� r�r� 2D�H2

�
�1

dr2

� r�r� 2D�d�2
2: (13)

When D � 0, it restores to the well-known Schwarzschild-
de Sitter metric. On the other hand, when H � 0, it restores
to the charged dilaton metric which is found by Garfinkle,
Horowitz, and Strominger [2]. To show Eq. (13) does
represent a solution of the Einstein-Maxwell-dilaton the-
ory, we will derive the potential of the dilaton for the
cosmological constant in the following section. In order
that the negative cosmological constant case is included in
our solution, we make the replacement of H2 � �=3 in
Eq. (13), where � is the cosmological constant which can
be either positive or negative.
IV. POTENTIAL OF THE DILATON FOR
COSMOLOGICAL CONSTANT

We consider the four-dimensional theory in which grav-
ity is coupled to the dilaton and the Maxwell field with an
action
-2
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S �
Z

d4x
�������
�g

p
	R� 2@��@��� V��� � e�2�F2
;

(14)

where R is the scalar curvature, F2 � F��F
�� is the usual

Maxwell contribution, and V��� is a potential for �,
respectively.

Varying the action with respect to the metric, Maxwell,
and dilaton fields, respectively, yields

R�� � 2@��@��� 1
2g��V � 2e�2��F��F�

� � 1
4g��F2�;

(15)

@��
�������
�g

p
e�2�F��� � 0; (16)

@�@
�� �

1

4

@V
@�

�
1

2
e�2�F2: (17)

The most general form of the metric for the static space-
time can be written as

ds2 � �U�r�dt2 �
1

U�r�
dr2 � f�r�2d�2

2: (18)

Then the Maxwell equation (16) can be integrated to give

F01 �
Qe2�

f2 ; (19)

where Q is the electric charge. With the metric Eq. (18) and
the Maxwell field equation (19), the equations of motion
(15)–(17) reduce to three independent equations

1

f2

d
dr

�
f2U

d�
dr

�
�

1

4

dV
d�

� e2�
Q2

f4 ; (20)

1

f
d2f

dr2
� �

�
d�
dr

�
2
; (21)

1

f2

d
dr

�
2Uf

df
dr

�
�

2

f2 � V � 2e2�
Q2

f4 : (22)

Substituting

f �
���������������������
r�r� 2D�

p
; U � 1�

2M
r

�
1

3
�r�r� 2D�;

(23)

into Eqs. (20)–(22), we obtain the dilaton field, dilaton
charge, and dilaton potential

e2� � e2�0

�
1�

2D
r

�
; D �

Q2e2�0

2M
;

V��� �
4

3
��

1

3
�	e2����0� � e�2����0�
:

(24)

Comparing these solutions to the result of Garfinkle,
Horowitz, and Strominger, we find that the Maxwell field,
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the dilaton field, and the dilaton charge of the (anti)
de Sitter versions are exactly identical to that of the dilaton
black hole. The potential of the dilaton is the combination
of a constant and two Liouville-type potentials.

So far, we obtained the action of the dilaton-(anti)
de Sitter black hole

S �
Z

d4x
�������
�g

p
fR� 2@��@��� 4

3�� 1
3�	e

2����0�

� e�2����0�
 � e�2�F2g: (25)

When � � �0 � 0, it reduces to the action of the
Reissner-Nordström-de Sitter black hole.
V. DILATON-(ANTI) DE SITTER METRIC WITH
ARBITRARY �

Up to now, we have dealt only with the dilaton-(anti)
de Sitter metric for the case that the coupling constant � �
1. In this section, we will present the dilaton-(anti) de Sitter
metric with an arbitrary coupling constant. Following the
method adopted above, we obtain the dilaton-(anti)
de Sitter metric with an arbitrary coupling constant � in
the cosmic coordinates system

ds2 � �
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ar

�
2
�
1�
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ar

�
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ar

�
	2�1��2�=�1��2�


�
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�
r�
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�
2
�

4r�r�
a2r2

�
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�
1�
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�
2

�
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�
2=�1��2�

�dr2 � r2d�2
2�; (26)

where a � eHt is the scale factor of the Universe and the
equivalent form in the Schwarzschild coordinates system

ds2��
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r
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r
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�1��2�=�1��2�

�
1
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�r2

�
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r�
r

�
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�
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�

�

�
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r�
r

�
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�
1

3
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�
1�
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�
2�2=�1��2�

�
�1

�dr2�r2
�
1�

r�
r

�
2�2=�1��2�

d�2
2; (27)

where r�, r� are two event horizons of the black hole, and
� is an arbitrary constant governing the strength of the
coupling between the dilaton and the Maxwell field. The
action with respect to the metric is
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S �
Z

d4x
�������
�g

p
	
R� 2@��@��� e�2��F2

�
2

3
�

1

�1� �2�2
	�2�3�2 � 1�e�2�=�

� �3� �2�e2�� � 8�2e����=�




: (28)

When � � 1, the action restores to the Garfinkle-
Horowitz-Strominger case. The corresponding dilaton field
is

e2�� � e2��0

�
1�

r�
r

�
2�=�1��2�

;

e2��0 �
r�r�

�1� �2�Q2 :
(29)

It is apparent that three Liuoville-type potentials constitute
the potential of the dilaton with respect to the cosmological
constant.

VI. MULTI-DILATON-BLACK-HOLE SOLUTION
IN DE SITTER UNIVERSE

In what follows we shall, for completeness, present the
multi-black-hole solution in the de Sitter universe. For an
extreme dilaton black hole, set r� � r� � m=4, Eq. (26)
becomes

ds2 � �

�
1�

m
ar

�
�2=�1��2�

dt2

� a2

�
1�

m
ar

�
2=�1��2�

�dr2 � r2d�2
2�: (30)

It closely resembles the Kastor-Traschen [21] solution and
the Gibbons-Kallosh [22] solution. Thus following the
method developed by Kastor and Traschen, we obtain the
cosmological multi-dilaton-black-hole solution

ds2����2=�1��2�dt2�a�t�2�2=�1��2��dx2�dy2�dz2�;

��1�
X
i

mi

ari
; ri�

��������������������������������������������������������������
�x�xi�2��y�yi�2��z�zi�2

q
;

a�t��eHt; (31)

where x, y, and z are Cartesian coordinates on R3, mi is the
mass or charge of the ith extremal black hole, and the
charges must all be of the same sign. It is easy to find
that when H � 0, Eq. (31) restores to the Gibbons-Kallosh
solution and when � � 0, Eq. (31) restores to the Kastor-
Traschen solution.

VII. HORIZONS OF DILATON-DE SITTER
SPACE-TIME

Now let us discuss the horizons of the dilaton-de Sitter
space-time. For simplicity in mathematics, we will con-
centrate on the case of the coupling constant � � 1. To this
end, we make a variable transformation r � D�
124019
�����������������
x2 �D2

p
in Eq. (13) and then by rewriting the variable

x with r, we have

ds2 � �

�
1�

2M

D�
�����������������
r2 �D2

p �H2r2
�
dt2 �

�
1�

D2

r2

�
�1

�

�
1�

2M

D�
�����������������
r2 �D2

p �H2r2
�
�1

dr2 � r2d�2
2:

(32)

It is apparent that there is no singularity in the metric and
when the dilaton charge D � 0, Eq. (32) is just the
Schwarzschild-de Sitter solution. Horizons occur when-
ever g00 � 0. This implies that

1�
2M

D�
�����������������
r2 �D2

p �H2r2 � 0: (33)

It is found that Eq. (33) gives only the cosmological
horizon and the black-hole event horizon. There is no inner
Cauchy horizon present. This is different from the
Reissner-Nordström-de Sitter case where three horizons
are present.

The extremal dilaton black-hole case, i.e., M � D, is of
particular interest. Then Eq. (33) reveals that the black-
hole event horizon and the singularity disappear and only
one cosmic horizon survives:

rcos �
1

H

���������������������
1� 2MH

p
: (34)

This is also different from the extremal Reissner-
Nordström-de Sitter case where two horizons are left.
Provided that

M �
1

27H
	9DH�8D3H3 � �3� 4D2H2�

������������������������
3� 4D2H2

p

;

0< DH <
1

2
; (35)

the black-hole event horizon and the cosmological horizon
coalesce. That is

rbh;cos �
1

3H

��������������������������������������������������������������������
3� 4D2H2 � 2DH

������������������������
3� 4D2H2

pq
: (36)

Given that DH � 1
2 in Eq. (36), then the only remaining

horizon rbh;cos also disappears. This reveals that the pres-
ence of a dilaton has important consequences on the hori-
zons of the black hole.
VIII. CONCLUSION AND DISCUSSION

To conclude, we have obtained the dilaton black-hole
solutions in the background of (anti) de Sitter space-time
with a new method we developed previously. The solution
shows that the cosmological constant couples the dilaton
field in a nontrivial way. The dilaton potential with respect
to the cosmological constant includes three Liouville-type
potentials. This is consistent with the discussion of Poletti
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and Wiltshire that no (anti) de Sitter version of dilaton
black holes exists with only one Liouville-type potential.
The resulting potentials are also consistent with the condi-
tion dV

d� j���0
� 0, which is proposed by Poletti and

Wiltshire for the existence of such solutions [18]. This
type of derived potential can be obtained when a higher
dimensional theory is compactified to four dimensions,
including various super gravity models (see [23] for a
recent discussion of these aspects) [24]. In particular,

when the coupling constant � � �
��
1
3

q
, �1, �

���
3

p
, the

potential is just the supersymmetric potential.
We also found the coordinates transformation which

recasts our solution in the Schwarzschild coordinate sys-
tem. Some discussions on the horizons in the end show that
124019
the dilaton has important consequences on the property of
the black hole. The supersymmetry properties of the
charged dilaton-(anti) de Sitter black holes as well as their
relevance to the Ads/CFT correspondence are currently
under study.
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