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Scalar field self-force effects on orbits about a Schwarzschild black hole
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For a particle of mass � and scalar charge q, we compute the effects of the scalar field self-force upon
circular orbits, upon slightly eccentric orbits and upon the innermost stable circular orbit (ISCO) of a
Schwarzschild black hole of mass m. For circular orbits the self-force is outward and causes the angular
frequency at a given radius to decrease. For slightly eccentric orbits the self-force decreases the rate of the
precession of the orbit. The effect of the self-force moves the radius of the innermost stable circular orbit
inward by 0:122 701� q2=�, and it increases the angular frequency of the ISCO by the fraction
0:029 165 7� q2=�m.
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I. INTRODUCTION

We consider a small mass � with a scalar charge q
which orbits a Schwarzschild black hole. The interaction
of the particle with its own field yields the self-force on the
particle. We use a perturbation analysis to find the effects
of the scalar field self-force upon circular orbits, upon
slightly eccentric orbits and upon the location of the inner-
most stable circular orbit (ISCO) of the Schwarzschild
geometry. We view this project as a warm-up for the
more interesting gravitational problem which must deal
with more complicated field equations and gauge issues
[1–3].

In general relativity, a particle of infinitesimal mass
moves through spacetime along a geodesic. If the particle
has a small but finite mass � then its world line deviates
from a geodesic of the background spacetime by an amount
proportional to �. This deviation is said to result from the
‘‘self-force’’ of the particle’s own gravitational field acting
upon itself.

Newtonian gravity presents an elementary example of a
self-force effect [4]. A small mass � in a circular orbit of
radius ro about a more massive companion m has an
angular frequency 	o given by

	o
2 �

m

r3o�1��=m�2
: (1)

When � is infinitesimal, the large mass m does not move,
the radius of the orbit ro is equal to the separation between
the masses and 	o

2 � m=ro3. However when � is finite
but still small, both masses orbit their common center of
mass with a separation of ro�1��=m�, and the angular
frequency is as given in Eq. (1). The finite � influences the
motion ofm, which influences the gravitational field within
which�moves. This back action of� upon its own motion
is the hallmark of a self-force, and the � dependence of
Eq. (1) is properly described as a Newtonian self-force
effect.
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A thorough understanding of gravitational waves de-
tected by the Laser Interferometer Space Antenna1 will
require clear theoretical predictions of possible gravita-
tional wave forms which result from a small stellar-mass
object orbiting a jumbo sized black hole; these wave forms
must include self-force effects.

In studying the gravitational self-force, one considers
the particle’s gravitational field to be a small perturbation
hab of the background metric gab. For an object of very
small size, the motion ought to be independent of the
particle’s structure, and one is inclined to take the limit
of a point particle. However, in that limit, hab diverges
precisely at the particle, and the concept of the self-force
might appear to be ill-defined.

Dirac [5] studied the electromagnetic version of this
problem in flat spacetime and discovered that the part of
the actual, retarded electromagnetic field which is singular
and yet exerts no force on the particle itself is, in a local
approximation, the Coulomb field and could be identified
as the average of the retarded and advanced electromag-
netic fields. The remainder, half of the difference between
the retarded and advanced fields, is a vacuum solution of
Maxwell’s equations and accounts entirely for the parti-
cle’s self-force.

The self-force includes the radiative reaction force or
radiation reaction [6]. For a particle with electrical charge
q and acceleration ~a, the Abraham-Lorentz force describes
the response of a particle to its own radiation and is
proportional to q2d ~a=dt. The factor of q2 results from
the charge q interacting with its own electric field, which
is also proportional to q. Similarly the gravitational radia-
tion reaction force on a small mass� is proportional to�2.
Other parts of the self-force are not directly related to
radiation but are properly described as the particle inter-
acting with its own field and are also proportional to q2 or
�2.
-1  2004 The American Physical Society
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A curved-spacetime generalization of Dirac’s approach
is now available [7–11]. For gravitation, an expansion
about the position of the particle describes the singular
‘‘S’’ part of the field hSab which exerts no force on the
particle and is a local solution of the perturbed Einstein
equations with the particle as the source. The remainder
‘‘R’’ part of the field hRab � hab � hSab is, locally, a source-
free solution of the perturbed Einstein equations, with the
combined metric gab � hRab being a vacuum solution of the
Einstein equations through first order in hRab. The effect of
the self-force has the particle moving along a geodesic of
the vacuum geometry gab � hRab.

A caveat remains: in curved-spacetime the S and R fields
cannot be described in terms of the advanced and retarded
fields. However, the mode-sum regularization procedure
pioneered by Barack and Ori [12–21] is of use for back-
ground geometries amenable to the decomposition of fields
in terms of scalar, vector, and tensor harmonics. This
procedure has been applied to self-force calculations for
the Schwarzschild geometry involving both scalar
[19,22,23] and gravitational [24] fields. In general terms,
the S field is singular at the particle, but each of its
spherical harmonic components is finite; these components
are the ‘‘regularization parameters.’’ The regular R field is
determined by subtracting each ‘, m mode of the S field,
from the corresponding ‘;m mode of the actual retarded
field. The sum over modes of the difference between the
retarded and S fields provides the R field which governs the
self-force effects on the particle.

In this manuscript we treat the self-force from the scalar
field  in a perturbative manner. At zeroth order in , a
geodesic for the particle is chosen and this determines the
particle’s singular field S in the neighborhood of the
geodesic. Then the actual scalar field , with appropriate
boundary conditions, is found everywhere. The difference
of the actual field and the singular S field provides the
regular remainder R � �S. Finally we determine
the first order in  self-force effects of the scalar field R

acting back on the particle and changing the world line
away from the original geodesic. The small effects of R

appear as an acceleration of the world line of order
q2=�m2. We determine the effects of the scalar field
self-force upon the angular frequency, energy, and angular
momentum of a general circular orbit, upon the rate of
precession of a slightly eccentric orbit and upon the loca-
tion and angular frequency of the innermost stable circular
orbit.

In Sec. II we give an overview of the self-force and how
it affects the location of the ISCO.

In Sec. III we describe how a generic scalar field affects
the world line of a particle in the Schwarzschild geometry.

In Sec. IV we consider scalar field self-force effects on
circular orbits, and numerically calculate the correspond-
ing changes of energy, angular momentum, and angular
frequency. In particular the self-force effect on the right-
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hand side of Eq. (4), below, is derived. We also give the
results of a numerical computation of R evaluated at the
location of the particle, which changes the effective inertial
mass � of the particle.

In Sec. V we consider the scalar field self-force effects
on slightly eccentric orbits of the Schwarzschild geometry.
Specifically, we find the self-force correction to the rate of
the precession of the orbit and to the right-hand side of
Eq. (5), below. In Sec. VI, this analysis is applied to an
orbit near r � 6m to obtain the self-force effect upon the
radius and angular frequency of the ISCO.

The discussion of Sec. VII distinguishes between the
scalar and gravitational self-force effects. We do not at-
tempt to generalize our limited results to the case of the
gravitational self-force.

In Appendix A we give some details of the spherical
harmonic decomposition of a source moving along a
slightly eccentric orbit. These details are required for the
numerical calculation of the actual field for a slightly
eccentric orbit.

In Appendix B we describe the regularization parame-
ters which are required for the self-force analysis of
slightly eccentric circular orbits of the Schwarzschild ge-
ometry. These are used in the computation of R described
in Secs. IV, V, and VI.

We use Schwarzschild coordinates �t; r; �; �� on the
spacetime manifold. The position of the particle in these
coordinates is �T; R;�;��, and smeasures the proper time
along a world line. For a general world line, the angular
frequency is 	� � d�=dT. The subscript o is reserved
exclusively for quantities related to circular orbits: for a
circular orbit, the radius and angular frequency are ro and
	o, respectively, while o is the scalar field from a particle
in a circular orbit. The mass and charge of a particle are �
and q, and the mass of the black hole is m. The scalar field
is ; however, we define  � q=� as a combination
which occurs often in the description of the effects of a
scalar field on the motion of a particle. In this perturbative
analysis we always assume that q2=�� m.

In equations concerning the self-force, expressions con-
taining  refer to the regularized field and must be eval-
uated at the location of the particle.
II. CONCEPTUAL FRAMEWORK

A. Dissipative and conservative forces

Mino [25] examines the self-force on a particle in orbit
about a rotating black hole with a focus on how the Carter
constant [26] evolves. Following Mino’s ideas, one is
naturally led to divide the self-force into two parts which
depends upon how each part changes under a change in the
boundary conditions. One part is ‘‘dissipative’’ and usually
associated with radiation reaction. The other part is ‘‘con-
servative.’’ This distinction is most easily described in
terms of ‘‘Green’s functions’’ which yield the parts of the
-2
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field responsible for the dissipative and conservative parts
of the self-force.

Let Gret be the retarded Green’s function, which pro-
vides the actual, physical field ret for the problem of
interest, and let GS be the Green’s function [10] for the
singular part of the field S. The regularized field R �
ret �S provides the complete self-force. The change in
boundary conditions from outgoing radiation at infinity to
incoming radiation is effected by using the advanced
Green’s function Gadv and its field adv, rather than the
retarded quantities.

The dissipative part of the self-force changes sign under
the interchange of the retarded and advanced Green’s
functions. Thus, the dissipative part of the field dis is
uniquely determined by using a ‘‘Green’s function’’

Gdis �
1

2
Gret �

1

2
Gadv: (2)

dis is a source-free solution of the field equation and is
regular at the particle; no use of S is required to find the
dissipative part of the self-force.

The conservative part of the self-force is invariant under
the interchange of the retarded and advanced Green’s
functions. The conservative part of the field represents
the half-advanced plus half-retarded field, but this is sin-
gular at the particle and requires regularization by the
removal of S. Thus, the conservative part of the regular-
ized field is uniquely determined near the particle by using
a ‘‘Green’s function’’

Gcon �
1

2
Gret �

1

2
Gadv �GS: (3)

In a neighborhood of the particle, the resulting field is a
source-free solution of the field equation and is regular.

A circular orbit about a Schwarzschild black hole pro-
vides an example which clearly distinguishes the dissipa-
tive from the conservative parts of the self-force. For a
particle in a circular orbit about a black hole, @t and @�
are both dissipative, as can be understood in terms of time-
reversal invariance. We see below in Eqs. (16) and (17) that
@t and @� are responsible for removing energy and
angular momentum, respectively, from the particle at a rate
which precisely balances the loss of energy and angular
momentum outward through a distant boundary and into
the black hole. With t! �t and �! �� the motion of
the particle is nearly identical, only the boundary condi-
tions on the scalar field are changed, and now energy and
angular momentum entering the system through the bound-
ary are deposited on the particle. The dissipative self-force
is small in this perturbative analysis but its effect accumu-
lates over time as the particle spirals slowly inward or
outward, depending upon the boundary conditions.

For a circular orbit @r is conservative and, as shown
below, provides a small addition to the centripetal force
which affects the angular frequency via a change in the
124018
right-hand side of Eq. (4). However, the angular frequency
is unchanged under t! �t and �! �� which changes
the direction of radiation flow at the boundary. @r and its
effect on the angular frequency is independent of the
direction of radiation imposed by the boundary conditions.
With either boundary condition the conservative self-force
effect on the frequency is small but the effect on the phase
of the orbit accumulates over time.

If a particle is not in a circular orbit, then these simple
relationships between the components of @a and the
conservative and dissipative parts of the self-force no
longer hold.

B. Stability of a circular orbit

The notion of the stability of a circular orbit in the
context of the self-force warrants further discussion.

A stability problem presupposes the existence of a me-
chanical system in equilibrium. A perturbation analysis of
the system’s small oscillations often reveals that the natural
frequencies of the system are complex eigenvalues depen-
dent upon some set of parameters. The sign of the imagi-
nary part of a natural frequency determines whether the
amplitude of a small oscillation grows, diminishes, or stays
constant. The simplest cases are when the frequency is
either purely real or purely imaginary. An imaginary fre-
quency with an appropriate sign then signifies an unstable
mode.

For the system of a small particle of mass � orbiting a
larger black hole of mass m, the particle moves along a
geodesic, if � is considered infinitesimal. In this case it is
well-known that for a circular orbit at Schwarzschild co-
ordinate r � ro the angular frequency 	o, with respect to
Schwarzschild coordinate time, is given by

	o
2 �

m

ro
3 : (4)

If the orbit has a small eccentricity then elementary analy-
sis [27] reveals that the frequency 	r of the radial oscil-
lations is determined by

	2
r �

m

ro
4 �ro � 6m�: (5)

If ro is very large, then 	o and 	r are nearly equal, and the
slightly eccentric orbit is an ellipse obeying Kepler’s laws.
The difference between 	o and 	r leads to the rate of the
precession of the ellipse,

	pr � 	o �	r; (6)

and is directly responsible for the relativistic contribution
to the precession of the perihelion of Mercury. For an orbit
just inside 6m, the two solutions for 	r in Eq. (5) are both
imaginary and one corresponds to an unstable mode. The
orbit at ro � 6m is the innermost stable circular orbit—the
ISCO.
-3
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For realistic boundary conditions, the expectation is that
at a large separation the emission of gravitational radiation
from a binary circularizes the orbit [28] and causes the two
objects to spiral slowly towards each other.

When ro is outside but comparable to 6m, gravitational
radiation evolves the orbit slowly inward on a secular time
scale m=� times longer than the dynamical time scale,
with the rate of inspiral dro=dt � O��=m�. The particle
makes a transition to a plunge [29] when it reaches the
ISCO, and the plunge occurs over a dynamical time scale.
The resulting gravitational wave form appears as a sinusoid
with a slowly increasing frequency until the angular fre-
quency of the ISCO is reached. Then, after a brief burst
from the plunge, the wave form is determined by the
frequencies of the most weakly damped free oscillations
of the black hole [30–32].

The secular evolution caused by gravitational radiation
keeps the particle from ever being in true equilibrium, and
the question of the stability of a circular orbit may seem ill-
posed. Nevertheless, the gravitational wave form changes
character at a frequency near that in Eq. (4) for ro � 6m
even though the particle is never actually in equilibrium.
The dependence of the transition frequency upon the scalar
field self-force is a major focus of this manuscript.

To form a well-posed problem related to the ISCO and
the angular frequency of the transition to a plunge, we
consider an unphysical system with boundary conditions
which have equal amounts of outgoing and incoming
radiation. Such a system must be constructed by use of a
regularized half-advanced and half-retarded Green’s func-
tion. In this case, the dissipative force vanishes entirely
while the conservative force and its effects upon 	o and
	r are unchanged from the case with realistic outgoing-
wave boundary conditions. With equal amounts of out-
going and incoming radiation, equilibrium configurations
exist, and stability analyses may proceed.

In Sec. V we show that the conservative force from ra
changes the right-hand side of Eq. (5), and therefore the
location of the actual ISCO by a fractional amount of order
q2=�m for a scalar field; for gravity this fractional amount
would be of order �=m.
III. SCALAR FIELD EFFECTS ON A PARTICLE’S
MOTION

A. Description of motion

The functions �T�s�; R�s�; �=2;��s�� describe a parti-
cle’s world line in the equatorial plane of a black hole in
Schwarzschild coordinates �t; r; �;��. The proper time s is
measured along the world line, and the four-velocity

ua � dxa=ds (7)

is normalized to unity, uaua � �1. Additionally, the world
line and the Killing vector fields ta@=@xa � @=@t and
�a@=@xa � @=@� define
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E � �taua and J � �aua; (8)

which, for geodesic motion, are the energy and angular
momentum, per unit rest mass, respectively. The compo-
nents of ua are thus

ua �
�

E
1� 2m=R

; _R; 0; J=R2

�
; (9)

where the dot denotes a derivative with respect to s. For any
world line the angular frequency, with respect to
Schwarzschild coordinate time, is

	� � _�= _T �
d�
dT

�
J�R� 2m�

ER3 : (10)

The normalization of ua implies that

uaua � �1 � �
�E2 � _R2�

1� 2m=R
�
J2

R2 (11)

or

E2 � _R2 � �1� 2m=R��1� J2=R2�: (12)
B. Scalar field modifications of the geodesic equation

Quinn [33] considers the interaction of a scalar field 
with a particle of constant bare mass�0 and constant scalar
charge q. He carefully demonstrates that the equation of
motion is

ubrb��ua� � _�ua ��ubrbua � qra; (13)

where � � �0 � q. This result can be obtained from a
general action principle. In what follows,  is assumed to
be the regular field R evaluated at the particle. Thus, the
quantity � changes when the value of the scalar field at the
particle changes. The fractional change in � is

��=�0 � �q=�0; (14)

which is shown in Figs. 1 and 2 for circular orbits of the
Schwarzschild geometry.

The projection of Eq. (13) orthogonal to ua yields the
acceleration from the self-force

ubrbua � �q=���ga
b � uau

b�rb (15)

which modifies the world line of the particle through
spacetime. In our perturbative analysis, we only consider
the first order effects of the scalar field. The right-hand side
of Eq. (15) is explicitly first order in , and the change in
� has only a second order effect on the acceleration. Thus,
for the purposes of describing the world line of the particle
we treat � as constant, and it is convenient to define  �
q=�. For simplicity we also assume that the scalar field
is symmetric under reflection through the equatorial plane
and that the particle remains in the equatorial plane.

The components of Eq. (15) yield

dE=ds � _E � �@t � Eubrb (16)
-4
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FIG. 1. The regularized field R
om=q at the particle and the

radial component of the self-force �@ro
R�m2=q as a function of

the radius ro for circular orbits close to the black hole.
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dJ=ds � _J � @� � Jubrb (17)

and

�R � �
m�E2 � _R2�

R�R� 2m�
�
R� 2m

R4 J2 �
R� 2m
R

@r 

� _Rubrb : (18)

The normalization (12) is a first integral of the equation
of motion, and Eq. (18) follows directly from Eqs. (12),
(16), and (17), which form a complete set of equations
describing the equatorial motion of a particle interacting
with a scalar field.

Together, Eqs. (12) and (18) imply that

�R � �
m

R2 �
R� 3m

R4 J2 �
R� 2m
R

@r � _Rubrb ;

(19)

which is convenient for analyzing slightly eccentric orbits.
For a particle in circular motion, @r is independent of

the direction of radiation at the boundaries and provides a
conservative force. However, @t and @� on the right-
hand sides of Eqs. (16) and (17) are dissipative components
of the self-force and change sign if the direction of radia-
tion at the boundary is changed. In fact, the conservation of
energy and angular momentum guarantee that Eqs. (16)
and (17) are consistent with the flow of energy and angular
momentum across the boundaries. This is manifest by
matching appropriate independent solutions of the
source-free wave equation at the orbit of the particle. If a
particle is not in a circular orbit, then these simple relation-
ships between the components of @a and the conservative
and dissipative parts of the self-force no longer hold.
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FIG. 2. The same as Fig. 1 except for larger radii.
IV. SELF-FORCE EFFECTS ON CIRCULAR
ORBITS

The scalar field  o of a charged particle in a circular
orbit rotates with the particle and has a symmetry described
by

@t o �	o@� o � 0: (20)

In particular, this implies that uara o � 0 at the particle
and simplifies the description of the self-force for circular
motion. A world line is ‘‘instantaneously circular’’ at ra-
dius ro if _R � �R � 0. In this case

J2 �
r4o

ro � 3m

�
m

r2o
�
ro � 2m
ro

@r o

�
(21)

follows from Eq. (19), and

E2 �
�ro � 2m�2

ro�ro � 3m�
�1� ro@r o� (22)

then follows from Eq. (12). The angular frequency is given
by Eq. (10)
124018
	o
2 �

m

r3o
�
ro � 3m

r2o
@r o �O� 2�: (23)

These reduce to the usual expressions for the circular
geodesics of the Schwarzschild geometry when the scalar
field  o is removed. The resulting fractional changes in J,
E, and 	o caused by the self-force for an orbit at radius ro
are

�J
J

� �
ro�ro � 2m�

2m
@r o; (24)

�E
E

� �
1

2
ro@r o; (25)

and

�	o

	o
� �

ro�ro � 3m�
2m

@r o: (26)
-5
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FIG. 3. The fractional changes in J, E, and 	o, from the self-
force as a function of the radius ro for circular orbits close to the
black hole. These quantities are calculated using Eqs. (24)–(26).

DIAZ-RIVERA, MESSARITAKI, WHITING, AND DETWEILER PHYSICAL REVIEW D 70, 124018 (2004)
References [19,23,34] give detailed descriptions of the
calculation of the retarded scalar field for a particle in a
circular orbit of the Schwarzschild geometry.
References [12,15,17–21] describe the evaluation of the
required regularization parameters for the self-force. In
Appendix B, we give the regularization parameters for
the scalar field  R from Ref. [20]. References [19,23]
describe implementations of the Barack and Ori regulari-
zation procedure for the numerical evaluation of the self-
force for circular orbits of the Schwarzschild geometry.

Figures 1 and 2 show the regularized  R and the radial
component of the self-force @r R evaluated at the particle
as functions of the radius of the orbit. Figures 3 and 4 show
the fractional changes in J, E, and 	o from the radial
component of the self-force. Table I gives a selection of
our numerical calculations of both  R and @r 

R at the
particle as a function of R. The force is outward, falls off
approximately as r�5

o , as noted by Burko [23], and  R falls
10 100
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−∆Ω/Ω ×µm /q2

−∆E /E ×µm /q2

FIG. 4. The same as Fig. 3 except for larger radii.
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off as r�3
o for large ro. Each of 	o, E, and J for a circular

orbit is decreased by the self-force.
A very interesting analysis of Hikida et al. [35,36] uses a

novel decomposition of  into singular and regular parts.
Post-Newtonian analysis, at 18PN order, on their singular
part and evaluation of their regular part up to ‘ � 19 yield
results for @rR

o which agree well with ours given in
Table I. The relative difference is 10�7, except near ro �
6m where the difference is 10�4.
V. SELF-FORCE EFFECTS ON SLIGHTLY
ECCENTRIC ORBITS

A particle in an orbit with small eccentricity, in the
Schwarzschild geometry, has periodic motion in the radial
direction with a frequency 	r given in Eq. (5). In this
section we describe the effects of the self-force on 	r and
upon the rate of precession of the orbit 	pr. We require that
the scalar field  have boundary conditions with equal
amplitudes of incoming and outgoing radiation at both
the event horizon and infinity. This simplifies the discus-
sion of 	r and allows us to pose a well-defined stability
problem for the ISCO. The conservative ‘‘Green’s func-
tion’’ Gcon determines the regularized field.

A. Slightly eccentric geodesics

In this perturbative analysis, a slightly eccentric geode-
sic about a fixed radius ro with a small amplitude, �R�
q2=�� roq

2=�2 � ro, is described by

R�T�s�� � ro � �R cos�	rT�s�� (27)

and

��T� � 	oT �
d	�

dR
�R
	r

sin�	rT�: (28)

The remainder of the analysis treats �R as a small quantity,
and only terms through first order in �R are retained. The
angular frequency of this geodesic orbit is a function of
time,

	� �
d�
dT

� 	o �
d	�

dR
�R cos�	rT�: (29)

The frequencies 	o and 	r are given in Eqs. (4) and (5).
The quantity d	�=dR represents the change in angular
frequency, from Eq. (10), with respect to a change in radius
while E and J are held constant,

d	�

dR
� �

2�R� 3m�
R�R� 2m�

	�: (30)

The radial velocity is

dR
dT

� �	r�R sin�	rT�: (31)
-6



TABLE I. A selection of our computed values of the regularized scalar field evaluated at the particle and the radial component of the
self-force, for circular orbits of radius ro. Also shown are Fr, Ft, and F�, defined in Eqs. (33)–(35), for slightly eccentric orbits with
ro > 6m; for ro � 6m, their limiting values are given; for ro < 6m slightly eccentric orbits do not exist and Fr, Ft, and F� are not
defined.

ro=m R
om=q @r

R
om

2=q Fr�m
3=q2 Ft�m

2=q2 F��m=q
2

4 � 0:023 987 75 0.001 302 375
5 � 0:010 234 18 4:149 937� 10�4

6 � 0:005 454 828 1:677 283 4� 10�4 � 1:381 375 6� 10�4 0.004 923 88 � 0:028 221 7
7 � 0:003 275 343 7:850 679� 10�5 � 6:108 26� 10�5 0.002 459 81 � 0:017 533 1
8 � 0:002 127 506 4:082 502� 10�5 �2:916 65� 10�5 0.001 355 06 � 0:011 899 1
10 � 0:001 049 793 1:378 448� 10�5 � 8:216 72� 10�6 5:076 81� 10�4 � 0:006 420 25
14 �3:700 646� 10�4 2:720 083� 10�6 � 1:192 80� 10�6 1:196 75� 10�4 � 0:002 640 01
20 �1:246 728� 10�4 4:937 906� 10�7 � 1:552 96� 10�7 2:687 98� 10�5 � 0:001 059 72
30 �3:661 710� 10�5 7:171 924� 10�8 � 1:549 04� 10�8 5:089 27� 10�6 �3:824 35� 10�4

50 �7:889 518� 10�6 6:346 791� 10�9 � 8:535 32� 10�10 6:444 98� 10�7 �1:072 42� 10�4

70 �2:877 222� 10�6 1:284 529� 10�9 � 1:260 87� 10�10 1:669 32� 10�7 �4:654 96� 10�5

100 �9:884 245� 10�7 2:356 504� 10�10 � 1:651 35� 10�11 4:005 31� 10�8 �1:922 77� 10�5

200 �1:239 866� 10�7 8:642 538� 10�12 � 3:117 90� 10�13 2:514 66� 10�9 �3:444 12� 10�6
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B. Self-force effect upon J for slightly eccentric orbits

For slightly eccentric orbits, with self-force effects in-
cluded, J is not a constant of the motion, even with no
dissipation. The effect of the self-force on J is given in
Eq. (17),

dJ=ds � @� � Juara or

dJ=dT � �ut��1@� � J�@t �	�@�� � J
dR
dT

@r :

(32)

The  for a slightly eccentric orbit is described in
Appendix A. We note here that it has two parts. The larger
part  o is equal to the field which would result from pure
circular motion at ro and consists of frequencies which are
integral multiples of 	o. For a circular orbit, in general,
�@t �	o@�� o � 0, and with conservative boundary con-
ditions @t o � @� o � 0 at the particle. The smaller part
is proportional to �R. In Appendix A we show that for
slightly eccentric orbits an expansion for  around a cir-
cular orbit at ro gives

@t � �Ft	r�R sin�	rT�; (33)

@� � �F�	r�R sin�	rT�; (34)

and

@r � �@r o�ro � Fr�R cos�	rT�; (35)

where Ft, F�, and Fr depend only upon ro and, are
independent of both �R and t. In this section the subscript
ro on �@r o�ro implies that @r o is to be evaluated at the
circular orbit ro and not at the actual location of the
particle. In Eq. (32) the coefficient of @r is already first
order in �R, and it is sufficient to use only the circular orbit
value �@r o�ro at the particle. Thus,
124018
dJ
dR

�
dJ
dT

�
dR
dT

�
�1

� JFt � EF� � J�@r o�ro ; (36)

where we have used Eqs. (31), (33), and (34), along with
Eqs. (9)–(12).

C. Self-force effects upon �r for slightly eccentric or-
bits

The exact radial equation of motion (19), which includes
the self-force, is

�R � �
m

R2 �
R� 3m

R4 J2 �
R� 2m
R

@r � _Rubrb :

(37)

For describing slightly eccentric orbits, we expand this
equation around the circular orbit at ro by letting R! ro �
�R cos�	rT� and dropping all terms of order �R2. The
O��R0� part is equivalent to Eq. (21) for the circular orbit
value of J2. The _Rubrb term is O��R2�. The part of
Eq. (37) which is first order in �R is

�R �
d
dR

�
�
m

R2 �
R� 3m

R4 J2

�
R� 2m
R

@r 
�
ro

�R cos�	rT�: (38)

After use of Eq. (35), which gives d�@r �=dR � Fr, this
becomes

�R �

�
�
m�ro � 6m�

r3o�ro � 3m�
�

3�ro � 4m��ro � 2m�

r2o�ro � 3m�
�@r o�ro

�
2m

r2o
�@r o�ro �

�ro � 3m�

r4o

dJ2

dR

�
�ro � 2m�

ro
Fr

�
�R cos�	rT�: (39)
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FIG. 5. For q2=�� ro � 6m, the change in 	r from the self-
force as a function of the radius ro for slightly eccentric orbits
close to the black hole. The limiting behavior at q2=�� ro �
6m� m is given in Eq. (46). See Eq. (43) for q2=�  ro � 6m.
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ro ⁄ m

0.0001

0.001
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∆
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⁄ Ω

r
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2

FIG. 6. From numerical analysis, the fractional change in 	r
from the self-force as a function of the radius ro for slightly
eccentric orbits far from the black hole.
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Equation (27) implies that

�R � �
	2
rE

2�R cos�	rT�

�1� 2m=ro�
2 : (40)

Using Eq. (22) for E2, we finally obtain

	2
r �

m

ro
4 �ro � 6m� �

2J

ro
5
�ro � 3m�2�JFt � EF��

�
1

ro
3 �ro � 2m��ro � 3m��3�@r o�ro � rFr� (41)

through first order in  . This provides the scalar field self-
force correction to Eq. (5) for 	2

r .
To examine the effect of the self-force on 	r for ro 

6m, let f represent all but the first term on the right-hand
side of Eq. (41). The change in 	2

r caused by the self-force
is then

��	2
r� � f � f0 � f1�ro � 6m� � � � � : (42)

Numerical analysis determines the values f0 � 9:467 68�
10�5q2=�m3, and f1 � �3:2318� 10�5q2=�m2. For
ro � 6m,

�	r �
ro!6m

f1=20 � 9:730 20� 10�3q=�1=2m3=2: (43)

More generally, the change in 	r caused by the self-
force is

�	r �

�
m

ro4
�ro � 6m� � f

�
1=2

�

�
m

ro4
�ro � 6m�

�
1=2
:

(44)

When ro increases away from 6m, �	r decreases and
changes scale

for ro � 6m� q2=�;

�	r 
fro

2

2
�m�ro � 6m���1=2 � O�q2=�m2�:

(45)

The numerical calculation of �	r, based upon Eq. (45), is
presented in Figs. 5 and 6. Figure 5 illustrates the small end
of this range, where q2=�� ro � 6m� m and f  f0.
In this case,

�	r  6:957 30� 10�4�ro=6m� 1��1=2q2=�m2 (46)

gives the limit of the curve in Fig. 5 as ro approaches 6m.
The right-hand sides of Eqs. (43) and (46) are equal at

ro
6m

� 1 
ro

4

24m2 f0 � 0:005 112 55q2=�m: (47)

At larger separations ro � 6m * m, �	r is still approxi-
mated by Eq. (45) and scales as 1=ro2 as illustrated in
Fig. 6.
124018
D. Self-force effects upon �pr for slightly eccentric
orbits

The rate of precession of a slightly eccentric orbit

	pr � 	o �	r (48)

is not particularly elegant when written in terms of m, ro,
and the components of the self-force. However,

	pr �
m1=2

�6m�3=2
� f1=20 for ro � 6m: (49)

In general,

�	pr � �	o � �	r; (50)

where �	o and �	r may be obtained from Eqs. (26) and
(44).
-8
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FIG. 7. For q=m� ro � 6m, the change in 	pr, from the self-
force as a function of the radius ro for slightly eccentric orbits
close to the black hole.

TABLE II. Falloff at large ro for a variety of interesting
quantities involving the scalar field self-force.

Quantity behavior

 R
o � ro

�3

@r 
R
o � ro

�5

	o � ro
�3=2

�	o � ro
�9=2

	r � ro
�3=2

�	r � ro
�7=2

	pr � ro
�5=2

�	pr � ro
�7=2

E� ro
0

�E� ro
�4

J� ro
1=2

�J� ro
�5=2
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Figure 7 illustrates �	pr for orbits for smaller values of
ro, and the curve for �	pr has the same limit as that of
��	r in Fig. 5. The fractional change �	pr=	pr from the
self-force is shown in Fig. 8 for larger values of ro where
�	pr=	pr scales as ro�1.

We summarize the falloff at large ro for a variety of
quantities in Table II.

Our earlier manuscript [19] described the numerical
evaluation of @r R

o for a circular orbit in great detail. The
analytically known regularization parameters (the multi-
pole moments of @r S) were subtracted from the numeri-
cally determined @r ‘mo . A few additional regularization
parameters were determined numerically and also sub-
tracted from @r ‘mo . The remainder was summed over ‘
up to about 40.

The main difficulty revolved around the evaluation of
@r ‘mo with sufficient accuracy that the final sum gave us
good precision. Starting with approximately 13 significant
10 100
ro ⁄ m

0.01

0.02

0.03

0.04

0.05

− ∆
Ω

pr
⁄ Ω

pr
× µ

m
⁄q

2

FIG. 8. For q=m� ro � 6m, the fractional change in 	pr

from the self-force as a function of the radius ro for slightly
eccentric orbits far from the black hole.
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digits for @r ‘mo , after the regularization parameters were
subtracted about eight significant digits remained. The
main numerical task for evaluating the scalar field self-
force effects on 	r and 	pr is very similar to this earlier
work. A significant difference, however, is the need to
compute Ft, F�, and Fr, introduced in Eqs. (33)–(35).
The details required for determining the part of the field
which depends upon the slight eccentricity of the orbit are
described in Appendix A, and the regularization parame-
ters are given in Appendix B.
VI. SELF-FORCE EFFECT ON THE ISCO

The innermost stable circular orbit is characterized as
that orbit for which 	r is zero. The self-force changes the
radius of the ISCO from 6m by �R where

�Ris � �Ris � 6m�

� 180m2@r o � �3=2�dJ2=dR� 432m3Fr: (51)

This result follows from equating the coefficient in square
brackets in Eq. (39) to zero, replacing ro by 6m in all terms
which are O�q2=�m� and solving for �ro � 6m�. The self-
force correction to the angular frequency of the ISCO is
given by Eq. (23) when evaluated at ro � 6m��Ris,

	2
is � ro

�4m�ro � 3�Ris� � ro
�2�ro � 3m�@r o

� m�6m��3 � 3m�Ris�6m��4 � �12m��1@r o: (52)

The fractional change in 	is from the scalar field self-force
is

�	is=	is � ��Ris=4m� 9m@r o: (53)

A summary of our numerical results for the effect of the
scalar field self-force on the ISCO is given in Table III. Our
numerical work primarily followed that for evaluating 	pr.
-9



TABLE III. Quantities of interest regarding the ISCO.

�Ris ��=q2 � 0:122 701

�	is=	is ��m=q2 0.029 165 7
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However, one subtlety involved the need for evaluating
both Ft and F� in the limit that r! 6m. For that task we
found each quantity at approximately 30 points between
r � 6m and 7m. A polynomial fit to these data, using a
variety of subsets of the 30 points and different numbers of
polynomial coefficients, provided robust results for the
required limits.
VII. DISCUSSION

Two parts of our analysis of the self-force effects on
slightly eccentric orbits are algebraically taxing while not
particularly difficult conceptually. These are the calcula-
tions of the regularization parameters and the matching of
the homogeneous solutions of the field equation across the
orbit of the particle. While these two steps are individually
challenging, our confidence in the ultimate results is bol-
stered by the appropriate convergence of the sum over the
‘m modes of the components of the self-force. An error in
either the analytical or the numerical work involving either
the matching or the regularization parameters would be
immediately heralded by a lack of convergence of the sum
over modes. Consequently, we deem these results
trustworthy.

We see that the effect of the self-force from a scalar field
on the innermost stable circular orbit of the Schwarzschild
geometry is to move the ISCO inward and to increase its
angular frequency. It is tempting to generalize this result to
the gravitational self-force case. But we will not do so.
There is a significant difference between the self-force
effects of a scalar and a gravitational field. In particular,
as we mentioned in the introduction, for gravity the self-
force already has an important effect at the Newtonian
level [4]. Namely it is responsible for ensuring that the
particle and the black hole both orbit their common center
of mass. This is not the case for the scalar field. The
difference may be traced back to the fact that a black
hole has no scalar charge. The charged particle responds
only to the gravitational interaction with the black hole and
the scalar field interaction with its own  R, and the particle
motion deviates from a geodesic of the Schwarzschild
geometry only because of its scalar field. In this limit,
the black hole is not affected at all and remains fixed in
space. And the particle orbit is centered upon the black
hole, not upon the common center of mass. To see the
motion about the center of mass, it is necessary to consider
the gravitational self-force problem which we will return to
in a later paper in this series.

A well-defined formulation of the stability of the ISCO
requires the imposition of equal amounts of outgoing and
124018
ingoing radiation at the boundaries to make the system
dissipation-free. However, actual slow inspiral into a black
hole has only outgoing radiation, and one might wonder
about the relevance of our calculation to the actual physical
system. Ori and Thorne [29] outline a careful treatment of
the actual slow evolution of a small object inspiraling and
making the transition to a plunge into a black hole. They
also indicate how self-force effects could be included in
their analysis. An extension of our results in the manner
outlined by them is beyond the scope of this manuscript,
but may be returned to in the future.
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APPENDIX A: SOURCE DECOMPOSITION FOR
NEARLY CIRCULAR ORBITS

In this appendixm refers to the spherical harmonic index
while M refers to the mass of the black hole. Elsewhere in
this manuscript m is used for both of these quantities
without confusion.

The effects of the self-force on 	r and on the ISCO are
governed by the scalar field  for a slightly eccentric
geodesic. Finding the field in this case is more difficult
than for a circular orbit. Apostolatos, et al. [28], consider
the stress energy for a point mass moving along such a
geodesic, in their Sections IV B and IV C, and provide an
expansion of the source in powers of a small constant �R.
Their analysis is easily modified for a scalar charge.

A slightly eccentric geodesic in the equatorial plane is
described by

R�t� � ro � �R cos�	rt� (A1)

and

��t� � 	ot� ���t� � 	ot�
d	�

dR
�R
	r

sin�	rt�; (A2)
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where the angular frequency of the orbit is

	� �
d�
dt

� 	o �
d	�

dR
�R cos�	rt�: (A3)

The frequencies 	o and 	r are given in Eqs. (4) and (5).
The quantity d	�=dR represents the change in angular
frequency with respect to a change in radius

d	�

dR
� �

2�ro � 3M�

ro�ro � 2M�
	�; (A4)

while the conserved quantities E and J are held constant at
their circular orbit values,

E2 �
�ro � 2m�2

ro�ro � 3m�
J2 �

mr2o
ro � 3m

: (A5)

The scalar field source which moves on such an orbit is

% � q
Z 1

�1
��g��1=2��r� R�s��������s������ �=2�

� ��t� T�s��ds

�
q

r2

�
dt
ds

�
�1
��r� ro � �R cos�	rt���

�
��	ot

�
d	�

dR
�R
	r

sin�	rt�
�
���� �=2�; (A6)

after an integration over s and substitutions from Eqs. (A1)
and (A2). An expansion of the delta functions about the
orbit, with �R being small, along with a spherical har-
monic decomposition of this source, which includes an
integration by parts over the angle �, yields

%‘m�t; r� �
I
%Y�

‘m��;��d	

�
q�ro � 2M�

ro3E
Y�
‘m��=2; 0�e

�im	�t
�
1

� im
d	�

dR
�R
	r

sin�	rt�
�
���r� ro�

� �R cos�	rt��0�r� ro��: (A7)

This reveals that the source has a frequency spectrum
consisting of the harmonics of the angular frequency!m �
m	o along with sidebands at frequencies!�

m � !m �	r.
The amplitude of the sidebands are proportional to �R.

The scalar field wave equation is

r2 � �4�%: (A8)

The separation of variables of  yields

 �
X
‘m

‘m�t; r; �;�� �
X
‘m!

!
‘m�r�e

�i!tY‘m��;��;

(A9)

where ‘ � 0 . . .1, m � �‘ . . . ‘, and ! � f!m;!�
m;!�

mg.
The radial equation for the r dependence of any ‘ mode
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with a frequency ! is

d2!
‘m�r�

dr2
�

2�r�M�

r�r� 2M�

d!
‘m�r�

dr
�

�
!2r2

�r� 2M�2
�

‘�‘� 1�

r�r� 2M�

�
!
‘m�r� � �

4�%!‘m
1� 2M=r

:

(A10)

For self-force calculations it is convenient to use  �
�q=�� and to divide each  ‘m into the !m part  o

‘m and
the side band parts �R)�

‘m,

 ‘m�t; r; �; �� � � o
‘me

�i!mt � �R)�
‘me

�i!�
mt

� �R)�
‘me

�i!�
mt�Y‘m��;��: (A11)

The numerical determination of these parts of  ‘m requires
the source-free solutions of Eq. (A10) with appropriate
boundary conditions, and then the proper match of these
solutions across the orbit of the particle at ro. The matching
conditions, from Eqs. (A7) and (A10), are

� o
‘m�ro � lim

*!0�
� o

‘m�ro � *� �  o
‘m�ro � *�� � 0 (A12)

�
d o

‘m

dr

�
ro

� �
4�q2

�ro2E
Y�
‘m��=2; 0� (A13)

�)�
‘m�ro �

2�q2

�ro2E
Y�
‘m��=2; 0� (A14)

�
d)�

‘m

dr

�
ro

� �
4�q2

�ro2E
Y�
‘m��=2; 0�

�
M

ro�ro � 2M�

�
m
2	r

d	�

dR

�
(A15)

where, in the appendix only, � �ro on the left-hand side
denotes the discontinuous change in a quantity across the
orbit at ro.

The scalar field  is a purely real field, and it is conve-
nient to combine the m and �m contributions

 ‘m �  ‘;�m � � o
‘m �  o�

‘m� cos�m���	ot��Y‘m��; 0�

� �)�
‘m � )��

‘m��R cos�m���	ot�

�	rt�Y‘m��; 0� � �)�
‘m

� )��
‘m��R cos�m���	ot�

�	rt�Y‘m��; 0�; (A16)

where we have used the fact that  is the conservative field
given by 1

2 � 
ret �  adv�. The contribution fromm � 0 for a

given ‘ is just one-half of that in Eq. (A16) with m set to
zero,
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 ‘0 �
1

2
� o

‘0 �  o�
‘0�Y‘0��;��

� �)�
‘0 � )�

‘0��R cos�	rt�Y‘0��;��: (A17)

Note that )�
‘0 � )��

‘0 for the conservative field.
In Sec. VI we require  ‘m �  ‘;�m and its derivatives

evaluated at the particle. The location of the particle is
given in Eqs. (A1) and (A2). For m � 0, an expansion
about ro, retaining only terms through first order in �R,
yields

� ‘m �  ‘;�m�p �

�
1� �R�t�

@
@r

� ���t�
@
@�

�
� h� o

‘m �  o�
‘m� cos�m���	ot��Y‘mi

� �)�
‘m � )��

‘m � )�
‘m

� )��
‘m��R cos�	rt�Y‘m; (A18)

where the subscript p implies evaluation at the particle.
From here through the remainder of this Appendix A, the
spherical harmonic Y‘m is to be evaluated at ��=2; 0�, and
the other terms on the right-hand sides are to be evaluated
at �r;�� � �ro;	ot� only after all appropriate derivatives
have been taken. After simplification, this becomes

� ‘m �  ‘;�m�p � � o
‘m �  o�

‘m�Y‘m � �@r o
‘m � @r o�

‘m

� )�
‘m � )��

‘m � )�
‘m

� )��
‘m��R cos�	rt�Y‘m: (A19)

Similar expansions start with Eq. (A16) and ultimately
provide the � derivative

@
@�

� ‘m �  ‘;�m�p �

�
�
m2

	r

d	�

dR
� o

‘m �  o�
‘m�

�m�)�
‘m � )��

‘m � )�
‘m

� )��
‘m�

�
�R sin�	rt�Y‘m; (A20)

the t derivative

@
@t

� ‘m �  ‘;�m�p �

�
m2	o

	r

d	�

dR
� o

‘m �  o�
‘m�

�!�
m�)

�
‘m � )��

‘m� �!�
m�)

�
‘m

� )��
‘m�

�
�R sin�	rt�Y‘m; (A21)

and the r derivative

�@r ‘m � @r ‘;�m�p � �@r o
‘m � @r o�

‘m�Y‘m

� �@2r o
‘m � @2r o�

‘m � @r)�
‘m

� @r)��
‘m � @r)�

‘m

� @r)��
‘m��R cos�	rt�Y‘m: (A22)

In Sec. VI we require the sum over ‘ and m of these three
previous derivatives. Accordingly, we define Ft, F�, and
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Fr from

�@t 
R�p � �Ft	r�R sin�	rt� (A23)

�@� 
R�p � �F�	r�R sin�	rt� (A24)

and

�@r 
R�p � �@r o�ro � Fr�R cos�	rt�; (A25)

where the required regularization is described in
Appendix B.
APPENDIX B: REGULARIZATION PARAMETERS
FOR  

We describe the regularization of the scalar field as
developed by Barack and Ori [12,17] for a particle in a
circular orbit of the Schwarzschild geometry. Our notation
follows that of Refs. [19–21]. All of these are required
reading for a thorough understanding of this appendix.

The scalar field is regularized at the location of the
particle by subtracting the singular part of the field  S

from the actual field  . The remainder  R �  �  S is
then guaranteed [10] to be a regular solution of the vacuum
scalar field equation in the vicinity of the particle, and the
derivatives of  R at the particle provide the required self-
force resulting from the particle interacting with its own
field.

The mode-sum regularization procedure [12,17] de-
scribes the multipole decomposition of  R in terms of
the decompositions of  and  S,

 R �
X
‘m

 R
‘m�t; r�Y‘m��;��

�
X
‘m

� ‘m�t; r� �  S
‘m�t; r��Y‘m��;��: (B1)

The numerical determination of  ‘m�t; r� for a slightly
eccentric orbit is discussed in Appendix A and in Ref. [19].
 S, however, is singular at the location of the particle, and
only well defined in a neighborhood of the particle.
Nevertheless, its multipole decomposition over a two-
sphere of radius r is finite, even if r coincides with the
radial coordinate of the particle. The decomposition is not
unique because of the ambiguity in the definition of  S

away from the particle. However, the mode-sum regulari-
zation procedure remains valid because its sum is only
required in a neighborhood of the particle, where the sum
must equal  S. Thus, in evaluating  R and its derivatives at
the particle the individual  S

‘m in Eq. (B1) are not unique
but the sum in Eq. (B1) and its derivatives converge to
unique values.

Barack and Ori [12,17] find it convenient to do the sum
over m first and then to describe the multipole decompo-
sition of a derivative of  S as
-12
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�@a S�p �
X
‘

��
‘�

1

2

�
Aa � Ba �

Ca
‘� 1

2

�O�‘�2�

�
;

(B2)

where theO�‘�2� terms yield precisely zero when summed
over ‘. The constants Aa, Ba, and Ca are independent of ‘,
and are determined by a multipole decomposition of an
expansion of  S about the location of the particle.

The required regularization parameters for the deriva-
tives of @t are derived from Eqs. (8a)–(8d) of Ref. [17].
We discuss only those parameters which have not previ-
ously appeared in an actual application [19,23]. In our
notation, with _R representing a derivative of R with respect
to proper time s, these regularization parameters are

A�t � �
q2 _R

��R2 � J2�
(B3)

A�r � �
q2E

�R2�E2 � _R2�
(B4)

A�� � 0 (B5)

Bt �
q2ER _R

2��R2 � J2�3=2
�F1=2 � 2F�1=2� (B6)

Br � �
q2R2��2E2 � _R2�F1=2 � �E2 � _R2�F�1=2�

2��R� 2M��R2 � J2�3=2
(B7)

B� �
q2R _R�F1=2 � F�1=2�

2�J�R2 � J2�1=2
(B8)

Ct � Cr � C� � 0: (B9)

Here the hypergeometric function is represented by Fq �

2F1�q;
1
2 ; 1; z� where the argument z � M=�R� 2M�.

These parameters may be expanded by use of Eq. (A1),
which implies that

_R � �
�RE	r sin�	rt�

1� 2M=R
: (B10)

Through first order in �R the nonzero regularization pa-
rameters for a slightly eccentric orbit are

A�t � �
q2	r

�ro
2 �R sin�	rt� (B11)

A�r � �
q2

�ro
2E

�
1�

2

ro
�R cos�	rt�

�
(B12)

Bt � �
q2	r�F1=2 � 2F�1=2�

2�ro�ro
2 � J2�1=2

�R sin�	rt� (B13)
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Br � �
q2�2F1=2 � F�1=2�

2�ro�ro2 � J2�1=2

�
1

�
2ro

2 � J2

ro�ro2 � J2�
�R cos�	rt�

�

�
q2M�2F0

1=2 � F0
�1=2�

2�ro�ro � 2M�2�ro
2 � J2�1=2

�R cos�	rt� (B14)

B� � �
q2	r�F1=2 � F�1=2�

2�J�1� 2M=ro�1=2
�R sin�	rt�: (B15)

In this expansion, F0
1=2 is the derivative of the hypergeo-

metric function F1=2 with respect to its argument z. Both
F1=2 and F0

1=2 are evaluated at z � M=�ro � 2M�.
The regularization parameters for Ft and F�, defined in

Eqs. (A23) and (A24), are obtained by removing the factor
�	r�R sin�	rt� from A�t, Bt, and B�. Similarly, the
regularization parameters for Fr, defined in Eq. (A25),
are obtained by removing the factor �R cos�	rt� from
the �R terms of A�r and Br.

The regularization parameters for the scalar field, alone,
warrants further discussion [20]. In a particular locally-
inertial coordinate system �T; X; Y; Z�, the singular field
near a scalar charged particle is simply

 S � q=2�O�23=R4� (B16)

where R is a length scale of the geometry in the vicinity of
the particle, and 22 � X2 � Y2 � Z2. For the special case
that the particle is in a circular orbit about a Schwarzschild
black hole, a coordinate transformation between the spe-
cial �T; X; Y; Z� coordinates and the usual Schwarzschild
coordinates allows 2 to be written as a function of
Schwarzschild coordinates, and the expansion of 1=2
about 2 � 0 is given in Eq. (6.22) of Messaritaki [20].
The terms of interest are

1

2
� *�1 1

~2
� *1

�
ro � 3m

8r2o�ro � 2m�

�
1

)
�

�ro �m�
ro

1

)2

�
~2
�

� . . . (B17)

where . . . refers to terms which vanish as r! 0 in such a
manner that they have no contribution to the regularization
parameters. In this equation we use

~2 2 �
ro�r� ro�

2

ro � 2m
� 2r2o

ro � 2m
ro � 3m

)�1� cos�� (B18)

where

) � 1�
msin2�
ro � 2m

: (B19)

The angles ��;�� are derived from a rotation of the
Schwarzschild coordinates which puts the particle on the
� � 0 axis [19].
-13
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We find that, through the *1 term of Eq. (B17)

 S
‘0�r � ro� � B �

2
���
2

p
D 

�2‘� 1��2‘� 3�
(B20)

where B and D result from the *�1 and *1 terms of
Eq. (B17), respectively. Appendices C and D of Ref. [19]
describe the expansion of the � dependence in terms of
Legendre polynomials and a convenient method of finding
the m � 0 component by integrating over the angle �.

For � � 0, the *�1 term is

1

~2
�

����������������������������
�ro � 3m�

2r2o�ro � 2m�

s
)�1=2�1� cos���1=2: (B21)

From Eqs. (C3) and (D7) in [19], this gives

B �

����������������������������
�ro � 3m�

2r2o�ro � 2m�

s
F1=2

���
2

p
: (B22)
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For � � 0, the *1 term is

1

4

����������������������������
�ro � 3m�

2r2o�ro � 2m�

s �
1

)
�

�ro �m�

ro)2

�
)1=2�1� cos��1=2:

(B23)

From Eqs. (C3) and (D16) in [19] this gives

D 
�2

���
2

p

�2‘� 1��2‘� 3�
�

1

4

����������������������������
�ro � 3m�

2r2o�ro � 2m�

s �
F1=2

�
�ro �m�

ro
F3=2

�

�
�2

���
2

p

�2‘� 1��2‘� 3�
: (B24)
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