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Scalar self-force on a static particle in Schwarzschild spacetime using the massive field approach
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I use the recently developed massive field approach to calculate the scalar self-force on a static particle
in a Schwarzschild spacetime. In this approach the scalar self-force is obtained from the difference
between the (massless) scalar field, and an auxiliary massive scalar field combined with a certain limiting
process. By applying this approach to a static particle in Schwarzschild I show that the scalar self-force
vanishes in this case. This result conforms with a previous analysis [A. G. Wiseman, Phys. Rev. D 61,
084014 (2000).].

DOI: 10.1103/PhysRevD.70.124016 PACS numbers: 04.25.–g
I. INTRODUCTION

The self-force is a force originating from the coupling
between the charge of a particle and the field that this
charge induces. In curved spacetime, one usually considers
a fixed curved background spacetime and a given world
line of a charged particle. The field induced by the point
particle diverges at the particle’s location, and therefore a
regularization method is required to calculate the correct
(and finite) self-force from this diverging field. For this
problem, formal expressions for the self-force have been
derived for various types of fields. Thus, DeWitt and
Brehme derived an expression for the electromagnetic
self-force [1]. More recently Mino, Sasaki, and Tanaka
[2], and independently Quinn and Wald [3], have derived
an expression for the gravitational self-force (here the
electric charge is replaced by the mass of the particle,
and the induced electric field is replaced by the linear
gravitational perturbation induced by the particle’s mass).
Quinn [4] has recently derived the corresponding expres-
sion for the scalar self-force.

Although formal analytical expressions for the various
types of self-forces are well-known, explicit analytical
calculations of these self-forces are still a challenging
task and were carried out only in a few cases. Here, one
of the main difficulties is the nonlocal nature of the self-
force in curved spacetime (i.e., the self-force value at each
point on the particle’s trajectory generically depends on
entire past history of the particle). For a weakly curved
spacetime the above mentioned explicit self-force expres-
sions were derived by DeWitt and DeWitt [5], and by
Pfenning and Poisson [6]. The self-force on a static particle
was investigated analytically by several authors: Smith and
Will have obtained a nonvanishing result for the electro-
magnetic self-force on a static particle in Schwarzschild
[7]. Later Lohiya [8] derived the electromagnetic self-force
on a static particle for other types of background space-
times. Recently, Wiseman [9] has showed that the scalar
self-force on a static particle in a Schwarzschild spacetime
vanishes.

A practical method to calculate the self-force for generic
orbits was devised by Barack and Ori [10] (this method
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was later improved [11,12]). In this method, one first
calculates certain regularization parameters (usually ana-
lytically), and then uses these parameters to calculate the
self-force (usually numerically). This method was imple-
mented numerically in certain cases [13,14]. In particular,
using this method (numerically) the scalar self-force on a
static particle in Kerr-Newman background was calculated
by Burko and Liu [15]. For other approaches to the self-
force problem see [16–18].

Very recently, a new general method titled ‘‘the massive
field approach’’ for the calculation of the scalar self-force
was developed [19]. In this paper, I implement this new
method to calculate analytically the scalar self-force on a
particle, which is held static (by some external forces) in a
Schwarzschild background spacetime (i.e., static with re-
spect to Schwarzschild coordinates), and thereby I show
that the self-force vanishes in this case. This result con-
forms with the above mentioned analysis by Wiseman
(which used a different calculation method). The analysis
given here therefore verifies Wiseman’s result and further-
more demonstrates how the massive field approach can be
implemented in practice.

In Ref. [19] it is shown that the scalar self-force can be
obtained from the difference between the following re-
tarded scalar fields: The first field is �—the massless
scalar field induced by the particle. This field satisfies the
inhomogeneous massless scalar field equation, with a
charge density � [see Eq. (4) below]. The second field is
��—an auxiliary massive scalar field satisfying the inho-
mogeneous massive field equation, with the same charge
density � [see Eq. (14) below]. Reference [19] provides the
following prescription for the calculation of the scalar self-
force fself� in terms of these fields

fself� �z0� � q lim
�!1

�
lim
�!0

	�;��x� �
1

2
q��2n��z0�

��a��z0��
�
; (1)

where,

	��x� 	 ��x� 
���x�: (2)
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Here, � is the mass of the massive field, z0 is the self-force
evaluation point on the particle’s world line, and x is a
point near the world line defined as follows: at z0 one
constructs a unit spatial vector n�, which is perpendicular
to the particle’s world line but is otherwise arbitrary (i.e., at
z0 the following relations are satisfied: n�n� � 1, n�u� �

0). In the direction of n� one constructs a geodesic, which
extends out an invariant length � to the point x�z0; n�; ��.
In the following section I shall calculate the scalar self-
force on a static particle in Schwarzschild spacetime by
implementing the mathematical prescription given by
Eq. (1).

II. IMPLEMENTATION OF THE MASSIVE
FIELD APPROACH

Here I use Eq. (1) to calculate the scalar self-force on a
static particle in Schwarzschild spacetime. I use
Schwarzschild coordinates throughout, where x� �
�t; r; �; ’�, g�� � diag�
f; f
1; r2; r2sin2��, f 	 1
 2M

r .
I denote the particle’s world line with z���, where � denotes
the particle’s proper time. More explicitly the particle
world line is characterized by the spatial coordinates
�r0; �0; ’0� which are constants, where r0 > 2M.

By virtue of the spherical symmetry of the problem the
two angular components of the self-force fself� and fself’

vanish. To calculate the time component of the self-force
fselft we use Eq. (1). For a static particle in Schwarzschild
the scalar fields � and �� are time independent, and
therefore the term 	�;t in Eq. (1) vanishes. Noting that
the vectors n� and a� are perpendicular to the particle’s
world line we find that fselft vanishes, by virtue of Eq. (1).

We now consider the radial component of the self-force
fselfr . Equation (1) implies that the calculation of fselfr
follows from the calculation of the field 	�;r near the
particle’s world line, combined with a limiting process.
The first limit that has to be considered is �! 0. Here, we
take advantage of the arbitrariness in the definition of the
unit spatial vector n�, and choose n� to be the radial unit

vector n� � �0; f
1=2
0 ; 0; 0�, where f0 	 f�r0�. This choice

defines the spatial geodesic which extends out from z0 to x
in the direction of n� to be a radial spatial geodesic (with
r � r0) denoted here with �. The limit �! 0 is now
equivalent to the limit r! r0 along this geodesic. From
Eq. (1) we now find that the radial component of the self-
force is given by

fselfr �z0��q lim
�!1

�
lim
r!r0

	�;r�r��
1

2
q��2nr�z0���ar�z0��

�
:

(3)

Here the limit r! r0 is considered along �.
This section is organized as follows: First, in Sec. II A I

calculate the field �;r along the radial geodesic �, then in
Sec. II B I calculate an expansion for the field ��;r in the
vicinity of the particle’s world line and along �, and finally
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in Sec. II C I substitute�;r and��;r in Eq. (3) and calculate
fselfr .

A. Massless scalar field

Here we calculate �;r along the spatial radial geodesic
�. The massless scalar field � satisfies

�� � 
4��: (4)

Here �� 	 �;�
�, and ��x� is the scalar charge density.

For a point particle this charge density is given by

��x� � q
Z 1


1

1�������

g

p �4�x
 z����d�; (5)

where g denotes the determinant of the background metric.
For a static world line Eq. (5) gives

� �
q

�����
f0

p
��r
 r0����
 �0���’
 ’0�

r2 sin�
: (6)

Next, we solve Eq. (4) for the charge density given by
Eq. (6); for this purpose we decompose � and � into
spherical harmonics:

� �
X1
l�0

Xl
m�
l

�lm�r�Ylm��;’�; (7)

� �
X1
l�0

Xl
m�
l

�lm�r�Ylm��;’�: (8)

The coefficients in the charge density decomposition are
given by

�lm � q
��r
 r0�

�����
f0

p

r2
Ylm
��0; ’0�: (9)

The above mode decompositions together with Eq. (4) give
the following set of decoupled ordinary differential equa-
tions (for a static source)

�r2f�lm
;r �;r 
 l�l� 1��lm � 
4�r2�lm: (10)

These equations have the following analytical solutions

�lm �
4�q

�����
f0

p

M
Ylm
��0; ’0�Pl�z<�Ql�z>�: (11)

Here z 	 r
M
 1, z0 	 z�r0�; z> and z< denote the larger

and smaller terms from the pair fz0; zg, respectively; and
Pl;Ql denote Legendre functions of the first and second
kind, respectively. We now substitute Eq. (11) into Eq. (8)
and sum over the multipole number m which gives

� �
q

�����
f0

p

M

X1
l�0

�2l� 1�Pl�z<�Ql�z>�Pl�cos��: (12)

Here,

cos� 	 cos�0 cos�� sin�0 sin� cos�’
 ’0�:
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Recall that here we are interested only in the solution along
the radial geodesic �. Along � we have cos� � 1, which
considerably simplifies the summation in Eq. (12), and we
find that along this geodesic

� � q

�����
f0

p

r
 r0
:

Finally, we differentiate this expression with respect to r
and obtain

�;r � 
q

�����
f0

p

�r
 r0�2
: (13)
1For an approximated expression for these multipoles see
Eq. (25) below.
B. Massive scalar field

We now calculate an approximate expression for ��;r

along the radial geodesic �. Note that for the implementa-
tion of the prescription summarized by Eq. (3), it is suffi-
cient to have an approximate expression for ��;r in the
vicinity of the particle’s world line, and as � ! 1. We
therefore expand ��;r along � in powers of �r
 r0� and in
powers of �
1; and keep only terms that do not vanish as
r! r0, and as � ! 1.

The massive scalar field �� satisfies

�� 
�2��� � 
4��: (14)

Here, the charge density � is given by Eq. (6)—the same
charge density as in the massless field equation.
Decomposing �� and � into spherical harmonics gives

�� �
X1
l�0

Xl
m�
l

1

r
Ylm��; ’��lm

� �r�; (15)

� �
X1
l�0

Xl
m�
l

1

r
Ylm��; ’�~�lm�r�; (16)

where ~�lm � r�lm. From the massive field Eq. (14) to-
gether with the spherical harmonics decompositions (15)
and (16), we obtain the following infinite set of decoupled
ordinary differential equations for the spherical harmonics
coefficients �lm

� :

�lm
�;r
r
 
 �Vl�r� ��2f��lm

� � 
4�~�lmf: (17)

Here we introduced the tortoise coordinate r
 (see, e.g.,
[20]) defined by dr


dr � 1
f ; we also defined Vl�r� 	 f�f

0

r �
l�l�1�
r2

� and f0 	 df
dr . We now express the solution of the

inhomogeneous Eq. (17) in terms of two linearly indepen-
dent solutions of the corresponding homogeneous equa-
tion. Denoting these homogeneous solutions with #l�: such
that #l� vanishes as r
 ! 1, and #l
 is regular as r
 !

1, we find that

�lm
� �


4�q
�����
f0

p
Ylm
��0; �0�

r0

#l
�r<�#l��r>�

W�#l
; #l��r0
: (18)
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Here W�#l
; #
l
�� � #l�;r
#

l

 
 #l
;r
#

l
� denotes the

Wronskian, and r> and r< denote the larger and smaller
terms from the pair fr0; rg, respectively; the subscript r0
indicates that the term in the square brackets is evaluated at
r � r0.

Next, we calculate the sum over the multipole numberm
in Eq. (15). Introducing �l

� 	
Pl
m�
l

1
r �

lm
� Y

lm; and using
Eq. (18) we find that along the spatial radial geodesic � the
multipoles �l

� are given by

�l
� �


2qL
�����
f0

p

rr0

#l
�r0�#
l
��r�

W�#l
; #
l
��r0

; (19)

where L 	 l� 1
2 .

Next, we calculate an asymptotic expansion for ��;r as
� ! 1. This requires summation of the terms �l

�;r, fol-
lowed by an asymptotic expansion in powers of �
1. First
we consider the summation over the multipole number l

��;r �
X1
l�0

�l
�;r: (20)

Recall that for our purposes it is sufficient to calculate ��;r

along the radial geodesic �, and up to O��r
 r0�
0� (in-

clusive). As discussed in Ref. [19] the field ��;r diverges
on the particle’s world line. However, the individual multi-
pole terms�l

�;r�r0�, are finite on this world line,1 only their
sum over the multipole number l diverges there. To calcu-
late this sum (off the world line) it is useful to split this sum
into two parts: a sum which diverges at the limit r! r0,
and a sum which is finite at this limit. This splitting
simplifies the calculations, and allows us to use different
calculation methods for the two sums. We therefore ex-
press ��;r as

��;r �
X1
l�0

hl �
X1
l�0

��l
�;r 
 hl�: (21)

This splitting is considered on the radial geodesic �, and
the functions hl�r� will be defined below, such that the
second sum in Eq. (21) remains finite as r! r0 [see
Eq. (31) below]. This requirement implies that the values
of hl�r� in the vicinity of the world line must reflect the
leading asymptotic expansion of �l

�;r�r� as L! 1. We
comment here that a similar method for calculating a mode
sum was devised in Ref. [11] (for a somewhat different
purpose).

We shall now derive the required expressions for the
functions hl�r�. This requires an analysis of the asymptotic
behavior of �l

�;r�r� as L! 1 in the vicinity of the world
line. For this purpose we use the WKB approximation,
which enables us to calculate an asymptotic expansion of
the solutions of Eq. (17) in inverse powers of L (or in
-3
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inverse powers of �). Here there is a problem though, since
the WKB approximation is invalid in the vicinity of the
black-hole horizon. This can easily be inferred from
Eq. (17) which has a ‘‘turning point’’ at the event horizon
[i.e., the term in the brackets in Eq. (17) vanishes at r �
2M]. Therefore, we cannot impose a boundary condition at
r � 2M on the (WKB approximated) solution #l
. We
shall therefore consider a general approximated solution
for #l
 in the region where the WKB approximation is
valid, without imposing any boundary condition. We shall
eventually deal with this boundary condition problem in
the appendix, by considering a different approximation
method. For the accuracy required by the calculations
below it will be sufficient to keep the first three leading
terms in the WKB approximation, which reads

#l� � e
S0�S1
S2 ; (22)

#l
 � c1e�S0�S1�S2 � c2e
S0�S1
S2 : (23)

Here c1 and c2 are independent of r
, and the functions Si,
�i � 0; 1; 2� are given by (see, e.g., [21])

S0 �
Z r

2M
f
1

����
U

p
dr0; S1 � 


1

4
lnU;

S2 �
Z r

2M

1

f

�
f@r0 �fU0�

8U3=2



5�fU0�2

32U5=2

�
dr0;

(24)

where U�r0� 	 Vl�r0� ��2f�r0�, and U0 	 dU
dr0 . Examining

the asymptotic properties of the functions @rSi, we find that
as L! 1 (for a fixed �) the functions @rSi are O�L1
i�;
and as � ! 1 (for a fixed L) the functions @rSi are
O��1
i�. We now substitute Eqs. (22) and (23) into
Eq. (19), and differentiate with respect to r, this gives

�l
�;r �

q�����
f0

p
rr0

LeS

�S0;r � S2;r�r0

�
S;r 


1

r

�
; (25)

where,

S 	 
�S0�r� 
 S0�r0�� � �S1�r� 
 S1�r0��


 �S2�r� 
 S2�r0��: (26)

This WKB approximation is accurate up toO�L
1� [and up
to O��
1�]. At the limit where L! 1 (or � ! 1) the
contributions to Eq. (25) from the term which contains the
coefficients c1 and c2 [originating in Eq. (23)] vanishes
faster then any negative power of L (or �), and therefore
this contribution was neglected here (see the appendix for
details).

To find the asymptotic expansion for �l
�;r, as L! 1,

we first calculate the leading asymptotic expansion of S.
Expanding S gives

S � 
�L�O�L0�: (27)

Employing Eqs. (24), (26), and (27) we find that � is
approximated by
124016
� �
r
 r0�����
f0

p
r0



�r
 r0�2�r0 
M�

2r30f
3=2
0

�O��r
 r0�
3�: (28)

Equation (27) implies that as a function of L the term eS in
Eq. (25) has an essential singularity at infinity. To deal with
this singularity we simply multiply Eq. (25) by e
�Le�L,
and obtain

�l
�;r � e
�L

"
q�����
f0

p
rr0

LeS��L

�S0;r � S2;r�r0

�
S;r 


1

r

�#
: (29)

Note that no further approximation was made here, since
we merely multiplied Eq. (25) by unity. However, in this
form the term in the square brackets does not contain an
essential singularity as L! 1, and therefore this term can
be expanded in powers of L without difficulties. Note that
higher orders in the expansion of S do not give rise to a
similar essential singularity, and therefore do not require
special attention. Moreover, higher orders in the expansion
of � in Eq. (28) will have a vanishing contribution at the
limit r! r0 (see below), and are not required here. An
expansion of the term in the square brackets in Eq. (29)
reads

q�����
f0

p
rr0

LeS��L

�S0;r�S2;r�r0

�
S;r


1

r

�
�A�r�L�B�r�

�
C�r�
L

�O�L
2�: (30)

Here the coefficients A�r�,B�r�, and C�r� are independent
of L. We now define the functions hl�r� by multiplying the
asymptotic expansion in Eq. (30) by e
�L, which gives

hl�r� 	 e
��r�L
�
A�r�L� B�r� �

C�r�
L

�
: (31)

Having this definition, the functions hl�r� coincide with the
leading asymptotic expansion of �l

�;r�r� in the vicinity of
the world line, as required. Moreover, the difference
��l

�;r 
 hl�, when evaluated on the world line is O�L
2�.
Therefore, the second sum in Eq. (21) converges on the
particle’s world line, as required. We comment that at the
limit r! r0 the coefficients A�r�, B�r�, C�r� coincide with
the first three mode-sum regularization parameters intro-
duced by Barack and Ori in Ref. [11] (for the particular
problem which is considered here).

Next, we calculate the first sum in Eq. (21). Employing
Eq. (31) we obtain

X1
l�0

hl �
X1
l�0

e
�L
�
AL� B�

C
L

�
: (32)

Note that for r > r0 this sum converges due to the factor
e
�L. Summing separately over the various terms (without
the coefficients) in the square brackets in Eq. (32) gives
-4
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X1
l�0

Le
�L �
cosh��=2�

4sinh2��=2�
;

X1
l�0

e
�L �
2

sinh��=2�
;

X1
l�0

L
1e
�L � 2arctanh�e
�=2�:
(33)

Equation (28) implies that as r! r0 the first sum in
Eq. (33) is O��r
 r0�


2�, the second sum is O��r

r0�


1�, and the third sum is Oflog��r
 r0�

1�g. Our cal-

culation has to be accurate up to O��r
 r0�0�, and there-
fore the coefficients A�r�, B�r�, C�r� in Eq. (32), and the
function ��r� have to be accurate up to �O�r
 r0�2�. We
now substitute Eq. (33) in Eq. (32), and calculate the
coefficients A, B, and C to the required order. For this
calculation we use Eqs. (24), (26), (28), and (30). We find
that the first sum in Eq. (21) is given by [22]

X1
l�0

hl � 

q

�����
f0

p

�r
 r0�
2 �

q

2
�����
f0

p �2 �O�r
 r0�: (34)

Next, we consider the second sum in Eq. (21) in the
vicinity of the world line:

X1
l�0

��l
�;r�r�
h

l�r���
X1
l�0

��l
�;r�r0�
h

l�r0���O�r
r0�:

(35)

Recall that we only need the asymptotic form (as � ! 1)
of this expression. Introducing the notations yl 	 l=�,
y�l 	 L=�, and ��;r�L; r� 	 �l

�;r�r�, h�L; r� 	 hl�r�. We
find that as � ! 1 the sum in Eq. (35) can be approxi-
mated with a Riemann integral

�
X1
l�0

���;r�y
�l�; r0� 
 h�y�l�; r0���yl�1 
 yl�

� �
Z 1

0
���;r��y; r0� 
 hl��y; r0��dy: (36)

We now substitute the WKB approximation given by
Eq. (25) into the integral in Eq. (36). Note that contribu-
tions to ��;r�y

�l�; r0� from the functions Si with i � 3 are
convergent upon summation over the multipole number l.
However, these sums vanish as � ! 1, and therefore it is
sufficient to keep only the first three leading terms in the
WKB approximation. We now substitute Eq. (25) into
Eq. (36) and expand the result in inverse powers of �
[technically it is useful to substitute U�r� � U0 �	U�r�
into Eq. (25), where U0 	 U�r0�, and formally expand this
expression with respect to U0, and keep only terms that
will eventually give a nonvanishing contribution as � !
1] we find that in the vicinity of the particle’s world line
the second sum in Eq. (21) is given by [22]

X1
l�0

��l
�;r 
 hl� �

qM

2r20f0
��O��
1� �O�r
 r0�: (37)

Substituting Eqs. (34) and (37) in Eq. (21) gives
124016
��;r�

q

�����
f0

p

�r
r0�2
�
q
2
��ar��2nr��O�r
r0�

�O��
1�: (38)

Here nr 	 f
1=2
0 is the radial component of the unit spatial

vector n�, and ar 	
M
r20f0

is the radial component of the

four-acceleration of the static particle in Schwarzschild.

C. The radial self-force

We now calculate the radial self-force by implementing
the prescription given by Eq. (3). First we calculate the
field 	�;r�r� in the vicinity of the particle’s world line.
From Eqs. (13) and (38) we obtain

	�;r � 

q
2
��ar ��2nr� �O�r
 r0� �O��
1�:

(39)

Note that the field 	�;r�r� remains finite as r! r0 (while
the fields �;r and ��;r diverge at this limit)—this is a
general property of 	�;r�r� (see Ref. [19]). The cancella-
tion of the divergent terms allows us to take the limit r!
r0 of 	�;r�r�. Following Eq. (3) we add the term q

2 �

��ar�z0� ��2nr�z0�� to this limit. This added term exactly
annihilates the O��� and O��2� terms in our expression—
this is a general property as well (see Ref. [19]). We now
complete this calculation by taking the limit � ! 1 in
Eq. (3), which gives

fselfr �z0��q lim
�!1

�
lim
r!r0

	�;r�r��
1

2
q��2nr�z0���ar�z0��

�
�0: (40)

Combining this result with the results for the other com-
ponents of the self-force, we conclude that the scalar self-
force on a static particle in Schwarzschild vanishes.
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APPENDIX: GREEN-LIOUVILLE
APPROXIMATION

Here I shall derive Eq. (25). In particular I shall provide
justification for neglecting the term which depends on c1
and c2 in the expression for�l

�;r. As discussed in Sec. II B,
the WKB approximation is invalid in the vicinity of the
event horizon. This situation prevents us from patching the
WKB approximation for the homogeneous solution #l
 to
a regular boundary condition at the event horizon. In the
region where the WKB approximation is valid, the solution
#l
 is given by Eq. (23). By substituting Eqs. (22) and (23)
into Eq. (19), and differentiating with respect to r, we find
that
-5
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�l
�;r�

q�����
f0

p
rr0

LeS

�S0;r�S2;r�r0

�
S;r


1

r

��
1�

c2
c1
e
2S0
2S2

�
:

(A1)

We now focus on the contribution from the last term in the
last brackets, and explain why this term can be neglected
here. For this we follow an analysis by Rowan and
Stephenson [23], who showed that by using the Green-
Liouville approximation method, one can obtain an ap-
proximate solution to Eq. (17), which is valid in the entire
r � 2M region. First, we express the homogeneous wave
equation for #l� as

�r2f#l;r�;r 
 �l�l� 1� ��2r2�#l � 0: (A2)

Next we introduce x � �r=M�f, N � M� and make the
following transformations from x to 3:

302 � 42

�
2� x
x

�
�

�2

x�x� 2�
: (A3)

Here, 30 � �d3dx�, 42 � N2=k2, �2 � �l�l� 1��=k2, and
k2 � N2 � l�l� 1�. Note that 0 � � � 1, 0 � 4 � 1.
The new variable 3 is defined by

3 �
Z x

0
j30jdx: (A4)

Next, we define  l such that

 l �
����������������������
30x�x� 2�

p
#l: (A5)

Equation (A2) now reads

 l;33 
 �k2 
 �23�
2 � g1�3�� l � 0: (A6)

Here g1�3� is a slowly varying function of 3, which is
bounded everywhere. This function is O�1� near the event
horizon, and it isO�3
2� as 3! 1. The full expression for
g1�3� (see [23]) is not required here.

For large values of k (which correspond to large values
of N and/or large values of l) Eq. (A6) can be solved using
perturbation analysis. The leading order in this approxima-
tion is obtained by completely neglecting the small con-
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tribution from the function g1�3� in this equation. The
remaining equation can be solved exactly, giving two
linearly independent solutions, from which the correspond-
ing #l� can be calculated. These approximate homogene-
ous solutions are given by

#l� �
���
3

p
�30x�x� 2��
1=2K0�k3�;

#l
 �
���
3

p
�30x�x� 2��
1=2I0�k3�:

Here I0 andK0 are the modified Bessel functions of the first
and second kind, respectively. By continuing the perturba-
tion analysis to higher orders we find that the approximate
solution #l
 at any (fixed) order has the following asymp-
totic form (as k! 1)

#l
 � F
�k; 3�e
k3 � F��k; 3�e


k3: (A7)

For 3 � 0 the functions F��k; 3� vanish at the limit k!
1. At the domain where both WKB and Green-Liouville
approximations are valid, we equate Eq. (A7) with the
corresponding WKB approximation [i.e., with Eq. (23),
extended to the required order]. Using this equation (for
an arbitrary fixed order) we find that the term c2

c1
e
2S0
2S2

approaches zero faster then any negative power of k, as
k! 1. We therefore conclude that the last term in the last
brackets in Eq. (A1) can be neglected in our calculation.
Note that the above mentioned equation can only provide
us with a bound (which is sufficient for our purpose). This
equation, however, cannot be used to determine the value
of the coefficient c2 (though it can be used to determine c1
up to a given order). The difficulty with the coefficient c2 is
that it multiplies a subdominant term—a term which van-
ishes exponentially.

I comment here that the entire perturbation analysis can
be done with Green-Liouville approximation; this method
has the advantage of being valid in the entire r � 2M
region. However, we find that the WKB approximation is
simpler, especially for the higher orders which are required
by this analysis.
[1] B. S. DeWitt and R. W. Brehme, Ann. Phys. (N.Y.) 9, 220
(1960).

[2] Y. Mino, M. Sasaki, and T. Tanaka, Phys. Rev. D 55, 3457
(1997).

[3] T. C. Quinn and R. M. Wald, Phys. Rev. D 56, 3381
(1997).

[4] T. C. Quinn, Phys. Rev. D 62, 064029 (2000).
[5] B. S. DeWitt and C. M. DeWitt, Physics (Long Island City,

N.Y.) 1, 3 (1964).
[6] M. J. Pfenning and E. Poisson, Phys. Rev. D 65, 084001

(2002).
[7] A. G. Smith and C. M. Will, Phys. Rev. D, 22, 1276
(1980).

[8] D. Lohiya, J. Phys. A: Math. Gen. 15, 1815 (1982).
[9] A. G. Wiseman, Phys. Rev. D 61, 084014 (2000).

[10] L. Barack and A. Ori, Phys. Rev. D 61, 061502 (2000); L.
Barack, Phys. Rev. D 62, 084027 (2000).

[11] L. Barack and A. Ori, Phys. Rev. D 66, 084022 (2002).
[12] L. Barack, Y. Mino, H. Nakano, A. Ori, and M. Sasaki,

Phys. Rev. Lett. 88, 091101 (2002).
[13] L. M. Burko, Phys. Rev. Lett. 84, 4529 (2000); L. Barack

and L. M. Burko, Phys. Rev. D 62, 084040 (2000).
-6



SCALAR SELF-FORCE ON A STATIC PARTICLE IN. . . PHYSICAL REVIEW D 70, 124016 (2004)
[14] L. M. Burko, Classical Quantum Gravity 17, 227 (2000);
L. M. Burko, Y. T. Liu, and Y. Soen, Phys. Rev. D 63,
024015 (2001); L. M. Burko and Y. T. Liu, Phys. Rev. D
64, 024006 (2001).

[15] L. M. Burko and Y. T. Liu, Phys. Rev. D, 64, 024006
(2001).

[16] C. O. Lousto, Phys. Rev. Lett. 84, 5251 (2000).
[17] S. Detweiler, Phys. Rev. Lett. 86, 1931 (2001).
[18] S. Detweiler and B. F. Whiting, Phys. Rev. D 67, 024025

(2003).
124016
[19] E. Rosenthal, Phys. Rev. D 69, 064035 (2004).
[20] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(Freeman, San Francisco, 1973).
[21] C. M. Bender and S. A. Orszag, Advanced Mathematical

Methods for Scientists and Engineers (McGraw-Hill,
New-York, 1978).

[22] This expression was calculated with Mathematica
software.

[23] D. J. Rowan and G. Stephenson, J. Phys. A 9, 1261 (1976).
-7


