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Zeta functions in brane world cosmology
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We present a calculation of the zeta function and of the functional determinant for a Laplace-type
differential operator, corresponding to a scalar field in a higher-dimensional de Sitter brane back-
ground, which consists of a higher-dimensional anti de Sitter bulk spacetime bounded by a de Sitter
section, representing a brane. Contrary to the existing examples, which all make use of conformal
transformations, we evaluate the zeta function working directly with the higher-dimensional wave
operator. We also consider a generic mass term and coupling to curvature, generalizing previous results.
The massless, conformally coupled case is obtained as a limit of the general result and compared with
known calculations. In the limit of large anti de Sitter radius, the zeta determinant for the ball is
recovered in perfect agreement with known expressions, providing an interesting check of our result
and an alternative way of obtaining the ball determinant.
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I. INTRODUCTION

The idea of living on a membrane embedded in a
higher-dimensional spacetime has attracted enormous
attention over the past few years, the main motivation
being the fact that the localization of particles on branes
provides an alternative to the standard picture of Kaluza-
Klein compactification [1,2].

A popular example is the Randall-Sundrum model [3],
which considers a five-dimensional slice of anti de Sitter
(AdS) spacetime with the extra dimension compactified to
an orbifold having two 3-branes of opposite tension lo-
cated at its fixed points. This results in a nonfactorizable
spacetime, which, as Randall and Sundrum have shown,
has the important consequence that the effective four-
dimensional scale on the negative-tension brane turns out
to be exponentially suppressed relative to the higher-
dimensional scale. This was originally proposed as a
solution to the hierarchy problem by explaining the very
small ratio (large hierarchy) of some 17 orders of magni-
tude between the electroweak scale and the Planck scale
observed on our brane, identified as that with negative
tension. In this model, the hierarchy arises as a geomet-
rical effect, with gravity being strongly localized around
the positive-tension brane.

Pushing this idea further, Randall and Sundrum [4]
showed that the negative-tension brane may actually be
absent and the extra dimension possibly infinite in size. In
that case, we live on the positive-tension brane with
gravity confined around it, recovering its standard
Einstein form from an effective four-dimensional point
of view. This result does not solve the hierarchy problem,
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but has stimulated the construction of many new cosmo-
logical models. Here we concentrate our attention on the
de Sitter brane model, relevant in the construction of
brane world models of inflation.

The problem of studying quantum effects in such sce-
narios is, then, naturally posed. It is immediately clear
that when a quantum field is considered on such back-
ground spacetimes, quantum effects may play a signifi-
cant role, the simple contribution that they give to the
brane and bulk cosmological constants being an evident
example.

A number of people, inspired by previous work in
Kaluza-Klein theories [5,6], have investigated the possi-
bility that quantum effects from bulk fields could play a
role in the consistency of such models by providing a
sensible mechanism of stabilization in the Randall-
Sundrum two-brane model and in some higher-
dimensional generalizations. Various authors have dealt
with the problem of quantum effects in brane models and
some references are [7–16]. The lowest order quantum
corrections arising from bulk fields on the Randall-
Sundrum background have been calculated in a variety
of ways, and then extended to some general classes of
higher-dimensional spacetimes in Refs. [17–19]. Ref. [20]
considers the case of scalar and gauge fields in the
Randall-Sundrum model and interprets the result in
terms of the AdS/CFT correspondence, showing explic-
itly that quantum effects could provide a sensible stabi-
lization mechanism.

It is worth mentioning that in most of the previous
work, the geometry of the branes was assumed to be flat,
which greatly simplifies the study of quantum effects.
When the branes are curved, as happens, for example,
in de Sitter or hyperbolic brane models, and where the
Casimir energy could have some effect on the cosmologi-
cal evolution of the brane, the situation becomes more
complicated.
-1  2004 The American Physical Society
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Some work in this direction has been carried out in
Refs. [21–24]. Specifically, in Refs. [21,22], the vacuum
energy for a massless conformally coupled scalar field in
a brane world corresponding to de Sitter branes in an AdS
bulk has been evaluated. This calculation, which is tech-
nically the simplest, is carried out by working in a con-
formally related spacetime, similar in form to the
Einstein universe. Zeta function regularization is em-
ployed and the result shows that the vacuum energy is
zero for the one-brane configuration. These results have
been extended to the case of conformally coupled
Majorana spinors in Ref. [24], still by making use of
conformal transformations. The cases of a massless con-
formally coupled scalar field and of a massive minimally
coupled field for de Sitter branes embedded in both
de Sitter and AdS bulks have been considered in
Ref. [23], where the vacuum energy is computed once
again by using conformal and zeta regularization tech-
niques and is found to be zero for the one-brane case.
Refs. [21,25] consider a somewhat related setup and com-
pute the effective action for scalar fields in an AdS bulk
bounded by AdS branes, still by making use of conformal
transformations.

Apart from the relatively simple case of massless,
conformally coupled field, the general case has not yet
been studied. The present paper is devoted to providing a
new derivation of the zeta function and of the functional
determinant for a scalar field in a de Sitter brane model.
The method is very general and applies, in principle, to a
number of situations, where the methods based on con-
formal transformations or dimensional reduction cannot
be applied at ease.

We perform the calculation by directly working in the
higher-dimensional spacetime and evaluate the zeta func-
tion for the original higher-dimensional wave operator.
With respect to the previously studied cases, we have to
deal with two main problems. The first is to compute a
zeta function where the operator spectrum is not known,
for which we adopt the technique developed in Refs. [26–
32]. This general technique, elaborated in various forms,
allows one to obtain the zeta function using only the
knowledge of the basis functions. Such a method is ap-
plicable whenever an implicit equation satisfied by the
eigenvalues is known, and has already been applied in the
context of brane models. We stress, however, that in the
case of flat branes the basis functions can be conveniently
expressed in terms of Bessel functions, which greatly
simplifies the calculation. The second main problem is
that, for the class of spacetimes we consider, namely, an
AdS bulk bounded by a de Sitter brane, the basis functions
are expressed as a combination of generalized Legendre
functions, which are considerably less manageable.
However, the method developed in Ref. [27] proves to
be particularly useful and we closely follow their ap-
proach in our calculation.
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The structure of the paper is as follows. In the next
section, we discuss the spacetime configuration of the
de Sitter brane model and solve the higher-dimensional
scalar wave equation on such a background spacetime.
For the sake of generality, we consider a massive scalar
field coupled to the higher-dimensional curvature. In the
subsequent section, after having described the general
technique of Ref. [27], we pass to the main task at hand,
which is the evaluation of the zeta function for a de Sitter
brane model. After having obtained the general result, we
consider two limiting cases, which provide a nontrivial
check on the method used as well as the actual calcula-
tion. First we specify the result to the conformally
coupled case and compare with that of Refs. [21–24].
Then we consider the limit of large AdS curvature radius
‘, which should reproduce a ball-like geometry. The last
section is left for conclusions. Several technical results
regarding the asymptotic expansion of the generalized
Legendre functions, as well as the derivations of certain
results used in the calculation, are reported in the
appendices.
II. SCALAR FIELDS ON DE SITTER BRANE
BACKGROUNDS

The background configuration we consider is described
by the action

S �
Z
d5x

������������
�g�5�

q �
1

2�2 �R� 2�5�

�
�

Z
d4x

������������
�g�4�

q
�;

(2.1)

where

�5 � �
6

‘2
(2.2)

is a higher-dimensional, negative, bulk cosmological con-
stant term, � is the brane tension, and �2 is proportional
to the five-dimensional gravitational constant. The corre-
sponding solution of the setup, with the usual cosmologi-
cal symmetries, has an AdS five-dimensional geometry;
‘ is the radius of the five-dimensional AdS space.

A convenient scaling of the time coordinate allows one
to write the metric as

ds2 � dr2 � ‘2sinh2�r=‘��d�2 � sin2�d�2
3�; (2.3)

where the coordinate r parametrizes the extra dimension
and d�3 is the metric on the 3-sphere. For notational
convenience, we define

a�r� � H‘ sinh�r=‘�: (2.4)

A Z2-symmetric brane world can then be constructed in
a standard way by taking two slices of the space and
gluing them along the brane located at r0. In such a case,
the junction conditions at the brane give the Friedmann
equation
-2
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H2 �
�5

6
�

�
�2

6

�
2
�2: (2.5)

In the present case, the Hubble parameter H is constant,
so that the brane geometry is de Sitter. The Hubble pa-
rameter is related to the brane position r0 according to

H2 �
1

‘2sinh2�r0=‘�
: (2.6)

One important point, which is worth mentioning, is that
the construction of the de Sitter brane universe involves
the continuation from Euclidean to Lorentzian space-
time, which is done by means of the substitution � !
iHt� ��=2�. We refer the reader to Ref. [33] where this
has been thoroughly investigated.

On such a background, we consider a bulk scalar field
and ignore its backreaction. It satisfies the Klein-Gordon
equation

���E �m2 � �R�’�x; r� � 0: (2.7)

For the sake of generality, we consider the brane to be D-
rather than four-dimensional, for the remainder of the
present section. Furthermore, for later convenience, we
transform to Riemannian signature. Hence, �E is the
�D� 1�-dimensional d’Alembertian on Riemannian
space and R is the scalar curvature, given by

R � a�2�r�R� �

�
2D

a00�r�
a�r�

�D�D� 1�
�
a0�r�
a�r�

�
2
�
;

(2.8)

where R� � D�D� 1�H2 is the scalar curvature of the
de Sitter brane, which is a D sphere of radius H�1.

We are interested in finding the eigenmodes ’n;j�x; r�
and eigenvalues �2

n;j of the above field operator, defined by

���E �m2 � �R�’n;j�x; r� � �2
n;j’n;j�x; r�: (2.9)

Let us assume that the modes are separable in the varia-
bles x and r:

’n;j�x; r� � �j�x�fn;j�r�; (2.10)

where the spherical eigenfunctions satisfy

����j�x� � j�j�D� 1�H2�j�x�; (2.11)

where �� is the d’Alembertian on the de Sitter section
and dj the degeneracy factor,

dj � �2j�D� 1�
�j�D� 2�!

j!�D� 1�!
(2.12)

with j � 0; 1; 2; . . . . Using Eq. (2.11) in Eq. (2.9) allows us
to find the equation of motion for the radial eigenfunc-
tions:
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��a�D�@ra
D@r� � a�2j�j�D� 1�H2�

m2 � �R�fn;j�r� � �2
n;jfn;j�r�;

(2.13)

whose solution can be written in terms of toroidal
Legendre functions

fn;j��� � �H‘�1=2�D=2sinh1=2�D=2

� ����An;jP
� j
i!n;j�1=2�cosh��

� Bn;jQ
� j
i!n;j�1=2�cosh���; (2.14)

where we have defined � � r=‘. The order and degree of
the associated Legendre functions are

 j �
�
j�

D� 1

2

�
and !n;j �

�������������������������
‘2�2

n;j � $2
q

; (2.15)

where

$2 � ‘2m2 � �‘2R�D2=4: (2.16)

Regularity at the origin implies that Bn;j � 0, as follows
from examining the small-argument behavior of the gen-
eralized Legendre functions.

Thus, our eigenfunctions take the form

fn;j��� � An;ja
1�D=2���P

� j
i!n;j�1=2�cosh��; (2.17)

with a��� � H‘ sinh�.
As well as the solution in the bulk, we must also

consider the boundary condition on the brane, which
can be obtained by integrating (2.13) across the brane.
In general, the Z2 symmetry allows us to choose either an
untwisted field configuration, such that f��� � f����,
corresponding to Robin boundary conditions

@�fn;j��0� � �
2D�
‘

coth��0�fn;j��0�; (2.18)

or alternatively a twisted field configuration, such that
f��� � �f����, corresponding to Dirichlet boundary
conditions

fn;j��0� � 0: (2.19)

In the remainder of the paper we focus our attention to
Dirichlet boundary conditions.
III. ZETA FUNCTION FOR DE SITTER BRANE
MODELS

A. General method

The main scope of this paper is to compute the zeta
function and the functional determinant for a bulk scalar
field on a de Sitter brane background. For calculational
simplicity, we take a field obeying Dirichlet boundary
conditions, although the method can be applied to more
general situations with few calculational modifications.
To deal with the case of de Sitter brane models, we follow
-3
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FIG. 1. The original contour (enclosing the positive real
zeros) and the deformed contour lying along the imaginary
axis. The deformed contour C0 is closed at infinity by a semi-
circle of infinite radius.
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the approach of Refs. [26,27,30–32], where a calculational
technique for % functions of differential operators on
manifolds with boundaries with explicitly unknown
spectra has been developed and applied (see Refs. [27–
29]) to evaluate the one-loop contribution from the gravi-
ton, and matter fields, to the Hartle-Hawking wave func-
tion. Here we summarize their method.

It is a well-known fact that the one-loop effective
action can be written as

��1� �
1

2
Tr ln�; (3.1)

where � is a second-order differential operator, in our
case given by

� � ��E �m2 � �R: (3.2)

��1� can be expressed in terms of a generalized % function

%�s� �
X
�

��s; (3.3)

with � being the eigenvalues of the operator �, which we
assume to be positive definite. One has

��1� � �
1

2
% 0�0� �

1

2
%�0� ln'2; (3.4)

where ' is the renormalization scale. Thus, we see that
the main problem is reduced to that of evaluating the %
function and its derivative at s � 0.

Usually, the computation of the % function requires
explicit knowledge of the spectrum. However, in many
situations of interest, the eigenvalues are not explicitly
known. To bypass this kind of problem, various authors
have developed a calculational technique that allows one
to evaluate the % function and related quantities like
functional determinants, Casimir energies, and effective
actions, when such information on the eigenvalues is
lacking and the only knowledge of the spectrum is via
an implicit equation [27,30–32]. Generally, one considers
the eigenvalue problem associated with the operator �:

�u �x� � �u �x�; (3.5)

where the parameter  enumerates the independent solu-
tions of (3.5). A degeneracy factor d� � is associated with
each  . Imposing the relevant boundary conditions leads
to an equation of the form

F��;  � � 0; (3.6)

where the function F��;  � depends on the mode func-
tions, the eigenvalues �, the index  , and eventually other
parameters inessential for the present discussion.

To evaluate the % function it is not necessary to solve
the previous equation, as is clear by making use of the
residue theorem, which allows one to write
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%�s� �
1

2�i

Z
C
!�s d

d!

X
 

d� � lnF�!;  �d!; (3.7)

where the contour C is chosen to enclose all the positive
solutions of (3.6) in the complex ! plane.

For the explicit calculation, it is convenient to express
this contour integral as an integral along the real line,
which can be achieved by appropriately deforming the
contour C. Typically, if the function F�!;  � satisfies
certain properties, as in the case we will consider in the
next section, a choice of a contour like the one in Fig. 1,
allows one to rewrite the integral (3.7) as

%�s� �
sin�s
�

Z 1

0
z�s

d
dz

X
 

d� � lnF�z;  �dz: (3.8)

The source of divergences in the above expression comes
from the large  behavior and the integration over z. We
need to check that large values of s indeed regulate %�s�.
Let us first presuppose that this is possible and, assuming
s to be large enough, we swap the order of integration and
summation and consider the asymptotic behavior of the
integral

Z 1

0
z�s

d
dz

lnF�z;  �dz (3.9)

for  ! 1 and its integrand for z ! 1 and z ! 0. Now, it
is possible to obtain a uniform asymptotic expansion
�� ; z= � of lnF�z;  � such that  ! 1, while the ratio
-4



ZETA FUNCTIONS IN BRANE WORLD COSMOLOGY PHYSICAL REVIEW D 70, 124011 (2004)
z= is held fixed. Thus

lnF�z;  � �� ; z= �; (3.10)

for large  . There are two important features of this
expansion, aside from its uniformity: it has a power-law
behavior of fixed order in  , as we shall illustrate for our
case, and it is valid in the full range of the ratio 0 �
z= <1. If the integral (3.9) is finite for a large enough
value of s, which is true in our case, then uniformity,
together with these two properties ensures the conver-
gence of the sum over (3.9), for sufficiently large s. This
can be proved under quite general assumptions, but here
we content ourselves with showing that this is true for the
case under study. Finally, a simple rescaling allows us to
write

%�s� �
sin�s
�

X
 

d� � �s
Z 1

0
z�s

d
dz

��z;  �dz: (3.11)

This verifies that it is possible to regularize the divergen-
ces by a suitable choice of s. We now interchange the
integration and summation back to their original order
and write

%�s� �
sin�s
�

Z 1

0
z�s

d
dz

I�z; s�dz; (3.12)

where I�z; s� is given by

I�z; s� �
X
 

d� � �s
d
dz

lnF�z;  �: (3.13)

In order to further proceed with the evaluation of the %
function, we must analytically continue to s � 0. We
expand the sum (3.13) around small values of s, which
generally develops a pole:

I�z; s� 
Ipole�z�

s
� IR�z� �O�s�: (3.14)

It is now possible to use the following lemma along with
the properties of the asymptotic expansion to compute
%�s�. Consider a function f�x� which is analytic at x � 0,
for some small 0, and has the following general asymp-
totic behavior when x ! 1,

f�x� �
X1k<N
k�1

�fk � �fk lnx�x1k � �f�log lnx� �f�reg

�O�x�1�; 1k > 0; (3.15)

where the subscripts log and reg refer to the solely loga-
rithmic and regular (nonsingular) parts of f�x� in the
large x limit. Then, there exists the analytic continuation
of the integral

Z 1

0

dx
xs

d
dx

f�x� �
�f�log
s

� �f�10 �O�s�; (3.16)

where �f�10 � �f�reg � f�0�, for example, see Ref. [27].
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On the basis of the uniform asymptotic expansion of
the eigenfunctions, it is possible to prove that Ipole�z� and
IR�z� behave as (3.15) and we also assume that �Ipole�log �
0, which we shall show to be true in the case of interest to
us. It is now a simple matter to apply the result (3.16) to
Ipole�z� and IR�z� to get

%�s� � �IR�log � �Ipole�10 � s
	
�IR�10

�
Z 1

0
dz lnz2

dIpole�z�
dz



�O�s2�; s ! 0:

(3.17)

This equation can then be used to get the value of the %
function and its derivative at s � 0.

B. Explicit evaluation of the � function

We now pass to the explicit evaluation of the % function
for the scalar field on the de Sitter background, described
in Sec. II. We have seen that, for Dirichlet boundary
conditions, the eigenvalues are given by the solution of
the implicit equation

F�!n;j; j� � 2 j��1�  j�P
� j
i!n;j�1=2�cosh�0� � 0:

(3.18)

Note that we have multiplied the Legendre function by the
factor 2 j��1�  j� as this does not change the solution of
the eigenvalue Eq. (2.19) and, on the other hand, produces
some simplifications in the calculations at a later stage. It
is also clear that any factor independent of z does not
affect the contour integral (3.7).

Thus the % function can be expressed by the double sum

%�s� �
X
n;j

dj�
�2s
n;j � ‘2s

X
n;j

dj�!
2
n;j � $2��s; (3.19)

with!n;j defined in (2.15) being the solutions to (3.18). As
described in the previous subsection, we can use the
residue theorem to express the % function as a contour
integral, in terms of the complex parameter !

%�s� �
‘2s

2�i

X
j

dj
Z
C

d!

�!2 � $2�s
d
d!

lnF�!;  j�; (3.20)

where the contour C is chosen to enclose the real positive
zeros of F�!;  j�.

By appropriately deforming the contour (see Fig. 1) and
by performing some formal manipulations, we arrive at

%�s� �
sin�s
�

Z 1

0

dz2

z2s
d

dz2
I�z2; s�; (3.21)

where
-5
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I�z2; s� �
X
j

dj
1

 2sj
ln
�
2 j��1

�  j�P
� j�����������������
 2j z

2‘2�$2
p

�1=2
�cosh�0�

�
: (3.22)

As in the previous subsection, we split the contributions
to the % function into one regular plus one polar piece:

%�s� � %R�s� � %P�s�; (3.23)

where

%R�s� �
sin�s
�

Z 1

0
dz2z�2s d

dz2
IR�z2; s�; (3.24)

and

%P�s� �
sin�s
�

Z 1

0
dz2z�2s d

dz2
Ipole�z2; s�: (3.25)

In the previous two expressions R means that we have to
take the regular part of the large-z expansion of the
integrand, whereas pole refers to the pole part at large z.

The integrand functions have the asymptotic behavior
(3.15), as shown in Appendix A; we are, therefore, jus-
tified in applying the lemma discussed previously. Then,
it is easy to see that

%R�s� � �IR�log � s��IR�reg � IR�0�� �O�s�; (3.26)

and

%P�s� � �Ipole�reg � Ipole�0� � s
Z 1

0
dz2 lnz2

dIpole�z2�

dz2

�O�s�: (3.27)

The derivative can now be calculated easily and the
previous results combine to give

%�0� � �IR�log � �Ipole�reg � Ipole�0�; (3.28)

and

% 0�0� � �IR�reg � IR�0� �
Z 1

0
dz2 lnz2

dIpole�z2�

dz2
; (3.29)

where we have anticipated the fact that �Ipole�log � 0, as
shown in Appendix B. The asymptotic expansion of
I�z2; s� is also given in Appendix B, where the various
pieces appearing in (3.28) and (3.29) are obtained.

For %�0�, �IR�log, �Ipole�reg and Ipole�0� are needed, and
Eqs. (B4), (B7), and (B8) provide them. Some algebra
leads to the desired result:

%�0� �
1

6

17

1920
�

sinh2�0

32
�1� 2sinh2�0��$

2 � 1=4�

�
sinh4�0

48
�$2 � 1=4�2: (3.30)

On the other hand, the evaluation of % 0�0� requires the
knowledge of �IR�reg, IR�0� and of the integral piece
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appearing in Eq. (3.29). These are calculated in
Appendix B and the results are reported in formulas
(B9), (B20), and (B38), which, combined together, lead
to the following expression for % 0�0�:

% 0�0� � %�0� ln�‘ sinh�0�
2 � �1 � �2 ��3 � �4

(3.31)

where

�1 �
47

9216
�

1

64
% 0�0; 1=2� �

1

24
% 0��1; 1=2�

�
1

24
% 0��2; 1=2� �

1

6
% 0��3; 1=2�

�
1

12
% 0��4; 1=2�; (3.32)

�2 � �
137

7200

d5�

dx5

��������x�0
�

1

120

Z 1

0
dx lnx

d6�

dx6

�
Z 1

2=3
x�6��x�dx; (3.33)

�3 � �i
Z 1

0
dx

�ix� 3=2�3=3� �ix� 3=2�=12

e2�x � 1
ln�Z�ix

� 3=2�� � C:C:�
1

2
ln�Z�3=2��; (3.34)

�4 � �
73

1536
sinh2�0 �

251

3072
sinh4�0 �

7

64
$2sinh2�0

�
31

192
$2sinh4�0 �

1

48
$4sinh4�0; (3.35)

where

��x� �
1

3

�
x�

1

4
x3
�
lnZ�1=x�; (3.36)

Z �x� � 2x��1� x�P�x
$�1=2�cosh�0�: (3.37)

Formulas (3.30) and (3.31) represent the main result of our
paper. From the previous results it is immediate to obtain,
via relation (3.4), the one-loop effective action. The vari-
ous terms appearing in Eqs. (3.31), (3.32), (3.33), (3.34),
and (3.35) have the immediate physical interpretation of
being terms induced by quantum effects and contribute to
the cosmological constant and to powers of the scalar
curvature on the brane.
IV. LIMITING CASES

The results obtained in the previous section for the zeta
function and its derivative are valid for a scalar field of
arbitrary massm and curvature coupling �. Here we focus
on the specific case of a massless conformally coupled
field, as this allows us to compare our result to that of
Refs. [22,24]. By setting $ � 1=2 in Eqs. (3.30) and
-6
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(3.31), the following expressions are found:

%�0� �
1

6

17

1920
;

% 0�0� �
1

6

17

1920
ln�‘ sinh�0�

2 �
31

1536
sinh2�0

�
131

3072
sinh4�0 � �1:

(4.1)

These values can be compared with those of Ref. [24].
After sorting out some transcription errors in Tables I and
II of the mentioned reference, the result is found to dis-
agree by a constant number. The question arises as to
whether or not this difference is at all significant. Clearly,
this constant difference can be reabsorbed by redefining
the renormalization scale, and therefore it does not have
any physical significance. However, from the mathemati-
cal point of view, the origin of such a difference is not so
clear-cut.

This disagreement has led us to consider another limit-
ing case, which is obtained when the AdS curvature
radius ‘ is large. This should reproduce the ball geometry,
and corresponds, in our terminology, to ‘ � r0, i.e.,
�0 � 1. This result has been computed by various au-
thors using different techniques [30–32,34,35], and
therefore it should provide quite a robust check on the
result, and also an alternative derivation, although more
involved than necessary, of the zeta determinant for the
ball. Now, in the limit of �0 � 1, we find

%�0� �
1

6

17

1920
;

% 0�0� �
1

6

17

1920
lnr20 �

47

9216
�

1

64
% 0�0; 1=2�

�
1

24
% 0��1; 1=2� �

1

24
% 0��2; 1=2�

�
1

6
% 0��3; 1=2� �

1

12
% 0��4; 1=2�: (4.2)

This result is found in full agreement with those of
Refs. [32,34,35], thus providing a robust check of our
result. We note that such a limiting case is not recovered
either by the result of Refs. [22,24] or by that of
Refs. [21,23].

In order to find some explanation for the difference, let
us briefly reconsider the method used there. The first step
of the method used in Refs. [21–24] is a conformal trans-
formation that changes the original background space-
time into a different one, where the evaluation of the zeta
determinant is, in principle, easier. In Refs. [21–24] this
corresponds to a coordinate transformation, dz �
dr=a�r�, upon which the original line element becomes

ds2 � a2�r��dz2 � ds2��: (4.3)

In other words, a conformal rescaling of the metric by
a�r� leaves us with a flat cylinder with a de Sitter cross
124011
section. This is the starting point taken in the above-
mentioned articles. One immediately sees that the coor-
dinate r lies in the range of 0 � r � r0 in the original
frame, whereas in the conformally transformed one z lies
between z�r0� � z � 1, implying that the conformally
transformed spacetime corresponds to a semi-infinite
cylinder and a more important point is that the conformal
transformation is well defined at every point of the AdS
bulk, except from the center where it breaks down. This
observation raises the question as to whether or not this
procedure is actually valid. Certainly it requires care.
Obviously, in the two-brane setup this problem does not
exist since r is never zero.
V. CONCLUDING REMARKS

The present article was devoted to providing an alter-
native derivation of the zeta function and of the func-
tional determinant for a scalar field on a de Sitter brane
background, which consists of a higher-dimensional AdS
bulk spacetime bounded by a de Sitter section. We con-
sidered the general case of a nonzero mass and coupling to
the scalar curvature, thus generalizing previous results
limited to zero mass and conformal coupling.

For simplicity, we considered the case of a five-
dimensional bulk spacetime and Dirichlet boundary con-
ditions. However, the result can be extended, with no
additional technical problems and modulo some algebra,
to other boundary conditions or higher dimensionalities.
The choice of five dimensions was also motivated by the
possible relevance of our calculation for the bulk inflaton
model proposed in [36,37].

One of the interesting points of the approach developed
here lies in the fact that we do not make use of conformal
transformations as is done in Refs. [21–24] and whose
results, in the limit of large AdS radius do not reproduce
that of the ball given in Refs. [32,34,35].

The basic tools of our calculation were a contour in-
tegral representation for the zeta function and asymp-
totics of the eigenfunctions, for which we have followed
Refs. [27,31,32]. In particular, the method devised in [27]
has proven to be very powerful and extremely useful in
the case discussed here.

As a check on the calculation, we have considered the
limiting case of massless, conformally coupled fields,
which was found to disagree with the result of [22,24].
The difference amounts to a constant, which is physically
harmless and can be removed by redefining the renormal-
ization scale. This difference motivated us to consider
another limiting case, which is obtained when the curva-
ture radius of the higher-dimensional AdS space is very
large, leading to a ball-like geometry, for which extensive
calculations of the zeta determinant are available
[32,34,35]. In such a limit we recover those results and
this should provide a robust check of our calculation,
and, interestingly, this limit provides an alternative deri-
-7
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vation, although technically unnecessary, of the ball
determinant. We note that the results for the derivative
of the zeta function given in Refs. [21–24] do not recover
this limit.

The expression for the zeta function is directly related
to the vacuum, or Casimir, energy. Thus, we wish to
conclude by briefly discussing the possible physical rele-
vance of the rather technical calculation performed in
this paper (Ref. [23] lists a number of them). A first rather
obvious but important one is related to the contribution of
the quantum vacuum energy to both the bulk and brane
cosmological constants and to the role it might play in the
cosmological constant problem. Another point where our
calculation can have interesting applications is to primor-
dial cosmology, assuming that the four-dimensional uni-
verse is in a de Sitter phase. Reference [23] also raises
another interesting effect that the vacuum energy has for
the dynamics of the brane. We will briefly repeat their
argument in order to highlight more explicitly the pos-
sible physical relevance of the calculations presented
here. The total action, including quantum effects, can
be written as the sum of the classical action plus the
vacuum energy. We assume that the geometry of the brane
is initially spherical (de Sitter). One can then write the
equation of motion by varying the previous action with
respect to the warp factor, which we now assume to
depend on both the extra dimension r and on the time
coordinate on the brane. By using the equation of motion
and the junction condition one observes that due to the
vacuum energy the brane is deformed. Reference [23] uses
these ideas to further discuss the possibility that quantum
effects might support the creation of a de Sitter universe.
Although, from the physical point of view, we feel that
this analysis is rather qualitative and a more detailed
study is required to reach rigorous conclusions; the geo-
metrical problem of how quantum effects can deform the
shape of a manifold is in itself very interesting.

Aside from what we have just briefly discussed, various
direct generalizations of the work presented here are
possible. Extensions to higher dimensionalities, different
boundary conditions, two-brane setups, and higher spin
fields should follow without additional difficulties and
only a larger amount of algebra might be needed.
Looking at the possible relevance of these kinds of cal-
culations in the bulk inflaton model and more generically
in brane world cosmology also deserves further study. We
hope to report on these issues in our future work.
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APPENDIX A: UNIFORM ASYMPTOTIC
EXPANSION OF THE LEGENDRE FUNCTIONS

Following Refs. [38,39], the uniform asymptotic ex-
pansion of P� 

'�1=2�cosh�� can be obtained. In this appen-
dix, we simply outline the procedure and extend the
results to the case of the logarithm of the Legendre
function P 

'�cosh��.
For large values of ', the solution of the Legendre

differential equation can be written in the well-known
WKB form. When substituted into the original equation,
this leads to a set of recursive equations that allows one to
determine the expansion. Omitting the details, the result
is

P 
'�1=2�cosh�� �

����������
t

2� 

r
e �'� �

X
i

6i 
�i; (A1)

where the functions t and � are given by

t �
1����������������������������

1� �2sinh2�
p ; (A2)

and

� � ln
� sinh�����������������������������

1� �2sinh2�
p

� cosh�

� �
�
tanh�1 1

�
� tanh�1 1

�t cosh�

�
� 1: (A3)

We have defined � � '= and the coefficients 6i can be
computed recursively. They are quite lengthy for increas-
ing values of i and since they are not used directly we do
not report them. The interested reader is addressed to the
work of Refs. [38,39], where they are also derived.

It is a relatively simple task to get the logarithm of the
previous expression and this can be achieved by using a
symbolic manipulation program. The result is

lnP� 
'�1=2�cosh��  ln

� ����������
t

2� 

r
e �'� 

�
�

X1
n�1

En�t; ��
 n

;

(A4)

where it is essential to note that the coefficients En�t; ��
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are bounded in the full range 0 � � <1 and for large � they scale as inverse powers of �. For  ! 1 they exhibit a
power-law growth of finite order in  . This can be checked for the first four coefficients En, which are found to be

E1 � �
1

24��2 � 1�
�5�2t3cosh3�� 3t cosh�� 1� 3�2t cosh��;

E2 �
1

16��2 � 1�2
��1� t2cosh2�� 7�2t2cosh2�� �2 � 6�4t4cosh4�� �4t2cosh2�� 6�2t4cosh4�� 5�4t6cosh6��;

E3 � �
1

40320��2 � 1�3
�118881�4t5cosh5�� 51765�2t3cosh3�� 18270�2t cosh�� 51765�4t3cosh3�

� 2835�4t cosh�� 33453�6t5cosh5�� 2625�6t3cosh3�� 69615�6t7cosh7�� 33453�2t5cosh5�

� 69615�4t7cosh7�� 38675�6t9cosh9�� 98� 2835t cosh�� 294�2 � 2625t3cosh3��;

E4 �
1

128��2 � 1�4
�565�8t12cosh12�� 1503�4t4cosh4�� 2282�6t6cosh6�� 288�4t2cosh2�� 1356�6t10cosh10�

� 288�2t2cosh2�� 542�2t4cosh4�� 2282�4t6cosh6�� 542�6t4cosh4�� 18�6t2cosh2�� 284�2t6cosh6�

� 284�8t6cosh6�� 13�8t4cosh4�� 1062�8t8cosh8�� 1356�8t10cosh10�� 5� 30�2 � 5�4 � 13t4cosh4�

� 18t2cosh2�� 1062�4t8cosh8�� 3114�6t8cosh8��: (A5)
By inspecting the previous expansion and recalling the
above-mentioned properties of the coefficients Ek�t; ��,
one notices that it has the same structure as Eq. (3.15).

APPENDIX B: EVALUATION OF IR�z2�AND
Ipole�z2�

1. Evaluation of �IR�log
From Eq. (A4), we can find the various pieces that

appear in Eqs. (3.28) and (3.29). Let us first consider
�IR�log. From Eq. (A4), we see that the coefficient of the
logarithmic piece, for large z, is

�IR�log � �
1

2

X
j

dj
 2sj

�
 j �

1

2

�
: (B1)

To deal with this sum, we introduce a generalized %
function:

% �s� �
X
j

dj 
�s
j (B2)

which can be expressed, in five dimensions, in terms of
Hurwitz % functions. Trivial manipulations give

�IR�log � �
1

2
% �2s� 1� �

1

4
% �2s�; (B3)

which, in five dimensions, becomes

�IR�log �
1

6

17

1920
: (B4)

2. Evaluation of Ipole�z2�

The term Ipole�z2� is more involved to evaluate.We need
to rewrite the uniform asymptotic expansion (A4) in
terms of inverse powers of  and then perform the sum-
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mation over j. This will allow us to express, in five
dimensions, expansion (A4) in terms of Hurwitz % func-
tions from which the pole part can be extracted. The
calculation is rather lengthy, although straightforward.
Here, we simply quote the result, which can be written
as follows:

Ipole�z2� �
1

6

�
!1�x� �

1

4
!2�x� �!3�x� �

1

8
!4�x�

�
x�‘z

;

(B5)

where we have defined the following quantities for nota-
tional convenience:

!1�x� � �
$2sinh2�0

16�1� x2sinh2�0�
4 �4� �7� 10x2�sinh2�0

� x2��8� x2�sinh4�0�;

!2�x� �
sinh2�0

16�1� x2sinh2�0�
3 �1� 4x2

� x2��4� x2�sinh2�0�;

!3�x� �
1

128�1� x2sinh2�0�
6
�sinh2�0�8� 32x2

� sinh2�0�13� 244x2 � 288x4 � 2x2�116

� 313x2 � 116x4�sinh2�0 � x4�288� 244x2

� 13x4�sinh4�0 � 8x6��4� x2�sinh6�0���;

!4�x� �
$2sinh2�0

1� x2sinh2�0

�
1

2
�

$2sinh2�0

1� x2sinh2�0

�
:

(B6)

The absence of logarithmic terms in z2 implies that
�Ipole�log � 0. From the expression (B5), one easily finds
that
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�Ipole�reg � lim
z2!1

Ipole�z2� � 0 (B7)

and

Ipole�0� � �
sinh2�0

32
�1� 2sinh2�0��$2 � 1=4� �

sinh�4
0

48
�$2 � 1=4�2; (B8)

both of which are required for the evaluation of %�0�.
The integral of the pole piece is readily evaluated and the result we find isZ 1

0
dz2 lnz2

dIpole�z2�

dz2
� �

47

9216
�

73

1536
sinh2�0 �

251

3072
sinh4�0 �

7

64
$2sinh2�0 �

31

192
$2sinh4�0 �

1

48
$4sinh4�0

�
1

768
sinh2�0�4$

2 � 1���6� sinh2�0��13� 4$2�� ln�‘ sinh�0�
2: (B9)
3. Evaluation of IR�0�

To evaluate IR�0�, we follow Ref. [27] once again and
employ a more expedient approach based on the Abel-
Plana summation formula. For z � 0 we have

I�0; s� �
X
j

f� j�

 2sj
; (B10)

f� j� �
1

3

�
 3j �

1

4
 j

�
ln�2 j��1�  j�P

� j
$�1=2�cosh�0��:

(B11)

The validity of the form of the function f� j� which we
use in the Abel-Plana summation formula is discussed in
[27]. By applying the Abel-Plana formula, which allows
one to convert the sum (B10) into an integral, we get

I�0; s� �
Z 1

0

f� x�

 2sx
dx� i

Z 1

0

f� ix� � f� �ix�

e2�x � 1
dx

�
1

2
f� 0�; (B12)
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where we retain the regularizing factor  2sj only in the
first term, because all other terms are finite as s ! 0. The
only nontrivial term to compute in the expression is the
first one. In order to evaluate it, we split the integral into
three pieces, for convenience. Some algebraic manipula-
tions give

Z 1

0

f� x�

 2sx
dx �

Z 1

0
x2s�6��x�dx�

Z 1

1
x�6��x�dx

�
Z 1

2=3
x�6��x�dx; (B13)

where we have put s � 0 where possible. The function
��x� is given by

��x� �
1

3

�
x�

1

4
x3
�
ln�21=x��1� 1=x�P�1=x

$�1=2�cosh�0��:

(B14)

Integrating the first two pieces by parts six times, we
obtain
Z 1

0

f� x�

 2sx
dx �

�
x2s�5

2s� 5
��x� �

x2s�4

�2s� 5��2s� 4�

d��x�
dx

� � � � �
x2s

�2s� 5��2s� 4� � � � 2s
d5��x�

dx5

�
1

0

�
Z 1

0

x2s

�2s� 5��2s� 4� � � � 2s
d6��x�

dx6
dx�

�
x�5

�5
��x� �

x�4

��5���4�

d��x�
dx

� � � � �
lnx

�120

d5��x�

dx5

�
1

1

�
1

120

Z 1

1
lnx

d6��x�

dx6
dx�

Z 1

2=3
x�6��x�dx: (B15)

This can be appropriately analytically continued to s � 0, giving

Z 1

0

f� x�

 2sx
dx �

1

240s
d5��x�

dx5

��������x�0
�

137

7200

d5��x�

dx5

��������x�0
�
Z 1

0

1

120
lnx

d6��x�

dx6
dx�

Z 1

2=3
x�6��x�dx: (B16)

Summarizing, we find

Z 1

0

f� x�

 2sx
dx �

1

s
Ipole�0� � IR� �0� (B17)

where
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Ipole�0� �
1

240

d5�

dx5

��������x�0
; (B18)

IR� �0� �
137

7200

d5�

dx5

��������x�0
�

1

120

Z 1

0
dx lnx

d6�

dx6

�
Z 1

2=3
x�6��x�dx: (B19)

A nice consistency check on the previous evaluation is
given by the fact that the expression for Ipole�0�, (B8),
evaluated previously using the asymptotic expansion
agrees with (B18).

The previous results can be combined together to get
IR�0�. We find

IR�0� �
137

7200

d5�

dx5

��������x�0
�

1

120

Z 1

0
dx lnx

d6�

dx6

�
Z 1

2=3
x�6��x�dx� i

Z 1

0

� dx
�ix� 3=2�3=3� �ix� 3=2�=12

e2�x � 1

� ln�2ix�3=2��ix� 5=2�P�ix�3=2
$�1=2 �cosh�0��

� c:c:�
1

2
ln�23=2��5=2�P�3=2

$�1=2�cosh�0��: (B20)
4. Evaluation of �IR�reg
We make the final effort to obtain the regular part of

IR�z2�. From previous arguments, we understand that such
a piece comes from the terms in the asymptotic expansion
that scale as z0, which then we have to sum over j. Thus,
from (A4), we have, for s ! 0,

�IR�reg � �
1

2
�ln2�� ln�‘ sinh�0��

X
j

dj

�
X
j

dj�ln j � ln�� j��; (B21)

where we have used the fact that

lim
s!0

X
j

dj 
1�2s
j � 0: (B22)

The first two terms can be computed easily, whereas to
deal with the last sum in (B21) we proceed as follows.
First we use an integral representation for the logarithm
of the � function [34,40], which gives

X
j

dj�ln j � ln�� j�� �
1

2
ln2�

X
j

dj � �� 8; (B23)

where we have defined

� �
X
j

dj

�
1

2
�  j

�
ln j; (B24)
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and

8 �
X
j

dj
Z 1

0

�
1

2
�

1

t
�

1

et � 1

�
e�t j

dt
t
: (B25)

Let us first deal with 8. It is possible to sum the series
appearing in this expression by using the relation

X
j

e�t �
e�t=2

et � 1
: (B26)

Differentiating this relation one and three times, one
immediately arrives at

8 �
1

3

Z 1

0

�
1

2
�

1

t
�

e�t

1� e�t

���
�

d3

dt3
e�3t=2

1� e�t

�

�
1

4

�
�

d
dt

e�3t=2

1� e�t

��
dt
t
; (B27)

which can be expanded to write it in terms of elementary
integrals:

8 �
Z 1

0

�
�2

t0�2e�9t=2

�1� e�t�4
� 5

t0�2e�7t=2

�1� e�t�3
� 4

t0�2e�5t=2

�1� e�t�2

�
t0�2e�3t=2

�1� e�t�
� 2

t0�1e�11t=2

�1� e�t�5
� 6

t0�1e�9t=2

�1� e�t�4

�
13

2

t0�1e�7t=2

�1� e�t�3
� 3

t0�1e�5t=2

�1� e�t�2
�

1

2

t0�1e�3t=2

�1� e�t�

�
dt:

(B28)

Here we have introduced a regulating factor 0, which
ensures the convergence of the expression for <0 > 2.
The limit 0 ! 0 will be taken at the end.

All the above integrals can be evaluated starting from
the standard formula

’1�a; b; :� �
Z 1

0

e�bt

1� e�:t
dt
t�a

�
1

:1�a ��1� a�%�1� a; b=:�; (B29)

which, by repeated differentiation with respect to :,
produces the following relations

’2�a; b; :� �
Z 1

0

e��b�:�t

�1� e�:t�2
dt

t�1�a � �
@
@:

’1�a; b; :�;

(B30)

’3�a; b; :� �
Z 1

0

e��b�2:�t

�1� e�:t�3
dt

t�2�a

� �
1

2
’2�a� 1; b; :� �

1

2

@
@:

’2�a; b; :�;

(B31)
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’4�a; b; :� �
Z 1

0

e��b�3:�t

�1� e�:t�4
dt

t�3�a

� �
2

3
’3�a� 1; b; :� �

1

3

@
@:

’3�a; b; :�;

(B32)

’5�a; b; :� �
Z 1

0

e��b�4:�t

�1� e�:t�5
dt

t�4�a

� �
3

4
’4�a� 1; b; :� �

1

4

@
@:

’4�a; b; :�:

(B33)

The previous relation (B28) can then be expressed in
terms of the functions ’j�a; b� � ’j�a; b; 1�. Simple cal-
culations lead to

8 � �2’4�0� 5; 3=2� � 5’3�0� 4; 3=2�

� 4’2�0� 3; 3=2� � ’1�0� 2; 3=2�

� 2’5�0� 5; 3=2� � 6’4�0� 4; 3=2�

�
13

2
’3�0� 3; 3=2� � 3’2�0� 2; 3=2�

�
1

2
’1�0� 1; 3=2�: (B34)

The limit 0 ! 0 can now be taken and the result is found
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to be

8 � �
1

64
% 0�0; 1=2� �

1

24
% 0��2; 1=2� �

5

12
% 0��4; 1=2�:

(B35)

The term � can be evaluated by using the following
relation:

d
ds

X
j

 a�sj � �
X
j

 a�sj ln j: (B36)

A straightforward computation leads to

� � �
1

6
% 0��3; 1=2� �

1

24
% 0��1; 1=2� �

1

3
% 0��4; 1=2�

�
1

12
% 0��2; 1=2�: (B37)

Some simple algebra allows us to combine the previous
results to arrive at

�IR�reg �
17

6

1

960
ln�‘ sinh�0� �

1

64
% 0�0; 1=2�

�
1

24
% 0��1; 1=2� �

1

24
% 0��2; 1=2�

�
1

6
% 0��3; 1=2� �

1

12
% 0��4; 1=2�: (B38)
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