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Disappearance of the black hole singularity in loop quantum gravity
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We apply techniques recently introduced in quantum cosmology to the Schwarzschild metric inside
the horizon and near the black hole singularity at r � 0. In particular, we use the quantization
introduced by Husain and Winkler, which is suggested by Loop Quantum Gravity and is based on
an alternative to the Schrödinger representation introduced by Halvorson. Using this quantization
procedure, we show that the black hole singularity disappears and spacetime can be dynamically
extended beyond the classical singularity.
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I. INTRODUCTION

A remarkable result of loop quantum cosmology [1] is
the disappearance of the initial cosmological singularity
present in the classical theory. The main results of loop
quantum gravity [2], indeed, are the quantization of area
and volume partial observables [3], which suggest that in
the complete theory there cannot be spacetime points
with infinity matter density. If this is correct, the quan-
tum theory should control all classical singularities of
general relativity. In this work, we apply techniques
analogous to the ones used in loop quantum cosmology
to study the r � 0 singularity in the interior of a
Schwarzschild black hole.

In particular, we use the non-Schrödinger procedure of
quantization introduced by Halvorson [4] and utilized in
quantum cosmology by Husain and Winkler [5]. We focus
on the Schwarzschild solution inside the horizon and near
the singularity. We use the method introduced in [6] to
express 1=r, and therefore the curvature invariant
R����R

���� � 48M2G2
N=r

6, in terms of the volume
operator. Following [6], we write the Hamiltonian con-
straint as well in terms of the volume. This allows us to
express the quantum evolution equation as a difference
equation for the coefficients for the physical states, and to
completely control the singularity.

The paper is organized as follow. In Sec. II we briefly
recall the properties of the Schwarzschild solution for
r < 2MGN , namely, inside the horizon. As well known,
here the temporal and spatial (radial) coordinate ex-
change their role. In Sec. III we study the classical
dynamics of a very simple model giving this solution.
The Hamiltonian constraint depends on a single vari-
able, and its classical solution yields the Schwarzschild
metric inside the horizon, in the new temporal vari-
able. In Sec. IV we quantize the system using the non-
Schrödinger procedure of quantization of references
[4,5]. In particular, we show that the singularity in r �
0 is resolved in quantum gravity and that the Hamiltonian
constraint acts like a difference operator, as in loop
quantum cosmology.
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II. THE SCHWARZSCHILD SOLUTION INSIDE
THE HORIZON

Consider the Schwarzschild solution

ds2 � �

�
1�

2MGN

r

�
dt2 �

dr2

�1� 2MGN
r �

� r2�sin2�d�2 � d�2� (1)

for r < 2MGN . This metric describe spacetime inside the
horizon of a Schwarzschild black hole. The coordinate r
is timelike and the coordinate t is spatial; for convenience
we rename them as r � T and t � r with T 2�0; 2MGN	
and r 2� �1;�1	. The metric reads then

ds2 � �
dT2�

2MGN
T � 1

�� �
2MGN

T
� 1

�
dr2

� T2�sin2�d�2 � d�2�: (2)

We eliminate the coefficient of dT2 by defining a new
temporal variable � via

d� �
dT�������������������

2MGN
T � 1

q : (3)

The integration gives

� � �
�������������������������������
T�2MGN � T�

q
� 2MGN arctan

0@ ������������������������
T

2MGN � T

s 1A
� const: (4)

We take const � 0 because limT!0��T� � const. The
function T � T��� is monotonic and convex, thus � 2
�0; 2MGN�=2	. In this new temporal variable the metric
becomes

ds2 � �d�2 �
�
2MGN

T���
� 1

�
dr2

� T���2�sin2�d�2 � d�2�: (5)
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We introduce two function a2��� � 2MGN
T��� � 1 and b2��� �

T2��� and redefine � � t. The metric reads

ds2 � �dt2 �
�
2MGN

b�t�
� 1

�
dr2

� b�t�2�sin2�d�2 � d�2�: (6)

Notice that a metric written in terms of two functions a�t�
and b�t� with the form

ds2 � �dt2 � a2�t�dr2 � b2�t��sin2�d�2 � d�2� (7)

is the metric of an homogeneous, anisotropic space with
spatial section of topology R� S2. In our case, a�t� is a
function of b�t�, a � a	b�t��.
III. CLASSICAL THEORY

The complete action for gravity can be written in the
form

S �
1

16�GN

Z
d3xdtNh1=2	KijK

ij � K2 ��3� R� (8)

If we specialize this for metrics of the form (7), the action
becomes [7]

S � �
1

16�GN

Z
dt

Z R

0
dr

Z 2�

0
d�

Z 2�

0
d� sin�b2a

�
2
_b2

b2

� 4
_a _b
ab

�
2

b2

�
�

� �
R

2GN

Z
dt	a _b2 � 2 _a _b b� a�; (9)

where R is a cutoff on the space radial coordinate. We can
work also with radial densities because the model is
homogeneous and all the following results remain iden-
tical. In another way, the spatial homogeneity enable us to
fix a linear radial cell Lr and restrict all integrations to
this cell [1]. Recalling from (6) that the two functions a�t�
and b�t� are not independent, and satisfy

a2�t� �
2MGN

b�t�
� 1; (10)

we can write the action in terms of a single function

S �
R

2GN

Z
dt
� ���

b
p��������������
2MGN

p

�
1�

b
2MGN

�
�1=2

_b2

�

��������������
2MGN

p ���
b

p

�
1�

b
2MGN

�
1=2

�
: (11)

Now we calculate the Hamiltonian, which is also the
Hamiltonian constraint (see Appendix B). The momen-
tum is

p �
R

���
b

p

GN
��������������
2MGN

p

�
1�

b
2MGN

�
�1=2

_b; (12)
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and so

H � p _b� L

�

�
GNp2

2R
�

R
2GN

�� ��������������
2MGN

p ���
b

p

�
1�

b
2MGN

�
1=2

�
: (13)

We can now show that the Hamiltonian constraint pro-
duce the correct classical dynamics. We express the
Hamiltonian constraint in terms of _b

H �
R
GN

264 _b2�������������������
2MGN
b � 1

q �

�����������������������
2MGN

b
� 1

s 375 � 0: (14)

The solution is

_b 2 �

�
2MGN

b
� 1

�
(15)

and this is exactly the Eq. (3) with solution (4) that
reproduces the Schwarzschild metric.

We now introduce an approximation. In the quantum
theory, we will be interest in the region of the scale the
Planck length lp around the singularity. We assume that
the Schwarzschild radius rs � 2MGN is much larger than
this scale, and that b�t� � T�t�. In this approximation we
can write

1�
b

2MGN
� 1 (16)

and H becomes

H �

�
GNp2

2R
�

R
2GN

� ��������������
2MGN

p ���
b

p : (17)

The volume is

V �
Z
drd�d�h1=2 � 4�Rab2

� 4�R
��������������
2MGN

p
b3=2

�����������������������
1�

b
2MGN

s
; (18)

in the previously approximation

V � 4�R
��������������
2MGN

p
b3=2 � lob

3=2: (19)

The canonical pair is given by b � x and p, with Poisson
brackets fx; pg � 1.

We now assume that x 2 R (and introduce the absolute
value where appropriate). This choice is not correct clas-
sically, because for b � x � 0 we have the singularity.
But it allows us to open the possibility that the situation
be different in the quantum theory. We introduce an
algebra of classical observables, and we write the quan-
tities of physical interest in terms of those variables. We
are motivated by loop quantum gravity to use the funda-
mental variables x and
-2
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U%�p� � exp
�
8�GN%
L

ip
�

(20)

where % is a real parameter and L fixes the unit of length.
The parameter % is necessary to separate the momentum
point in the phase space. (Choosing 8�GN%=L � 1 we
obtain the some value of U for p and p� 2�n). This
variable can be seen as the analog of the holonomy
variable of loop quantum gravity.

A straightforward calculation gives

fx;U%�p�g � 8�GN
i%
L
U%�p�;

U�1
% fVn;U%g � ln0U

�1
% fjxj3n=2; U%g

� i8�GNl
n
0

%
L
3n
2
sgn�x�jxj�3n=2��1: (21)

These formulas allow us to express inverse powers of x in
terms of a Poisson bracket, following Thiemann’s trick
[6]. As we will see below, the volume operator has zero as
an eigenvalue, therefore so we must take n > 0 for the
second equation to be well define din the quantum theory.
On the other hand, if we want that the power of x on the
right hand side be negative we need n < 2=3. The choice
n � 1=3 gives

sgn�x�������
jxj

p � �
2Li

�8�GN�l
1=3
0 %

U�1
% fV1=3; U%g: (22)

We use this relation in the next section to write physical
operators. We are interested to the quantity 1

jxj because
classically this quantity diverge for jxj ! 0 and produce
the singularity. We are also interested to the Hamiltonian
constraint and the dynamics and we will use (22) for
writing the Hamiltonian.

IV. QUANTUM THEORY

We construct the quantum theory proceeding in anal-
ogy with the procedure used in loop quantum gravity. The
first step is the choice of an algebra of classical functions
to be represented as quantum configuration operators. We
choose the algebra generated by the functions

W�(� � ei(x=L; (23)

where ( 2 R. The algebra consists of all function of the
form

f�x� �
Xn
j�1

cjei(jx=L; (24)

where cj 2 C, and their limits with respect to the sup
norm. This is the algebra AP�R� of the almost periodic
functions over R . The algebra AP�R� is isomorphic to
C� �RBohr�, the algebra of continuous functions on the Bohr-
compactification of R. This suggests to take the Hilbert
space L2� �RBohr; d�0�, where d�0 is the Haar measure on
124009
�RBohr. With this choice the basis states in the Hilbert
space are

j(i � jei(x=Li; h�j(i � 0�;(: (25)

The action of the configuration operators Ŵ�(� on the
basis is defined by

Ŵ�(�j�i � ei(x̂=Lj�i � ei(�j�i: (26)

These operators are weakly continuous in (. This implies
the existence of a self-adjoint operator x̂, acting on the
basis states according to

x̂j�i � L�j�i: (27)

Next, we introduce the operator corresponding to the
classical momentum function U% � ei8�GN%p=L. We de-
fine the action of Û% on the basis states using the defini-
tion (27) and using a quantum analog of the Poisson
bracket between x and U%

Û %j�i � j�� %i; 	x̂; Û%� � �%LÛ%: (28)

Using the standard quantization procedure 	; � ! i �hf; g,
and using (21) we obtain

�%L � i �h�8�GN�
i%
L
; L �

�������
8�

p
lp: (29)
A. Volume operator and disappearance of the singu-
larity

Near the singularity we can use the approximation
(19). The action of the volume operator on the basis states
is

V̂j�i � l0jxj
3=2j�i � l0jL�j

3=2j�i: (30)

Recall that the dynamics is all in the function b�t�,
which is equal to the radial Schwarzschild coordinate
inside the horizon b�t� � T�t�, because inside the horizon
we can change coordinates from t to � of Eq. (4) (we
remember the redefinition �! t). The function b�t� gen-
erated by the dynamics is monotonic and convex. The
important point is that b�t � 0� � 0 and this is the
Schwarzschild singularity. We now show that the term
�2MGN�=b�t� does not diverge in the quantum theory and
therefore there is no singularity in the quantum theory.

We use the relation (22) and we promote the Poisson
brackets to commutators. In this way we obtain (for % �
1) the operator

1̂

jxj
�

1

2�l2pl
2=3
0

�Û�1	V̂1=3; Û��2: (31)

The action of this operator on the basis states is

1̂

jxj
j�i �

��������
2

�l2p

s
�j�j1=2 � j�� 1j1=2�2j�i: (32)
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We can now see that the spectrum is bounded from below
and so we have not singularity in the quantum theory. In
fact, for example, the curvature invariant

R����R
���� �

48M2G2
N

r6
�

48M2G2
N

T6
�

48M2G2
N

T�t�6

�
48M2G2

N

b�t�6
(33)

is finite in quantum mechanics in fact the eigenvalue of
1=jxj for the state j0i corresponds to the classical singu-

larity and in the quantum case it is
�������������
2=�l2p

q
, which is the

largest possible eigenvalue. For this particular value the
curvature invariant it is not infinity

dR����R
����j0i �

d48M2G2
N

jxj6
j0i �

384M2G2
N

�3l6P
j0i: (34)

On the other hand, for j�j ! 1 the eigenvalues go to
zero, which is the expected behavior of 1=jxj for large jxj.

B. Hamiltonian constraint

We now study the quantization of the Hamiltonian
constraint near the singularity, in the approximation
(17). There is no operator p in quantum representation
that we have chosen, hence we choose the following
alternative representation for p2. Consider the classical
expression

p2 �
L2

�8�GN�
2 lim%!0

�
2�U% �U�1

%

%2

�
: (35)

We have can give a physical interpretation to % as % �

lp=Lphys, where LPhys is the characteristic size of the
system. Using this, we write the Hamiltonian constraint
as

Ĥ �
A1

l1=30

	Û% � Û�1
% � �2� A2�1�sgn�x��Û

�1	V̂1=3; Û��

(36)

where A1 � L3GN=�8�GN�
5=2%3Rl1=30 �h and A2 �

8�R2%2=l2P. The action of Ĥ on the basis states is

Ĥj�i � CV 1
2
���	j�� %i � j�� %i � �2� C0�j�i�;

(37)

where C � A1L1=2 and C0 � A2, and

V 1=2��� �
�
�jj�� %j1=2 � j�j1=2j for � � 0
j%j1=2 for � � 0

(38)

If we calculate the action of Ĥ and 1=jxj on the state of
zero volume eigenvalue we obtain
124009
Ĥj0i � Cj%j1=2	j � %i � j%i � �2� C0�j0i�;c1
jxj

j0i �

��������
2

�l2P

s
j0i:

(39)
This finite value of 1
jxj can be interpreted as the effect of

the quantization on the classical singularity.
We now study the solution of the Hamiltonian con-

straint. The solutions are in the C? space that is the dual of
the dense subspace C of the kinematical space H . A
generic element of this space is

h j �
X
�

 ���h�j: (40)
The constraint equation Ĥj i � 0 is now interpreted as
an equation in the dual space h jĤy; from this equation
we can derive a relation for the coefficients  ���

V 1=2��� %� ��� %� �V 1=2��� %� ��� %�

� �2� C0�V 1=2��� ��� � 0: (41)
This relation determines the coefficients for the physical
dual state. We can interpret this states as describing the
quantum spacetime near the singularity. From the differ-
ence Eq. (41) we obtain physical states as combinations of
a countable number of components of the form  ���
n%�j�� n%i (%� lP=LPhys � 1); any component corre-
sponds to a particular value of volume, so we can inter-
pret  ��� %� as the wave function describing the black
hole near the singularity at the time �� %. A solution
of the Hamiltonian constraint corresponds to a linear
combination of black hole states for particular values
of the volume or equivalently particular values of the
time.
V. CONCLUSIONS

We have applied the quantization procedure of [5] to
the case of the Schwarzschild singularity. This procedure
is alternative to the Schrödinger quantization and it is
suggested by loop quantum cosmology. The main results
are:
(1) T
-4
he classical black hole singularity near r� 0,
which in our coordinate is b�t� � T�t� � 0, disap-
pears from the quantum theory. Classical divergent
quantities are bounded in the quantum theory. For
instance:
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R����R
���� �

48M2G2
N

b�t�6
! dR����R

����j0i

�
d48M2G2

N

jxj6
j0i �

384M2G2
N

�3l6P
j0i:
(2) T
he quantum Hamiltonian constraint gives a dis-
crete difference equation for the coefficients of the
physical states.
It is interesting to observe that beyond the classical
singularity the function b � x is negative. One can specu-
late, extrapolating the form of the metric that ‘‘on the
other side’’ of the singularity there is no horizon: a black
hole and a white hole are connected [8].
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APPENDIX A

We give here the explicit form of some tensors used in
the paper. The spatial diagonal metric tensor is

hij �
a2�t� 0 0
0 b2�t�sin2� 0
0 0 b2�t�

0B@
1CA: (A1)

The inverse spatial metric tensor is

hij �
a�2�t� 0 0

0 b�2�t�sin�2� 0
0 0 b�2�t�

0B@
1CA: (A2)

The extrinsic curvature is Kij � � 1
2
@hij
@t , and so
124009
Kij �
�a _a 0 0
0 �b _bsin2� 0
0 0 �b _b

0@ 1A: (A3)

K � Kijhij � �

�
_a
a
� 2

_b
b

�
KijKij �

_a2

a2
� 2

_b2

b2

KijK
ij � K2 � �

�
2 _b2

b2
� 4

_a _b
ab

�
(A4)

The Ricci curvature for the space section is

�3�R �
2

b2
(A5)
APPENDIX B

In this appendix we report the Hamiltonian for our
system and we show that reproduces the correct equation
of motion. We can start from the Hamiltonian

H �

�
p2

2M2
PR

�
M2
PR
2

�� ��������������
2MGN

p ���
b

p

�
1�

b
2MGN

�
1=2

�
;

(B1)

and calculate the Hamilton equation for b ( _b � @H
@p )

_b �
p

M2
PR

�����������������������
2MGN

b
� 1

s
: (B2)

At this point using the constraint H � 0 with (B2), we
obtain

_b 2 �

�
2MGN

b
� 1

�
; (B3)

that is the equation of motion for b�t� that reproduce the
Schwarzschild solution.
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