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We study stationary and axisymmetric solutions of General Relativity, i.e., pure gravity, in four or
higher dimensions. D-dimensional stationary and axisymmetric solutions are defined as having D� 2
commuting Killing vector fields. We derive a canonical form of the metric for such solutions that
effectively reduces the Einstein equations to a differential equation on an axisymmetric D� 2 by D�
2 matrix field living in three-dimensional flat space (apart from a subclass of solutions that instead
reduce to a set of equations on a D� 2 by D� 2 matrix field living in two-dimensional flat space). This
generalizes the Papapetrou form of the metric for stationary and axisymmetric solutions in four
dimensions, and furthermore generalizes the work on Weyl solutions in four and higher dimensions. We
analyze then the sources for the solutions, which are in the form of thin rods along a line in the three-
dimensional flat space that the matrix field can be seen to live in. As examples of stationary and
axisymmetric solutions, we study the five-dimensional rotating black hole and the rotating black ring,
write the metrics in the canonical form and analyze the structure of the rods for each solution.
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I. INTRODUCTION

Black holes in four-dimensional General Relativity
have been the subject of intense research for several
decades. One of the most important results on four-
dimensional black holes in pure gravity, i.e., gravity
without matter, is the uniqueness theorem stating that
the rotating black hole solution of Kerr [1] is the unique
solution for given mass and angular momentum [2–5].
This shows that the phase structure of black holes in four
dimensions is very simple: Only one phase is available.

In recent years, attention has turned to the study of
black holes in higher-dimensional General Relativity. It is
by now clear that the phase structure of black holes is
much more complicated when having more than four
dimensions. For five-dimensional asymptotically flat
black hole solutions, it was discovered by Emparan and
Reall in [6] that in addition to the Myers-Perry rotating
black hole solution [7], which has horizon topology S3,
there exists also a rotating black ring solution with hori-
zon topology S2 � S1. This means that for a given mass
and angular momentum one can have as many as three
different available phases, for five-dimensional asymp-
totically flat solutions of pure gravity. For pure gravity
solutions asymptoting to Minkowski-space times a circle
Md � S1, one has an even richer phase structure, involv-
ing phases with different horizon topologies and also
phases with Kaluza-Klein bubbles.1

The complicated and rich phase structure of black
holes in higher dimensions makes it desirable to develop
new tools to find exact solutions.We focus in this paper on
a particular class of solutions: Stationary and axisym-
metric solutions of the vacuum Einstein equations in
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higher-dimensional General Relativity, i.e., in pure grav-
ity. These solutions have D� 2 commuting Killing vec-
tor fields where D is the dimension of the space-time. In
four dimensions, this class of solutions includes the Kerr
black hole [1], while in five dimensions both the rotating
black hole with horizon topology S3 [7] and the rotating
black ring with horizon topology S2 � S1 [6] are in this
class.

We find in this paper a canonical form of the metric for
stationary and axisymmetric solutions of the vacuum
Einstein equations in higher-dimensional General
Relativity. With the metric in the canonical form, the
Einstein equations take a remarkably simple form: They
reduce effectively to a differential equation on an axi-
symmetric D� 2 by D� 2 matrix field G living in a
three-dimensional flat space, apart from a subclass of
solutions that instead reduce to a set of equations on a
D� 2 by D� 2 matrix field living in two-dimensional
flat space.

We analyze the general structure of such solutions. In
the three-dimensional space that G can be seen to live in
the sources for G are in the form of thin rods along a line.
We examine the general structure of the rods that con-
stitute the sources of a given solution. We furthermore
identify the asymptotic behavior of asymptotically flat
solutions in four and five dimensions.

As examples of stationary and axisymmetric solutions,
we consider the five-dimensional rotating black hole with
horizon topology S3 and the black ring with horizon
topology S2 � S1. We write down the metric in the ca-
nonical coordinates and analyze their rod-structure, i.e.,
the structure of their sources.

In four dimensions, the canonical form of the metric
that we find for stationary and axisymmetric solutions is
equivalent to the so-called Papapetrou form for the met-
ric [10,11]. Papapetrou found that, under certain condi-
-1  2004 The American Physical Society
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tions, the metric of four-dimensional stationary and axi-
symmetric pure gravity solutions can be written in the
form2

ds2 � �e2U�dt� Ad��2 � e�2Ur2d�2

� e2
�dr2 � dz2�: (1.1)

The functions U�r; z�, A�r; z� are solutions of
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and the function 
�r; z� is a solution of
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Here @=@t and @=@� are the two Killing vector fields.
Since the Eqs. (1.3) for 
 are integrable, one can solve the
Einstein equations by first finding U and A that solves
(1.2), and then a 
 can be found that solves (1.3).

The canonical form of the metric for stationary and
axisymmetric solutions that we find in this paper is a
generalization of the Papapetrou form (1.1) of the metric
for four-dimensional solutions. Moreover, the simplified
form of the Einstein equations that we find generalizes the
Eqs. (1.2) and (1.3) for four dimensions.

For the special case when all the D� 2 Killing vector
fields are orthogonal to each other, the canonical form of
the metric that we find in this paper is equivalent to the
form of the so-called generalized Weyl solutions of
Emparan and Reall [16].3 In Ref. [16] it is shown that,
under certain conditions, the metric for D-dimensional
pure gravity solutions with D� 2 commuting orthogonal
Killing vector fields can be written in the form

ds2 � �e2U1dt2 �
XD�2
i�2

e2Ui�dxi�2 � e2
�dr2 � dz2�;

XD�2
i�1

Ui � logr;
(1.4)

with t � x1. The functions Ui�r; z� are solutions of the
three-dimensional Laplace equations
2See also [12–15].
3See [8] for a brief review of generalized Weyl solutions. See

furthermore [17] for work on extending the generalized Weyl
solutions of [16] to space-times with a cosmological constant.
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for i � 1; . . . ; D� 2, while 
�r; z� is a solution of
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Here @=@xi, i � 1; :::; D� 2, are the D� 2 orthogonal
Killing vector fields. Solutions with metric (1.4) and
with Ui and 
 obeying (1.5) and (1.6) are called general-
ized Weyl solutions.

We see that using the form of the metric (1.4) for
solutions withD� 2 commuting orthogonal Killing vec-
tor fields, solving the Einstein equations effectively re-
duces to the task of solving D� 3 free Laplace equations
on a three-dimensional flat space. This is due to the fact
that the Eqs. (1.6) for 
 are integrable, so that one can find
a 
 solving (1.6) given any solution for Ui,
i � 1; . . . ; D� 2.

It is important to remark that the method of general-
ized Weyl solutions generalizes Weyl’s work on four-
dimensional static and axisymmetric solutions [18].
Moreover, one also obtains Weyl’s form of the metric for
four-dimensional static and axisymmetric solutions by
setting A � 0 in Papapetrou form (1.1). This is consistent
with the fact that Eqs. (1.1), (1.2), and (1.3) become
equivalent to Eqs. (1.4), (1.5), and (1.6) for D � 4 when
A � 0, with U1 � U and U2 � logr�U.

Equations (1.5) can be seen as free Laplace equations
for axisymmetric potentials living in a three-dimensional
flat space. Solutions are then built up from thin rods
located at the line r � 0 in the three-dimensional space,
with a given rod being a source for one of the D� 2
potentialsUi [16]. In this paper we generalize the concept
of rods to the more general class of stationary and axi-
symmetric solutions, i.e., solutions for which the Killing
vector fields are not necessarily orthogonal. One of the
new features is that for a given rod we can associate a
direction in the �D� 2�-dimensional vector space
spanned by the Killing vector fields. Solutions for which
the directions of the rods are not orthogonal to each other
are then also solutions where the Killing vector fields are
not orthogonal to each other.

The outline of this paper is as follows: In Sec. II we
derive a canonical form of the metric for stationary and
axisymmetric pure gravity solutions. Using this, we find a
simplified version of the Einstein equations, effectively
reducing them to an equation on an axisymmetric D� 2
by D� 2 matrix field G living in flat three-dimensional
space. Some of the details of the derivation are placed in
the Appendices B, C, and D. In Appendix Awe consider a
special subclass of solutions that has the matrix field G
-2
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living in two-dimensional flat space. In Appendix E we
explore further the equation for the matrix field G.

In Sec. III we consider the behavior of the matrix field
G near the r � 0 line in the flat three-dimensional space
thatG lives in. The sources forG lives on the r � 0 line in
the form of rods.We analyze the general structure of these
rods. See also Appendix F.

In Sec. IV we consider the asymptotic region, and we
find out how to read off the asymptotic quantities for
solutions that asymptotic to four-dimensional or five-
dimensional Minkowski-space.

In Secs. V and VI we write down the metrics for the
five-dimensional rotating black hole of Myers and Perry
and the rotating black ring of Emperan and Reall in the
canonical form.We furthermore analyze the rod-structure
for these solutions. For the rotating black hole solutions,
we make use of Appendix G on prolate spherical coor-
dinates, while for the black ring solutions we make use of
Appendix H which considers C-metric coordinates and
how to transform these to the canonical coordinates of
this paper.

In Sec. VII we have the conclusions.
4One can use our results for null Killing vector fields, but we
will not elaborate on that case in this paper.
II. STATIONARY AND AXISYMMETRIC
SOLUTIONS

In this section we show that finding stationary and
axisymmetric solutions of General Relativity in D di-
mensions without matter (i.e. pure gravity) can be re-
duced to solving a differential equation on an
axisymmetric D� 2 by D� 2 matrix field in flat three-
dimensional Euclidean space. As part of this, we find a
particularly simple form of the metric for such solutions.

With respect to four-dimensional General Relativity,
the results of this section generalizes the work of
Papapetrou on stationary and axisymmetric metrics in
four dimensions [10,11] (see Eqs. (1.1), (1.2), and (1.3) in
the Introduction), which again is a generalization of the
work of Weyl on static and axisymmetric metrics [18]. In
higher-dimensional General Relativity, the results of this
section generalizes the work of Emparan and Reall on
metrics withD� 2 orthogonal commuting Killing vector
fields [16] (see Eqs. (1.4), (1.5), and (1.6) in the
Introduction). We comment in more detail on the connec-
tion to previous work in the following. Finally, we note
that the derivation of this section follows similar lines as
that of Wald’s derivation in [13] for four-dimensional
stationary and axisymmetric metrics.

A. Deriving canonical form of metric and
the Einstein equations

1. Formulation of problem

In this section we study D-dimensional manifolds
which have D� 2 commuting linearly independent
Killing vector fields V�i�, i � 1; . . . ; D� 2. With
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Lorentzian signature this corresponds to what we in this
paper call stationary and axisymmetric space-times,
where the term ‘‘stationary’’ means that one of our
Killing vector fields are timelike, while the D� 3 space-
like Killing vector fields give what we call ‘‘axisymme-
try’’ of the space-time.4 That the Killing vector fields V�i�,
i � 1; . . . ; D� 2, commute means that

�V�i�; V�j�� � 0; (2.1)

for i; j � 1; :::; D� 2. We see that the Killing vector fields
generate a �D� 2�-dimensional Abelian group.

We restrict moreover ourselves to consider solutions of
D-dimensional General Relativity without matter, i.e., we
consider metrics that solve the vacuum Einstein equations

R�
 � 0: (2.2)

In the following we find a canonical form of this class of
metrics, and we find furthermore a reduced form of the
Einstein Eqs. (2.2).

2. Finding two-dimensional orthogonal subspaces

Consider first a general D-dimensional space-time with
D� 2 commuting Killing vector fields V�i�, i �
1; . . . ; D� 2. From the fact that the Killing vector fields
are commuting, as expressed in Eq. (2.1), we get that we
can find coordinates xi, i � 1; . . . ; D� 2, and ua, a �
1; 2, so that

V�i� �
@
@xi

; (2.3)

for i � 1; . . . ; D� 2. Clearly, this means that the metric
components in this coordinate system only depends on u1

and u2.
We need now the theorem [13,16]:
Theorem 2.1.—Let V�i�, i � 1; . . . ; D� 2, be D� 2

commuting Killing vector fields such that:

(1) T
-3
he tensor V��1
�1� V

�1
�2� 	 	 	V

�D�2

�D�2�D

V��

�i� vanishes at at
least one point of the space-time for a given
i � 1; . . . ; D� 2
(2) T
he tensor V

�i�R

��

 V

�1
�1�V

�1
�2� 	 	 	V

�D�2�
�D�2� � 0 for all

i � 1; . . . ; D� 2. Then the two-planes orthogonal
to the Killing vector fields V�i�, i � 1; . . . ; D� 2,
are integrable. �
This theorem is stated and proven in four dimensions
in [13] using Frobenius theorem on integrable submani-
folds. Emparan and Reall generalized it to higher-
dimensional manifolds in [16].

Assume now that the two conditions in Theorem 2.1
are obeyed. That the two-planes orthogonal to the Killing
vector fields V�i�, i � 1; . . . ; D� 2, are integrable means
that for any given point of our D-dimensional manifold
we have a two-dimensional submanifold that includes
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this point and moreover have the property that for any
point of the submanifold the two-dimensional tangent-
space is orthogonal to all of the Killing vector fields. By
choosing coordinates on one of these two-dimensional
submanifolds and dragging them along the integral
curves of our Killing vector fields, we can find two
coordinates y1 and y2 for our D-dimensional manifold
so that @=@xi is orthogonal to @=@ya everywhere for all
i � 1; . . . ; D� 2 and a � 1; 2. This means the metric
takes the form

ds2 �
XD�2
i;j�1

Gijdx
idxj �

X2
a;b�1

ĝabdy
adyb; (2.4)

where Gij and ĝab only depends on y1 and y2.
From now on we restrict ourselves to solutions solving

the vacuum Einstein Eqs. (2.2). This ensures immediately
that Condition (2) in Theorem 2.1 is obeyed. We assume
furthermore that Condition (1) in Theorem 2.1 is obeyed.
Condition (1) can, for example, be argued to hold if one of
the Killing vector fields is an angle, since then it is zero
on the axis of rotation. This means for instance that
solutions asymptoting to Minkowski-space MD for D �
4; 5 obeys Condition (1) since they have angles in them.
Clearly, the same is true for solutions asymptoting to
MD�p � Tp for D� p � 4; 5.

3. The r and z coordinates

Define now the function r�y1; y2� as

r �
���������������������
j det�Gij�j

q
: (2.5)

In Appendix A we treat the case in which det�Gij� is
constant, giving rise to a special class of solutions.
Instead, we assume here and in the following that
r�y1; y2� is not a constant function. From Appendix B
we get then that �@r=@y1; @r=@y2� � �0; 0� except in iso-
lated points.We can then use the result of Appendix C that
we can find a coordinate z�y1; y2�, along with two func-
tions 
�y1; y2� and ��y1; y2�, so that

X2
a;b�1

ĝabdyadyb � e2
�dr2 ��dz2�: (2.6)

Therefore, the full metric takes the form

ds2 �
XD�2
i;j�1

Gijdxidxj � e2
�dr2 ��dz2�; (2.7)

where 
�r; z� and ��r; z� are functions of r and z.
From Appendix D, where part of the Ricci tensor for

the metric (2.7) is computed, we have from Eq. (D8)

XD�2
i;j�1

GijRij � �
@r�

2e2
�r
: (2.8)
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Since our solution should fulfill the vacuum Einstein
equations R�
 � 0, this means that

@r� � 0: (2.9)

This gives that � � ��z�. Since we preserve the form of
the metric (2.7) under a transformation z0 � f�z� we can
therefore set��z� � 1 by a coordinate transformation of z
alone. Thus, we can define the z-coordinate by demanding
� � 1. This fixes z up to transformations
z! z� constant.
4. Canonical form of metric

In conclusion, we have shown that for any Ricci-flat
space-time with D� 2 commuting Killing vector fields
V�i�, i � 1; . . . ; D� 2, obeying Condition (1) of Theorem
2.1, we can find a coordinate system �x1; . . . ; xD�2; r; z�
such that V�i� � @=@xi and such that the metric takes the
canonical form

ds2 �
XD�2
i;j�1

Gijdx
idxj � e2
�dr2 � dz2�; (2.10)

with

r �
���������������������
j det�Gij�j

q
; (2.11)

whereGij�r; z� and 
�r; z� are functions only of r and z. In
addition to the assumption that the Killing vector fields
should obey Condition (1) of Theorem 2.1 we also assume
here that det�Gij� is not constant on our space-time. The
situation in which det�Gij� is constant is instead treated in
Appendix A.

5. The Einstein equations

We now consider the vacuum Einstein equationsR�
 �
0 for the metric (2.10) with the constraint (2.11) using the
computed Ricci tensor (D9) in Appendix D.

Considering the Rij � 0 equations we see from (D9)
that the equations for Gij are

�
@2r �

1

r
@r � @2z

�
Gij �

XD�2
k;l�1

Gkl@rGki@rGlj

�
XD�2
k;l�1

Gkl@zGki@zGlj: (2.12)

Considering the Rrr � Rzz � 0 and Rrz � 0 equations we
see from (D9) that the equations for 
 are
-4



5It is important to remark that # is not an actual physical
variable for the solution (2.10), but rather an auxiliary coor-
dinate that is useful for understanding the structure of
Eqs. (2.12).

6To be precise, we mean all solutions for which the D� 2
Killing vector fields obey Condition (1) of Theorem 2.1 and for
which det�Gij� is a nonconstant function on our D-dimensional
manifold.

STATIONARY AND AXISYMMETRIC SOLUTIONS OF. . . PHYSICAL REVIEW D 70, 124002 (2004)
@r
 � �
1

2r
�
r
8

XD�2
i;j;k;l�1

GijGkl@rGik@rGjl

�
r
8

XD�2
i;j;k;l�1

GijGkl@zGik@zGjl;

@z
 �
r
4

XD�2
i;j;k;l�1

GijGkl@rGik@zGjl:

(2.13)

Using now (2.13) together with (2.12) one can check that
the integrability condition @z@r
 � @r@z
 on 
�r; z� is
obeyed. Thus, for a given solution Gij�r; z� of (2.12) the
Eqs. (2.13) can be integrated to give 
�r; z�.

Finally, there is the remaining nontrivial equation
Rrr � Rzz � 0 coming from the Einstein equations. The
explicit expression for this equation is easily found using
(D9) and is seen to involve second derivatives of 
. Since
Gij�r; z� and 
�r; z� already are determined by (2.12) and
(2.13) it needs to be checked that Rrr � Rzz � 0 is con-
sistent with (2.12) and (2.13). This can be checked by
finding @2r
� @2z
 from (2.13). Inserting the result into
Rrr � Rzz from (D9) this is seen to be zero using (2.12).

Therefore, we have shown that one can find solutions of
the vacuum Einstein equations for the canonical form for
the metric (2.10) and (2.11) by finding a Gij�r; z� that
satisfies (2.12). Then, subsequently one can always find
a function 
�r; z� that satisfies (2.13), and thereby we have
a complete solution satisfying all the Einstein equations.

6. Reduction to Papapetrou form and
generalized Weyl solutions

We show here that the canonical form of the metric
(2.10) and (2.11), along with the form of the Einstein
Eqs. (2.12) and (2.13), reduces to the previously known
cases.

We first consider the Papapetrou form (1.1) for four-
dimensional stationary and axisymmetric solutions
[10,11], with the Einstein equations in the form (1.2)
and (1.3). Setting D � 4, we see that by setting G11 �
�e2U, G12 � �e2UA and G22 � e�2U�r2 � A2e4U� with
x1 � t and x2 � �, we get the Papapetrou form (1.1) from
(2.10). Furthermore, we see that (2.12) and (2.13) reduce
to (1.2) and (1.3).

Consider now instead the generalized Weyl solutions of
[16] which have D� 2 orthogonal commuting Killing
vector fields. These have metric (1.4), and the Einstein
equations are in the form (1.5) and (1.6). We see that
setting G11 � �e2U1 and Gii � e2Ui for i � 2; ::; D� 2,
we get the metric (1.4) from the canonical form (2.10).
detG � �r2 gives then

PD�2
i�1 Ui � logr. For the Einstein

equations, it is easily seen that (2.12) and (2.13) reduces to
(1.5) and (1.6) (see also Appendix E). Thus, the canonical
form (2.10) and (2.11) correctly reduce to the generalized
Weyl solutions.
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B. Compact notation for the equations for Gij�r; z�

We have derived above that the metric of
D-dimensional manifolds with D� 2 commuting
Killing vector fields obeying the vacuum Einstein equa-
tions can be written in the canonical form (2.10) and
(2.11). Moreover, the vacuum Einstein equations reduce
to (2.12) and (2.13). We now show that we can write the
equations for Gij�r; z� in a more compact form. This is
highly useful for analysis of these equations.

For a given r and z we can view Gij as a D� 2 times
D� 2 real symmetric matrix, with Gij as its inverse. In
this way we can write (2.12) in matrix notation as

G�1

�
@2r �

1

r
@r � @2z

�
G � �G�1@rG�2 � �G�1@zG�2;

(2.14)

with the constraint j detGj � r2 coming from (2.11).
We can make a further formal rewriting of (2.12) by

recognizing that the derivatives respects the symmetries
of a flat three-dimensional Euclidean space with metric

dr2 � r2d#2 � dz2: (2.15)

Here # is an angular coordinate of period 2$.5 Therefore,
if we define ~r to be the gradiant in three-dimensional flat
Euclidean space, we can write (2.12) as

G�1 ~r2G � �G�1 ~rG�2: (2.16)

Thus, by finding the axisymmetric solutions of the dif-
ferential matrix Eq. (2.16) in three-dimensional flat
Euclidean space, that obey the constraint j detGj � r2,
we can find all stationary and axisymmetric solutions of
the vacuum Einstein equations in D dimensions.6

We explore some of the mathematical properties of
Eq. (2.16) in Appendix E. Here the compact form (2.16)
of (2.12) prove highly useful.
III. BEHAVIOR OF SOLUTIONS NEAR r � 0

In Sec. II we derived the canonical form of the metric
(2.10) and (2.11), along with the corresponding equations
of motion, (EOMs) (2.12) and (2.13), for stationary and
axisymmetric solutions of the vacuum Einstein equa-
tions. In this section we consider the behavior of such
solutions close to r � 0.
-5
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A. Behavior of G�r; z� near r � 0

We describe first how the z-axis at r � 0 is divided into
intervals, called rods, according to the dimension of the
kernel of G at r � 0. We find then coordinates in which a
solution simplifies near a rod, making it possible to
describe the solution in detail near the rod. We use this
to define the rod-structure of a solution in Sec. III B.

1. Dividing the z-axis into rods

Consider a given solution G�r; z�. G�r; z� is required to
be continuous. Since j detGj � r2 we see that the product
of the eigenvalues of G�r; z� goes to zero for r! 0.
Therefore, we have that the eigenvalues of G�0; z�, which
all are real since G�0; z� is symmetric, include the eigen-
value zero for a given z. This means that the dimension of
the kernel ofG�0; z� is greater than or equal to one for any
z. We can write this more compactly as
dim�ker�G�0; z��� � 1.

A necessary condition for a regular solution is that
precisely one eigenvalue of G�0; z� is zero for a given z,
except in isolated points. This statement is explained in
Appendix F where we argue that if we have more than one
eigenvalue going to zero as r! 0, for a given z, we have a
curvature singularity at that point. Therefore, in the fol-
lowing we consider only solutions which, for a given z,
only have one eigenvalue going to zero for r! 0, except
at isolated values of z. Written compactly, this means
dim�ker�G�0; z��� � 1, except at isolated values of z.
Denote now these isolated values of z as a1; a2; . . . ; aN ,
with a1 < a2 < . . .< aN .

We see now that we divided the z-axis into the N � 1
intervals ��1; a1�, �a1; a2�, . . ., �aN�1; aN� and �aN;1�.7

We call these N � 1 intervals the rods of the solution.
One can easily check that the above definition of rods

reduces to the definition of [16] for the special case of
generalized Weyl solutions, i.e., with D� 2 orthogonal
Killing vector fields.

2. Behavior of G�r; z� near a rod

In Sec. II we found that G�r; z� should solve the equa-
tion G�1 ~r2G � �G�1 ~rG�2 with the constraint that
j detGj � r2. However, this breaks down as r! 0, be-
cause for r � 0 we have that detG � 0 so G is not inver-
tible anymore. The reason for this is that we have sources
added to the equation G�1 ~r2G � �G�1 ~rG�2 at r � 0.
The sources corresponds precisely to the rods defined
above, i.e., the intervals with dim�ker�G�r; z��� � 1.
Moreover, if we view the solution G�r; z� as a matrix-
valued field in the unphysical three-dimensional flat
Euclidean space with metric (2.15), a rod is really a
source in the form of a rod of zero thickness in this
7Note that it is possible to have an infinite number of
intervals.
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unphysical space. In the following we examine in detail
the equation G�1 ~r2G � �G�1 ~rG�2 near a rod in order to
describe more precisely the behavior of G�r; z� near a rod.

Consider a solution G�r; z� and a given rod �z1; z2�.
Consider furthermore a given value of z � z� obeying
z1 < z� < z2. Since G�0; z�� is a symmetric real matrix
we can diagonalize it using an orthogonal matrix�� such
that �T�G�0; z���� is diagonal. Furthermore, since
G�0; z�� has precisely one zero eigenvalue, we can choose
�� so that ��T�G�0; z�����11 � 0.

Define now ~G�r; z� � �T�G�r; z���. Clearly, ~G�r; z� is a
solution of (2.12) by Lemma E.7, and furthermore det ~G �

detG � �r2. Note that all entries of ~G�r; z�� are of order
O�r2� for r! 0, expect the entries ~Gii�r; z��, i �
2; . . . ; D� 2, which are finite and nonzero.

Since ~Gij�0; z�� is not well-defined we need to consider
the limit of ~Gij�r; z�� for r! 0 carefully. To this end,
define theD� 2 byD� 2 matrix-valued functionM�r; z�
by

M11 �
~G11
r2

; M1i �
~G1i
r
;

Mij � ~Gij; i; j � 2; . . . ; D� 2

(3.1)

for any �r; z�. We see that this corresponds to a rescaling
x1new � rx1old. Clearly, we have that M�0; z�� is diagonal,
with nonzero eigenvalues. Moreover, we have that ~G11 �
M11=r2, ~G1i � M1i=r and ~Gij � Mij, i; j � 2; . . . ; D� 2.
Since M1i, i � 2; . . . ; D� 2, are of order O�r�, we have
that M1i, i � 2; . . . ; D� 2, are of order O�r�, and there-
fore that ~G1i�r; z��, i � 2; . . . ; D� 2, stay finite (or goes
to zero) in the limit r! 0. Also, ~Gij�r; z�� ! 0 with 2 �
i < j � D� 2 and ~Gii�r; z�� ! � ~Gii�0; z����1 with i �
2; . . . ; D� 2, while ~G11�r; z�� is of order 1=r2 for r! 0.

Consider now the equation ~G�1 ~r2 ~G � � ~G�1 ~r ~G�2 for
z � z� and r! 0. We have

~r 2 ~G11 � ~G11� ~r ~G11�2 � 2
XD�2
i�2

~G1i ~r ~G11 	 ~r ~G1i

�
XD�2
i�2

~Gii� ~r ~G1i�
2; (3.2)

up to terms that go to zero for r! 0. Since we just found
that ~G1i and ~Gii are finite for z � z� and r! 0 (with i �
2; . . . ; D� 2) and since we require that ~Gij�r; z� and its
derivatives are finite as a necessary condition for regular
solutions,8 we see that the left-hand side and the second
and third term on the right-hand side of (3.2) are finite for
z � z� and r! 0. Since ~G11 ! 1 we see therefore that
we need ~r ~G11 ! 0 for z � z� and r! 0. If we consider
8Except in the endpoints of a rod where the derivatives are
not necessarily well-defined. Hence the condition z1 < z� < z2.
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instead ~r2 ~Gii we see similarly that

~r 2 ~Gii � ~G11� ~r ~G1i�2 � finite terms; (3.3)

so we get that ~r ~G1i ! 0 for z � z� and r! 0. Thus, we
have derived that ~r ~G1i�0; z�� � 0 for i � 1; . . . ; D� 2. In
particular, this implies that @z ~G1i�0; z�� � 0. Therefore,
since this works for any z� 2�z1; z2� we get the following
theorem:

Theorem 3.1.—Consider a rod �z1; z2� for a solution
G�r; z�. Then we can find an orthogonal matrix �� such
that the solution ~G�r; z� � �T�G�r; z��� has the property
that ~G1i�0; z� � 0 for i � 1; . . . ; D� 2 and z 2 �z1; z2�.�

We take now a closer look at the EOMs (2.12) and (2.13)
near r � 0. Consider a solution G�r; z� and a particular
rod �z1; z2�. Using Theorem 3.1 we always make a con-
stant coordinate transformation of the xi coordinates so
that G�r; z� has the property that G1i�0; z� � 0 for
i � 1; . . . ; D� 2 and z 2 �z1; z2�. To leading order, we
can therefore write G�r; z� � ��a�z�r2� � A�z� for r! 0
with z1 < z< z2 where a�z� is a function of z with a�z�>
0 for z 2�z1; z2� and A�z� is a D� 3 by D� 3 matrix-
valued function of z. Thus, G11 � �a�z�r2 for r! 0.
Note that j det�A�z��j � 1=a�z�.

If we consider Eqs. (2.12) we see that ~r2G11 �
�4a�z� �O�r� and that G11�@rG11�2 � �4a�z� �O�r�,
so this is consistent. Considering @r
 in (2.13) we see
that since @rG11 � �2a�z�r we have that @r
 � 0 to
leading order. Considering instead @z
 in (2.13), we get

@z
 �
1

2

a0

a
�O�r�: (3.4)

Thus, to leading order for r! 0 we have e2
 � c2a�z�
where c is a positive number. Therefore, for r! 0 with
z1 < z < z2 the metric (2.10) has the form

ds2�
X

i;j�2;...;D�2

Aij�z�dxidxj�a�z���r2�dx1�2

�c2�dr2�dz2��: (3.5)

This is the behavior of the canonical metric (2.10) near a
rod.

Notice now that if G11=r2 is positive for r! 0 the
coordinate x1 is spacelike and the metric (3.5) has a
conical singularity for r! 0, unless x1 is periodic with
period 2$c. For a regular solution, this means that if we
have a rod in a spacelike direction we have necessarily
that this direction is periodic with the period constrained
from avoiding the conical singularity.

If G11=r2 is negative for r! 0 the coordinate x1 is
timelike and we see that there is a horizon at r � 0 since
G11 � 0. Moreover, using the above argument for the
spacelike direction, we see that the Wick rotated coordi-
124002
nate ix1 must be periodic with period 2$c. This means
that the horizon has a temperature T � 1=�2$c� associ-
ated to it.

B. The rod-structure of a solution

In this section we define what we mean by the rod-
structure of a solution, and we discuss the general struc-
ture of rods, in view of the considerations of Sec. III A.

1. Specifying the rod-structure of a solution

Let a solutionGij�r; z� of Eqs. (2.11) and (2.12) be given
with N � 1 rods which meet in the z-values a1 < a2 <
. . .< aN . Introduce here the notation a0 � �1 and
aN�1 � 1 in order to write the equations below more
compactly. The solution G�r; z� thus have the N � 1 rods
�ak�1; ak� with k � 1; . . . ; N � 1.

Define now for the solution Gij�r; z� the N � 1 vectors
v�k� in RD�2, k � 1; . . . ; N � 1, by

G�0; z�v�k� � 0 for z 2 �ak�1; ak�;

k � 1; . . . ; N � 1;
(3.6)

with v�k� � 0 for all k � 1; . . . ; N � 1. In other words,
v�k� 2 ker�G�0; z��. We call v�k� the direction of the cor-
responding rod �ak�1; ak�.

We define then the rod-structure of the solution
Gij�r; z� as the specification of the rod intervals
�ak�1; ak� plus the corresponding directions v�k�,
k � 1; . . . ; N � 1.

Obviously, since v�k� is defined as an eigenvector, it is
only defined up to a multiplicative factor (different from
zero). In other words, one should really regard v�k� as an
element of the real projective space RPD�3.

We now demonstrate that it follows from the consid-
erations of Sec. III A that the above definition of the rod-
structure is meaningful. This involves showing that
v�k�for a given k, as defined in (3.6) exists and is unique,
as element in RPD�3

Observe first that by Theorem 3.1 we get for each of the
N � 1 rods an orthogonal matrix ��k�, k � 1; . . . ; N � 1,
so that ��T

�k�G�0; z���k��1i � 0 for z 2 �ak�1; ak�. Define
the unit vector e � �1; 0; . . . ; 0� in RD�2. Note that from
the above we have then that �T

�k�G�0; z���k�e � 0 for z 2
�ak�1; ak� with k � 1; . . . ; N � 1. We can now define the
N � 1 vectors v�k� � ��k�e, k � 1; . . . ; N � 1. Clearly,
then these N � 1 vectors v�k� obey (3.6). Thus, we have
shown that we can always find N � 1 vectors v�k� obeying
(3.6).

To see that each of the N � 1 vectors v�k� are unique,
seen as elements of RPD�3, it is enough to notice that we
know from Sec. III A that dim�ker�G�0; z��� � 1 for
z 2�ak�1; ak�.
-7
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2. Discussion of existence and uniqueness of solutions

We discuss here whether a solution is uniquely given by
its rod-structure, and whether there exists a solution for
any given rod-structure. We consider here only solutions
of Euclidean signature, but one can easily extend the
considerations to solutions of Lorentzian signature.

If we consider the special case of the generalized Weyl
solutions of [16], corresponding to G�r; z� being a diago-
nal matrix, we clearly have the directions of the rods can
be chosen to have the form v�k� � �0; . . . ; 0;�1; 0; . . . ; 0�.
It is then known from the analysis of [16] that we can
specify a solution completely by the N parameters a1 <
. . .< aN and N � 1 vectors v�k�, i.e., a solution is com-
pletely specified by its rod-structure.

We now speculate that this statement can be general-
ized, i.e., that also in the more general class of solution
considered here, a solution is specified uniquely by its
rod-structure. Thus, we claim in detail that: A solution
with N � 1 rods is completely determined by specifying
the parameters a1 < . . .< aN and directions v�k�,
k � 1; . . . ; N � 1, i.e., it is not possible to find two physi-
cally different solutions with N � 1 rods that have the
same N parameters ak and N � 1 directions v�k�.
Intuitively, this statement seems valid since one would
expect that the system of Eqs. (2.12) determine G�r; z�
once we have determined the sources for G�r; z� at r � 0.
And, the values ak and directions v�k� seems precisely to
specify that.

Note that if this statement is true, it is moreover true
that it is not possible to find two physically different
solutions with N � 1 rods that have the same N parame-
ters ak, up to a global translation of all N parameters, and
the same N � 1 directions v�k�, up to a global rotation of
all N � 1 directions.

One can also turn things around and ask whether there
exists a solution with N � 1 rods given the N parameters
a1 < . . .< aN and N � 1 directions v�k�, k � 1; . . . ; N �

1 (not imposing the solution to be regular). This would be
interesting to examine further. However, there is an ob-
vious restriction on the directions of the first and last rod
��1; a1� and �aN;1�. For a given asymptotic space,
which the solution is required to asymptote to for���������������
r2 � z2

p
! 1 with z=

���������������
r2 � z2

p
fixed (see Sec. IV), the

directions of these two rods should be correlated, and can
therefore not be chosen independently.

C. Analysis of the rod-structure

In this section we summarize how to analyze the rod-
structure, and add some useful nomenclature and general
comments. We consider here solutions Gij�r; z� of (2.12)
with detG � r2.

In Sec. III Awe learned that in order to avoid curvature
singularities it is a necessary condition on a solution that
the kernel of the matrix G�0; z� for a given z should be
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one-dimensional, except for isolated values of z. We
therefore restrict ourselves to solutions where this applies.
Naming the isolated z-values as a1; . . . ; aN , we see that
the z-axis splits up into the N � 1 intervals ��1; a1�,
�a1; a2�,. . .,�aN�1; aN�, �aN;1�. The first task in under-
standing the rod-structure of a solution is thus to find
these intervals, called rods.

Consider now a specific rod �z1; z2�. From Theorem 3.1
(see also Sec. III B) we know that we can find a vector

v � vi
@
@xi

; (3.7)

so that

XD�2
j�1

Gij�0; z�vj � 0; (3.8)

for i � 1; . . . ; D� 2 and z 2 �z1; z2�. This vector v is
called the direction of the rod �z1; z2�. Then, if
Gijvivj=r2 is negative (positive) for r! 0 we say the
rod �z1; z2� is timelike (spacelike).

Consider now a spacelike rod �z1; z2�. For r! 0 with
z 2�z1; z2� we have a potential conical singularity. Let -
be a coordinate, made as a linear combination of xi, i �
1; . . . ; D� 2, with

@
@-

� v � vi
@
@xi

: (3.9)

Then in order to cure the conical singularity at the rod,
the coordinate - should have period

�- � 2$lim
r!0

����������������
r2e2


Gijv
ivj

vuut ; (3.10)

with z 2 �z1; z2�. This is seen from the analysis of
Sec. III A. We see from this that a spacelike rod corre-
sponds to a compact direction. For a timelike rod, one can
similarly find an associated temperature, by doing a Wick
rotation. Therefore, a timelike rod corresponds to a hori-
zon (see Sec. III A).

We introduce here some additional nomenclature for
rods. Consider a rod �z1; z2�. If this is a finite interval we
call �z1; z2� a finite rod. If either z1 � �1 or z2 � 1 but
not both of them, we call �z1; z2� a semi-infinite rod.
��1;1� is instead called the infinite rod.

As discussed in [16], a finite timelike rod corresponds
to an event horizon, at least if there are no semi-infinite
timelike rods for the solution. Similarly, a finite spacelike
rod corresponds to a Kaluza-Klein direction if there are
no semi-infinite spacelike rods in that direction.
Moreover, a (semi-)infinite spacelike rod corresponds to
an axis of rotation, with the associated coordinate being
the rotation angle, while a semi-infinite timelike rod
corresponds to an acceleration horizon.
-8
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IV. ASYMPTOTICALLY FLAT SPACE-TIMES

In this section we consider asymptotically flat space-
times. More specifically, we consider the four- and five-
dimensional Minkowski-spaces M4 and M5, and we
consider the asymptotic behavior of solutions that asymp-
tote to M4 and M5.

The Minkowski-spaces M4 and M5 are special in that
they are the only Minkowski-spaces that one can describe
using the ansatz (2.10) and (2.11). This is easily seen by
counting the number of Killing vector fields. An obvious
generalization of the considerations of this section would
be to consider the Kaluza-Klein space-times M4 � S1

and M5 � S1, or other space-times with even more com-
pact directions, i.e. M4 � Tp or M5 � Tp. We leave this
for the future.9

In the following we put Newtons constant GN � 1. To
reinstate GN one should substitute M ! GNM and
J ! GNJ.

A. Perturbation of diagonal metric

Before describing asymptotically flat spaces, we first
develop a tool that will prove useful. We consider in this
section a perturbation /G�r; z� of a solution G�r; z� of
Eqs. (2.12), with G�r; z� being diagonal, such that
G�r; z� � /G�r; z� also is a solution of Eqs. (2.12). This
will be useful below since asymptotic behavior of a solu-
tion typically involves the solution asymptoting towards a
diagonal metric like, for example, the metric of
Minkowski-space. The results here can also be used in a
broader context to find corrections to solutions.

Now, Eqs. (2.12) for the perturbation /G�r; z� becomes

~r 2/Gij �

� ~rGii

Gii
�
~rGjj

Gjj

�
	 ~r/Gij �

~rGii

Gii
	
~rGjj

Gjj
/Gij:

(4.1)

We see here that the equations for /Gij are completely
decoupled, i.e., we can solve for each component of
/G�r; z� separately. The only constraint is that j det�G�
/G�j � r2. Using that j detGj � r2 this constraint can be
written as tr�G�1/G� � 0 which we again can write as

XD�2
i�1

/Gii

Gii
� 0: (4.2)

We see thus that only the diagonal components of /Gii are
subject to a constraint. We note that for the diagonal
9Strictly speaking, one can consider higher-dimensional
Minkowski-spaces MD with D � 6, for example, by making
the split up MD � M4 � RD�4, with the RD�4 part spanned
by the Killing vector fields. However, one can not use that to
write any nontrivial solutions which asymptotes to MD, since
any solution would be independent of the RD�4 part. Instead,
one should consider M4 � TD�4 or M5 � TD�5.
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components of /G�r; z� the Eqs. (4.1) can be written

~r 2

�
/Gii

Gii

�
� 0; (4.3)

for i � 1; . . . ; D� 2.

B. Four-dimensional asymptotic Minkowski-space

We consider in this section the four-dimensional
Minkowski-space M4 and the asymptotic structure of
solutions asymptoting to M4.

We first describe D � 4 Minkowski-space M4. In
terms of G�r; z� we have that M4 is given by

G11 � �1; G22 � r2; (4.4)

Thus, we have an infinite spacelike rod ��1;1�. In
accordance with (2.13) we choose e2
 � 1. Demanding
regularity of the solution near r � 0 we get using (3.10)
that x2 � � should have period 2$. Making the coordi-
nate transformation

r � � sin0; z � � cos0; (4.5)

we get the metric in spherical coordinates

ds2 � �dt2 � �2sin20d�2 � d�2 � �2d02; (4.6)

where we put x1 � t and x2 � �.
If we consider a D � 4 asymptotically Minkowski-

space solution we have for �! 1 the corrections to the
metric

gtt � �1�
2M
�

�O���2�;

gt� � �2J
sin20
�

�1�O���1��;
(4.7)

with g�� � �2sin20�1�O���1��.
In the �r; z� canonical coordinates the asymptotic re-

gion corresponds to
���������������
r2 � z2

p
! 1with z=

���������������
r2 � z2

p
finite.

In the canonical coordinates we have therefore from (4.7)
the asymptotic behavior

G11 � �1�
2M���������������
r2 � z2

p �O��r2 � z2��1�;

G12 � �
2Jr2

�r2 � z2�3=2
�O��r2 � z2��1�;

G22 � r2
�
1�

2M���������������
r2 � z2

p �O��r2 � z2��1�
�
;

(4.8)

for
���������������
r2 � z2

p
! 1 with z=

���������������
r2 � z2

p
finite. For G22 we

used (4.2) and (4.3) of Sec. IVA. We see from (4.8) that
the leading asymptotic behavior of G�r; z� is determined
completely from M and J. For e2
, the asymptotic behav-

ior is simply that e2
 ’ 1 for
���������������
r2 � z2

p
! 1 with
-9
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z=
���������������
r2 � z2

p
finite.

1. The period of �

In the above we considered the period of x2 � � to be
2$. We can also consider the more general case where
x2 � � has period �� � 2$". Then the asymptotic be-
havior of a solution is

G11 ’ �1�
2M
"

1���������������
r2 � z2

p ; G12 ’ �
2J

"2
r2

�r2 � z2�3=2
;

e2
 ’ "2; (4.9)

for
���������������
r2 � z2

p
! 1 with z=

���������������
r2 � z2

p
finite, where we used

here a less precise notation than above for the sake of
brevity.

C. Five-dimensional asymptotic Minkowski-space

We consider in this section the five-dimensional
Minkowski-space M5 and the asymptotic structure of
solutions asymptoting to M5.

We first describe D � 5 Minkowski-space M5. In
terms of G�r; z� we have that M5 is described by

G11 � �1; G22 �
���������������
r2 � z2

p
� z; G33 �

���������������
r2 � z2

p
� z:

(4.10)

This corresponds to two semi-infinite rods ��1; 0� and
�0;1�. In accordance with Eqs. (2.13) we choose

e2
 �
1

2
���������������
r2 � z2

p : (4.11)
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Demanding regularity of the solution near r � 0 we get
using (3.10) that both x2 and x3 are periodic with period
2$. Making the coordinate transformation

r �
1

2
�2 sin20; z �

1

2
�2 cos20; (4.12)

we get the metric in spheroidal coordinates

ds2��dt2��2sin20d�2��2cos20d 2�d�2��2d02;

(4.13)

where we put x1 � t, x2 � � and x3 �  . We remind the
reader that regularity of the solution requires both x2 �
� and x3 �  to be periodic with period 2$.

If we consider a D � 5 asymptotically Minkowski-
space solution we have for �! 1 the corrections to the
metric

gtt � �1�
8M
3$

1

�2
�O���4�;

gt� � �
4J1
$
sin20

�2
�1�O���2��;

gt � �
4J2
$
cos20

�2
�1�O���2��;

(4.14)

with g�� � �2sin20�1�O���2�� and g  �

�2cos20�1�O���2��. Using this together with (4.1) and
(4.2), we get the asymptotics in the �r; z� canonical coor-
dinates
G11 � �1�
4M
3$

1���������������
r2 � z2

p �O��r2 � z2��1�; G23 � 3
r2

�r2 � z2�
3
2

�O��r2 � z2��1�;

G12 � �
J1
$

���������������
r2 � z2

p
� z

r2 � z2
�O��r2 � z2��1�; G13 � �

J2
$

���������������
r2 � z2

p
� z

r2 � z2
�O��r2 � z2��1�;

G22 � �
���������������
r2 � z2

p
� z�

�
1�

2

3$
M� -���������������
r2 � z2

p �O��r2 � z2��1�
�
;

G33 � �
���������������
r2 � z2

p
� z�

�
1�

2

3$
M� -���������������
r2 � z2

p �O��r2 � z2��1�
�
;

(4.15)

for
���������������
r2 � z2

p
! 1 with z=

���������������
r2 � z2

p
finite, where 3 and - are constants. Note that - changes under the transformation

z!z�constant and is thus not a gauge-invariant parameter, unlike 3 . Finally, we remark that the asymptotics of e2
 is

e2
 ’
1

2
���������������
r2 � z2

p ; (4.16)

for
���������������
r2 � z2

p
! 1 with z=

���������������
r2 � z2

p
finite.

1. The periods of � and  

The periods of x2 � � and x3� were chosen to be 2$ in the above. We consider here the more
general case where the period �� of x2�� and the period � of x3 �  are given by ���� �2$". Then the
asymptotics of Gij�r; z� and e2
 takes the form
-10
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G11 ’ �1�
4M

3$"2
1���������������

r2 � z2
p ; G23 ’

3

"4
r2

�r2 � z2�3=2
; e2
 ’

"2

2
���������������
r2 � z2

p ;

G12 ’ �
J1
$"3

���������������
r2 � z2

p
� z

r2 � z2
; G22 ’ �

���������������
r2 � z2

p
� z�



1�

2

3$"2
M� -���������������
r2 � z2

p �
;

G13 ’ �
J2
$"3

���������������
r2 � z2

p
� z

r2 � z2
; G33 ’ �

���������������
r2 � z2

p
� z�



1�

2

3$"2
M� -���������������
r2 � z2

p �
; (4.17)

���������������p ���������������p

for r2 � z2 ! 1 with z= r2 � z2 finite, where we used
here a less precise notation than above for the sake of
brevity.

V. ROTATING BLACK HOLE SOLUTIONS

In this section we consider rotating black hole solutions
in four and five dimensions and describe them using the
canonical form of the metric (2.10) and (2.11).

A. Kerr solution

We first consider the four-dimensional Kerr solution [1]
which corresponds to a rotating black hole. The topology
of the event horizon is that of a two-sphere S2. It is already
known how to write the Kerr solution in the canonical
form (2.10) and (2.11) (see for example [12,14,15]), but we
review this here for completeness, and since it illustrates
the methods developed in Sec. III.

The Kerr-metric in Boyer-Linquist coordinates is

ds2��
��a2sin20

�
dt2�2asin20

�2�a2��
�

dtd�

�
��2�a2�2��a2sin20

�
sin20d�2�

�

�
d�2��d02;

(5.1)
with

� � �2 � 2M�� a2; � � �2 � a2cos20: (5.2)

The coordinates for the two Killing directions are x1 � t
and x2 � �. From det�G� � ��sin20 we get the
r-coordinate, and it is a straightforward exercise to find
a z-coordinate so that the metric fits into the ansatz (2.10).
We find

r �
����
�

p
sin0; z � ���M� cos0: (5.3)

Using this, we can in principle write the Kerr-metric in
the canonical form (2.10) and (2.11). However, it is useful
to instead first write the Kerr-metric in the prolate spheri-
cal coordinates (see Appendix G). From the definition
(G1) of the prolate spherical coordinates �x; y� we see that

42�x2 � 1��1� y2� � �sin20; 4xy � ���M� cos0;

(5.4)

Using the ansatz x � x��� and y � y�0� we get

x�
��M�����������������
M2�a2

p ; y� cos0; 4�
�����������������
M2�a2

p
: (5.5)
124002
We compute

G11 � �
x2cos25� y2sin25� 1

�1� x cos5�2 � y2sin25
;

G12 � �2a
�1� y2��1� x cos5�

�1� x cos5�2 � y2sin25
;

e2
 �
�1� x cos5�2 � y2sin25

�x2 � y2�cos25
;

(5.6)

where we defined
sin5 �

a
M
: (5.7)

The G22 component can be found from

G22 �
G212 � 42�x2 � 1��1� y2�

G11
: (5.8)

We obtained now Gij and e2
 as functions of x and y.
From this it is straightforward to use Eq. (G7) to get Gij

and e2
 as functions of r and z.

1. Asymptotic region

Using (G9) we find that in the asymptotic region���������������
r2 � z2

p
! 1 with z=

���������������
r2 � z2

p
finite, we have

G11 � �1�
2M���������������
r2 � z2

p �O��r2 � z2��1�;

G12 � �2Ma
r2

�r2 � z2�3=2
�O��r2 � z2��1�:

(5.9)

From (4.8) we see that this means that M is the mass,
which justifies our use of this symbol in the solution, and
that the angular momentum is J � Ma.

Note that e2
 ’ 1 in the asymptotic region. From
Sec. IV B we know that this means that �� � 2$, i.e.,
that � is required to have period 2$. This can also be
found directly from the solution near r � 0 using the
analysis of Sec. III A.

2. Rod-structure

We now analyze the rod-structure of the Kerr solution
according to the methods of Sec. III. We have:
(i) T
-11
he two semi-infinite spacelike rods ��1;�4�
and �4;1�. For z 2 ��1;�4� and r � 0 we see
from (G7) that x � �z=4 and y � �1. Similarly,
for z 2 �4;1� and r � 0we have that x � z=4 and
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y � 1. Considering Eqs. (5.6) and (5.8) we see that
for both intervals G12 � G22 � 0 while G11 � 0.
By Eq. (3.8) this means that the two rods both are
in the direction v � �0; 1�, i.e., that the rods are in
the @=@x2 direction and therefore spacelike.
(ii) T
he finite timelike rod ��4;4�. For z 2 ��4;4�
we see from (G7) that x � 1 and y � z=4.
Considering Eqs. (5.6) and (5.8) we see thatP2
j�1Gijv

j � 0 for z 2 ��4;4� with

v � �1; �;  �
sin5

2M�1� cos5�
: (5.10)

This means that we have a rod ��4;4� along the
direction (5.10). Since Gijvivj=r2 is negative for
r! 0 the rod is timelike. Note that  in (5.10) is
the angular velocity of the event horizon.10 One
finds easily that this rod corresponds to an event
horizon of topology S2. This is a consequence of
the fact that the rods on each side of the ��4;4�
rod are in the same spacelike direction, i.e., the
@=@x2 direction.
For the timelike rod ��4;4� we see from (5.10) that if
we change coordinates as ~x1 � x1 and ~x2 � x2 � x1,
then in these coordinates the ��4;4� rod is along the
@=@~x1 direction. This means that ~x1 and ~x2 are two of the
coordinates of the comoving coordinates for the Kerr
solution since the comoving coordinates precisely gives
a diagonal metric at the horizon. In other words, finding
the direction of the ��4;4� rod precisely corresponds to
finding the comoving coordinates near the horizon.

Finally, in the accordance with the ideas of Sec. III B,
we note that we can make an alternative parametrization
of the Kerr solution by stating that we have three rods, the
two rods ��1;�4� and �4;1� in the x2 direction and the
rod ��4;4� in the �1; � direction. Then the whole Kerr
solution can be parametrized uniquely by the two pa-
rameters 4 and  .

B. Five-dimensional Myers-Perry solution

The five-dimensional Myers-Perry solution [7] corre-
sponds to a five-dimensional spinning black hole.11 This
is an asymptotically flat stationary solution of the vacuum
Einstein equations with an event horizon that has the
topology of a three-sphere S3.

The metric of the five-dimensional Myers-Perry black
hole is
e that v in (5.10) precisely is the null Killing vector for
ling horizon (the event horizon), since v �

P2
i�1 v

iV�i�,
ce v2 � Gijv

ivj � 0 for r � 0 and z 2 ��4;4�. In
ords, for a Killing horizon the null Killing vector is
e as the direction of the timelike rod.
five-dimensional Myers-Perry black hole generalizes

ic Schwarzschild-Tangherlini black hole [19].
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ds2 � �dt2 �
�20
�

�dt� a1sin
20d�� a2cos

20d �2

� ��2 � a21�sin
20d�2 � ��2 � a22�cos

20d 2

�
�

�
d�2 � �d02; (5.11)

where

� � �2
�
1�

a21
�2

��
1�

a22
�2

�
� �20;

� � �2 � a21cos
20� a22sin

20:
(5.12)

The coordinates for the three Killing directions are x1 �
t, x2 � � and x3 �  . We now transform this metric to
the canonical form (2.10) and (2.11). We compute that
detG � � 1

4�
2�sin220. From this we can determine r,

and z can be found by demanding the metric to be of
the form (2.10). We get

r �
1

2
�

����
�

p
sin20;

z �
1

2
�2

�
1�

�20 � a21 � a22
2�2

�
cos20:

(5.13)

This determines in principle how the Myers-Perry metric
(5.11) should transform to the form (2.10). However, as for
the Kerr-metric, it is convenient to express the Myers-
Perry metric in prolate spherical coordinates, defined in
Appendix G, instead. From the definition of the prolate
spherical coordinates (G1) we see that

42�x2 � 1��1� y2� �
1

4
�2�sin220;

4xy �
1

2
�2

�
1�

�20 � a21 � a22
2�2

�
cos20:

(5.14)

If we try the ansatz x � x��� and y � y�0� we get

x �
2�2 � a21 � a22 � �20����������������������������������������������������

��20 � a21 � a22�
2 � 4a21a

2
2

q ; y � cos20;

4 �
1

4

����������������������������������������������������
��20 � a21 � a22�

2 � 4a21a
2
2

q
:

(5.15)

Using this, we can write Gij and e2
 in terms of the
prolate spherical coordinates. We get
-12
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G11 � �
44x� �a21 � a22�y� �20
44x� �a21 � a22�y� �20

; G12 � �
a1�20�1� y�

44x� �a21 � a22�y� �20
; G13 � �

a2�20�1� y�

44x� �a21 � a22�y� �20
;

G23 �
1

2

a1a2�
2
0�1� y2�

44x� �a21 � a22�y� �20
; G22 �

1� y
4



44x� �20 � a21 � a22 �

2a21�
2
0�1� y�

44x� �a21 � a22�y� �20

�
;

G33 �
1� y
4



44x� �20 � a21 � a22 �

2a22�
2
0�1� y�

44x� �a21 � a22�y� �20

�
; e2
 �

44x� �a21 � a22�y� �20
842�x2 � y2�

:

(5.16)

Using Eq. (G7) it is now a straightforward exercise to write the components Gij and e2
 as functions of the canonical
�r; z� coordinates.

1. Asymptotic region

Regarding (5.16) as functions of the canonical coordinates �r; z�, we find that Gij�r; z� in the asymptotic region,���������������
r2 � z2

p
! 1 with z=

���������������
r2 � z2

p
finite, behaves as

G11 � �1�
�20

2
���������������
r2 � z2

p �O��r2 � z2��1�; G12 � �
a1�

2
0

4

���������������
r2 � z2

p
� z

r2 � z2
�O��r2 � z2��1�;

G13 � �
a2�20
4

���������������
r2 � z2

p
� z

r2 � z2
�O��r2 � z2��1�; G23 �

a1a2�20r
2

8�r2 � z2�3=2
�O��r2 � z2��1�;

G22 � �
���������������
r2 � z2

p
� z�

�
1�

�20 � a21 � a22

4
���������������
r2 � z2

p �O��r2 � z2��1�
�
;

G33 � �
���������������
r2 � z2

p
� z�

�
1�

�20 � a21 � a22

4
���������������
r2 � z2

p �O��r2 � z2��1�
�
:

(5.17)
We can now use (4.15) to read off the asymptotic quan-
tities. We get

M �
3$
8
�20; J1 �

$
4
a1�20; J2 �

$
4
a2�20;

3 �
1

8
a1a2�

2
0; - �

3$
8

�a21 � a22�: (5.18)

Note that one can see from the above results that e2
 ’
1=�2

���������������
r2 � z2

p
�. From Sec. IV C we have that this means

x2 � � and x3 �  are periodic with period 2$.

2. Rod-structure

We now analyze the rod-structure of the five-
dimensional Myers-Perry solution according to the meth-
ods of Sec. III. We have
(i) T
he semi-infinite spacelike rod ��1;�4�. For
z 2 ��1;�4� and r � 0 we see from (G7) that
x � �z=4 and y � �1. From (5.16) we see then
that G13 � G23 � G33 � 0. By Eq. (3.8) we see
that this rod has the direction v � �0; 0; 1�, i.e., it
is in the @=@x3 direction.
(ii) T
he finite timelike rod ��4;4�. For z 2 ��4;4�
we see from (G7) that x � 1 and y � z=4. Using
(5.16), we see that

P3
j�1Gijvj � 0 for z 2

��4;4� with v being the vector
124002-13
v � �1; 1; 2�; (5.19)

with

 1 �
�20 � a21 � a22 � 44

2a1�20
;

 2 �
�20 � a21 � a22 � 44

2a2�
2
0

:
(5.20)

Therefore, the rod ��4;4� is in the direction v
given by (5.19). Note that  1 and  2 are the
angular velocities of the Myers-Perry black hole.
That the rod ��4;4� is timelike can be seen by
noting that Gijv

ivj=r2 is negative for r! 0. One
can check that this rod corresponds to an event
horizon with topology S3. This follows from the
fact that the ��4;4� rod has spacelike rods on
each side in two different directions.
(iii) T
he semi-infinite spacelike rod �4;1�. For z 2
�4;1� and r � 0 we see that x � z=4 and y � 1.
From (5.16) we see then that G12 � G22 � G23 �
0. This means that the rod �4;1� is in the direc-
tion v � �0; 1; 0�, i.e., in the @=@x2 direction.
We see that one can use the direction (5.19) to trans-
form to coordinates �~x1; ~x2; ~x3� � �x1; x2 � 1x1; x3 �
 2x1� so that the ��4;4� rod is along the @=@~x1 direc-
tion. This means that �~x1; ~x2; ~x3� are comoving coordi-
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nates for the event horizon. Thus, finding the direction of
the rod ��4;4� corresponds to finding the comoving
coordinates on the horizon of the Myers-Perry black hole.

We note furthermore that we can make an alternative
parametrization of the five-dimensional Myers-Perry so-
lution. Clearly, the direction v � �1; 1; 2� in (5.19) is
given uniquely by the two parameters 1 and 2. Letting
then 4 be the third parameter, we have that the five-
dimensional Myers-Perry solution is characterized
uniquely by the three parameters 4,  1 and  2, in
accordance with the ideas of Sec. III B.

C. Myers-Perry solution with one angular momentum

In the following we give details on the five-
dimensional Myers-Perry solution with one angular mo-
mentum. In our conventions, we obtain the Myers-Perry
solution with one angular momentum below from the
Myers-Perry solution with two angular momenta above
by setting a1 � a and a2 � 0. The metric is

ds2��dt2�
�20
�
�dt�asin20d��2���2�a2�

�sin20d�2��2cos20d 2�
�

�
d�2��d02; (5.21)
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where
� � �2 � �20 � a2; � � �2 � a2cos20: (5.22)
From (5.13) we see that the �r; z� coordinates are given by
r �
1

2
�

����
�

p
sin20; z �

�
1

2
�2 �

�20 � a2

4

�
cos20:

(5.23)
The prolate spherical coordinates are given by
x �
2�2

�20 � a2
� 1; y � cos20; 4 �

�20 � a2

4
;

(5.24)
as one can see from (5.15). From Eqs. (5.16) we obtain
that the metric in prolate spherical coordinates is given by
G11 � �
xcos25� ysin25� 1

xcos25� ysin25� 1
; G12 � �

2
����
4

p
tan5�1� y�

xcos25� ysin25� 1
;

G22 �
4

cos25
�1� y�



xcos25� 1� sin25�

2sin25�1� y�

xcos25� ysin25� 1

�
;

G33 � 4�x� 1��1� y�; e2
 �
xcos25� ysin25� 1

24cos25�x2 � y2�
;

(5.25)

where we have defined

sin5 �
a
�0
: (5.26)

Using Eq. (G7) we get furthermore the metric written in the canonical form (2.10) and (2.11) as functions of the
canonical �r; z� coordinates

G11 � �
R� � R� cos25� 24
R� � R� cos25� 24

; G12 � �
2

����
4

p
tan5�24� R� � R��

R� � R� cos25� 24
;

G22 �
24� R� � R�

44



R� � R� � 24

1� sin25

cos25
�
44tan25�24� R� � R��

R� � R� cos25� 24

�
;

G33 � R� � z� 4; e2
 �
R� � R� cos25� 24

4R�R�cos
25

;

(5.27)
with

R� �
�����������������������������
r2 � �z� 4�2

q
; R� �

�����������������������������
r2 � �z� 4�2

q
:

(5.28)

We see that the whole solution (5.27) is determined by the
two parameters 4 and 5.
From the analysis of the asymptotic region of the
Myers-Perry solution with two angular momenta, we
see that the asymptotic quantities are now

M �
3$
8
�20; J1 �

$
4
a�20; J2 � 0;

3 � 0; - �
3$
8
a2:

(5.29)
-14
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We list for completeness here the rod-structure of the
solution (5.27). This can easily be obtained using the
results of the analysis for the case of two angular mo-
menta.
(i) T
12We u
particul
three d
black ri
ii) The
solution
factorab
function
he semi-infinite spacelike rod ��1;�4�. This
rod is in the direction v � �0; 0; 1�, i.e., in the
@=@x3 direction.
(ii) T
he finite timelike rod ��4;4�. This rod is in the
direction v given by

v � �1; ; 0�;  �
a

�20
�
sin5 cos5
2

����
4

p : (5.30)
(iii) T
he semi-infinite spacelike rod �4;1�. This rod is
in the direction v � �0; 1; 0�, i.e., in the @=@x2

direction.
VI. BLACK RING SOLUTIONS

In this section we consider the rotating black ring [6].
The rotating black ring is the first known example of a
stationary and regular asymptotically flat five-
dimensional solution with an event horizon that is not
topologically a three-sphere S3. Instead the horizon is
topologically a ring S2 � S1.

We first describe in Sec. VI A the general black ring
solution which generically has a conical singularity. We
write its metric in the canonical form (2.10) and (2.11) and
discuss the rod-structure. We consider then briefly the
special case of the static black ring solution and further-
more how to obtain the Myers-Perry rotating black hole
with one angular momentum.

In Sec. VI A we present the regular rotating black ring,
write its metric in the canonical form (2.10) and (2.11) and
discuss its properties.

A. General black ring solution

We begin by reviewing briefly the general black ring
metric. So far, the general black ring metric has been
written only in the so-called C-metric coordinates. In
the C-metric coordinates of [20], the general black ring
metric is12

ds2��
F�v�
F�u�

�
dt�C8

1�v
F�v�

d�
�
2
�
282F�u�

�u�v�2

�



�
G�v�
F�v�

d�2�
G�u�
F�u�

d 2�
du2

G�u�
�
dv2

G�v�

�
: (6.1)
se here the C-metric coordinates of [20], since they are
ar convenient for our purposes. There have been given
ifferent, but equivalent, C-metric coordinates for the
ng in the literature: i) The original coordinates of [6].
coordinates described in [21] where one takes the
of [6] and rewrite it so that structure functions are

le. iii) The coordinates of [20] where the structure
s also are factorizable, but where detG is simpler.
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Here F�9� and G�9� are the structure functions, which
takes the form

F�9� � 1� b9; G�9� � �1� 92��1� c9�; (6.2)

where the parameters b and c lie in the ranges

0< c � b < 1: (6.3)

Furthermore, in (6.1), the constant C is given in terms of
b and c by

C �

����������������������������������
2b�b� c�

1� b
1� b

s
: (6.4)

The u and v coordinates in (6.1) have the ranges

�1 � u � 1; v � �1: (6.5)

Note that the solution (6.1) generically has conical singu-
larities at u � 1, u � �1 and v � �1 [20]. These will be
analyzed below using the methods of Sec. III. We note
here that while the potential singularities at u � �1 and
v � �1 will be cured by choosing the periods of x2 � �
and x3 �  appropriately, we do not fix the singularity at
u � 1 before in Sec. VI B where we consider the regular
rotating black ring. Thus, in the following the black ring
solution is generically singular at u � 1.

1. Metric in canonical coordinates

We now find the metric in the canonical coordinates
(2.10) and (2.11). In the following we use extensively the
results of Appendix H. In Appendix H the general relation
between C-metric coordinates �u; v� and the canonical
coordinates �r; z� is discussed in detail. Furthermore, for
the specific case relevant here several useful relations
between the C-metric coordinates �u; v� and the canoni-
cal coordinates �r; z� are given.

We take the coordinates for the Killing directions to be
x1 � t, x2 � � and x3 �  . Using the results of
Appendix H we see that the r and z coordinates takes
the form

r �
282

�������������������������
�G�u�G�v�

p
�u� v�2

;

z �
82�1� uv��2� cu� cv�

�u� v�2
:

(6.6)

This is obtained by first computing detG, which gives r.
In Appendix H it is then found for this particular r, given
by the structure function G�9� in (6.2), that z can be
chosen as in (H12).

From (6.1) and (6.2) we get using (H18) of Appendix H,
giving u and v as functions of r and z, that Gij�r; z� is
-15
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G11 � �
�1� b��1� c�R1 � �1� b��1� c�R2 � 2�b� c�R3 � 2b�1� c2�82

�1� b��1� c�R1 � �1� b��1� c�R2 � 2�b� c�R3 � 2b�1� c2�82
;

G12 � �
2C8�1� c��R3 � R1 � �1� c�82�

�1� b��1� c�R1 � �1� b��1� c�R2 � 2�b� c�R3 � 2b�1� c2�82
;

G33 �
�R1 � R2 � 2c82��R1 � R3 � �1� c�82��R2 � R3 � �1� c�82�

282��1� c�R1 � �1� c�R2 � 2cR3�
;

(6.7)
where we have defined R1, R2 and R3 by

R1 �
���������������������������������
r2 � �z� c82�2

q
; R2 �

���������������������������������
r2 � �z� c82�2

q
;

R3 �
������������������������������
r2 � �z� 82�2

q
;

(6.8)

as also defined in (H15). For simplicity, we do not write
G22 explicitly here, but note that it is given implicitly as a
function of �r; z� by

G22 � �
r2

G11G33
�
G212
G11

: (6.9)

Using now furthermore (H10), we get

e2
 � ��1� b��1� c�R1 � �1� b��1� c�R2
� 2�c� b�R3 � 2b�1� c2�82�

�
�1� c�R1 � �1� c�R2 � 2cR3

8�1� c2�2R1R2R3
: (6.10)

This completes the general black ring solution as written
in canonical coordinates (2.10) and (2.11). Note that using
(H17) in Appendix H it is easy to see that G33 can be
written in the alternative form

G33 �
�R3 � z� 82��R2 � z� c82�

R1 � z� c82
: (6.11)
2. Rod-structure

We now analyze the rod-structure of the general black
ring metric. This includes an analysis of the possible
conical singularities of the solution. The rod-structure is
as follows:
(i) T
he semi-infinite spacelike rod ��1;�c82�. For
r � 0 and z 2 ��1;�c82� we have that R1 �
R3 � �1� c�82 � 0 which using (6.7) is seen to
give that G33 � 0. This means we have a rod
��1;�c82� in the direction v � �0; 0; 1�, i.e., in
the @=@x3 direction. Using (3.10) we see further-
more that x3 �  needs to have period

� � 2$

������������
1� b

p

1� c
; (6.12)

to avoid a conical singularity for r � 0 and z 2
��1;�c82�. Since u � �1 is equivalent to R1 �
R3 � �1� c�82 � 0 we see that this conical sin-
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gularity corresponds to the one at u � �1 men-
tioned above.
(ii) T
he finite timelike rod ��c82; c82�. For r � 0 and
z 2 ��c82; c82� we see that R1 � R2 � 2c82 � 0.
One can then check that

P3
j�1Gijvj � 0 for r � 0

and z 2 ��c82; c82� with v being the vector

v � �1; ; 0�;  �
b� c

�1� c�C8
: (6.13)

From this we see that we have a rod ��c82; c82�
along the direction v given in (6.13). The rod
��c82; c82� is timelike since Gijvivj=r2 is nega-
tive for r! 0. Note that in (6.13) is the angular
velocity of the general black ring solution. One
can check that this rod corresponds to an event
horizon with topology S2 � S1. This follows from
the fact that the ��c82; c82� rod has rods in the
@=@x3 direction on each side, so that the z and x3

coordinates parametrize the S2 while the x2 coor-
dinate parametrize the S1.
(iii) T
he finite spacelike rod �c82; 82�. For r � 0 and
z 2 �c82; 82� we have that R2 � R3 � �1�
c�82 � 0. Using (6.7) we see that this gives that
G33 � 0. This means we have a rod �c82; 82� in
the direction v � �0; 0; 1�, i.e., in the @=@x3 direc-
tion. Using (3.10) we see furthermore that x3 �  
needs to have period

� � 2$

������������
1� b

p

1� c
; (6.14)

to avoid a conical singularity for r � 0 and z 2
�c82; 82�. However, since we have already fixed
the period of x3 �  by (6.12), curing the conical
singularity associated with the rod �c82; 82� re-
quires putting b � 2c=�1� c2�. We do not fix b in
terms of c here, thus we consider here solutions
that can have conical singularities for r � 0 and
z 2 �c82; 82�. In Sec. VI B we consider the subset
of solutions for which we do not have any conical
singularities. Finally, note that since u � 1 is
equivalent to R2 � R3 � �1� c�82 � 0 we see
that this conical singularity corresponds to the
one at u � 1 mentioned above.
(iv) T
he semi-infinite spacelike rod �82;1�. For r � 0
and z 2 �82;1� we have that R1 � R3 � �1�
c�82 � 0. Using (6.7) we see that this gives that
G12 � G22 � 0. This means we have a rod �82;1�
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in the direction v � �0; 1; 0�, i.e., in the @=@x2

direction. Using (3.10) we see furthermore that
x2 � � needs to have period

�� � 2$

������������
1� b

p

1� c
; (6.15)

to avoid a conical singularity for r � 0 and z 2
�82;1�. Since v � �1 is equivalent to R1 � R3 �
�1� c�82 � 0 we see that this conical singularity
corresponds to the one at v � �1 mentioned
above.
3. Static black ring

We consider here briefly the case of the static black
ring, obtained by setting b � c. The static black ring was
first discussed in [16]. The static black ring is in the class
of generalized Weyl solutions of [16] since its metric is
diagonal.

Putting b � c in (6.1) one easily gets the neutral black
ring in C-metric coordinates. Note that C � 0, G�9� �
�1� 92�F�9�, F�9� � 1� c9 and 0< c< 1. Using (6.7),
(6.8), (6.9), and (6.10), we see that the static black ring
metric in canonical coordinates (2.10) and (2.11) takes the
form [16]

G11 � �
R1 � R2 � 2c82

R1 � R2 � 2c82
� �

R1 � z� c82

R2 � z� c82
;

G22 � R3 � z� 82;

G33 �
�R3 � z� 82��R2 � z� c82�

R1 � z� c82
;

e2
 �
�R1 � R2 � 2c82���1� c�R1 � �1� c�R2 � 2cR3�

8�1� c2�R1R2R3
:

(6.16)

The static black ring metric have previously been written
in canonical coordinates in [16] since it falls in the class
of generalized Weyl solutions considered there. The rod-
structure of the static black ring is:
(i) T
he semi-infinite spacelike rod ��1;�c82� in
the @=@x3 direction.
(ii) T
he finite timelike rod ��c82; c82� in the @=@x1

direction.

(iii) T
he finite spacelike rod �c82; 82� in the @=@x3

direction.

(iv) T
he semi-infinite spacelike rod �82;1� in the

@=@x2 direction.

We see that all the rods are rectangular relative to each
other. The rod-structure of the static black ring was
previously described in [16].

4. Getting the Myers-Perry black hole from the general
black ring solution

We show here how one obtains the five-dimensional
Myers-Perry rotating black hole solution with one angu-
lar momentum, that we considered in Sec. V C, from the
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general black ring solution. This has previously been
described in Ref. [20] in terms of the C-metric coordi-
nates used in the metric (6.1). Here we do it instead in
terms of the canonical form of the metric (6.7), (6.8),
(6.9), and (6.10).

We first note that we need to take the limit c! 1, since
the �c82; 82� rod should be absent for the black hole
solution. By considering explicit expressions for the
mass M and angular momentum J1, plus the fact that c �
b < 1, one can see that �1� b�=�1� c� and 82=�1� c�
should be fixed as c! 1. One can furthermore see that we
can find 5 and 4, so that

c � 1� :; b � 1� :cos25; 8 �

����
4

p

cos5

���
:

p
;

(6.17)

with the limit being defined as :! 0. Since x2 and x3

have periods (6.15) and (6.12) we need to make the
rescaling

x2 �
cos5���
:

p ~x2; x3 �
cos5���
:

p ~x3; (6.18)

so that now ~x2 and ~x3 have period 2$ for :! 0. From the
definition of the canonical �r; z� coordinates, we see that
this means we should make the rescaling

r �
:

cos25
~r; z �

:

cos25
~z: (6.19)

This gives that
����������������������������
r2��z�82�2

p
�:

��������������������������
~r2��~z�4�2

p
=cos25.

Using this with the metric (6.7), (6.8), (6.9), and (6.10) it
is easy to see that one gets the metric (5.27) of a Myers-
Perry rotating black hole with one angular momentum.

B. Regular rotating black ring

We now consider the regular black ring solution. In
Sec. VI A we cured the conical singularities at the
��1;�c82� and �82;1� rods by imposing x2 � � to
have period (6.12) and x3 �  to have period (6.15).
However, we did not fix the potential conical singularity
at the �c82; 82� rod. To ensure regularity at the �c82; 82�
rod, x3 �  should have period (6.14), which means we
need to impose

b �
2c

1� c2
: (6.20)

Therefore, with (6.20) imposed, and with x2 � � and
x3 �  having their periods given by

�� � � �
2$��������������
1� c2

p ; (6.21)

the rotating black ring solution (6.1) is regular [6,20].
Note that the constant C in (6.4) now takes the form
-17
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C �
2c�1� c�

1� c2

������������
1� c
1� c

s
: (6.22)

From (6.7) we get that the regular rotating black ring
metric in canonical coordinates (2.10) and (2.11) is given
by

G11 � �
�1� c�R1 � �1� c�R2 � 2cR3 � 4c8

2

�1� c�R1 � �1� c�R2 � 2cR3 � 4c8
2 ;

G12 � �
4c8

������������
1� c

p

������������
1� c

p

�
R3 � R1 � �1� c�82

�1� c�R1 � �1� c�R2 � 2cR3 � 4c8
2 ;

G33 �
�R3 � z� 82��R2 � z� c82�

R1 � z� c82
;

e2
 � ��1� c�R1 � �1� c�R2 � 2cR3 � 4c8
2�

�
�1� c�R1 � �1� c�R2 � 2cR3

8�1� c4�R1R2R3
:

(6.23)

One can furthermore find G22 using (6.9).

1. Rod-structure

The rod-structure of the regular rotating black ring
solution is easily obtained from the rod-structure of the
general black ring solution analyzed in Sec. VI A by
imposing (6.20). We list here therefore only a short sum-
mary of the rod-structure of the regular rotating black
ring:
(i) T
he semi-infinite spacelike rod ��1;�c82�. This
rod is in the direction v � �0; 0; 1�, i.e., in the
@=@x3 direction.
(ii) T
he finite timelike rod ��c82; c82�. This rod is in
the direction

v � �1; ; 0�;  �
1

28

������������
1� c
1� c

s
: (6.24)
(iii) T
he finite spacelike rod �c82; 82�. This rod is in
the direction v � �0; 0; 1�, i.e., in the @=@x3 direc-
tion.
(iv) T
he semi-infinite spacelike rod �82;1�. This rod
is in the direction v � �0; 1; 0�, i.e., in the @=@x2

direction.
2. Asymptotic region

For the regular rotating black ring solution (6.23) in the

asymptotic region
���������������
r2 � z2

p
! 1 with z=

���������������
r2 � z2

p
finite,

we find
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G11 � �1�
4c82

1� c
1���������������

r2 � z2
p �O��r2 � z2��1�;

G12 � �2c83
�
1� c
1� c

�
3=2

���������������
r2 � z2

p
� z

r2 � z2
�O��r2 � z2��1�;

G22 � �
���������������
r2 � z2

p
� z�

�
1�

�1� c� 2c2�82

1� c
1���������������

r2 � z2
p

�O��r2 � z2��1�
�
;

G33 � �
���������������
r2 � z2

p
� z�

�
1�

�2c� 1�82���������������
r2 � z2

p �O��r2 � z2��1�
�
:

(6.25)

Using (4.17) we then get

M �
3$c82

�1� c��1� c2�
;

J1 � 2$c83
�

1� c

�1� c��1� c2�

�
3=2
;

- �
3$82�1� c� 2c2�

2�1� c��1� c2�
;

(6.26)

along with J2 � 0 and 3 � 0, where we used that " �

1=
��������������
1� c2

p
from (6.21). Note that

J21
M3

�
4�1� c�3

27$c
: (6.27)

We see that this has the minimum at c � 1=2 with value
1=$. For c! 0 it goes to infinity, while for c � 1 it has
the value 32=�27$�. This is in accordance with [6,20,22].
VII. DISCUSSION AND CONCLUSIONS

The main results of this paper are as follows. We found
in Sec. II that the metric of stationary and axisymmetric
pure gravity solutions in D dimensions can be written in
the form (see Eqs. (2.10) and (2.11))

ds2�
XD�2
i;j�1

Gijdxidxj�e2
�dr2�dz2�; r2�jdetGj;

apart from a subclass of solutions with constant detG that
is considered in Appendix A. The equation on the D� 2
by D� 2 dimensional symmetric matrix G was found to
take the simple form (see Eqs. (2.16))

G�1 ~r2G � �G�1 ~rG�2;

where ~r is the gradient on a three-dimensional flat
Euclidean space, with metric (2.15). The function 
 can
then be found from G using the integrable Eqs. (2.13).

In Sec. III we considered then the behavior ofG for r!
0. We generalized the concept of rods of [16] so that it can
be used for stationary and axisymmetric solutions. One of
the key points is that for each rod �z1; z2� one has a
-18
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direction in the �D� 2�-dimensional vector space
spanned by the Killing vector fields.

In Sec. IV we analyzed the asymptotic region of four-
and five-dimensional asymptotically flat solutions. In
particular we identified how to read off the asymptotic
quantities.

Finally, in Secs.Vand VI we wrote down the metrics of
the five-dimensional rotating black hole of Myers and
Perry and the rotating black ring of Emparan and Reall
in the canonical form (2.10) and (2.11). Furthermore, we
analyzed the structure of the rods according to Sec. III
and moreover the asymptotic region according to Sec. IV.

The results of this paper have at least three interesting
applications:
(i) F
inding new stationary and axisymmetric solu-
tions using the canonical form of the metric and
the Einstein equations. For example one can look
for new five-dimensional black ring solutions
with two angular momenta, or for new solutions
with a rotating black hole attached to a Kaluza-
Klein bubble, as advocated in [8].
(ii) U
nderstanding the rod-structure of known sta-
tionary and axisymmetric solutions.
(iii) U
nderstanding better the uniqueness properties
for higher-dimensional black holes. In four di-
mensions, the Carter-Robinson uniqueness theo-
rem [3,5] on the Kerr rotating black hole rests on
using the Papapetrou form (1.1) of the metric. We
expect therefore similar arguments to be appli-
cable in higher dimensions, although they of
course cannot prove any kind of strict uniqueness
for five-dimensional rotating black holes due to
the existence of rotating black rings.
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APPENDIX A: SPECIAL CLASS OF SOLUTIONS

In this appendix we consider stationary and axisym-
metric solutions to the vacuum Einstein equations for
which det�Gij� is constant, with Gij defined by Eq. (2.4).

We can always find coordinates �r; z� so that the metric
(2.4) can be written

ds2 �
XD�2
i;j�1

Gijdx
idxj � e2
�dr2 � dz2�: (A1)

This is possible since any two-dimensional manifold is
conformally flat. The metric (A1) is obviously the same as
(2.10). However, the difference is that the constraint (2.11)
is replaced by restricting det�Gij� to be constant.

Note first that demanding det�Gij� to be constant leads
to the identities
124002
XD�2
i;j�1

Gij@aGij � 0;

XD�2
i;j�1

Gij@a@bGij �
XD�2

i;j;k;l�1

Gij@aGjkGkl@bGli;

(A2)

with a; b � r; z. Computing the Ricci tensor for the met-
ric (A1) and using the constraint that det�Gij� is constant,
we get that the vacuum Einstein equations can be written

�@2r � @2z�Gij �
XD�2
k;l�1

@rGikG
kl@rGlj

�
XD�2
k;l�1

@zGikG
kl@zGlj;

XD�2
i;j;k;l�1

Gij@rGjkG
kl@rGli �

XD�2
i;j;k;l�1

Gij@zGjkG
kl@zGli;

XD�2
i;j;k;l�1

Gij@rGjkGkl@zGli � 0 (A3)

�@2r � @2z�
 � �
1

8

XD�2
i;j;k;l�1

�Gij@rGjkG
kl@rGli

�Gij@zGjkG
kl@zGli�: (A4)

In conclusion, we can find solutions in the form of (A1)
with det�Gij� being constant by first finding a Gij�r; z�
solving (A3) and then finding a solution for 
�r; z� of
(A4).

1. Four-dimensional examples

In four dimensions, we have a well-known class of
solutions to Eqs. (A3) and (A4) in the form of a particular
kind of pp-wave solutions. These pp-wave solutions have

G11 � �1�H�r; z�; G22 � 1�H�r; z�;

G12 � �H�r; z�:
(A5)

We see immediately that det�Gij� � �1. Furthermore,
one can check that the Eqs. (A3) with D � 4 are solved,
provided H�r; z� obeys

�@2r � @2z�H�r; z� � 0: (A6)

Finally, 
�r; z� � 0 solves Eq. (A4). Therefore, the pp-
wave metrics

ds2 � �dt2 � dx2 �H�dt� dx�2 � dr2 � dz2; (A7)

withH�r; z� obeying Eq. (A6), are in the class of solutions
described by the metric (A1) with det�Gij� being constant
[12]. Note moreover that any 
�r; z� solving �@2r � @2z�
 �
0 also gives a solution.
-19
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APPENDIX B: ANALYSIS OF det�Gij�

In this appendix we study the behavior of det�Gij� as a
function. If we start with the metric (2.4) we can always
put it in the form

ds2 �
XD�2
i;j�1

Gijdxidxj � C�du2 � dv2�; (B1)

where C�u; v� and Gij�u; v� are functions only of u and v.
That we can bring the metric (2.4) to this form is easily
seen from the fact that any two-dimensional manifold is
conformally flat. Define now

f �
���������������������
j det�Gij�j

q
: (B2)

In the following we study the function f�u; v�. By com-
puting the Ricci tensor for the metric (B1) we get

XD�2
i;j�1

GijRij � �
1

Cf

�
@2

@u2
�

@2

@v2

�
f: (B3)

Now, since we consider solutions that are Ricci-flat, we
get that �

@2

@u2
�

@2

@v2

�
f � 0: (B4)

If we define the complex variable! � u� iv, along with
the derivatives @ � @

@u� i @@v and "@ � @
@u� i @@v , we see

that "@@f � 0. Therefore, @f is a holomorphic function.
We know from elementary complex analysis (see for
example [23]) that either the zeroes of a holomorphic
function are isolated or the function is identically zero
(assuming the set that the function is defined on is simply
connected). Since @f � @f

@u� i @f@v we can draw the con-
clusion:
(i) E
ither f�u; v� is a constant function or �@f@u ;
@f
@v� �

�0; 0� except in isolated points.
APPENDIX C: DIAGONALIZING A
TWO-DIMENSIONAL METRIC

In this appendix we prove, for the sake of clarity and
completeness, the rather basic result that given a well-
behaved function on a two-dimensional Riemannian
manifold one can diagonalize the metric with the given
function being one of the coordinates.

Consider a two-dimensional Riemannian manifold M
with a coordinate system �y1; y2�. Write the metric as

ds2 � ĝabdy
adyb: (C1)

Let z1�y1; y2� be a given function with
�@z1=@y1; @z1=@y2� � �0; 0�. We want to show that we
can find a function z2�y1; y2� so that �z1; z2� is a new
coordinate system and so that the metric in za coordinates
is diagonal, i.e., so that g12 � 0, where we write the
metric as ds2 � gabdzadzb. Equivalently, we can demand
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that g12 � 0. This is the same as

ĝ ab
@z1

@ya
@z2

@yb
� 0: (C2)

Now, define the vector field V � V1 @
@y1

� V2 @
@y2

by

Va � ĝab
@z1

@yb
: (C3)

Consider now the integral curves of V. Define an equiva-
lence relation � on M where two points p; q 2 M are
equivalent, i.e. p� q, if they are connected by an integral
curve. Then we can define the quotient space M=� .
Clearly, M=� is a one-dimensional space. Let now z2

be a coordinate on M=� . We then extend the scalar field
z2 on M=� to a scalar field z2 on M. Clearly, this scalar
field z2 on M has the property that z2 is constant on the
integral curves of V. Since z2 is constant on the integral
curves of V we get that

Va
@z2

@ya
� 0; (C4)

which is the same as (C2). We have therefore proven that
for any given function z1�y1; y2� with
�@z1=@y1; @z1=@y2� � �0; 0� we can find a function
z2�y1; y2� such that

ds2 � ĝabdy
adyb � A�dz1�2 � B�dz2�2; (C5)

and so that �z1; z2� is a coordinate system on the two-
dimensional manifold.
APPENDIX D: COMPUTATION OF
RICCI TENSOR

1. Computation of the Ricci tensor with general �

We consider first the D-dimensional metric

ds2 �
XD�2
i;j�1

Gijdx
idxj � e2
�dr2 ��dz2�; (D1)

with

r �
���������������������
j det�Gij�j

q
; (D2)

where Gij, 
 and � are functions of r and z only. The
nonzero components of the Christoffel symbols for the
metric (D1) are
-20
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#rij � �
1

2
e�2
@rGij;#

z
ij � �

1

2
e�2
��1@zGij;

#irj �
1

2

XD�2
k�1

Gik@rGjk; #izj �
1

2

XD�2
k�1

Gik@zGjk;

#rrr � @r
; #zzz � @z
�
1

2�
@z�;

#rrz � @z
; #zzr � @r
�
1

2�
@r�;

#rzz � ��@r
�
1

2C
@r�; #zrr � �

1

�
@z
:

(D3)

Note now that since r �
�����������������
j detGijj

q
we have

XD�2
i;j�1

Gij@rGij �
2

r
;

XD�2
i;j�1

Gij@zGij � 0: (D4)

Using this we get

XD�2
i;j�1

Gij#rij � �
1

r
e�2
;

XD�2
i;j�1

Gij#zij � 0;

XD�2
i�1

#iri �
1

r
;

XD�2
i�1

#izi � 0:

(D5)

We compute then
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2e2
Rij � �@2rGij �
1

r
@rGij �

@r�
2�

@rGij �
1

�
@2zGij

�
@z�

2�2
@zGij �

XD�2
k;l�1

Gkl@rGki@rGlj

�
1

�

XD�2
k;l�1

Gkl@zGki@zGlj: (D6)

Notice now that from the fact that r �
�����������������
j detGijj

q
we have

�
XD�2
i;j�1

Gij@2rGij �
XD�2

i;j;k;l�1

GijGkl@rGki@rGlj �
2

r2
;

�
XD�2
i;j�1

Gij@2zGij �
XD�2

i;j;k;l�1

GijGkl@zGki@zGlj � 0:

(D7)

Using (D7) together with (D6), we get

XD�2
i;j�1

GijRij � �
@r�

2e2
�r
: (D8)

2. Computation of the Ricci tensor with � � 1

We now set � � 1 in the metric (D1). The nonzero
components of the Ricci tensor can then be computed to
be
2e2
Rij � �

�
@2r �

1

r
@r � @2z

�
Gij �

XD�2
k;l�1

Gkl@rGki@rGlj �
XD�2
k;l�1

Gkl@zGki@zGlj;

Rrr � �@2r
� @2z
�
1

r2
�
1

r
@r
�

1

4

XD�2
i;j;k;l�1

GijGkl@rGik@rGjl;

Rzz � �@2r
� @2z
�
1

r
@r
�

1

4

XD�2
i;j;k;l�1

GijGkl@zGik@zGjl;

Rrz �
1

r
@z
�

1

4

XD�2
i;j;k;l�1

GijGkl@rGik@zGjl:

(D9)
APPENDIX E: PROPERTIES OF THE EQUATIONS
FOR Gij�r; z�

In this appendix we derive several useful properties of
the Eqs. (2.12) for Gij�r; z�. We use in the following the
formal rewriting of these equations in the form of
Eq. (2.16).

Let A�r; z� and B�r; z� be D� 2 times D� 2 matrices
obeying

�A�r; z�; B�r0; z0�� � 0; (E1)

for any �r; z� and �r0; z0�. Note that this means that A�r; z�
or any derivative of A�r; z� commutes with B�r; z� or any
derivative of B�r; z�. Write now G � AB. Then we have

G�1 ~r2G� �G�1 ~rG�2 � A�1 ~r2A� �A�1 ~rA�2

� B�1 ~r2B� �B�1 ~rB�2:

(E2)

From this equation we get the following lemma:
Lemma E.1.—Let A�r; z� and B�r; z� be D� 2 times

D� 2matrices that commutes as in (E1). If A and B obey
the differential equations
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A�1 ~r2A � �A�1 ~rA�2; B�1 ~r2B � �B�1 ~rB�2; (E3)

then the matrix G � AB obeys G�1 ~r2G � �G�1 ~rG�2.�
The consequence of this lemma is that we can combine

solutions into new solutions, as long as (E1) is obeyed. An
important use of lemma E.1 is the following corollary:

Corollary E.2.—Let A�r; z� be a D� 2 times D� 2
matrix and let f�r; z� be a function. If G and f obey the
differential equations

A�1 ~r2A � �A�1 ~rA�2; ~r2f � 0; (E4)

then the matrix G � efA obeys G�1 ~r2G � �G�1 ~rG�2.�
Another important situation where the lemma E.1 can

be applied and where the implication of lemma E.1 in fact
can be reversed is expressed in the following lemma:

Lemma E.3.—Let the D� 2 times D� 2 matrix
G�r; z� be such that G � A � B, where A�r; z� is a k times
k matrix and B�r; z� is a D� 2� k times D� 2� k
matrix. I.e. G is the geometric direct sum of A and B. In
this case, it is clear that A and B obey the differential
equations

A�1 ~r2A � �A�1 ~rA�2; B�1 ~r2B � �B�1 ~rB�2; (E5)

if and only if G obeys G�1 ~r2G � �G�1 ~rG�2 �.
This lemma can of course be used successively for the

cases where G�r; z� can be split up to the direct sum of
several matrices acting on linearly independent subspa-
ces, i.e. G � A1 � A2 � 	 	 	 � An. An important special
case of this is when G is diagonal. We have the following
corollary of lemma E.3:

Corollary E.4.—Let the D� 2 times D� 2 matrix
G�r; z� be a diagonal matrix

G � diag�� exp�2U1�; exp�2U2�; . . . ; exp�2UD�2��;

(E6)

where Ui�r; z�, i � 1; . . . ; D� 2, are functions. Then

~r 2Ui � 0; i � 1; . . . ; D� 2; (E7)

if and only if G�1 ~r2G � �G�1 ~rG�2. �
When G�r; z� is diagonal it corresponds to a general-

ized Weyl solution (1.4) (see [16]), since the D� 2
Killing vector fields are orthogonal. We see that (2.12)
correctly reduce to (1.5). Moreover, it is clear that
det�Gij� � �r2 is equivalent to

PD�2
i�1 Ui � logr.

We have also a general result for the inverse of a
matrix:

Lemma E.5.—An n by n invertible matrixG�r; z� obeys
the equation G�1 ~r2G � �G�1 ~rG�2 if and only if the
inverse matrix G�1 obeys the corresponding equation

G ~r2G�1 � �G ~rG�1�2: (E8)
�

This lemma can be used to find new solutions from
already known solutions. Of course, one has to remember
124002
that the complete G matrix moreover should have
j detGj � r2. The following corollary is one way to take
this into account:

Corollary E.6.—Let G�r; z� be a D� 2 by D� 2 ma-
trix with j detGj � r2 and G�1 ~r2G � �G�1 ~rG�2. Then
the matrix M � r4=D�2G�1 obeys detM � detG and
M�1 ~r2M � �M�1 ~rM�2. �

We note that we can multiply constant matrices on
solutions:

Lemma E.7.—Let the D� 2 by D� 2 matrix G�r; z�
solve the equation G�1 ~r2G � �G�1 ~rG�2 and let A and B
be constant invertible matrices. Then the matrix M �

AGB obeysM�1 ~r2M � �M�1 ~rM�2 �.
Finally, an important and useful theorem that concerns

systems with an orthogonal Killing vector is the
following:

Theorem E.8.—Consider the class of metrics with
G1i � 0, i � 2; . . . ; D� 2, i.e., with the Killing vector
V�1� �

@
@x1 being orthogonal to the D� 3 other Killing

vector fields. Then we can always write G as

G � se2U � e��2=D�3�UM

�

se2U 0 	 	 	 0
0
..
.

e��2=D�3�UM
0

0
BBBB@

1
CCCCA; (E9)

where s � �1,U�r; z� is a function andM�r; z� is a D� 3
by D� 3 symmetric real matrix with detM � s detG so
that j detMj � r2. Moreover, G obeys G�1 ~r2G �

�G�1 ~rG�2 if and only if

~r 2U � 0; M�1 ~r2M � �M�1 ~rM�2: (E10)

Proof.— It is trivial to see that we can always write G on
the form (E9). That G�1 ~r2G � �G�1 ~rG�2 if and only
(E10) is true follows from using lemma E.3 together with
lemma E.2. �

Theorem E.8 is useful since it allows one to take a D �
n dimensional solution and creating new nontrivial D �
n� 1 dimensional solutions. Moreover, for a D � n di-
mensional solution with a Killing vector orthogonal to all
other D� 3 Killing vector fields we can reduce the
system of equations to be a 3-dimensional Laplace equa-
tion together with, but decoupled from, the equations for
a D � n� 1 dimensional solution.
APPENDIX F: SINGULARITIES AT r � 0

We consider in this appendix what happens for solu-
tions that have more than one eigenvalue of G�r; z� going
to zero for r! 0. We restrict for simplicity here to the
case with two eigenvalues going to zero for r! 0. One
can easily extend the argument to consider more than two
eigenvalues.
-22
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We begin by considering the solution

G11 � r2a; G22 � r2�2a; e2
 � r�2a�1�a�; (F1)

where 0 � a � 1. This solves the Eqs. (2.12) and (2.13).
We compute the curvature invariant

R�
�@R�
�@ � 16a2�1� a�2�1� a� a2�r�4�1�a�a
2�:

(F2)

Since 1� a� a2 is strictly positive we see that there is a
curvature singularity at r � 0, unless a � 0 or a � 1
which in both cases corresponds to only having one
eigenvalue going to zero. Therefore, for this solution we
see that having two eigenvalues going to zero invariably
leads to a curvature singularity.

Consider now a general solution for which we have an
interval �z1; z2� so that for any z 2 �z1; z2� we have that
two eigenvalues of G�r; z� going to zero for r! 0. Then
using the same type of arguments as in Sec. III A we can
make a constant orthogonal transformation of G�r; z� so
that G1i�0; z� � G2i�0; z� � 0 for i � 1; 2; . . . ; D� 2, for
a given z1 < z< z2. Therefore, given the structure of the
Eqs. (2.12) and (2.13), we see that we effectively can
reduce this system to the example given by Eq. (F1). In
conclusion, we have shown that for any solution having
two eigenvalues of G�r; z� that go to zero as r! 0 for a
given z, we get curvature singularities, except perhaps in
isolated points on the z-axis corresponding to the end-
points of the interval given above. As mentioned above,
one can easily extend these arguments to consider more
than two eigenvalues going to zero.
13See [25] for a review of the C-metric and the transformation
from C-metric coordinates to canonical �r; z� coordinates in the
context of four-dimensional Weyl solutions.
APPENDIX G: PROLATE SPHERICAL
COORDINATES

We define here the prolate spherical coordinates �x; y�
which for certain stationary and axisymmetric solutions
are convenient to use. The prolate spherical coordinates
were introduced for four-dimensional stationary and axi-
symmetric solutions in [24] (see also [12,14,15]). The
prolate spherical coordinates are used to describe rotating
black hole solutions in Sec. V.

The prolate spherical coordinates �x; y� are defined in
terms of the canonical �r; z� coordinates by

r � 4
����������������������������������
�x2 � 1��1� y2�

q
; z � 4xy; (G1)

where 4> 0 is a constant. We take x and y to have the
ranges

x � 1; �1 � y � 1: (G2)

We have

dr2 � dz2 � 42�x2 � y2�


dx2

x2 � 1
�

dy2

1� y2

�
: (G3)

Note that Eqs. (2.12) can be written in prolate spherical
124002
coordinates as

@x��x
2 � 1�@xG� � @y��1� y2�@yG�

� �x2 � 1��@xG�G�1@xG� �1� y2��@yG�G�1@yG:

(G4)

We now give the transformation from �x; y� coordinates to
�r; z� coordinates. Defining

R� �
�����������������������������
r2 � �z� 4�2

q
; R� �

�����������������������������
r2 � �z� 4�2

q
; (G5)

one can easily check using (G1) that

R� � 4�x� y�; R� � 4�x� y�: (G6)

Therefore, we see that

x �
R� � R�

24
; y �

R� � R�

24
: (G7)

Furthermore, we note that

R� � z� 4 � 4�x� 1��1� y�;

R� � �z� 4� � 4�x� 1��1� y�:
(G8)

If we consider the asymptotic region
���������������
r2 � z2

p
! 1

with z=
���������������
r2 � z2

p
finite, we see that

x ’
1

4

���������������
r2 � z2

p
; y ’

z���������������
r2 � z2

p : (G9)

Thus, the asymptotic region in terms of the prolate
spherical coordinates is x! 1 and y being finite.
APPENDIX H: C-METRIC COORDINATES

We consider in this section the coordinate transforma-
tion from general C-metric coordinates to the canonical
�r; z� coordinates.13 The general C-metric coordinates
�u; v� are here defined in relation to �r; z� by

r �
282

�������������������������
�G�u�G�v�

p
�u� v�2

;

e2
�dr2 � dz2� � 3�u; v�
�
du2

G�u�
�
dv2

G�v�

�
;

(H1)

where 8 is a constant, and 3�u; v� and G�9� are functions
that depend on the particular solution that we consider.
The goal is now to find the z coordinate. From grz � 0 we
find

@z
@v

� �
gvv
guu

@r
@u

�
@r
@v

�
�1 @z
@u
: (H2)

Using this together with guv � 0 one can easily derive
that
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@z
@u

� s

��������
guu
gvv

s
@r
@v
;

@z
@v

� �s

��������
gvv
guu

s
@r
@u
; s � �1:

(H3)

This gives

s
@z
@u

� �
82G0�v�

�u� v�2
�
482G�v�

�u� v�3
;

s
@z
@v

� �
82G0�u�

�u� v�2
�
482G�u�

�u� v�3
:

(H4)

The integrability condition

@
@v

@z
@u

�
@
@u

@z
@v
; (H5)

is satisfied if and only if

G00�v� �
6G0�v�
u� v

�
12G�v�

�u� v�2
� G00�u� �

6G0�u�
u� v

�
12G�u�

�u� v�2
: (H6)

Integrating (H4), we get

sz � b�v� �
82G0�v�
�u� v�

�
282G�v�

�u� v�2

� c�u� �
82G0�u�
�u� v�

�
282G�u�

�u� v�2
; (H7)

where b�9� and c�9� are two functions. Using the integra-
bility condition (H6) we see that

s�z� z0� �
82G00�v�
6

�
82G0�v�
�u� v�

�
282G�v�

�u� v�2

�
82G00�u�
6

�
82G0�u�
�u� v�

�
282G�u�

�u� v�2
; (H8)

where z0 is a constant. Now, if we take G�9� to be of the
form

G�9� � a0 � a19� a29
2 � a39

3 � a49
4; (H9)

one can check that (H6) is obeyed.
Note that e2
 and 3�u; v� in (H1) are connected through

the formula

3�u; v�

e2

�

84

�u� v�4

�
G�u�



G0�v� �

4G�v�
u� v

�
2

�G�v�


G0�u� �

4G�u�
u� v

�
2
�
: (H10)

This formula is useful for finding e2
.
Consider now the particular choice of G�9�

G�9� � �1� 92��1� c9�; (H11)
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which correspond to the case of the five-dimensional
black ring metric described in Sec. VI. If we take s � 1
and z0 � 1=6 we get

z �
82�1� uv��2� cu� cv�

�u� v�2
: (H12)

We now look for constants q and A that solves the equa-
tion

r2 � �z� q82�2 �
84�A� cuv� 2q�u� v��2

�u� v�2
: (H13)

There are precisely three solutions to this equation:

q � �c; A � 2� c; q � c; A � �2� c;

q � 1; A � �c: (H14)

Write now

Ri �
�����������������������������
r2 � �z� zi�2

q
; z1 � �c82;

z2 � c82; z3 � 82: (H15)

We get

R1 �
82�2� c�1� u� v� uv��

�u� v�
;

R2 �
82�2� c��1� u� v� uv��

�u� v�
;

R3 �
82��c�1� uv� � �u� v��

�u� v�
:

(H16)

We have furthermore that

R1 � z� z1 �
282�1� u��1� v��1� cu�

�u� v�2
;

R1 � z� z1 �
282�1� u���1� v��1� cv�

�u� v�2
;

R2 � z� z2 �
282�1� u��1� v��1� cv�

�u� v�2
;

R2 � z� z2 �
282�1� u���1� v��1� cu�

�u� v�2
;

R3 � z� z3 �
282�1� u2��1� cv�

�u� v�2
;

R3 � z� z3 �
282�v2 � 1��1� cu�

�u� v�2
:

(H17)

Finally, we can solve for u and v to obtain

u �
�1� c�R1 � �1� c�R2 � 2R3 � 2�1� c2�82

�1� c�R1 � �1� c�R2 � 2cR3
;

v �
�1� c�R1 � �1� c�R2 � 2R3 � 2�1� c2�82

�1� c�R1 � �1� c�R2 � 2cR3
:

(H18)
-24



STATIONARY AND AXISYMMETRIC SOLUTIONS OF. . . PHYSICAL REVIEW D 70, 124002 (2004)
[1] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
[2] W. Israel, Phys. Rev. 164, 1776 (1967).
[3] B. Carter, Phys. Rev. Lett. 26, 331 (1971).
[4] S.W. Hawking, Commun. Math. Phys. 25, 152 (1972).
[5] D. C. Robinson, Phys. Rev. Lett. 34, 905 (1975).
[6] R. Emparan and H. S. Reall, Phys. Rev. Lett. 88, 101101

(2002).
[7] R. C. Myers and M. J. Perry, Ann. Phys. (N.Y.) 172, 304

(1986).
[8] H. Elvang, T. Harmark, and N. A. Obers, hep-th/0407050.
[9] H. Elvang, T. Harmark, and N. A. Obers, Classical

Quantum Gravity 21, S1509 (2004).
[10] A. Papapetrou, Ann. Phys. (Berlin) 12, 309 (1953).
[11] A. Papapetrou, Ann. Inst. Henri Poincaré, A 4, 83 (1966).
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