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Fate of bound systems in phantom and quintessence cosmologies
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We study analytically and numerically the evolution of bound systems in universes with accelerating
expansion where the acceleration either increases with time towards a Big Rip singularity (phantom
cosmologies) or decreases with time (quintessence). We confirm the finding of Caldwell et al. [R. R.
Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003).] that bound
structures get dissociated in phantom cosmologies but we demonstrate that this happens earlier than
anticipated in Ref. [R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev. Lett. 91, 071301
(2003).]. In particular we find that the ‘‘rip time’’ when a bound system gets unbounded is not the time
when the repulsive phantom energy gravitational potential due to the average ��� 3p� balances the
attractive gravitational potential of the mass M of the system. Instead, the ‘‘rip time’’ is the time when the
minimum of the time-dependent effective potential (including the centrifugal term) disappears. For the
Milky Way galaxy this happens approximately 180 Myrs before the Big Rip singularity instead of
approximately 60 Myrs indicated in [R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev.
Lett. 91, 071301 (2003).] for a phantom cosmology with w � �1:5. A numerical reconstruction of the
dissociating bound orbits is presented.
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I. INTRODUCTION

There is mounting observational evidence that the uni-
verse has entered a phase of accelerating expansion (the
scale factor obeys �a > 0) and that the total amount of
clustered matter in the universe is not sufficient for its
small average spatial curvature. This converging observa-
tional evidence comes from a diverse set of cosmological
data which includes observations of type Ia supernovae [1],
large scale redshift surveys [2] and measurements of the
cosmic microwave background (CMB) temperature fluc-
tuations spectrum [3]. The observed accelerating expan-
sion and flatness of the universe, requires either a modified
theory of gravity [4] or, in the context of standard general
relativity, the existence of a smooth energy component
with negative pressure termed ‘‘dark energy’’[5]. This
component is usually described by an equation of state
parameter w � p

� (the ratio of the homogeneous dark en-
ergy pressure p over the energy density �). For cosmic
acceleration, a value of w <� 1

3 is required as indicated by
the Friedmann equation

�a
a
� �

4�G
3

��� 3p�: (1.1)

Current observational bounds [1,6] on the value of the dark
energy equation of state parameter w�t0� at the present time
t0 yield

�1:48< w�t0�<�0:72 (1.2)

at the 95% confidence level. The role of dark energy can be
played by any physical field with positive energy and
address: http://leandros.physics.uoi.gr

04=70(12)=123529(9)$22.50 123529
negative pressure which violates the strong energy condi-
tion �� 3p > 0 (w >� 1

3 ).
Quintessence scalar fields [7] ( � 1< w <� 1

3 ) violate
the strong energy condition but not the dominant energy
condition �� p > 0. Their energy density scales down
with the cosmic expansion and so does the cosmic accel-
eration rate. Phantom fields [8–10] (w <�1) violate the
strong energy condition, the dominant energy condition
and maybe physically unstable. However, they are also
consistent with current cosmological data and according
to recent studies [6] they are favored over their quintes-
sence counterparts. In contrast to quintessence fields, the
energy density of phantom fields increases with time and
so does the predicted expansion acceleration rate �a

a . This
monotonically increasing acceleration rate of the expan-
sion may be shown to lead to a novel kind of singularity
which occurs at a finite future time and is characterized by
divergences of the scale factor a, the Hubble parameter H
its derivative _H and the scalar curvature. This singularity
has been called ‘‘Big Smash’’ [11] the first time it was
discussed and ‘‘Big Rip’’ [12] (hereafter CKW) in a more
recent study. Even though there are mechanisms by which
the ‘‘Big Rip’’ singularity could be avoided [13] it remains
an interesting possible fate of the universe.

An immediate consequence of the very rapid expansion
rate as the Big Rip singularity is approached is the disso-
ciation of bound systems due to the buildup of repulsive
negative pressure in the interior of these systems. This
observation was first made in [12] where a qualitative study
of the dissociation times for various bound systems was
also made.

The quantitative study however of the evolution of a
bound system in an expanding universe remains an issue of
current research. In particular the question of whether the
-1  2004 The American Physical Society
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expansion of the universe affects gravitationally bound
systems like clusters, galaxies or planetary systems has
been addressed in several early [14–17] and recent [18–
20] studies. The recurrent attention paid to this issue
indicates that to this point a definitive answer is still lack-
ing. The prevalent perception however is that the physics of
systems which are small compared to the radius of curva-
ture of the cosmological background is essentially unaf-
fected by the expansion of the universe. Even though this
perception is applicable in the case of phantom cosmology,
it is not applicable as the Big Rip singularity is approached
and curvature increases rapidly.

A qualitative approach to the problem of bound system
dissociation in phantom cosmologies was made by CKW
where it was assumed that a bound system becomes un-
bound when the source of the repulsive phantom energy
gravitational potential for a bound system of size R
�� 4

3���� 3p�R3� balances the attractive source of the
ordinary gravitational potential (the mass M of the system).
Even though this assumption is qualitatively useful as it
provides a physical understanding as to why does a bound
system dissociate due to phantom energy repulsion, quan-
titatively it leads to incorrect estimates of the dissociation
times because it ignores the effects of the centrifugal
barrier in the effective potential of bound systems. A
quantitative analysis should make use of the particle equa-
tions of motion in the local inertial frame based on the
geodesic deviation equation. Using such an equation, the
time dependent effective potential of two-body bound
systems may be shown to consist of three terms, the static
attractive gravitational mass term, the static repulsive cen-
trifugal term and the time-dependent repulsive dark energy
term. The stability of a bound system depends on the
existence of a minimum for the above effective potential.
In the case of quintessence �w >�1� the minimum of the
effective potential can not disappear at any future time
because the repulsive time-dependent term decreases
with time. For phantom energy however �w <�1� the
repulsive time-dependent term increases with time and at
some critical time dominates over the other two terms and
destroys the minimum of the effective potential dissociat-
ing at the same time the corresponding bound system. It
should be stressed that this critical time when the effective
potential minimum disappears is not the time when the
repulsive dark energy term balances the attractive gravita-
tional mass term as assumed in CKW. This will be dem-
onstrated in detail, analytically and numerically in the
following sections.

The structure of this paper is the following: In Sec. II we
use a metric that interpolates between the static
Schwarzschild at small scales and a general time-
dependent Friedmann universe metric at large scales to
derive the geodesics of a test particle in the Newtonian
limit. We then focus on the particular Friedmann universe
that contains a two-component cosmic fluid (matter and
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dark energy) and derive the form of the scale factor for any
value of constant w (the equation of state parameter).
Using this form of the scale factor in the previously derived
geodesic equation we find the equation of motion for a
two-body bound system in an expanding quintessence or
phantom cosmological setup. In Sec. III we study this
equation of motion and derive the evolution of the radius
of two-body bound systems with distance and mass scales
corresponding to the Solar System, the Milky Way Galaxy
and the Coma Cluster. We also derive analytically the
dissociation time as a function of w for a bound system
of given mass and radius and test our result using numeri-
cal simulations of the above three types of bound systems
(Solar System, Milky Way and Coma Cluster). Our ana-
lytical result for the time difference ‘‘Big Rip time -
Dissociation time’’ differs from the corresponding result
of CKW by a factor of 3.08 (we find the dissociation to
occur earlier). The time evolution of the bound system
effective potential is also shown. Our results are extended
to the case of planar mass sources and to the case of
quintessence �w >�1�. In the later case it is shown that
the size change of the bound system due to the expansion is
negligible. Finally in Sec. IV we conclude, summarizing
our main results and propose possible extensions of this
work.
II. GEODESICS IN EXPANDING
SCHWARZSCHILD METRIC

In order to investigate the effects of expansion on local
bound systems we must find the geodesics of test particles
in the appropriate metric that describes the spacetime in the
vicinity of a point mass M placed in an expanding back-
ground. Such a metric should interpolate between a static
Schwarzschild metric at small distances from M and a
time-dependent Friedmann spacetime at large distances.
The detailed form of this interpolation is not unique and
there are different approaches to this problem in the litera-
ture [14,15,18,21]. In the Newtonian limit (weak field, low
velocities) such an interpolating metric takes the form:

ds2 �
�
1�

2GM
a�t��

�
	 dt2 � a�t�2 	 �d�2 � �2

	 �d�2 � sin2�d’2��; (2.1)

where � is the comoving radial coordinate. Using

r � a�t� 	 � (2.2)

the geodesics corresponding to the line element (2.1) take
the form

�

�
�r�

�a
a
r
�
�

GM

r2
� r _’2 � 0 (2.3)

and

r2 _’ � L; (2.4)
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where L is the constant angular momentum per unit mass.
Therefore the radial equation of motion for a test particle in
the Newtonian limit considered is

�r �
�a
a
r�

L2

r3
�

GM

r2
: (2.5)

The same equation of motion is obtained in the
Newtonian limit by other interpolations even though the
details in other limits may vary [18].

There is another simple and intuitive (but not rigorous)
way to derive the same equation of motion by using
Gauss’s law for gravity with gravitational sources the
mass M and the integral of the homogeneous source ��
3p. This approach leads to

�~r � �
GM

r2
r̂�

4�G
3

��� 3p�~r: (2.6)

Using now the Friedmann Eq. (1.1) this reduces to
Eq. (2.5).

Therefore the dynamics of a subluminal test particle
bound in the gravitational field of a mass M (or equiva-
lently a two-body bound system) in an expanding universe
can be described by the geodesic equation of motion (2.5).
In what follows we will study the implications of this
equation for two-body bound systems in various
cosmologies.

As a warm up exercise let us consider the evolution of a
bound system in an expanding universe with scale factor

a�t� 
 t� (2.7)

where � � const. Let us assume that at some initial time t0
the test particle is at circular orbit with radius r0 and
_’�t0� � !0 �

GM
r30

. Then the equation of motion (2.5)

may be written in dimensionless form as

��r�
�!2
0

�r3
�
�!0
2

�r2
�

���� 1�
�t2

�r � 0; (2.8)

where �r � r
r0

, �!0 � !0t0 and �t � t
t0

. In what follows we
will omit the bar (�: �:�: ) for convenience but we shall work in
dimensionless form. Typically for gravitationally bound
systems in the universe and cosmological timescales we
have

!2
0 �

GM

r30
t20 � 1 (2.9)

(e.g., for galaxies !0 ’ O�100�) and we may therefore
consider the last term in Eq. (2.8) as a perturbation perturb-
ing the circular orbit r0 � 1 to r � 1� �r�t�. It is then
easy to show that (see also [19])

�r�t� �
���� 1�

!2
0t
2 : (2.10)

The radius of the orbit tends to increase for � 2 �0; 1�
(decelerating expansion) while the perturbation �r is nega-
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tive because the homogeneous attractive gravitational
source (�� 3p > 0 in this decelerating case) within a
sphere of radius r decreases with time. For � > 1 (accel-
erating expansion) the perturbation �r is positive but it is
decreasing with time because the homogeneous repulsive
gravitational source (�� 3p < 0 in this accelerating case)
within a sphere of radius r decreases with time.

To better understand physically the behavior of the
perturbed orbit we use the Friedmann Eq. (1.1). This
equation shows that the time-dependent perturbing term
of Eq. (2.8) comes from the homogeneous gravitational
source S � 4�

3 ��� 3p�r30 within the unperturbed radius r0.
For an equation of state p � w� we have

a
 t2=�3�w�1�� � t� (2.11)

�
 a�3�1�w� 
 t�2 (2.12)

The case w >� 1
3 corresponds to � 2 �0; 1� and the radius

perturbation (2.10) is negative and decreases with time.
This is to be expected because the gravitational source S

�� 3p is positive (attractive) and decreases with time
(Eq. (2.12)). Thus �r is negative (attractive perturbation)
but decreases with time (the energy density decreases with
time and so does the homogeneous gravitational source).
For �1<w <� 1

3 we have � > 1 and the radius pertur-
bation (2.10) is positive decreasing with time. This is
understood because the gravitational source S is negative
(repulsive) and decreases with time. Thus �r is positive
(repulsive perturbation) but decreases with time. Finally
for w <�1we have � < 0. In this case the universe has an
expanding phase for t < 0, a singularity (Big Rip) at t � 0
and a contracting phase at t > 0. Our present expanding
phase is identified with the first phase (t < 0) and the radius
perturbation is positive and increasing with time. This is to
be expected because the gravitational source S is negative
(repulsive) but also increases with time as t approaches the
singularity at t � 0 (see Eq. (2.12)). Thus �r is positive
(repulsive perturbation) and increases with time.

This perturbative approach shows that the bound system
radial perturbation increases only in a phantom (w <�1,
�< 0) expanding background but it can give no hint on
whether a bound system will eventually become unbound
or not. A nonperturbative approach is required to address
this question in detail. Such an approach should lead to the
derivation of the full time evolution of the radius of a two-
body bound system. As discussed in the next section this
can be achieved by either explicitly solving the equation of
motion (2.5) or by finding the time evolution of the mini-
mum of the effective potential derived from Eq. (2.8).

Before proceeding with this more appropriate approach
we will improve on the estimate of the scale factor evolu-
tion by considering a two-component (instead of one-
component) fluid in a Friedmann universe. Assuming the
fluid components to be matter with energy density �m and
-3
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dark energy with density �x and equation of state px �
w�x we may write the Friedmann equations as [9]

_a2

a2
�
8�G
3

��m � �x�

� H2
0��

0
m�a0=a�

3 ��0
x�a0=a�

3�1�w�� (2.13)

and

�a
a
� �

4�G
3

��m � �x�1� 3w��

� �
4�G
3

�x��
�1
x � 3w�

� �
4�G
3

�x

�
�0

m

�0
x

�
a0
a

�
�3w

� 1� 3w
�
:

The transition from matter (decelerating) to dark energy
(accelerating) phase occurs at the transition redshift

1� zm �
a0
am

�

�
��3w� 1��0

x

�0
m

�
�1=3w

: (2.14)

At z > zm the solution of the Friedmann equation is

a3=2�t� �
3

2
!t; (2.15)

where ! is a constant. In the accelerating phase z < zm the
corresponding solution is approximated by

a3�1�w�=2�t� �
3

2
"t� c; (2.16)

where c is an integration constant and " � H0

�������
�0

x

p
.

Extending the expressions (2.15) and (2.16) up to tm and
matching for the evaluation of the integration constants !
and c leads to the expression for the scale factor valid for
t > tm (z < zm)

a�t� �
a�tm�

��w� �1� w�t=tm�
�2=�3�1�w��

for t > tm:

(2.17)

For phantom energy (w <�1) the scale factor diverges at
a finite time

t� �
w

1� w
tm > 0 (2.18)

leading to the Big Rip singularity. Since �x 
 a�3�1�w� it is
easy to see that the phantom energy also diverges at t� as

�x�t� �
��tm�

��w� �1� w�t=tm�
2 : (2.19)

Using the expression (2.17) for the scale factor in the two-
component fluid universe we are in position to study in
detail the evolution of bound orbits in phantom and quin-
tessence cosmologies. This task will be undertaken in the
following section.
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III. BOUND SYSTEM EVOLUTION

Substituting the derived form of the scale factor in
Eq. (2.17) to the equation of motion (2.8) of a two-body
gravitating system in an expanding universe we obtain

�r�
!2
0

r2

�
1�

1

r

�
�
2

9

�1� 3w�r

��w� �1� w�t�2
� 0: (3.1)

As in Eq. (2.8) this equation has been made dimensionless
by setting r

r0
! r and t

tm
! t. The time-dependent last term

proportional to

�a
a
� �

4�G
3

��� 3p� �
2

9

�1� 3w�

��w� �1� w�t�2
(3.2)

expresses the gravitating effects of the dark energy in-
cluded within a sphere of radius r while the dimensionless
parameter !2

0 is defined as

!2
0 �

GM

r30
t2m: (3.3)

We shall use the dimensionless equation of motion (3.1)
with initial conditions r�t � 1� � rmin and _r�t � 1� ’ 0
(rmin is the minimum of the effective potential at t � 1)
to study the evolution of the radius of a two-body bound
system which is initially at circular orbit. It will be shown
that in the phantom case (w <�1) the increasing repulsive
effects of the time-dependent term of Eq. (3.1) lead to a
dissociation of the bound system at a critical time trip. A
simplified qualitative approach to this question was made
by CKW where no reference was made to the equation of
motion as it was assumed that the dissociation occurs when
the time-dependent dark energy gravitational source within
the initial radius balances the attractive gravitational

source
!2
0

r2min
. This approach is only qualitative and in many

cases can lead to incorrect results for two reasons:
2

(i) I
-4
t does not take into account the centrifugal force
!0

r3min

(ii) I
t implicitly assumes that the radius of the system

just before dissociation is the same as the initial
radius rmin.
Nevertheless for comparison with our later quantitative
exact result we will rederive the result of CKW. The
balance condition of CKW may be written as

!2
0 �

�
2�
T

�
2
� �

2

9

�1� 3w�

��w� �1� w�t�2
; (3.4)

which leads to

t� � trip �
T

���������������������
2j1� 3wj

p
6�j1� wj

; (3.5)

where t� is the Big Rip singularity time given by (2.19).
This is the result of CKW to be compared with our quanti-
tative result derived in what follows.

The time-dependent effective potential that determines
the dynamics of the bound system is easily derived from



FIG. 1. The numerical evolution of the radius (continuous line)
and the analytical evolution of the effective potential minimum
(dashed line) for the three bound systems.

FIG. 2. The evolution of the dimensionless form of the effec-
tive potential around the time trip for the Milky Way galaxy.
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Eq. (3.1) to be

Veff � �
!2
0

r
�

!2
0

2r2
�
1

2
&�t�2r2; (3.6)

where

&�t� �

���������������������
2j1� 3wj

p
3��w� �1� w�t�

(3.7)

with w <�1. At t � 1 the system is assumed to be in
circular orbit with radius given by the minimum rmin�t� of
the effective potential of Eq. (3.6). The location of rmin�t� is
time-dependent and approximates the radius of the system
at any given time. It is the solution of the equation

q�t�2r4min � rmin � 1; (3.8)

where

q�t� �
&�t�
!0

: (3.9)

It may be shown (using, e.g., Mathematica [22]) that this
equation has a solution only for

q�t�2 �
27

256
� qc: (3.10)

Therefore the time trip when the minimum of the potential
(3.6) disappears and the system becomes unbound is given
by the solution of the equation

q�trip�2 �
27

256
: (3.11)

It is straightforward to solve Eq. (3.11) for trip and find

t� � trip �
16

���
3

p

9

T
���������������������
2j1� 3wj

p
6�j1� wj

: (3.12)

This result differs from the corresponding result of CKW
by the factor 16

��
3

p

9 ’ 3.
In order to test this result numerically we must solve the

equation of motion (3.1) for a specific bound system,
obtain numerically the orbits r�t� and compare the analyti-
cal prediction for the dissociation time with the corre-
sponding time visualized numerically. For concreteness
we consider a phantom cosmology with w � �1:2, �0

m �
0:3 and �0

x � 0:7. Our goal is to evaluate the dimension-
less angular velocity !0 corresponding to specific systems
in the context of this cosmology and use it to calculate
numerically the corresponding future radial evolution. We
will consider the scales corresponding to three bound
gravitational systems: the solar system (M � 2� 1033gr,
r0 � 7� 1015cm, !0 � 3:5� 106), the Milky Way gal-
axy (M � 2� 1045gr, r0 � 5� 1022cm, !0 � 182) and
the Coma Cluster (M � 6� 1048gr, r0 � 9� 1024cm,
!0 � 4:15). In evaluating !0 for the above systems we
have used the value of tm in the particular phantom cos-
mology considered
123529
tm �

�
H0

��������
�0

m

q �
�1 2

3
�1� zm�

�3=2 ’ 1:8� 1017h�1sec:

(3.13)

We have evaluated the evolution of the radius of the above
systems using two methods: calculation of the effective
potential minimum (thick dashed lines of Fig. 1) using
Eq. (3.8) evolved until the minimum disappears and ex-
plicit numerical evolution of the equation of motion (3.1)
(continuous line) evolved up to the dissociation time as
obtained by CKW (Eq. (3.5)). The numerical evolution
started at t � tm (t � 1 in the dimensionless form) with
initial orbit radius at the minimum of the effective potential
and negligible radial velocity chosen such as to minimize
radial oscillations. As seen in Fig. 1 there is very good
agreement between the numerical evolution of the radius
(continuous line) and the analytical evolution of the effec-
tive potential minimum (dashed line) for the three bound
systems considered. The value of the present time t0 is also
indicated on the time axis of Fig. 1. In Fig. 2 we show the
evolution of the dimensionless form of the effective poten-
tial around the time trip when the minimum disappears for a
-5



TABLE II. The dissociation times trip for the three bound
systems in units of tm. For w � �1:2, tm ’ 5:65h�1 Gyrs.

System trip=tm

Solar System 6.00
Milky Way 5.94
Coma Cluster 3.19

0

0.5

1

y
/r

0

Milky Way Galaxy Orbits

tend = t rip
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bound system corresponding to the Milky Way galaxy. As
the repulsive term destroys the minimum there is a small
increase of the location of the minimum and then a sudden
disappearance and dissociation of the system. The differ-
ence between our quantitative prediction for trip (indicated
by the end of the dashed lines in Fig. 1) and the corre-
sponding qualitative estimate of CKW (indicated by the
end of the continuous lines) is more prominent for the
Coma Cluster and less so for the Milky Way. The actual
values in years for t� � trip are shown in Table I along with
the qualitative prediction of CKW. The corresponding
dissociation times trip in units of tm are shown in
Table II. For the case w � �1:5 considered by CKW, the
corresponding predictions for the Milky Way dissociation
are t� � trip ’ 166 Myrs and �t� � trip�CKW ’ 54 Myrs.

Using the radial equation of motion (3.1) along with the
conservation of angular momentum

r2 _’ � r20!0; (3.14)

it is straightforward to obtain numerically the full trajec-
tory corresponding to the evolution of the three bound

systems and visualize the dissociation process. This
dissociation is demonstrated in Figs. 3 and 4 for a two-
body bound system corresponding to the Milky Way gal-
axy. In particular, in Fig. 3 the system is evolved until the
effective potential minimum disappears while the evolu-
tion in Fig. 4 corresponds to the same system but lasts until
the phantom energy repulsive gravitational force balances
the attractive gravity of bound matter. Clearly the disso-
ciation time is the evolution time of Fig. 3 while the
evolution in Fig. 4 continuous well after the dissociation
as expected based on our analysis. Notice the radial (in-
stead of tangential) motion followed after dissociation
which is due to the dominant repulsive gravity of phantom
energy.

The numerical evolution shown in Figs. 1 and 2 has
assumed a phantom cosmology with w � �1:2. The dis-
sociation time trip however is sensitive on the value of w as
shown in Eq. (3.12). To demonstrate this dependence Fig. 5
shows the dependence of the relative rip time difference
defined as

t� � trip
T

(3.15)

(where T is the rotation period of the bound system) on w
TABLE I. The dissociation times differences t� � trip for three
bound systems in years as predicted by Eqs. (3.12) and (3.5). The
value w � �1:2 was assumed.

System t� � trip (yrs) �t� � trip�CKW (yrs)

Solar System 1:88� 104 6:11� 103

Milky Way 3:59� 108 1:17� 108

Coma Cluster 1:58� 1010 5:14� 109

123529
for w <�1. The continuous curve defines trip as the time
when the effective potential minimum disappears while the
corresponding definition for the dashed curve is the time
when the total gravity force vanishes as in CKW. Clearly
the two curves differ significantly and the difference be-
comes more pronounced as w approaches the value w �
�1.

Our discussion so far was based on the assumption of
phantom cosmologies (w <�1). This has been due to the
fact that for w >�1 (quintessence) the dark energy den-
sity decreases with time and can therefore not destroy the
effective potential minimum. Quintessence can only cause
negligible evolution (decrease) of the radius of bound
systems. This evolution can be easily obtained by the
perturbative treatment of Sec. II by setting � � 2

3�w�1� .
To demonstrate the negligible effect of expansion on bound
systems for nonphantom cosmologies we have plotted the
effective potential for a Milky Way scale system with w �
�0:9 at times t � tm and t � 3t0 (Fig. 6). The correspond-
ing plot for a Coma Cluster scale system is shown in Fig. 7.
The decrease of the radius is in both cases minor but in the
Coma Cluster case where !0 is of O�1� it is somewhat
-1 - 0.5 0 0.5 1
x/ r 0

-1

-0.5

FIG. 3. The evolution of the the system of the Milky Way
galaxy until the effective potential minimum disappears.
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FIG. 6. The effective potential for the Milky Way galaxy with
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more prominent as expected from the perturbative result
(2.10).

Finally it is of some interest to investigate the evolution
of bound systems with planar geometry. Consider a test
particle at a distance h from a surface with surface density
- in an expanding universe background. Using Gauss’s law
for simplicity it is straightforward to show that the equation
of motion for the particle is

�h � �2�G-�
3

2

�a
a
h: (3.16)

Using Eq. (2.17) for the scale factor in a phantom
cosmology this may be written as

t2m �h � �h0 � .h; (3.17)
-2 -1.8 -1.6 -1.4 -1.2 -1
w

0.5

1

5

10 Relative Rip Time Difference

Potential Minimum Disappears

Gravity Source Vanishes

(t
* −

 t ri
p)

 / 
T

(t
*
 − t

rip
) / T

FIG. 5. The dependence on w of the relative rip time differ-
ence.
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where the derivative is with respect to t
tm

,

h0 � 2�G-t2m (3.18)

and

.�t� �
j1� 3wj

3��w� t
tm
�1� w��2

: (3.19)

Dividing by h0 and setting t
tm
! t, h

h0
! h, Eq. (3.17) may

be written in dimensionless form as

�h � �1� .h: (3.20)

The effective potential corresponding to this equation has
obviously no centrifugal term and differs significantly from
the corresponding effective potential of the spherically
symmetric case. It is of the form

Veff � �
1

2
.
�
h�

1

.

�
2

(3.21)

and is shown schematically in Fig. 8. It is a reversed
harmonic oscillator with a time-dependent unstable equi-
librium point at heq � 1

.�t� . For quintessence .�t� de-
FIG. 7. The effective potential for the Coma Cluster with w �
�0:9 at times t � tm and t � 3t0.
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creases with time and therefore the location of the equilib-
rium point increases with time. Points initially on the left
of the equilibrium point will remain bound on the attractive
side of the potential. Points initially on the right of the
equilibrium (unbound) may also eventually end up bound
on the left side of the equilibrium point. For phantom
cosmologies .�t� increases with time. This implies that
the unstable equilibrium scale heq�t� decreases with time
and therefore all scales will eventually become larger than
heq�t� and dissociate. The dimensionless scale hd�trip� that
dissociates at the time trip is found by solving the equation

hd �
1

.�trip�
� �

3��w� trip�1� w��2

1� 3w
(3.22)

with solution

t� � trip �
T

8
���
3

p

���������������������
2j1� 3wj

p
j1� wj

; (3.23)
123529
where T � 4
��������
2hd

p
is the period of the oscillating test mass.

Notice the similarity of this result with the corresponding
result found for spherically symmetric systems (3.12).
IV. CONCLUSION-OUTLOOK

We have studied the evolution of bound systems in
expanding backgrounds and focused on the case of accel-
erated expansion powered by phantom energy (w <�1).
We have found the radial time dependence of bound sys-
tems in phantom cosmologies and determined the time
when these systems dissociate due to the repulsive effects
of phantom energy, as a function of the equation of state
parameter w. A universal behavior was found for the
dissociation time for different geometries of bound sys-
tems. We have also plotted the bound system trajectory
around the time of dissociation and demonstrated that the
bound systems explode radially outward after dissociation.
Our results were compared with previous corresponding
results in the literature and were found to be in qualitative
but not in quantitative agreement.

In the present study we have assumed a constant equa-
tion of state parameter w. The extension of our results to
the case of a redshift dependent w (w�z�) is straightforward
and consists a potentially interesting extension of this
work. A potential improvement to the accuracy of our
results may come by using a more accurate metric for the
interpolation between the Schwarzschild and the
Friedmann metric [18]. Such an improvement would be
more important for strongly bound high velocity systems.

The Mathematica [22] file used for the production of the
figures of the paper can be downloaded from [23] or sent by
e-mail upon request.
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