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We consider the observational constraints on the running-mass inflationary model, and, in particular,
on the scale dependence of the spectral index, from the new cosmic microwave background (CMB)
anisotropy measurements performed by WMAP and from new clustering data from the SLOAN survey.
We find that the data strongly constraints a significant positive scale dependence of n, and we translate
the analysis into bounds on the physical parameters of the inflaton potential. Looking deeper into
specific types of interaction (gauge and Yukawa) we find that the parameter space is significantly
constrained by the new data, but that the running-mass model remains viable.
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I. INTRODUCTION

The measurements of the cosmic microwave back-
ground (CMB) anisotropies provided by the Wilkinson
microwave anisotropy probe (WMAP) mission [1] have
truly marked the beginning of the era of precision cos-
mology. In particular, the shape of the measured tempera-
ture and polarization angular power spectra are in
spectacular agreement with the expectations of the stan-
dard model of structure formation, based on primordial
adiabatic and nearly scale-invariant perturbations.
Assuming this model of structure formation, accurate
albeit indirect constraints on several cosmological pa-
rameters have been reported [2] in agreement with those
previously indicated (see, e.g., [3]) but with much larger
error bars.

Moreover, new, complementary, results from the Sloan
digital sky survey (SDSS) on galaxy clustering (see, e.g.,
[4]) and, more recently, on Lyman-alpha forest clouds [5]
are now further constraining the scenario.

The question naturally arises if this new cutting-edge
cosmological data can tell us something about inflation,
assuming of course that the vacuum fluctuation of the
inflaton generates the primordial perturbation. (If instead
some ‘‘curvaton’’ field [6,7] does the job, the data give
information mostly about the properties of the curvaton,
during some post-inflationary era.) It is therefore not a
surprise that several recent works have attempted to use
this new cosmological data to constraint and/or falsify
inflationary physics. In particular, constraints have been
placed on the general form of the single-field inflationary
potential, for instance in [8–10], [5]. A different approach
is to ask about constraints on specific well-motivated
models, constructed in accordance with present ideas
about what lies beyond the standard model of the inter-
actions. A comprehensive survey of such models has been
provided [11,12], which in general predict an almost
scale-invariant spectral index n < 1. Unfortunately, the
data do not yet discriminate between these scale-
invariant models [5].
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In this paper, we study instead a specific inflationary
scenario, Stewart’s running-mass model [13–18], a type
of inflationary model which emerges naturally in the
context of supersymmetric extensions of the standard
model. The model is of the single-field type (i.e., the
slowly-rolling inflaton field has only one component
[11,12]), but nevertheless it has the striking signature of
a very specific and relatively strong scale dependence of
the spectral index. It is therefore a natural question to ask,
if such a dependence is compatible or even preferred by
the present data: in fact the WMAP collaboration claimed
to have a slight evidence for nonvanishing running of the
spectral index in their first year data. Even if their best fit
value for n0 is too strong to be accommodated in the usual
paradigm of slow-roll models and probably is generated
mostly by the Lyman � [19] or even the low multipole
data, we will attempt a conservative comparison and
repeat our analysis in [20], on order to test the predictions
of the running-mass model.

Our paper is organized as follows: In Sec. II we discuss
the running-mass model. In Sec. III we present our data
analysis method and results. Finally, in Sec. IV, we dis-
cuss our conclusions.
II. THE RUNNING-MASS MODEL

A. The inflationary potential

In common with all supersymmetric models, the
running-mass model [13–18] chooses for the inflaton �
a flat direction, in order to suppress all the renormalizable
inflaton couplings. Also, � is many orders of magnitude
less than the reduced Planck scale MP � 2:4� 1018 GeV
which ensures that the Planck-suppressed nonrenorma-
lizable terms are negligible. Symmetries can moreover
guarantee that odd powers of � and, in particular, the
possible lower order linear term [21] are absent. The tree-
level potential is therefore a constant V0 plus a soft
supersymmetry-breaking mass term. Note then that in
the running-mass model, inflation takes place in a region
-1  2004 The American Physical Society
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of field space in which one (or more) of the fields (but not
the inflaton) are strongly displaced from the vacuum,
typically by an amount �MP. The model is typically a
realization of Linde’s hybrid inflation [22], where the
displaced field is a ‘‘waterfall field,’’ different from the
slowly-rolling inflaton, and stabilized temporarily during
inflation by an effective mass term. At tree level, the
running-mass model then reduces to the version of hybrid
inflation proposed in [23], distinguished from more gen-
eral models by the fact that the waterfall field is displaced
from the vacuum by an amount of order MP, and it
has also a mass probably not far above the generic
supergravity-mediated supersymmetry breaking value.

So in this setting, the inflaton potential is dominated
simply by the soft supersymmetry-breaking mass term
generated by V0 and its radiative corrections. These are
taken into account by using the renormalization group
(RG) improved potential. To construct this, one just needs
to substitute the tree mass with the running mass [13,14]:

V � V0 �
1
2m

2�ln���2 � . . . : (1)

Here m2�ln�� is obtained by integrating the RG equation
of the form

dm2

d ln�
�
dm2

d lnQ
� �m; (2)

with �m being the �-function of the soft inflaton mass
and depending on all its couplings. A crucial assumption
of the running-mass model is that the radiative correc-
tions are substantial, as they are exploited to realize slow-
roll in some region of the potential. In fact at the Planck
scale ��MP, the mass-squared is supposed to have the
generic supergravity value jm2j ’ H2

I � V0=�3M2
P�. The

radiative corrections drive down m2, so that, when � is
many orders of magnitude below MP, it has the much
smaller value which is needed for viable inflation. There
are four types of model, depending on the sign of m2 at
the Planck scale, and on whether or not that sign has
changed by the time that the slow-roll inflationary regime
is reached. An unobservable initial phase of fast-roll
inflation at large values of � could take place before that.

Note that sufficiently strong running is realized, for
example, in the case of radiative EW symmetry breaking
in the minimal supersymmetric standard model, where
the running turns one of the Higgs doublet’s mass from
positive to negative: the main difference is that in this
case it is sufficient to suppress the mass and so we do not
need to rely on a very large coupling, as the top Yukawa.
Unfortunately, since some of the fields take a large MP

VEV after inflation, it is not viable to implement the
running-mass model directly within the MSSM, but pos-
sibly in some of its extensions 1.
1For a tree level example based on the GUT group SU(6), see,
e.g., [23].
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In general at one loop �m is given by [14,17]

�m � 

2C
�

� ~m2 �
D

16�2
j�j2m2

loop; (3)

where the first term arises from the gauge interaction with
coupling � and the second from theYukawa interaction �.
It is easy to generalize to the case of more gauge groups or
Yukawas. In the expression above, C;D are positive
group-theoretic numbers of order one, counting the de-
grees of freedom present in the one-loop diagrams con-
tributing to the running, ~m is the gaugino mass, while
m2
loop is the common SUSY breaking mass-squared of the

scalar particles interacting with the inflaton via Yukawa
interaction. Note that the first term in Eq. (3) is always
negative, while the second has no definite sign, since
m2
loop is defined as the mass-squared splitting between

scalar and fermionic superpartners and can have either
sign. Also the case of a noninteracting inflaton gives
directly �m � 0 and it coincides with the constant mass
potential. Anyway, in realistic cases the inflaton must
have some interaction in order to reheat the universe or
to secure a hybrid end to inflation and so in any model we
expect naturally some running, even if perhaps below the
level required by the running-mass model 2.

Over a sufficiently small range of �, or for small
inflaton couplings, it is a good approximation to take a
truncated Taylor expansion of the running mass m2�ln��
around a particular scale, which we will choose as �0, the
inflaton value at the epoch of horizon exit for the pivot
scale k0; for comparison with the WMAP results [8] we
choose k0 � 0:002hMpc
1. Then we have:

V � V0 �
1

2
m2�ln�0��2 


3

2
cH2

I �
2 ln

�
�
�0

�
; (4)

where we have rescaled the last term with respect to 3H2
I

for future convenience. The dimensionless constant c is
proportional to the mass beta function at the particularly
chosen point,

c � 

�m�ln�0�

3H2
I

: (5)

The linear expansion corresponds on the quantum field
theory side to the one-loop expansion, since it practically
neglects the running of �m, which arises at two loops. It
has been shown [16] that for small c, as is required by the
slow-roll conditions, this linear approximation is more
than sufficient over the range of � corresponding to
horizon exit for astronomically interesting scales, i.e.,
between k0 and 8h
1 Mpc.
coupling only gravitationally and in that case the running
would be negligible. Note that we are restricting here to models
where the �-function is generated by renormalizable
interactions.
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To simplify the expressions, it is very useful to intro-
duce a new parameter �� via

m2�ln�0� � 3H2
I c
�
ln
�
��

�0

�
�
1

2

�
: (6)

Then Eq. (4) takes the simple form [16]

V � V0 

3

2
cH2

I �
2

�
ln
�
�
��

�


1

2

�
; (7)

leading to

V0

V0
� 
c

�

M2
P

ln
�
�
��

�
: (8)

In typical cases the linear approximation is valid at � �
��, and that point is then a maximum or a minimum of
the potential.

The running-mass model supposes that all soft masses
at the Planck scale (or some other high scale) have mag-
nitude roughly of order

~m 2; jm2
loopj � 3H2

I ; (9)

and that the couplings (gauge or Yukawa) are perturba-
tive, but not too small for the running to be substantial. In
general then, in the RG equation, one product of coupling
times mass scale will dominate over the others and be
relevant besides the inflaton mass. Then we expect the
coupling c defined by Eq. (5) to be roughly

jcj �

8><
>:

� ~m2

3H2
I

j�j2
m2loop
3H2

I

9>=
>;� 10
1 to 10
2: (10)

A bigger value of jcj would not allow slow-roll inflation
and infringe upon the validity of our Taylor expansion
Eq. (4). On the other hand, using Eq. (7) as a very crude
estimate of the inflaton mass at the Planck scale, one can
see that a much smaller value of jcj is probably not viable
either, since it would require the inflaton mass at that
scale to be suppressed below the estimate Eq. (9).

The value of c is directly related to the
supersymmetry-breaking masses in the scalar and gauge
sector and therefore the theoretical question arises under
which conditions we expect Eq. (9) to be satisfied.We will
assume that supersymmetry-breaking originates from an
F-term not a D-term and that the inflationary scale V0 is
obtained due to the mismatch between the two contribu-
tions in the SUGRA potential, the F-term part and the
negative part proportional to the superpotential
3jWj2=M2

P. Note that we do not need to assume that the
second term vanishes (so the gravitino remains all
the time massive), but it is for our purposes sufficient
that the F-term during inflation is such that

HI � minfl
3=2 �

jWinflj

M2
P

: (11)
123521
This insures a positive cosmological constant driving the
inflationary expansion. The most economical case is
probably if the two quantities are of the same order HI ’

few minfl
3=2 and/or if the gravitino mass during inflation is

very near to the vacuum value minfl
3=2 ’ mvac

3=2. Taking both
assumption seriously, we can get some estimate of HI,
depending on the mechanism for supersymmetry-
breaking, from the value of mvac

3=2:

HI � 104 GeV anomaly-mediation;

HI � 102 GeV gravity-mediation;

HI � 10
3 GeV gauge-mediation:

(12)

But note that the assumptions above can be easily relaxed
and any larger value of HI could be plausible. For ex-
ample, on one hand, the gravitino mass during inflation
could be substantially different from the value taken in
the vacuum, e.g., minfl

3=2 >mvac
3=2, or the F-term during in-

flation could be much larger than the negative contribu-
tion in the supergravity potential, i.e., HI  minfl

3=2. Then
the equalities above become just lower limits.

In this setting, if the dominant contribution to the
scalar masses comes from supergravity and barring can-
cellations, we naturally expect Eq. (9). For what regards
the gaugino mass, the expectation of Eq. (9) is not so
straightforward because gaugino masses can be very
small with some types of SUSY breaking, depending on
the gauge kinetic function and its dependence from the
moduli fields. But it is not unreasonable, as long as the
inflationary scale is of the order of the gravitino mass in
the vacuum.

We will investigate in the following how good does the
model compare with the data for reasonable values of c
and try to reach conclusions on the naturalness of the
allowed parameters.

B. The spectrum and the spectral index

Let us now discuss the more phenomenological issues
of the predicted spectrum and spectral index of the
primordial density perturbation. We suppose that it is
generated by the inflaton field perturbation, which means
that it is purely adiabatic and Gaussian. It is therefore
specified by the curvature perturbation R�k�, with k as
usual the comoving wave number. This quantity is
Gaussian and hence specified by its spectrum PR�k�.

To express such spectrum in the running-mass model,
it is convenient to define yet another parameter

s � c ln
�
��

�0

�
; (13)

where the subscript 0 denotes as before the epoch of
horizon exit for the pivot scale k0 � 0:002h Mpc
1.

Note that s is directly related to a physical parameter of
the potential by the relation:
-3
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s�
1

2
c �

m2�ln�0�

3H2
I

; (14)

so from s and c we can directly access the inflaton mass
and its couplings at �0. Note also that the inflaton mass at
that scale should be smaller than the expected value at MP

and therefore, barring cancellations, the parameter s is
expected to be smaller than unity. We will later plot our
results not only in the s and c plane, but also in
the physical parameters space m2�ln�0�=�3H

2
I � and


�m�ln�0�=�3H
2
I � for fixed value of HI.

At the pivot scale, the prediction of the running-mass
model is

P 1=2
R �k0� �

1

2�
���
3

p
V1=20

MPj�0sj
(15)

�
1

2�
���
3

p
V1=20

MPj��sj
exp�s=c�: (16)

This quantity is related to the normalization of the CMB
power spectrum by the relation [8]

P 1=2
R �k0� � 5:43� 10
5A1=2 � �4:7� 0:5� � 10
5;

(17)

where we have used A � 0:75�0:08
0:09, obtained by the global
WMAP fit [8]. This normalization can be easily satisfied
for choices of V0 and �0 or �� that correspond to reason-
able particle physics assumptions. Note that Eq. (16) can
also be recast in the form:

j�0jjsj �
HI

2�P 1=2
R �k0�

; (18)

where s also depends logarithmically on �0 as given in
Eq. (13). This expression can be also used for estimating
jsj

jsj �
1

2�P 1=2
R �k0�

HI

j�0j
; (19)

and therefore the parameter s is also directly related to
the value of the inflaton field compared to the inflationary
scale. So for jsj< 1 we must have

HI

2�P 1=2
R �k0�

� j�0j � MP; (20)

where the last inequality stems from the requirement of
negligible higher order supergravity corrections. We see
therefore that in this kind of models we expect the infla-
tionary scale HI to be much lower than 2�P 1=2

R �k0�MP ’

1:14� 1014 GeV. It could be therefore natural to link
V0 ’ H2

IM
2
P to an intermediate scale like the

supersymmetry-breaking scale. Also the inflaton value
�0 must indeed be larger than any mass splitting and
123521
therefore our use of the RGE-improved potential is per-
fectly consistent.

In this paper we would like to constrain the strong scale
dependence of the spectrum, which is given by

PR�k�
PR�k0�

� exp
�
2s
c
�ec�N�k� 
 1� 
 2c�N�k�

�
; (21)

where �N�k� � N0 
 N�k� � ln�k=k0�.
To discuss the spectral index and its running, we need

the first four flatness parameters [11,12], given by

� �
1

2

�
M2
PV

0

V

�
2
’
s2�2

M2
P

e2c�N�k� (22)

� �
M2
PV

00

V
’ sec�N�k� 
 c (23)

�2 �
M4
PV

0V 000

V2
’ 
csec�N�k� (24)

�3 �
M6
PV

02V 0000

V3
’ cs2e2c�N�k�: (25)

The parameters are evaluated at the epoch of horizon exit
for the scale k. The first parameter � is negligible because
�=MP is taken to be very small. The condition for slow-
roll inflation is therefore just j�j � 1, which is satisfied
in the regime ���� provided that jcj; jsj � 1, disre-
garding the fine-tuned cancellation between the two
terms.

Additional and generally stronger constraints on s fol-
low from the reasonable assumptions that the mass con-
tinues to run to the end of slow-roll inflation, and that the
linear approximation remains roughly valid. Discounting
the possibility that the end of inflation is very fine-tuned,
to occur close to the maximum or minimum of the
potential, we have the lower bound

jsj * e
cN0 jcj: (26)

Note that for negative c, this constraint is very strong,
requiring a very large value of s even for small c and a
kind of fine-tuning between s and c to give a reasonable
value of n
 1.

For positive c, we also obtain a significant upper bound
by setting �N � N0 in Eq. (29), and remembering that
slow-roll requires jn
 1j & 1:

jsj & e
cN0 �c > 0�: (27)

In the simplest case, if slow-roll inflation ends when
n
 1 actually becomes of order 1, this bound becomes
an actual estimate, jsj � e
cN0 . As discussed in [16], this
upper bound can be relaxed for positive s if the running of
the mass ceases before the end of slow-roll inflation. The
approximate region of the s versus c plane excluded by
these considerations is shown in Fig. 1.
-4



FIG. 1 (color online). The theoretically expected region for
the parameters s and c for a value of N0 � 50; the (red) solid-
line-hatched region is strongly excluded, while the dashed-
line-hatched region is excluded only if the mass is supposed to
run up to the end of inflation. The dotted (blue) line gives the
prediction for the case when the end of inflation is triggered by
� � 1. The circles correspond to the values in the explicit
models discussed in Sec. C: the upper ones (magenta) refer to
the case of gauge coupling dominance, while the (blue) one at
the origin to the case of Yukawa coupling dominance.
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Since � is negligible, the spectral index to second order
is

n�k� � 1� 2�
�
1�

�
3

�
� 2:13�2: (28)

This gives [16]

n�k� 
 1

2
� sec�N�k��1
 1:06c� 
 c�

1

3
�sec�N�k� 
 c�2:

(29)

The first derivative of the spectral index is given by

n0�k� �
dn�k�
d lnk

� 2sc ec�N�k�: (30)

Clearly the spectral index is not constant within cosmo-
logical scales unless s or c is very close to zero. Note that
for this type of models, n0 is a higher order effect (sup-
pressed by both c and s) as in usual slow-roll inflation, but
it is not proportional to �n
 1�2. So it is perfectly allowed
to have n � 1 at a particular scale, with a nonzero run-
ning. This is again a consequence of our initial assump-
tion that in the region of the potential where inflation
takes place the one-loop contribution to the inflaton mass
is of the same order as the tree one. Note anyway that the
perturbative expansion is not endangered by our assump-
tion, since the higher orders stay always smaller than the
one loop. Similarly for the slow-roll expansion, the sec-
123521
ond order can become larger than the first one in case of
strong cancellation between s and c, but the perturbative
expansion is still solid.

At the pivot scale, we have, for example, to second
order in s; c

n0 
 1 � 2�s
 c
 1:06sc� � 2
3�s
 c�2; (31)

n00 � 2sc: (32)

The line s � c=�1
 1:06c� in the s vs c plane corre-
sponds approximately to n0 � 1. The Harrison-
Zeldovich case of constant n � 1 is given by the origin
s � c � 0, while constant spectral index different from 1
is realized either near the c � 0 axis for s � �n
 1�=2 or
near the s � 0 axis for c � 
�n
 1�=2.

Since the phenomenological parameters only depend
on s
 c and sc, as long as higher orders are negligible,
the allowed region is expected to be symmetric under
reflection along the s� c � 0 line. We can solve the
system of equations exactly and extract the parameters s
and c from a measurement of n0 and n00; one solution is
given as

c1 � 
1
4�n0 
 1� 1:06n00



������������������������������������������������������
�n0 
 1� 1:06n00�

2 � 8n00

q
�: (33)

s1 �
1
4�n0 
 1� 1:06n00 �

������������������������������������������������������
�n0 
 1� 1:06n00�

2 � 8n00

q
�:

(34)

the second solution is given just by the symmetry, i.e.,
c2 � 
s1 and s2 � 
c1.

From the expressions above, it is clear that not all
values of n00 are allowed in the running-mass model: we
obtain the constraint

n00 � 

�n0 
 1�2

4
; (35)

so that a decreasing spectral index is possible only if n0 is
different from 1. So in general the prediction of the
running-mass model tends toward positive n0, contrary
to the result claimed by WMAP [8]. Both due to this
constraint and the exponential dependence on c, we see
that fitting for arbitrary value of n0 is not equivalent to
performing a fit for the running-mass model. Note also
that, as discussed in [20], the fact that the running-mass
model tends in general to give more power at low scales
for sufficiently large c, can give naturally a large value of
the reionization redshift in the Press-Schechter approxi-
mation and accommodate easily the value obtained by
WMAP [2].

We will show in the following the allowed region both
in the s; c parameter space and in the n00 vs n0 
 1 plane.
-5
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C. Explicit minimal models

1. Dominance of the gauge interaction

The first model to be proposed [13,14] considered the
case of an inflaton charged under an asymptotically free
SU�N� group. We will consider the case of two matter
superfields in the adjoint representation as in [17], where
one has very simply a superpotential given by

W � gSTr��1�2�; (36)

then, e.g., the direction � � �1
1 is D- and F-flat for

vanishing other fields. Note that here for the case of
universal SUSY breaking masses, the role of the waterfall
field can be played by the singlet S [17] and the gauge
symmetry is unbroken in the true vacuum.

We can then write easily the �-functions,

�m � 

2N
�

� ~m2 ~m / �; (37)

while for the gauge coupling

d�
d lnQ

� 

N
2�

�2; (38)

giving

��ln�� �
��MP�

1� N�0
2� ln�

: (39)

So the RG equation for the soft mass can be solved
analytically to give

m2
��ln�� � m2

��MP� 
 2 ~m2�MP� �
2 ~m2�MP�

�1� N
2���MP� ln��2

;

(40)

where we have defined the boundary conditions at MP
3.

It is then clear that the inflaton mass increases for
decreasing �<MP and therefore to obtain a reduction
of the mass absolute value a negative initial mass is
necessary.

For the linear approximation, we have then

c �
2N
�

��ln�0�
~m2�ln�0�

3H2
I

(41)

�
2N��MP�

�
~m2�MP�

3H2
I

�3�ln�0�

�3�MP�
; (42)

which is a positive number, and

s�
1

2
c �

m2
��ln�0�

3H2
I

(43)
3Any function evaluated at MP is simply the initial value and
we use ln� to mean ln��=MP�.

123521
�
m2
��MP� 
 2 ~m2�MP�

3H2
I

�
2 ~m2�MP�

3H2
I

�2�ln�0�

�2�MP�
; (44)

so s can be positive or negative.
The power spectrum normalization gives us instead:

ln��0� � ln�2�jsj� � ln�P 1=2
R �k0�HI�: (45)

The expression above can provide directly an estimate of
the order of magnitude of �0, but unfortunately it is not
possible to solve directly for this quantity. We can instead
turn the formula around and use it to define the infla-
tionary scale, after we have singled out the region where
the spectral index is small.

For �0 we can use as a very rough estimate instead the
scale where m2

� exactly vanishes, �m�0:

ln��m�0� ’

2�

N��MP�

�
1


�
1�

jm2
��MP�j

2 ~m2�MP�

�

1=2

�
; (46)

depending on the value of the coupling constant, the scale
�m�0 changes very strongly. Note that in order for n0 to
be phenomenologically acceptable, �0 must be not much
far away: the value of the spectral index at m2

� � 0 is in
fact already small,

nm�0 
 1 ’ 
3c: (47)

Assuming ��MP� ’ 1=24 as in SUSY-GUT models,
N � 3 and jm2

��MP�j � ~m2�MP� � 3H2
I , we obtain for

example

�m�0 � 9:9� 10
5MP; (48)

so that the inflationary scale must therefore be

HI � 10
9MP � 109 GeV: (49)

For the parameters c; s at that point we obtain the values:

cm�0 ’ 0:15; (50)

sm�0 ’ 
0:07 (51)

as expected. This corresponds to

n�km�0� 
 1 � 
0:44; (52)

too large to be phenomenologically acceptable, but, e.g.,
for �0 � 0:25 �m�0 one has

c ’ 0:16; (53)

s ’ 0:13; (54)

and therefore

n�k0� 
 1 � 
0:06; (55)

n0�k0� � 0:04: (56)

We see clearly that the spectral index can be very small,
but with a running of the same order.
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Note anyway that changing ��MP� by only a factor
1=2, we obtain much smaller values:

�m�0 � 9:74� 10
9MP; (57)

so that the inflationary scale must therefore be

HI � 10
13MP � 105 GeV: (58)

This strong dependence on the coupling is characteristic
of dimensional transmutation and allows us to construct
viable models spanning a very large range of HI, while
presenting similar values for the spectral index and its
running. It is therefore possible to accommodate practi-
cally all the scales in Eq. (12), and in general smaller HI
corresponds to smaller gauge coupling, which for the
same gaugino mass means smaller c. In fact in this case
we have at �0 � 0:25�m�0:

c ’ 0:08; (59)

s ’ 0:06; (60)

and therefore

n�k0� 
 1 � 
0:02; (61)

n0�k0� � 0:01: (62)
2. Dominance of the Yukawa coupling

We consider here the simplest of the cases studied in
[17], where the superpotential is given by

W � ��1�2�3; (63)

and all fields are singlet under gauge interaction. If the
trilinear SUSY breaking coupling vanishes, we have

d�
d lnQ

�
3�

16�2
j�j2; (64)

dm2i
d lnQ

�
j�j2

8�2
X
j

m2
j : (65)

Then for the average scalar mass #m2 �
P

im
2
i =3, we

obtain the simple expression:

#m 2�ln�=MP� �
#m2�MP�

1
 3
8�2 �

2�MP� ln�
: (66)

The mass differences instead are constant, so for the
single masses we have:

m2
i �ln�� � #m2�ln�� 
 #m2�MP� �m2

i �MP�: (67)

Note that in this case the masses run from positive to
negative and that the running is strong at the beginning
and then tends to flatten out at the value given by #m2 � 0.
In fact in this case the Yukawa is nonasymptotically free
and tends to zero at small scales. So in the plateau region,
123521
if m2�MP� ’ #m2�MP�, we have automatically a flat
potential.

In this specific model, slow-roll inflation can be real-
ized in any of the three field directions, but we have to
consider some nonuniversal initial masses, since the hy-
brid end is assured only if one of them becomes negative,
but not all at the same time. For example assume �1 to be
the inflaton and some nonuniversal mass terms coming
from higher order term in the Kähler potential so that
m2
1�MP� � H2

I , but m2
2�MP� �m2

3�MP� � 5H2
I . Then we

have for the inflaton mass

m2�ln�� �
2H2

I

1
 3
8�2 �

2�MP� ln�

H2

I ; (68)

and in the linear approximation this gives

c � 

�2��0� #m

2��0�

8�2H2
I

� 

�2�MP�

12�2
1

�1
 3
8�2

�2�MP� ln�0�
2
; (69)

s � 

c
2
�
2

3

�
1

1
 3
8�2

�2�MP� ln�0



1

2

�
; (70)

so that c is negative, while s can have either sign. We note
that in this type of models, the parameter c is related to
second power of the coupling constant and therefore � has
to be sufficiently large to give an effect.

As long as s does not vanish in the interesting region,
we can find an estimate of �0 from the COBE normal-
ization. Since the running is slower in this case, we can
solve iteratively Eq. (45) for �0 and s, taking HI �
10
15MP � 103 GeV and ��MP� � 1. We obtain then

�0

MP
� 1:3� 10
10; (71)

and

c � 
0:002; (72)

s � 0:026: (73)

We can in this case have jcj< 0:01 since we have as-
sumed a somewhat suppressed initial inflaton mass
m2�MP� � H2

I < 3H2
I . So in this case we have very small

scale dependence:

n�k0� 
 1 � 0:056; (74)

n0�k0� � 
0:0001: (75)
-7
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FIG. 2 (color online). Likelihood contour plot in the c
 s
plane showing the 1, 2, and 3� contours from the WMAP data
(top panel), WMAP � SLOAN (middle panel) and
WMAP � SLOAN�Ly
� (bottom panel).
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III. OBSERVATIONAL CONSTRAINTS

A. Method

Our analysis method is based on the computation of a
likelihood distribution over a grid of precomputed theo-
retical models.

We restrict our analysis to a flat, adiabatic, $-CDM
model template computed with a modified version of
CMBFAST [24], sampling the parameters as follows:
%CDMh2 � !CDM � 0:05; . . . 0:20, in steps of 0:01;
%bh2 � !b � 0:0018; :::; 0:030, in steps of 0:001 and h �
0:55; . . . ; 0:85, in steps of 0:05. The value of the cosmo-
logical constant$ is determined by the flatness condition.
Our choice of the above parameters is motivated by big
bang nucleosynthesis bounds on !b (both from D [25]
and 4He�7 Li [26]), from supernovae [27] and galaxy
clustering observations (see, e.g., [28]). Current data also
does not show evidence for additional physics like quin-
tessence (see, e.g., [29]), extra-relativistic particles (see,
e.g., [30]), topological defects (see, e.g., [31]) or isocur-
vature perturbations (see, e.g., [32]). We do not consider
massive neutrino which may have an effect on our results
but that are probably negligible (see, e.g., [33]). From the
grid above we only consider models with age of the
universe t0 > 11 Gyrs. We allow for a possible (instanta-
neous) reionization of the intergalactic medium by vary-
ing the reionization redshift 5< zri < 25 and we allow a
free rescaling of the fluctuation amplitude by a prefactor
of the order of C110, in units of CWMAP110 as measured by the
WMAP satellite. Finally, we let the running parameters c
and s vary as follows: 
0:2< c< 0:2, and 
0:2< s <
0:2 in steps of 0:008.

The theoretical models are compared with the recent
temperature and temperature-polarization WMAP data
using the publicly available likelihood code [34].

In addition to the CMB data we also consider the
constraints on the real-space power spectrum of galaxies
from the SLOAN galaxy redshift surveys using the data
and window functions of the analysis of [4]. We restrict
the analysis to a range of scales over which the fluctua-
tions are assumed to be in the linear regime (k <
0:2h
1 Mpc). When combining with the CMB data, we
marginalize over a bias b considered as an additional free
parameter.

We also include information from the Lyman-alpha
forest in the Sloan digital sky survey using the results
of the analysis of [5,35] which probes the amplitude of
linear fluctuations at very small scales. For this dataset,
small-scale power spectra are computed at high redshifts
and compared with the values presented in [35].

B. Results

In Fig. 2 we plot the likelihood contours in the c
 s
plane showing the 1, 2, and 3� contours. The top panel is
WMAP, middle WMAP � SLOAN and bottom panel
123521
WMAP � SLOAN�Ly
 �. As we can see there is a
strong correlation between the two parameters along the
c
 s direction and the inclusion of the SLOAN data does
not improve significantly the CMB constraints. However
adding the Lyman 
 � datasets breaks the degeneracy
and shrinks the likelihoods. As already noticed by [5],
-8



WMAP+SLOAN+Ly-α

FIG. 4 (color online). Likelihood contour plot in the plane
c
 �s� c=2� showing the 1, 2, and 3� contours from the
WMAP � SLOAN�Ly
� data. We recall that these parame-
ters are related to the physical inflaton potential parameters by
c � 
�m�ln�0�=�3H

2
I � and s� c=2 � m2�ln�0�=�3H

2
I �.

WMAP+SLOAN+Ly-α

WMAP+SLOAN

WMAP

FIG. 3 (color online). Likelihood contour plot in the n0 
 n00
plane showing the 1, 2, and 3� contours from the WMAP data
(top panel), WMAP � SLOAN (middle panel) and
WMAP � SLOAN�Ly
� (bottom panel).
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we find that the Lyman � data are able to restrict more
strongly the scale dependence of the spectral index and
therefore exclude the parameter space at large jcj; in
particular, at 68% we have sc < 0:0043.
123521
Focusing on the region (s� c > 0), we plot the like-
lihood contours in the 2�s
 c� � 1 vs 2sc plane in Fig. 3.
As we explained before, 2�s
 c� � 1 gives the value of
the spectral index n0, while 2sc � n00 gives the bend in
the spectrum. Note that due to the bound (35), the viable
negative running region is practically indistinguishable

from the n00 � 0 axis in our scale and therefore we do not
show it. The maximal negative running is in fact 
0:0015
at 95% C.L. and it does not basically change with the
different datasets. As we can see from the figure, the
WMAP data alone constrains n00 < 0:05 at 95% C.L.
Including the constraints from SLOAN and Ly 
 � lim-
its the amount of deviation from scale invariance to n00 <
0:024 at 95% C.L.

Finally, in Fig. 4 we plot the likelihood contours in the
c vs s� c=2 plane. As discussed previously, this variables
correspond to the physical parameters in the inflaton
potential rescaled by the inflationary scale 3H2

I . It is clear
from the graph that the data require a correlation between
the inflaton mass and the �-function for large c in order to
give a small n0 
 1. It is questionable if such correlation
corresponds to a fine-tuning, and in general depends on
the explicit realization of the model. In fact in the gauge
dominated case, we have already emphasized that there is
relatively large freedom, since the physical parameters
are more than the observables. For the Yukawa dominated
case the situation is more constraint, also because the
running is weaker and to be effective requires always
large couplings. In Fig. 1 are shown the three points in
the parameter space that we looked at in detail in Sec. C.
We see that WMAP � SLOAN datasets are not able to
-9
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exclude any of the models, but the inclusion of Ly 
 �
excludes the first model discussed at 99% C.L.

IV. CONCLUSIONS

The rather full analysis that we have described con-
firms the general picture indicated by previous analysis
[20,36]. The allowed region in the c vs s plane depicted in
Fig. 2 should be compared with the region shown in
Fig. 1 which approximately delineates the theoretically
disfavoured region, and also with the minimum value
jcj � 10
2 which is probably needed to generate enough
running of the mass even if we go from the Planck scale
to 100 GeV. Combining all of these, we see that if jcj is
significantly above the minimum value, only the version
of the model with c and s both positive is viable. In that
case, the spectral index has significant running which
will be detectable in the foreseeable future. On the other
hand, if jcj is really of order 10
2, all choices of the signs
of c and s are possible except maybe negative c with
positive s. Furthermore, if that extreme case can be
realized in a viable running-mass model the running of
n will be so small that it may never be detectable. The
data are now starting to squeeze the allowed region to
values jcj � 0:1, still away from the lower bound 10
2.
The smallness of jcj could be interpreted as a hint that the
123521
inflationary scale needs probably to be low, to make the
running from MP effective. Note anyway that HI values
of the order of 100 GeV, the expected soft SUSY breaking
masses in the true vacuum from gravity mediation, are
still acceptable, as demonstrated in the cases of the
simple models presented.

Looking at the observational situation in more detail,
our results show again that the CMB data can put very
strong constraints on the value of the spectral index at
large scales, n0 � 1� 2�s
 c�, but still allow a pretty
large scale dependence. Other information on the power
spectrum, like Lyman � data, are needed to reduce the
parameter space in the orthogonal direction. Even with
this inclusion, though, values of jcj of the order of 0.1 are
allowed and we have n00 � 0:037 at 99% C.L. Our allowed
region also looks still symmetric under reflection with
respect to the s� c � 0 line: this means that the present
data are not sensitive enough to distinguish the variation
of n0 that is predicted by the running-mass model.
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