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Detecting dark energy in orbit: The cosmological chameleon
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We show that the chameleon scalar field can drive the current phase of cosmic acceleration for a large
class of scalar potentials that are also consistent with local tests of gravity. These provide explicit
realizations of a quintessence model where the quintessence scalar field couples directly to baryons and
dark matter with gravitational strength. We analyze the cosmological evolution of the chameleon field
and show the existence of an attractor solution with the chameleon following the minimum of its
effective potential. For a wide range of initial conditions, spanning many orders of magnitude in initial
chameleon energy density, the attractor is reached before nucleosynthesis. Surprisingly, the range of
allowed initial conditions leading to a successful cosmology is wider than in normal quintessence. We
discuss applications to the cyclic model of the universe and show how the chameleon mechanism
weakens some of the constraints on cyclic potentials.
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I. INTRODUCTION

A host of observations concord with the existence of a
dark energy component with negative pressure, account-
ing for more than two thirds of the current energy budget.
The evidence comes, for instance, from measurements of
the cosmic microwave background temperature anisot-
ropy [1] and Type Ia supernovae [2]. While the data is
so far consistent with the dark fluid being a cosmological
constant, it is nevertheless interesting to consider the
possibility that near future observations will reveal that
w differs from �1.

Having w � �1 implies that a parameter of the effec-
tive Lagrangian, namely, the vacuum energy, is time-
dependent. It follows from general covariance and local-
ity that it must also be a function of space; in other words,
the vacuum energy is a field, assumed for simplicity to be
a fundamental scalar �. Scalar field models of dark
energy generally come under the label of quintessence
[3]. Of course, this argument assumes that gravity is
described by General Relativity (GR) for all relevant
scales, and it is conceivable that the observed acceleration
could result from a break down of GR on large scales [4–
6]. However, we focus on the former possibility.

Moreover, since w � �1 today, the vacuum energy
must have varied significantly over the last Hubble time
H�1

0 . This in turn requires � to have a tiny mass of order
H0 � 10�33 eV. Indeed, if the mass is much smaller than
H0, then the field evolution is overdamped and the corre-
sponding w is unmeasurably close to �1; similarly, if the
mass is much larger than H0, the field is rolling too
rapidly to cause cosmic acceleration. A natural question
then arises: if such a nearly massless field exists, why
have we not detected it in local tests of the Equivalence
Principle (EP) [7] and fifth force searches [8]? It is well-
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known that, in effective theories from string theory, such
scalars generally couple directly to matter with gravita-
tional strength, leading to unacceptably large violations
of the EP.

Recently, two of us (J. K. and A.W.) have proposed a
novel scenario [9] which offers a natural resolution to this
conflict. In this work they propose a scalar field which can
evolve on a Hubble time today and cause cosmic accel-
eration, while coupling to matter with gravitational
strength, in harmony with general expectations from
string theory. The basic idea is that the scalar field
acquires a mass which depends on the local background
matter density. On Earth, where the density is high, the
Compton wavelength of the field is sufficiently short to
satisfy all existing tests of gravity; in the solar system,
where the density is many orders of magnitude smaller,
the Compton wavelength is larger than the size of the
solar system; in the cosmos, where the density is tiny, the
field can have a mass of order H0 and cause cosmic
acceleration. Because its physical properties depend sen-
sitively on the environment, such a scalar field was
dubbed chameleon. While the idea of a density-dependent
mass term is not new [10–12], our work is novel in that
the scalar field can couple directly to baryons with gravi-
tational strength.

An important feature of the chameleon scenario is that
it makes unambiguous and testable predictions for near-
future tests of gravity in space. This is timely as three
satellite experiments (SEE [13], STEP [14] and GG [15])
are in the proposal stage, while a fourth one
(MICROSCOPE [16]) will be launched in 2007. In the
solar system, the chameleon is essentially a free field and
thus mediates a long-range force. This force is very weak
for large bodies, such as the Sun and the planets, therefore
leaving planetary orbits nearly unperturbed. This is be-
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FIG. 1. A typical scalar potential for the chameleon field.
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cause of the thin-shell effect, detailed in [9]. Intuitively,
for sufficiently large objects, only a thin shell just beneath
the surface contributes to the �-force on a test mass. This
breakdown of the superposition principle is a conse-
quence of the nonlinear self-interactions of �.

Typical test masses in the above satellite experiments,
however, do not have a thin-shell. Therefore, the extra
force is comparable to their gravitational interaction. The
chameleon model hence predicts that MICROSCOPE,
STEP and GG could measure violations of the EP
stronger than currently allowed by laboratory experi-
ments. Furthermore, the SEE project could measure an
effective Newton’s constant different by order unity from
that measured on Earth. Such outcomes would constitute
strong evidence for the existence of chameleons in our
Universe. Moreover, it is hoped that the real possibility of
such surprising results will strengthen the scientific case
for these missions.

In this paper, we discuss the cosmological history of a
universe with a chameleon field. We prove the existence of
an attractor solution, analogous to the tracker solution in
quintessence models, which consists of the chameleon
following the minimum of its effective potential. For a
wide range of initial conditions, spanning many orders of
magnitude in initial energy density for the scalar field,
the solution converges to the attractor. While following
the attractor, the energy density of the scalar field is
always subdominant to the matter and radiation, except
for when cosmic acceleration is triggered. The onset of
the acceleration phase depends on the details of the
potential.

We present a wide class of potentials for which accel-
eration occurs today; that is, for which the chameleon
plays the role of quintessence. In doing so, we take ad-
vantage of the intriguing fact, showed in [9], that the
largest value of M allowed by existing tests of gravity is
10�3 eV, which coincides with the energy scale of dark
energy. The constraint of M & 10�3 eV was derived for
the chameleon in [9] completely independently of any
cosmological consideration. It is therefore remarkable and
unexpected that the energy scale of dark energy emerges
from a study of local tests of gravity.

Therefore, a natural class of scalar potentials for our
purposes are of the form V��� � M4f��=M�, with M �
10�3 eV. That is, potentials that involve a single mass
parameter M, which we tune to 10�3 eV, as required by
observations. We stress that such a tuning is no better nor
worse than the usual tuning of the cosmological constant
or quintessence models.

The function f must satisfy only two broad require-
ments. Following [9], we assume that (i) it is of the run-
away form, and (ii) it diverges at some finite value of �,
which we take to be� � 0without loss of generality. (See
[17] for an example of a successful chameleon model
where neither of these conditions are satisfied.)
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Secondly, it must be flat and of order unity for today’s
value of the field, ensuring cosmic acceleration now. A
fiducial example is V��� � M4 exp�Mn=�n�, with n some
positive constant, which diverges at � � 0 and tends to
M4 for�� M. See Fig. 1. Notice that for pure power law
potentials running away to zero at infinity, present-day
cosmic acceleration with M � 10�3 eV cannot be ob-
tained. Keep in mind, however, that it is not necessary
for V to tend to a constant as �! 1, as is the case for
this particular choice of potential. For instance, the po-
tential could become negative for larger field values, as
illustrated in Fig. 2. Potentials of this form are of interest
because of their direct applicability to cyclic models of
the universe [18–23].

For potentials satisfying the above conditions, we show
that the chameleon joins the attractor before the present
epoch for a wide range of initial conditions. The resulting
cosmology is then shown to be consistent with current
observations. The most stringent constraint on initial
conditions comes from the time-variation of coupling
constants and masses since big bang nucleosynthesis
(BBN). Our analysis takes into account ‘‘kicks’’ due to
species becoming nonrelativistic in the radiation era. We
find that the chameleon must be at the minimum by the
time of BBN or else the electron kick would induce an
unacceptably large variation of particle masses. This re-
quires that the chameleon varies by less than 0:1 MPl over
the entire history of the universe. Translated in terms of
the initial fractional energy density in the chameleon,
��i�
� , this requires ��i�

� & 0:1, which is easily satisfied if
one assumes equipartition at reheating. In particular, we
-2
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FIG. 2. Scalar potential for cyclic models of the universe. In
this paper, we will only consider Region a).
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see that this restriction on initial conditions is actually
less restrictive than in normal quintessence [24].

While the cosmological evolution described below
somewhat overlaps with previous studies of models of
interacting dark energy and dark matter [10,25–27]
(henceforth DE-DM models), there are significant differ-
ences. The most important difference is that the chame-
leon not only couples to dark matter but also to baryons.
Thus the chameleon model is subject to tight constraints
from fifth force and EP experiments. These require that
the mass scale M in the potential be much smaller than
generally considered in DE-DM models. This in turn
results in weaker constraints from the cosmological evo-
lution of the scalar field. Secondly, the coupling between
the chameleon and matter fields is exponential (as in [26])
as opposed to linear (as in [25]). Thus, for small values of
the chameleon field, this leads to weaker constraints from
time-variation of masses and coupling. Thirdly, to our
knowledge the discussion of the attractor solution and the
approach to the attractor in terms of overshoot and under-
shoot solutions is new and parallels the corresponding
treatment for quintessence [24].

In Sec. II, we review the main ingredients of chame-
leon cosmology introduced in [9] and give a brief review
of how existing tests of gravity lead to the constraintM &

10�3 eV. In Sec. III, we focus on the cosmological evo-
lution of the field for the above class of potentials and
show the existence of an attractor solution. How the
attractor solution is approached for general initial con-
ditions is the subject of Sec. IV; as in usual quintessence,
we find two broad classes of solutions, so-called ‘‘over-
shoot’’ and ‘‘undershoot’’, corresponding, respectively, to
whether the field begins to the left or to the right of the
minimum of its effective potential.We derive in Sec.V the
range of initial conditions allowed by cosmological con-
straints and find that it spans many orders of magnitude in
initial energy density of the chameleon. It turns out that
the main constraint comes from the BBN bound on the
123518
time-variation of particle masses. The behavior of the
chameleon during inflation is considered in Sec. VI. We
investigate in Sec.VII whether the chameleon can account
for a time-varying fine-structure constant that has been
suggested recently [28]. In Sec. VIII we apply our results
to the cyclic model of the universe and show how the
chameleon mechanism greatly expands the class of po-
tentials suitable for cyclic cosmology.
II. REVIEW OF THE CHAMELEON MODEL

The action governing the dynamics of the chameleon
field � is of the general form

S �
Z
d4x

�������
�g

p
�
M2

Pl

2
R�

1

2
�@��2 � V���

�
�

Z
d4xLm� 

�i�
m ; g

�i�
���; (1)

where MPl � �8�G��1=2 is the reduced Planck mass, g is
the determinant of the metric g��, R is the Ricci scalar

and  �i�
m are various matter fields labeled by i. A key

ingredient of the model is the conformal coupling of �
with matter particles. More precisely, the excitations of
each matter field  �i�

m follow the geodesics of a metric g�i���
which is related to the Einstein-frame metric g�� by the
conformal rescaling

g�i��� � e2�i�=MPlg��; (2)

where �i are dimensionless constants [29]. In harmony
with general expectations from string theory, we assume
that the �i’s are of order unity and different for each
matter species. Varying the action with respect to �
yields the following Klein-Gordon equation

r2� � V;� �
X
i

�i
MPl

e4�i�=MPlg��
�i� T

�i�
��; (3)

where T�i�
�� � �2=

�����������
�g�i�

q
��Lm=�g

��
�i� is the stress-energy

tensor for the ith form of matter.
For relativistic degrees of freedom, it is generally as-

sumed that T�� � 0. This is not quite true however as the
trace receives two corrections which play an important
role in the evolution of the chameleon. First, in a cosmo-
logical context, each time a particle species becomes
nonrelativistic, the trace becomes significantly different
from zero for about one e-fold of expansion [11,30]. A
second contribution comes from the trace anomaly
[31,32]. Until Sec. IV we will ignore these two effects
and neglect the relativistic fluid contribution to Eq. (3).

For nonrelativistic matter with density ~�i, one can
make a perfect fluid approximation to obtain g��

�i� T
�i�
�� �

�~�i. Defined in this way, however, ~�i is not conserved in
Einstein-frame. Instead, it is more convenient to define a
matter density �i � ~�ie

3�i�=MPl which is independent of
-3
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FIG. 3. Chameleon effective potential for large and small
matter density �. This illustrates that, as � decreases, the
minimum shifts to larger values of � and the mass of small
fluctuations decreases. The solid curve is the sum of the con-
tribution from the actual potential V��� (dashed curve) and the
contribution due to the matter density (dotted curve).
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� and conserved in Einstein-frame. We therefore obtain

r2� � V;� 

X
i

�i
MPl

�ie�i�=MPl : (4)

The key realization [9–12] from Eq. (4) is that the
dynamics of� are not governed solely by V���, but rather
by an effective potential:

Veff��� � V��� 

X
i

�ie
�i�=MPl : (5)

If V is monotonically decreasing and �i > 0 (or, equiv-
alently, V��� monotonically increasing and �i < 0), this
effective potential has a minimum at �min, satisfying

V;���min� 

X
i

�i
MPl

�ie
�i�min=MPl � 0: (6)

Meanwhile, the mass of small fluctuations about �min is

m2 � Veff
;����min� � V;����min� 


X
i

�2
i

M2
Pl

�ie
�i�min=MPl :

(7)

(See [33] for a stability analysis of the model.)
The self-interaction potential V��� is thought to arise

from nonperturbative effects and is assumed to involve a
single mass scale M:

V��� � M4f��=M�; (8)

where f is a dimensionless function. As in the original
chameleon papers [9], we impose that the potential (i)
satisfy the tracker condition:

� �
V;��V

V2
;�

> 1; (9)

and (ii) diverge at some finite value of �, denoted by� �
�?. See Fig. 1. In Ref. [9] it was believed that these were
necessary for consistency with current tests of gravity.
See [17], however, for an example of a successful chame-
leon model where neither (i) nor (ii) holds. Thus the
function f satisfies

f00f

f02
> 1; f ! 1 as x! x?: (10)

For most of the paper, we shall assume �? � 0 without
loss of generality. For applications to cyclic cosmology in
Sec. VIII, however, we will need to choose �? � MPl.

An essential element of the model is the fact that Veff

depends explicitly on the matter density �i, as seen in
Eq. (5). In particular, this implies that both �min and m
are also functions of �i. As illustrated in Fig. 3, for a
general potential satisfying Eqs. (10), the mass is in fact
an increasing function of �: the larger the density, the
higher the mass. Thus, even though the chameleon medi-
ates a composition-dependent fifth force of gravitational
strength, it can satisfy the constraints from laboratory
123518
tests of the EP and fifth force by acquiring a sufficiently
large mass locally. This is reviewed below.

A. Constraint from fifth force and EP experiments

The tightest constraint on the model comes from
searches for a fifth force in the laboratory [8]. The poten-
tial energy U associated with fifth force interactions is
generally parametrized by a Yukawa form:

U�r� � �!GM1M2
e�r="

r
; (11)

whereM1 andM2 are the masses of two test particles, r is
their separation, ! is the strength of the interaction, and "
is the range. Experiments have found no evidence for a
fifth force for " * 100 �m [34], assuming !�O�1�.
Thus, in order for the chameleon model to be consistent
with this result, we must impose that the range of the
chameleon-interaction in the atmosphere, m�1

atm, be less
than 100 �m. Actually, this ignores the fact that fifth
force experiments are performed in vacuum, where the
density is much less than atmospheric density. Carefully
taking into account the presence of the vacuum chamber
actually results in a somewhat weaker bound of m�1

atm &

1 mm. In [9] it was shown that, for the inverse power-law
potential V��� � M4
n=����?�

n with n and � of order
unity, this constraint onmatm translates into the following
bound on M:

M & 10�3 eV: (12)

See the Appendix for details. This condition not only
ensures that the chameleon is consistent with fifth force
searches, but it is also sufficient to satisfy all known local
tests of GR, such as EP violation searches, Lunar Laser
Ranging measurements, tests of post-Newtonian gravity
-4
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and constraints on the spatial variation of coupling con-
stants [9].

It is remarkable that the upper bound on M in Eq. (12)
exactly coincides with the energy scale associated with
the dark energy today. This comes as a complete surprise
since the derivation of Eq. (12) is based on local tests of
gravity and is completely independent of cosmic accel-
eration.We will make use of this intriguing coincidence in
turning the chameleon into a quintessence field driving
the current phase of cosmic acceleration.

B. Fiducial potential

Unless stated otherwise, we henceforth take �? � 0.
Since we are interested in applications to quintessence, as
our fiducial potential we choose

V��� � M4 exp�Mn=�n� (13)

with M � 10�3eV. In the limit � * M, this reduces to
V��� � M4 
M4
n=�n. Since the constant term M4 is
only relevant dynamically on cosmological scales today,
it can be dropped for the analysis of the tests of gravity in
the laboratory and solar system. Thus Eq. (12) derived in
[9] for the inverse power-law potential is virtually iden-
tical for our fiducial potential and hence satisfied for
M � 10�3 eV.

It is illustrative to apply some of the general expres-
sions above to our fiducial potential. For instance, since
V;� � �n��n�1MnV in this case, the field value at the
minimum (Eq. (6)) can be rewritten in a form that will be
useful for later applications

�
M
�min

�
n
1

�
�
n
M
MPl

�me��min=MPl

V��min�
; (14)

where we have assumed a single matter component with
density �m and coupling�, for simplicity. Meanwhile, the
mass of excitations about the minimum (Eq. (7)) is given,
once again for a single matter component, by

m2 �
��me

��=MPl

MMPl

�
n
�
M
�

�
n
1


 �n
 1�
M
�


 �
M
MPl

�
;

(15)

where we have used Eq. (6).
The field value at the minimum today satisfies ��0�

min �
MPl. This is most easily seen by substituting
�me

��min=MPl � V��min� �M4 in Eq. (14). Assuming �
and n are of order unity, we find

��0�
min �

�
M
MPl

�
n=�n
1�

MPl � MPl: (16)

Furthermore, since �min is an increasing function of
time, the inequality �min � MPl holds for all relevant
times, from the big bang until today. It follows that the
123518
mass in Eq. (15) can be approximated by

m2 � V;����min� �
��me

��=MPl

�MPl

�
1
 n
 n

�
M
�

�
n
�
:

(17)

Finally, it will prove useful to determine the critical
matter density �crit for which �min is of order M. That is,
for �� �crit, one has �min � M, and the fiducial poten-
tial can be approximated as V��� � M4 
M4
n=�n.
Substituting �min �M � MPl and V��min� �M4 in
Eq. (14), and solving for �crit, we find

�crit �

�
MPl

M

�
nM4

�
: (18)

For � and n of order unity and M � 10�3 eV, we find
�crit � 10�89 M4

Pl, corresponding in cosmological terms
to a temperature of Tcrit � 10 MeV and �m � 10�6,
where �m � �m exp���=MPl�=3H

2M2
Pl is the fractional

energy density in nonrelativistic (matter) degrees of
freedom.

III. COSMOLOGICAL EVOLUTION WITH A
CHAMELEON FIELD

In a homogeneous, isotropic and spatially-flat universe,
described by the Friedmann-Lemaı̂tre-Robertson-Walker
metric ds2 � �dt2 
 a2�t�d~x2, Eq. (4) reduces to

��
 3H _� � �V;� �
�
MPl

e��=MPl�m; (19)

where dots represent derivatives with respect to cosmo-
logical time t. For the moment we neglect the effect
relativistic degrees of freedom have on the trace of the
stress tensor. This will be relaxed in Sec. IV. The Hubble
parameter H is determined as usual by the Friedmann
equation

3H2M2
Pl �

1

2
_�2 
 V��� 
 �me

��=MPl 
 �r; (20)

where �m and �r denote, respectively, the energy density
in matter and radiation. Both �m and �r are conserved in
Einstein-frame:

_�m
�m

� �3H
_�r
�r

� �4H: (21)

Note that we have simplified the analysis by focusing on a
single matter component. It is straightforward to allow for
different matter species having different �i, a general-
ization which does not substantially alter the results
described below.

A. Attractor solution

We next show the existence of an attractor solution for
the chameleon, consisting of the field following the
minimum of the effective potential, � � �min�t�.
-5
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Suppose that the field is initially at the minimum. An
instant later, due to the redshifting of the matter density,
the effective minimum will have moved to a slightly
larger field value. Clearly, the characteristic time scale
for this evolution is approximately a Hubble time, H�1.
Meanwhile, the response time for the field is given by
m�1, the period of oscillations about the minimum. From
Eq. (17), the ratio of these two time scales is then

m2

H2
� 3��m

MPl

�

�
1
 n
 n

�
M
�

�
n
�
: (22)

If m� H, then the response time, m�1, of the field is
much shorter than the characteristic timeH�1 over which
the effective potential varies. In this case the chameleon
adjusts itself and follows the minimum adiabatically as
the latter evolves to larger field values. If, however, m�
H, the response time is much larger than H�1, and the
field cannot follow the minimum. Instead, the chameleon
starts to lag behind the minimum.

Below we show that, for n and � of order unity and
M � 10�3 eV, we have m� H from the big bang until
today. Thus, if the field is initially at the minimum, it will
follow the minimum as the latter evolves with time.
Moreover, this solution is stable because if the field is
slightly perturbed away from the minimum, it will os-
cillate and quickly settle back to the minimum. In other
words, the solution � � �min�t� is a dynamical attractor.

It is useful to compare this with usual quintessence,
corresponding to setting � � 0. Recall that quintessence
also has an attractor called the tracker solution [24], � �
�track�t�, which is defined by the condition

m2

H2
� 1: (23)

That is, this corresponds to the field rolling down the
potential at such a rate that its mass is always of order the
Hubble constant. Our chameleon solution, � � �min�t�,
however, satisfies m� H. Since m is a monotonically
decreasing function of �, it follows that

�track�t�>�min�t� (24)

at any given time t, i.e., at any fixed value of H. In other
words, if� were zero (usual quintessence), the field would
be driven to�track. For nonzero �, however, the dynamics
of � are governed by an effective potential with a mini-
mum at �min <�track, thus preventing the field from
reaching �track.

It remains to show that m� H from the big bang (or
inflationary reheating) until the present epoch. While this
is easily done numerically, it is instructive to provide
analytical arguments by studying Eq. (22) in two differ-
ent regimes: � & M and �� M.
(i) �
 & M: In this limit, Eq. (22) implies

m2

H2
> 3�n

MPl

M
�m: (25)
123518-6
During the radiation and matter-dominated era,
�m is a monotonically-increasing function of
time. In particular, at the time when the universe
has Planckian temperature (the worst case scenario
for this argument), one has �m � 10�28. Thus, for
all relevant times, we have �m * 10�28. For M �
10�3 eV, Eq. (25) therefore implies

m2

H2
> 3�n � 102; (26)

which is much larger than unity for reasonable
values of � and n.
(ii) �
� M: In this regime, Eq. (22) reduces to

m2

H2
� 3��n
 1�

M
�
MPl

M
�m: (27)

Moreover, since the potential in Eq. (13) can be
approximated as V��� � M4 in this limit, Eq. (14)
can be rewritten as�

M
�

�
n
1

�
�
n
M
MPl

�m
3H2M2

Pl

M4 : (28)

Substituting this into Eq. (27), we obtain

m2

H2
�

��
MPl

M

�
n
�n
2
m

3H2M2
Pl

M4

�
1=n
1

; (29)

where we have neglected a prefactor of order unity.
Now 3H2M2

Pl is an increasing function of redshift
and, given our choice of M � 10�3 eV, is of order
M4 today. Hence, from the big bang until today,

m2

H2
*

��
MPl

M

�
n
�n
2
m

�
1=n
1

: (30)

Recall from the end of Sec. II B that �m � 10�6

when �min �M. Since �m is an increasing func-
tion of time in the radiation and matter-dominated
era, it follows that �m � 10�6 in the regime ��
M. Moreover, substituting M � 10�3 eV �
10�30 MPl, we obtain

m2

H2
� 1012�2n�1�=�n
1�; (31)

which is greater than unity for n * O�1�. This
proves that m>H in the regime �� M as well.
Thus we have shown that � � �min�t� is an attractor
from the big bang until today. What will happen to the
chameleon in the future? Currently, since m� H, the
field is still at the minimum of the effective potential,
while the universe undergoes cosmic acceleration. Very
soon, however, the energy density becomes completely
dominated by the vacuum energy (V � M4), and the
cosmic evolution is driven towards de Sitter. In the pro-
cess, the matter energy density redshifts away at an ex-
ponential rate. Eventually, it is so dilute that one reaches a
point where m�H, as seen from Eq. (22). When this
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happens, the field can no longer follow the minimum. The
dynamics of � are then determined to a good approxi-
mation solely by its potential, V���, and the evolution of
the chameleon converges to that of normal quintessence.

B. Dynamics of � along the attractor

Having shown that � � �min�t� is a dynamical attrac-
tor until the present epoch, we next would like to argue
that the field is slow-rolling as it follows the attractor and
derive an expression for its equation of state.

It is straightforward to show that _�2=2 � V as the
chameleon follows the minimum. Recall from Eq. (6)
that �min satisfies �V���min� � ��m exp���min=MPl�

=MPl. Taking time derivatives on both sides and using
the fact, shown in Eq. (17), that m2 � V;�� �

�V;��=MPl, we find

_� min � �
3HV;�
V;��

: (32)

It therefore follows that

_�2
min

2V��min�
�

9

2

H2

V;��

� V2
;�

V;��V

�
�

9

2

H2

m2

1

�
; (33)

where in the last step we have once again used Eq. (17)
and substituted � � V;��V=V

2
;� (see Eq. (9)). If we recall

from Sec. III A that m2 � H2 and from Eq. (9) that �>
1, we obtain

_�2
min

2V��min�
� 1; (34)

which proves that the field is slow-rolling along the
attractor.

Next we derive an expression for the equation of state
of � as it follows the minimum. Since � is a nonmini-
mally coupled scalar, however, this is not given by the
usual expression w � � _�2 � 2V�=� _�2 
 2V�. Instead, we
must compute w directly from the time evolution of �� �
_�2=2
 V, the energy density in�. Equation (34) implies

that �� � V at the minimum, and therefore

_��
��

�
V;�
V

_�min � �3H��1; (35)

where in the last step we have substituted Eqs. (9) and
(32). In analogy with the usual energy conservation equa-
tion, we can define an effective equation of state, weff , for
� as

_��
��

� �3H�1
 weff�; (36)

from which we can read off

weff � �1
 ��1: (37)
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Equation (37) is the main result of this Section. It holds
for a large class of runaway potentials satisfying
Eqs. (10). Indeed, the only extra assumption in deriving
this result is that�min � MPl for all relevant times, which
implies m2 � V;����min�.

Applying this result to our fiducial potential, V��� �
M4 exp�Mn=�n�, only a few steps of algebra are neces-
sary to show that

���min� � 1

�
1


1

n

��
�min

M

�
n
: (38)

Substituting this in Eq. (37), we find that weff � 0 for
�min � M, while weff � �1 for �min � M. Recall from
the discussion at the end of Sec. II B that �min �M when
the universe has temperature of order T � 10 MeV. Thus,
for this choice of potential, we have shown that the
chameleon behaves like dust (weff � 0) for T *

10 MeV, and like vacuum energy (weff � �1) for
T & 10 MeV.

Coming back to the case of general V���, it is instruc-
tive to compare Eq. (37) with the usual expression for the
equation of state, wusual � � _�2 � 2V�=� _�2 
 2V�. From
Eq. (33), we obtain

wusual � �1

_�2

V
� �1
 9

H2

m2

1

�
: (39)

Since the second term is down by a factor of H2=m2 � 1
compared to its counterpart in Eq. (37), it follows that
wusual is much closer to �1 than weff . But, as argued
above, it is really weff that controls the time-evolution
of the chameleon’s energy density.

We can also compare Eq. (37) with the corresponding
expression for the equation of state of normal quintes-
sence. Along the tracker solution, the equation of state wQ
of the quintessence field is [24]

wQ �
wB � 2��� 1�

1
 2��� 1�
; (40)

where wB is the equation for the background perfect fluid
(i.e.,wB � 1=3 during the radiation-dominated era;wB �
0 during the matter-dominated era). In contrast with wQ,
the chameleon’s effective equation of state is independent
of wB. This is because the location of the minimum in
chameleon cosmology is nearly independent of the energy
density in relativistic degrees of freedom, since these
have a nearly traceless stress-energy tensor and therefore
contribute negligibly to the right-hand side of Eq. (3).
Consequently, the evolution of the chameleon along the
attractor is insensitive to whether or not the matter den-
sity dominates over radiation.
IV. APPROACHING THE ATTRACTOR

In this Section we describe how the attractor solution is
approached for general initial conditions. For simplicity
-7



TABLE I. List of particle species, in order of decreasing
mass threshold, that contribute to kicking the chameleon
towards the minimum.

Particle gi=g?

t 12=106:75
Z 3=95:25
W� 6=92:25
b 12=86:25
+ 4=75:75
c 12=72:25
� 3=17:25
� 4=14:25
e 4=10:75
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we assume the kinetic energy of the field is initially zero,
although it is trivial to generalize the discussion to the
case of nonzero kinetic energy. Moreover, we focus on the
case where the energy density in � is initially less than
the energy density in matter and radiation, as expected
from equipartition at reheating. More pragmatically, how-
ever, we will see in Sec.V that this is required in order for
the cosmology to be consistent with the measured abun-
dance of light elements.

So let us start the field from some arbitrary value �i at
time ti. The effective potential at that time displays a
minimum at �min�ti�, with �min determined by Eq. (6). If
the field is released at the minimum, �i � �min�ti�, then
the field just keeps following the minimum until today, as
argued in Sec. III A. Similarly, if the field starts very near
�min�ti�, it oscillates and quickly settles to the minimum.

More generally we wish to consider the limiting cases
where �i � �min�ti� and �i � �min�ti�. As it will soon
become clear, and to make a parallel with the analogous
discussion in usual quintessence, the corresponding solu-
tions will be referred to as overshoot and undershoot,
respectively.

A. Undershooting

In this case �i � �min�ti�, the V;� source term can be
neglected, and the equation for � reduces to

��
 3H _� �
�
MPl

T��; (41)

where we have reintroduced the trace of the stress tensor.
If the trace were negligibly small for relativistic degrees
of freedom, then one would have T�� � ��m, where �m is
the nonrelativistic matter density. But then, during the
radiation-dominated era, the latter would be utterly neg-
ligible compared to the friction term, 3H _�. Thus the field
would be overdamped and would remain essentially fro-
zen at its initial value �i.

Fortunately, however, the trace is not always small for a
realistic relativistic fluid. As the universe expands and
cools, each massive particles species successively be-
comes nonrelativistic whenever m� T. When this hap-
pens, the trace becomes nonzero for about one e-fold of
expansion, thus driving the field a bit closer to the mini-
mum [30]. To see this explicity, we follow [11,30] and note
that each component, labeled by i, of the relativistic
plasma contributes

T��i�� ��
45

�4H
2M2

Pl

gi
g?�T�

+�mi=T�; (42)

where g?�T� �
P

bosonsg
boson
i �Ti=T�

4 
 �7=8��P
fermionsg

fermion
i �Ti=T�

4 is the usual expression for the
effective number of relativistic degrees of freedom, while
gi and Ti are the number of degrees of freedom and
temperature of the ith species, respectively. The function
+ is defined by
123518
+�x� � x2
Z 1

x
du

����������������
u2 � x2

p

eu � 1
; (43)

where the � sign is for fermions and bosons, respectively.
It is negligibly small both for x� 1 and x� 1, but
becomes of order unity when x�O�1�.

Integrating Eq. (41) numerically, one finds that the total
displacement in � due to the source term in Eq. (42) is
approximately given by

�&��i � ��
gi

g?�mi�

7=8
1

� �
MPl; (44)

where the upper and lower numerical coefficients are for
fermions and bosons, respectively, and g?�mi� is the
effective number of relativistic degrees of freedom when
T � mi. This can also be derived analytically by approx-
imating +�x� as a �-function source in Eq. (42), as shown
in the Appendix A). Thus, each species, whenever it
becomes nonrelativistic, effectively gives a ‘‘kick’’ to
the chameleon, driving the latter closer to the minimum
of the effective potential.

We can calculate the maximal displacement, �&��tot,
by summing over all relevant massive particle species. In
doing so, we only include particles that become nonrela-
tivistic at a much lower temperature scale than that of the
phase transition through which they acquired a mass. See
Table I for a list of the relevant particles and correspond-
ing gi’s. We will see below that big bang nucleosynthesis
(BBN) constrains the chameleon to be at the minimum by
the onset of nucleosynthesis. This will be the case if
��i ���BBN�

min � & j�&��totj, where ��BBN�
min is the location

of the minimum at BBN. Hence, in doing the sum, we
must neglect the electron contribution since its mass
threshold is too close to the temperature during BBN ( �
1 MeV). With this proviso, we can substitute the results of
Table I in Eq. (44) and obtain

�&��tot � ��MPl: (45)

Thus, for ��O�1�, the cumulative effect of the kicks is
-8
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to push the field a distance of order MPl towards the
minimum.

The results of numerical integration are shown in Fig. 4
for �i � 2MPl, where we compare the solution with and
without the kicks described above. Because of numerical
limitations, we were restricted to choosing �i * MPl

only. For the solution without kicks, the chameleon re-
mains frozen at its initial value throughout the radiation-
dominated epoch. For the solution including kicks, how-
ever, it is pushed to smaller field values as various particle
species successively become nonrelativistic. It is seen that
the total displacement from z � 1020 to z � 109 (redshift
of BBN) is indeed of order �MPl, consistent with
Eq. (45).

As we will see later, the particular solution shown in
Fig. 4 is ruled out by BBN constraints since the field is not
at the minimum by the onset of BBN. This is because
numerical limitations forced us to choose �i * MPl, a
range of initial values larger than the total displacement
given in Eq. (45). Thus, in this case, the field begins so far
away from the minimum that the sequence of kicks is
insufficient to bring it in the vicinity of the minimum by
the onset of BBN. Even though this particular solution is
ruled out, a few instructive comments can be made. After
the electron has become nonrelativistic (z � 109), the
chameleon receives no further kicks and thus is essen-
tially stuck at some particular value. It remains frozen
there until matter-radiation equality (z � 104). At that
1 10000 1e+08 1e+12 1e+16 1e+20

1+z

0

0.5

1

1.5

2

2.5

 φ
  /

 M
 P

l

Solution including kicks
Solution neglecting kicks

FIG. 4. Evolution of the chameleon field � as a function of
1
 z. In this example the potential is V��� � M6=�2, � � 1
and M � 10 MeV, the latter being larger than the required
M � 10�3 eV due to numerical limitations. The initial con-
ditions for the field are �i � 2MPl and _�i � 0 at z � 1020. The
dashed line presents the case in which the contribution of
particles which become nonrelativistic is neglected. The solid
line includes the contribution of the particles in Table I to T�� .
Since �i * �MPl in this case, the field does not reach the
minimum by the onset of BBN (z � 109). As explained in
the text, this solution is therefore ruled out by BBN constraints
on time-variation of particle masses (see Sec. V).

123518
time, one has H2M2
Pl � �m � T�� , and the driving term

in Eq. (41) is then comparable in magnitude with the
friction term. Thus the field begins to roll towards the
minimum, undergoes large anharmonic oscillations, and
eventually converges to the minimum. These oscillations
will be described in more detail in Sec. IV C.

Had the numerics allowed us to probe the regime �i &

MPl, the solution would initially look similar to that of
Fig. 4, with each kick bringing the field closer to the
minimum. Eventually, however, one of the kicks pushes
the field sufficiently close to the minimum. The chame-
leon then starts oscillating and quickly settles to the
minimum. Subsequent kicks generate oscillations about
the minimum which are rapidly damped by the expansion
of the universe. In particular, for the case of the electron
contribution which kicks in during BBN, these oscilla-
tions are sufficiently small in amplitude to obey BBN
constraints on time-variation of particle masses. This is
discussed in more detail in the Appendix.

To summarize, if �i * �MPl, the chameleon is ini-
tially so far from the minimum of the effective potential
that the sequence of kicks is insufficient to push it in the
vicinity of the minimum. In particular, the field is still
away from the minimum by the onset of BBN, and, as we
will see in Sec. V, this solution is ruled out by BBN
constraints on time-variation of particle masses. If �i &

�MPl, then the kicks eventually push the chameleon near
the minimum. At that point, the field oscillates and
quickly settles down to the minimum. In particular, it is
at the minimum by the onset of BBN, and this solution is
consistent with BBN constraints, as explained in Sec. V.

We conclude by noting that another potentially impor-
tant contribution to T�� during the radiation-dominated
era is from the trace anomaly. It was shown in [31] (see
also [32]) that the effective equation of state for a plasma
of an SU(Nc) with coupling g and Nf flavors is given by

1� 3w �
5

6�2

�
g2

4�

�
2 �Nc 


5
4Nf��

11
3 Nc �

2
3Nf�

2
 7
2NcNf=�N

2
c � 1�


O�g5�:

(46)

For QCD with Nc � 3 and Nf � 6, the above is of order
10�3 for energies above 100 GeV (i.e., in the perturbative
regime of QCD). This is too small to yield a significant
displacement for the chameleon. However, larger gauge
groups and Nf could result in an important driving term
near the unification scale [32], thereby improving on
Eq. (45). For the purpose of this paper, however, we
take a conservative approach and restrict ourselves to
Standard Model degrees of freedom.

B. Overshooting

Since �i � �min�ti�, in this case it is the �m source
term that is negligible in Eq. (19). Thus the equation for�
can be approximated by
-9
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��
 3H _� � �V;�; (47)

which describes the evolution of a minimally-coupled
scalar field. Once again, the dynamics are governed by
a friction force, 3H _�, and a driving force, �V;�.
However, the driving term initially dominates over the
friction term in this case. To see this, note that �i �
�min�ti� implies V;����i� � m2

i , where m2
i is the mass of

small fluctuations about �min�ti�. Moreover, we have ar-
gued in Sec. III A that m2 � H2 for all relevant times,
therefore V;����i� � H2

i , where Hi is the initial value of
the Hubble parameter. In other words, the field is under-
damped, and its evolution is essentially that of a free field.

Thus very quickly its energy becomes kinetic-
dominated, _�2 � V. Since �i is much smaller than
�min, the field then rolls past the minimum and thus
overshoots. It keeps on rolling until its kinetic energy
has sufficiently redshifted so that the Hubble damping
term becomes important. Then the field essentially comes
to a halt at some value �stop >�min, which we can
estimate as follows. Since the energy in � is kinetic-
dominated as it rolls, we have _�� a�3. Moreover, for
the range of initial conditions relevant to this discussion,
we may assume the universe is radiation-dominated, and
therefore a� t1=2. Combining these two facts, a little
algebra shows that

a
d�
da

�
�����������
6��i�

�

q �
ai
a

�
MPl; (48)

where ��i�
� and ai are the initial fractional energy density

and initial value of the scale factor, respectively. With
initial condition � � �i at a � ai, this integrates to

��a� � �i 

�����������
6��i�

�

q
MPl

�
1�

ai
a

�
; (49)

which gives �! �stop in the limit a� ai, where

�stop � �i 

�����������
6��i�

�

q
MPl: (50)

This is precisely what one finds for the overshoot solution
in usual quintessence (e.g., see Eq. (11) of [24]), which is
not surprising since the nonminimal coupling of the
chameleon is irrelevant in the above derivation. Once
the chameleon reaches �stop, the solution is then exactly
as in the undershoot case above, with �i replaced by
�stop.

C. Converging to the minimum

When the field reaches the vicinity of the minimum, it
begins oscillating and eventually converges to the mini-
mum. In this Section, we study these oscillations and the
rate of convergence. To proceed analytically, we assume
that the linear approximation is valid so the oscillations
are harmonic. Strictly speaking, this of course only holds
123518
when the field is sufficiently close to the minimum.
Nevertheless, we will find numerically that the range of
validity is actually much wider and applies even when the
oscillations are apparently anharmonic. Moreover, we
neglect the kinetic energy from the last kick that drove
the field in the vicinity of the minimum.

In the linear approximation, the effective potential is
given by

Veff �
1

2
m2�t����t� ��min�

2; (51)

where we have dropped the vacuum energy term, which is
completely irrelevant for the present discussion.
Meanwhile the total energy density in � is well approxi-
mated by

�� �
1

2
� _�� _�min�

2 

1

2
m2�t����t� ��min�

2: (52)

Note that both �min and m are functions of time, a fact
that will be important in the discussion below. Since the
motion is assumed harmonic, averaging over a few oscil-
lations gives

�� �
1

2
m2�t�< ���t� ��min�

2 > : (53)

Since m� H, the problem is analogous to a pendulum
which is slowly lengthened [35]. It is well-known that in
this adiabatic approximation the total oscillator number,

N �
��a3

m�t�
; (54)

is conserved. Substituting Eq. (53), it follows that

m�t�< ���t� ��min�
2 >�a�3: (55)

See [36] and the Appendix for alternative derivations.
If m were constant, Eq. (55) would imply that the

energy density in the oscillations redshifts like dust,
which is not surprising. In the chameleon model, how-
ever, this quantity is time-dependent. Recall from
Eq. (17) that m � V1=2

;��, and thus

_m
m

�
1

2

V;���
V;��

_�min � �
3H
2

V;���V;�
V2
;��

; (56)

where in the last step we have substituted Eq. (32). For the
inverse power-law potential, V ���n, this reduces to

_m
m

� �
3H
2

n
 2

n
 1
; (57)

from which we conclude that

m� a�3�n
2�=2�n
1�: (58)

Substituting this in Eq. (55), we obtain

<����min�t��2 >1=2 �a�3n=4�n
1�: (59)
-10
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It is worth mentioning that the time-dependence of
<����min�

2> is independent of M. The parameter M
only enters implicitly in that �min at any fixed time
depends on the choice of M. Thus, for fixed �i, the
difference <����min�

2> is initially larger for smaller
M, and therefore it takes longer for� to converge to�min.

The above results have been checked numerically, as
shown in Fig. 5. The dotted line has the slope predicted by
Eq. (59). We see that the latter is a good fit throughout the
oscillatory regime, even when the oscillations appear to
be anharmonic.

Finally, we note in passing that Eqs. (53), (58), and
(59), together imply

�� � a�3�3n
4�=2�n
1�: (60)

For any n > 0, we see that the energy density in the
oscillations redshifts faster than radiation. Therefore,
the chameleon does not suffer from the old moduli
problem.
V. CONSTRAINTS ON INITIAL CONDITIONS

Next we use the results of the previous section to
determine what subset of initial conditions gives a cos-
mology consistent with current observations. As derived
in Sec. IV (see Eq. (45)), if the chameleon starts at, or
overshoots to � * �MPl, then the field will not be at the
minimum of the effective potential by the beginning of
BBN. We now argue that this case is ruled out by BBN
constraints on time-variation of particle masses.

Because of the conformal coupling in Eq. (2), a con-
stant mass scale m�i� in the matter-frame is related to a
�-dependent mass scale m��� in Einstein-frame by the
rescaling m��� � e�i�=MPlm�i�. Thus variations in � lead
to variations in the various masses:
1000 10000 1e+05 1e+06 1e+07
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0.001

0.01

<
 (

φ−
φ m

in
)2 >
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FIG. 5. The root mean square quantity <����min�
2>1=2

plotted as a function of redshift for the undershoot solution
with �i � 10�2MPl and neglecting kicks. The potential is as in
the previous two figures. The dotted line is the slope predicted
by Eq. (59).

123518








&mm








� �

MPl
j&�j: (61)

Nucleosynthesis constrains the variation in m from the
time of nucleosynthesis until today to be less than 10% or
so. Since the value of � at the minimum today is much
less than MPl, this constrains �BBN, the value assumed by
� at BBN, to satisfy

�BBN & 0:1 ��1MPl: (62)

Evidently, if the field starts at, or overshoots to, � *

�MPl, then it will not yet be at the minimum by the onset
of BBN, assuming ��O�1�. In this case, �BBN violates
the above bound.

Thus, for the undershoot and overshoot cases, we have
the respective constraints �i & �MPl and �stop & �MPl.
Using Eq. (50), the latter translates in a bound on the
initial fractional energy density in the chameleon:

��i�
� & 1=6; (63)

where we have neglected �i and assumed ��O�1�. This
is the main result of this Section. Remarkably, this is a
much weaker bound than in normal quintessence, where
��i�
� is required by BBN to be less than 10�2. One would

have expected the opposite since, after all, the chameleon
couples directly to matter whereas normal quintessence
does not. But, as shown above, it is precisely this direct
coupling that pushes the field more effectively towards
the attractor solution, through a sequence of kicks,
thereby resulting in a weaker constraint. The above upper
bound on ��i�

� allows for a range of initial scalar field
energy density spanning many orders or magnitude and
consistent with equipartition of energy at reheating.

Equation (63) ensures that the field is at the minimum
from the onset of BBN until the present epoch. In the rest
of the Section, we show that it is also a sufficient condi-
tion to satisfy all current cosmological constraints and
thus to obtain a successful cosmology.

A. Cosmic microwave background anisotropy

A potentially important effect of the chameleon on the
cosmic microwave background (CMB) is the modification
of the distance to the last scattering surface. Indeed,
Eq. (61) implies, in particular, that the electron mass
varies by 







&me

me









� �
MPl

���0�
min ���rec�

min �; (64)

where ��0�
min and ��rec�

min are the field values at the minimum
today and at recombination, respectively. Such a variation
in the electron mass modifies the binding energy of
hydrogen and thus changes the redshift of recombination,
zrec, by
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&zrec
zrec









� �
MPl

���0�
min ���rec�

min �: (65)

The Wilkinson Microwave Anisotropy Probe (WMAP)
experiment constrains zrec to within 0.1% or so. From
Eqs. (14) and (16), we find that ��0�

min � ��rec�
min and

��0�
min=MPl � �M=MPl�

n=�n
1�, which trivially satisfies the
WMAP bound. Thus the distance to last scattering is
virtually identical to that in normal quintessence.

The other effects of the chameleon on the CMB are the
backreaction of its energy density and its influence on the
growth of perturbations. The former is trivially satisfied.
Indeed, for temperatures less than 10 MeV (z & 1010), the
energy density in � behaves effectively like a (small)
cosmological constant, as shown in Sec. III B. We now
turn our attention to the linear evolution of density per-
turbations. The full nonlinear analysis requires numerical
work which lies beyond the scope of the present paper.

B. Density perturbations and large scale structure

We study perturbations in the synchroneous gauge,
where the perturbed line element has the form

ds2 � a2�+���d+2 
 ��ij 
 hij�dxidxj�: (66)

Throughout this Section, we use conformal time + rather
than cosmic time. The perturbation equations have been
discussed in many papers (see, e.g., [37] and references
therein), so we simply state them here for pressureless
dust and the chameleon field. We follow the literature and
write the equations in Einstein frame.

The evolution equations for the dark matter density
contrast, �c � ���me��=MPl�=�me��=MPl , and the diver-
gence of the velocity field of the dark matter fluid, 5c �
r � ~v, are, respectively, given by

�0c � �

�
5c 


h0

2

�



�
MPl

����0; (67)

50c � �aH5c 
 �k2���
�
MPl

�05c; (68)

where primes denote derivatives with respect to +, and
h � �ijhij is the trace of hij. For the latter, Einstein’s
equations give

h00 
 aHh0 � �
a2�c
M2

Pl

�c: (69)

Meanwhile, the perturbed Klein-Gordon equation for the
chameleon reads

����00 
 2aH����0


�k2 
 a2V;�����

1

2
h0�0 � �

�
MPl

a2�c�c: (70)

We can safely ignore terms proportional to �0 since the
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field is slow-rolling along the attractor, as shown earlier.
Then, taking the time-derivative of Eq. (67) and using
Eqs. (68)–(70), we obtain the following equation for �c:

�00c 
 aH�0
c �

3

2
a2H2

�
1


2�2

1
 a2V;��=k2

�
�c; (71)

where the quantity in brackets can be interpreted as an
effective Newton’s constant. In particular, the term pro-
portional to V;�� results from the chameleon-mediated
force [37], which is negligible if the physical length scale
of the perturbation is much larger than the range of the
�-mediated force, that is, if a=k� V�1=2

;�� . In this case the
left hand side of Eq. (71) is well approximated by
3a2H2�c=2 and the dark matter fluctuations grow as in
GR.

If the field is at the minimum, then m2 � V;�� � H2,
as shown earlier. For instance, our fiducial potential with
n � 1 gives m=H > 1010 at recombination. Thus the cha-
meleon length scale is much less than the Hubble horizon
at the time of recombination, which therefore implies that
the CMB spectrum is unaffected. This has to be con-
trasted with normal quintessence models, for which the
mass of the field is on the order of the expansion rate
along the tracker solution. In this case, fluctuations on
scales of the size of the horizon cannot be neglected and
leave distinctive features in the anisotropy spectrum of
the CMB [38].

Writing V��� � M4 
M4
n=�n, the length scale
"cham � V�1=2

�� below which perturbations feel a different
Newton’s constant is given by

"cham �
1������������������

n�n
 1�
p 1

M

�
�
M

�
1
n=2

� 10�2

�
�
M

�
1
n=2

cm;

(72)

where in the last step we have assumed n�O�1� and
substituted M � 10�3 eV. Density perturbations below
that scale will initially grow faster because the effective
Newton’s constant is larger. From Eq. (71) the modified
growth rate is � / +x, where

x � �
1

2
�

��������������������������������
1

4

 6�1
 2�2�

s
: (73)

For � � 1, for example, one obtains x � 3:8 for the
growing mode, compared with x � 2 as predicted by
GR. Such perturbations thus grow faster and enter the
nonlinear regime earlier. From Eq. (16) with M �
10�3 eV and n * 1, we find that "cham at the present
epoch satisfies

"cham & 100 pc: (74)

While this is a rather small length scale, it would be
interesting to investigate if this could change substan-
tially the details of galaxy formation, and if early star
-12
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formation (and therefore early reionization) is a natural
consequence of chameleon cosmology. Another avenue
worthy of investigation is whether the chameleon favors
the formation of supermassive black holes at the center of
galaxies.

VI. THE CHAMELEON DURING INFLATION

Let us now study the behavior of the chameleon during
a period of inflation in the early universe. During infla-
tion, the effective potential for the chameleon field is

Veff��� � M4 exp�Mn=�n� 
 �vace4��=MPl ; (75)

where the last term arises from the coupling of the
chameleon to the inflaton vacuum energy, �vac. The factor
of 4 in the exponential follows from the fact that 1�
3w � 4 in this case. Following the analysis leading to
Eq. (18), we find that this potential has a minimum at
some�min � M. Since �vac is essentially constant during
inflation, so is �min, and the chameleon is stabilized.

The mass of the chameleon at the minimum is readily
obtained from Eq. (22) by letting �! 4� and �m !
�vac � 1:

m2 � 12�n
MPl

M

�
M
�

�
n
1

H2 � H2: (76)

As the mass is constant during inflation, the chameleon
oscillates around the minimum with an average ampli-
tude given by

<����inf�
2> � a�3: (77)

As expected, the chameleon field behaves like a dust
component during inflation. Because of the exponential
growth of the scale factor, this implies that � very
quickly settles at the minimum of the potential.

At the end of inflation when the universe reheats, the
inflaton decays not only into radiation and matter, but also
into coherent kinetic energy of the chameleon. However,
the production of chameleon quanta is generally sup-
pressed because of their large mass. Since the universe
becomes radiation-dominated at the end of inflation, the
minimum of the effective potential suddenly moves to a
much larger value. The chameleon is therefore released
from a field value much smaller than �min. Hence, we
conclude that the overshoot solution, discussed in
Sec. IV B, is the more natural outcome of an inflationary
phase.

VII. CHAMELEON AND TIME-VARYING �

Recent analysis of absorption spectra of quasars have
led some to claim that the fine-structure constant !EM

might have evolved by approximately one part in 105 over
the redshift range 0:2< z < 3:7 [28]. If this turns out to
be true, then general covariance would imply that !EM

can vary both in space and in time, that is, it must be a
123518
function of a field. A space-time-varying fine-structure
constant was first posited by Jordan [39], Teller [40],
Stanyukovich [41], while the implications for EP viola-
tions were studied by Dicke [42] and more recently by
Bekenstein [43]. The recent evidence from quasar spectra
has rejuvenated this idea, resulting in a flurry of papers
[44,45].

Here we show that the chameleon cannot lead to a time-
variation of !EM consistent with the recent observational
claims. Since we have so far assumed that the chameleon
couples conformally to matter fields, as seen from Eq. (2),
and since the Maxwell action is conformally-invariant, at
tree-level the chameleon does not lead to a time-varying
!EM. However, one can easily consider generalizations to
the matter action in Eq. (1), such asZ

d4xe ~��=MPlLm� 
�i�
m ; g

�i�
���; (78)

where ~� is a constant. In particular, the Maxwell
Lagrangian in this case reads g�2e ~��=MPlF��F��, corre-
sponding to

!EM � e� ~��=MPl : (79)

Then, variations in � induce variations in !EM of
magnitude 







&!EM

!EM









� ~�
j&�j
MPl

: (80)

Since the cosmological value of the chameleon, ��z�, is a
decreasing function of density and, therefore, a decreas-
ing function of redshift z, we can approximate Eq. (80) by







&!EM

!EM









� ~�
��0�

min

MPl
� ~�

�
M
MPl

�
n=�n
1�

; (81)

where we used Eq. (16) in the last step. For n * 1, the
resulting &!EM=!EM is many orders of magnitude too
small to account for the time-variation advocated by [28].

Taking into account local variations in the chameleon
does not help. Indeed, recall that for sufficiently dense
objects, the local value of the chameleon depends mostly
on the local density and is insensitive to the background
cosmic density. The absorption clouds used in the analysis
of [28] can be classified in three populations: weak MgII
systems, Lyman limit systems and damped Lyman-alpha
systems, with estimated density of 10�25, 10�26 and
10�24 � 10�23 g=cm3, respectively. The key point is that
all of these are comparable with the local galactic density
of 10�24 g=cm3, and thus the chameleon value in these
systems should be nearly the same as locally.

VIII. APPLICATION TO THE CYCLIC
UNIVERSE MODEL

To illustrate the usefulness of the chameleon mecha-
nism in designing cosmological scenarios, in this Section
-13
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we apply our results to the cyclic model of the universe
[18–23]. The cyclic scenario proposes that time did not
begin at the big bang, as assumed implicitly in standard
inflationary cosmology, but rather extends infinitely far in
the past as well as in the future. Thus our current epoch of
expansion is only one out of an infinite number of cycles.
The cyclic model addresses the homogeneity, flatness and
monopole problems of the big bang model, and generates
a nearly scale-invariant spectrum of density fluctuations,
without invoking a period of high-energy accelerated
expansion. As such, it constitutes the most serious candi-
date for a viable alternative to the inflationary paradigm.

Except for very near the big crunch/bang transition,
the cyclic model is well-described by a four-dimensional
effective action of the form given in Eq. (1):

S �
Z
d4x

�������
�g

p
�
M2

Pl

2
R�

1

2
�@��2 � V���

�
�

Z
d4xLm� 

�i�
m ; g

�i�
���: (82)

In particular, as in the simplest inflationary models, the
scenario consists of a scalar field � rolling down its
potential V���. An important distinction with inflation-
ary theory, however, is that here � has a higher-
dimensional interpretation of measuring the distance d
between two end-of-the-world branes (more precisely,
orbifold fixed planes). In other words, � is a radion. In
this higher-dimensional picture, the big crunch/bang
bridge between each cycle corresponds to the cataclysmic
collision of the branes. The relation is d �

L ln�coth��=MPl

���
6

p
�� [18,19], and thus the brane collision

(d! 0) corresponds to the limit �! 1.
At tree-level, the metrics g�i��� are given by Eq. (2) with

couplings

�i �
1���
6

p ; (83)

which corresponds to the Kaluza-Klein limit in the
higher-dimensional picture. We henceforth assume that
this regime holds for the relevant range of �. The poten-
tial V��� is thought to arise from nonperturbative effects,
such as virtual exchange of branes in the higher-
dimensional theory. A typical cyclic potential, sketched
in Fig. 2, is given by

V��� � M4eM
n=����?�

n
f1� e�c����cross�=MPlg �F ���;

(84)

where we have reintroduced �?, the value of � for which
the potential diverges. The field value �cross is where the
potential vanishes. The positive constant c must satisfy
c * O�10� in order for the spectrum of density perturba-
tions to be nearly scale-invariant [21]. The function F ���
accounts for the fact that the nonperturbative effects must
turn off as �! 1, since the string coupling goes to zero
123518
in this limit. In order for the Kaluza-Klein limit assumed
in Eq. (83) to apply for all �>�?, we impose that

�? � MPl: (85)

Currently, the field lies at ��0� ��? � M, indicated
by a dot in the Figure. Thus, V��0� � M4, and this
potential energy drives the observed acceleration of the
universe (Region a)). This phase of cosmic acceleration
lasts sufficiently long to empty out our observable uni-
verse, thereby making it highly homogeneous, isotropic,
spatially-flat and nearly vacuous. After a while, the field
begins to roll down the potential and reaches Region b).
Since V < 0 in this region, cosmic expansion eventually
comes to halt, and the universe enters a phase of contrac-
tion. It is during this phase that a nearly scale-invariant
spectrum of density perturbations is generated from
quantum fluctuations in � [19,21]. When the field reaches
Region c), the function F ��� in Eq. (84) becomes im-
portant and causes V to go to zero [46]. This ensures that
the energy density of the universe is dominated by the
kinetic energy in � as it zooms toward 
1, as required
by the prescription of [20]. The �! 1 limit corresponds
to the big crunch/bang transition, at which point the
universe reheats and becomes filled with thermal matter
and radiation. This marks the beginning of the hot big
bang phase. Meanwhile, � bounces back, rushes through
Region b) and eventually comes to a stop in Region a). It
remains essentially frozen there, until the universe is
sufficiently cold to allow the vacuum energy in� to drive
cosmic acceleration. The cycle then repeats itself.

It is crucial that � does not result in EP violations
stronger than allowed by experiments. One way to ensure
this, as proposed by Steinhardt and Turok [18], is if the
couplings �i in Eq. (83) are functions of � and satisfy

�i��
�0�� & 10�4; (86)

for today’s value of the field, ��0�. This possibility is
certainly allowed by some brane-world models, such as
the Randall-Sundrum scenario [47]. In general, however,
one expects that �i will be of order unity and different for
different matter species.

Here we argue that no such extra condition is necessary
since � is in fact a chameleon. Indeed, the reasoning that
lead to Eq. (86) neglected the effect of the background
matter density. In Region a), the potential is approxi-
mately given by

V��� � M4eM
n=����?�

n
; (87)

which is of the same form as our fiducial potential (see
Eq. (13)). Moreover, since the various �i’s are nonzero
and positive, the dynamics of � are governed by the
effective potential in Eq. (5) with �i � 1=

���
6

p
.

The above analysis therefore greatly expands the range
of models and brane-world setups suitable for cyclic
cosmology. The only requirements are that �i > 0 and
-14
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that the potential be of the general form

V��� � M4f��=M�f1� e�c����cross�=MPlg �F ���; (88)

where f satisfies Eqs. (10). In particular, the chameleon
mechanism disposes of condition (86).
IX. CONCLUSIONS

We have explored the complete cosmological evolution
of the chameleon field for general models where the
effective potential displays a minimum, as in the original
scenario. Our analysis shows that the chameleon can act
as a dark energy particle at late times, accounting for the
current phase of cosmic acceleration. We have found that
the minimum is an attractor with undershoot and over-
shoot solutions, analogous to normal quintessence mod-
els. In studying the approach to the attractor, it is
important to take into account the kicks due to species
becoming nonrelativistic during the radiation era. These
kicks successively push the chameleon field towards the
minimum of the potential and consequently greatly ex-
pand the basin of attraction. It would be interesting to
study the role played by the kicks in models of quintes-
sence coupled to dark matter.

The most stringent constraint on our model comes
from time-variation of masses since BBN. This requires
the chameleon to have settled to the minimum by the
onset of BBN. If this is not realized, then the electron
kick will result in an unacceptably large variation in
masses. This condition is fulfilled for a broad range of
initial conditions spanning many orders of magnitude in
initial chameleon energy density. The allowed range is in
fact broader than in normal quintessence, largely due to
the kicks which make the attractor mechanism compara-
tively more efficient.

We have studied the chameleon during inflation and
find that it quickly stabilizes at the minimum as the
universe inflates. We have argued that the chameleon
cannot lead to a time-variation of the fine-structure con-
stant sufficiently large to be consistent with recent ob-
servational claims. Finally we applied the chameleon to
the cyclic universe. When the chameleon mechanism is
taken into account the class of potentials relevant to the
cyclic universe is enlarged and constraints on the parame-
ters relaxed.
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APPENDIX

1. The Thin-Shell property

We have stated in Sec. II A that M � 10�3 eV results
from local tests of gravity. We provide more details here
on how this bound is obtained. Consider a spherical body
of homogeneous density �c, radius Rc and total mass
Mc � 4�R3

c�c=3, immersed in a homogeneous medium
of density �1. We denote by �c and �1 the field values
which minimize the effective potential for the respective
densities. At short distances, the total force F, gravita-
tional plus chameleon-mediated, on a test mass is [9]

F � �1
 5�FN; (A1)

where FN is Newtonian force and 5 is the fractional force
due to the chameleon. For small objects, in a way to be
made precise below, 5 � 2�2, the usual answer for a
scalar field without potential. For much larger objects,
however, one finds that

5 � 2�2 �1 ��c

2�MPl-c
; (A2)

where -c � Mc=8�M2
PlRc is the Newtonian potential of

the object. Thus, for sufficiently large objects such that
��1 ��c�=�2�MPl-c� � 1, one has 5� 2�2 and the
fifth force is suppressed. If ��1 ��c�=�2�MPl-c� � 1,
on the other hand, one simply gets 5 � 2�2.

The suppression for large bodies is due to the so-called
thin-shell effect which can be understood as follows.
Essentially, only a thin shell under the surface of the
object contributes to the � pull on a test mass. Indeed,
one finds that the profile of the chameleon field is such
that it is nearly constant up to a radius Rs < Rc, where Rs
is given by

Rc � Rs
Rc

�
�1 ��c

6�MPl-c
: (A3)

Whether an object has a thin shell or not, that is whether
its chameleon-mediated force is suppressed compared to
the usual answer, depends on the magnitude of this ratio.
The shell is thin if

Rc � Rs
Rc

� 1: (A4)

Since �c � �1 for large density contrast between the
object and the ambient matter, this generally reduces to

�1

MP
� -c: (A5)

For the fiducial potential V��� � M4 exp�Mn=�n� with
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n�O�1�, applying this condition for typical test masses
used in laboratory tests of gravity leads to the constraint

M & 10�3 eV: (A6)
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FIG. 6. The chameleon starts near the minimum and is sub-
jected to the contribution to T�� from some particle species
becoming nonrelativistic. In this example, the potential is
V��� � M6=�2, � � 1 andM � 10 MeV, the latter once again
chosen to be much larger than the required M � 10�3 eV due
to numerical limitations. We see that the field oscillates and
eventually settles back to the minimum.
2. The Instantaneous kick

In this Section, we present an analytic approximation
to the contribution from each mass threshold to T�� dur-
ing the radiation-dominated era, as described in
Sec. IVA. The idea is to approximate each contribution
as a delta-function source, that is, as an instantaneous
kick. Specifically, the equation of motion for � is ap-
proximated by

��
 3H _�

@V
@�

� ��;HMPl��t� t0� (A7)

where the right-hand side corresponds to a species con-
tributing sharply around time t0. The constant ; is of
order gi=g?�mi�, in the notation of Sec. IVA. The order of
magnitude of the delta-function was estimated using the
fact that the contribution to T�� is of order H2 (i.e., the +
function peaks at a value of order unity) and that the
width of the + function is of order of a fraction of a Hubble
time.

First, let us consider the regime where� is much larger
than �min. In this case, Eq. (A7) becomes

��
 3H _� � ��;HMPl��t� t0�; (A8)

as the potential is negligible. Assuming the field is ini-
tially at rest, the solution is

t < t0: � � �i; (A9)

and

t � t0: � � �1� a30�;H0MPl�
Z t

t0
a�3dt
�i;

(A10)

where a0 and H0 are evaluated at t0. The kick thus results
in a jump in � from its free evolution of

&� � �a30�;H0MPl

Z t

t0
a�3dt; (A11)

which, in the radiation-dominated era, converges to

&� � �;�MPl: (A12)

Recalling that ;� gi=g?�mi�, this agrees with Eq. (44).
Next, consider the effect of the kick if the field is close

to or at the minimum. In this case, we can linearize the
effective potential about the minimum and obtain

��
 3H _�
m2����min� � ��;HMPl��t� t0�:

(A13)

Letting �� � ���min � a�3=2 , we find
123518
� 


�
m2 


3H2

4

�
 � ��;HMPla

3=2��t� t0�: (A14)

Assuming the field is at the minimum initially,  � 0,
and using m2 � H2, the solution reads

t < t0:  � 0; (A15)

and

t � t0:  � �
�;H0MPl

m
sin�m�t� t0��: (A16)

Averaging over many oscillations, we find

<����min�
2> �

�2;2H2
0M

2
Pl

2m2

�
a0
a

�
3
: (A17)

Thus the kick makes the chameleon oscillate about the
minimum. These oscillations are damped due to the
expansion of the universe, and the field quickly settles
back to the minimum. This is confirmed by solving the
equations of motion numerically, using the exact form for
the + function, as shown in Fig. 6.

Notice that the amplitude of the oscillations is always
small compared to MPl. In particular, using Eq. (61), the
average variation of masses due to the kick behaves like

��
&m
m

�
2
�
�
�4;2H2

0

2m2

�
a0
a

�
3
� 1; (A18)

implying no significant modification to BBN due to the
electron kick, for instance.
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3. Convergence to the minimum

Here we wish to prove Eq. (55) directly. If we assume
that the scale factor is power-law in time, a�t� � tp, then
Eq. (58) implies that the mass of the chameleon can be
written as

m�t� �
B
tq
; (A19)

where B and q are positive constants.
Small fluctuations �1�t� � ��t� ��min�t� around the

minimum �min are then governed by

�� 1 

3p
t

_�1 

B2

t2q
�1 � 0; (A20)

with general solution

�1�t� � t�1�3p�=2Zr

�
B

1� q
t1�q

�
; (A21)

where Zr is a superposition of Bessel functions of order
123518
r � �1� 3p�=2�1� q�. Without loss of generality we
take Zr � Jr. Note that the argument of the Bessel func-
tion is large sincem�t�t=�1� q� �m=H � 1. Thus, using
the asymptotics of the Bessel function, we find

�1�t� � t�1�3p�=2

������������������
2�1� q�

�Bt1�q

s
cos�

m�t�t
1� q

�; (A22)

where we have dropped an irrelevant phase factor.
Averaging �2

1 over a few oscillations, while noting that
m�t� is nearly constant during that time (since _m=m�
H � m, as seen from Eq. (57)), we get

<�2
1�t�>�t�3p
q: (A23)

Using Eq. (A19), we obtain the desired result:

m�t�<�2
1> / t�3p / a�3; (A24)

in agreement with Eq. (55). It is straightforward to prove
that this also holds for the case q � 1.
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