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Constraining dark energy evolution with gravitational lensing by large scale structures
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We study the sensitivity of weak lensing by large scale structures as a probe of the evolution of dark
energy. We explore a two-parameters model of dark energy evolution, inspired by tracking quintessence
models. To this end, we compute the likelihood of a few fiducial models with varying and nonvarying
equation of states. For the different models, we investigate the dark energy parameter degeneracies with
the mass power spectrum shape �, normalization �8, and with the matter mean density �M. We find that
degeneracies are such that weak lensing turns out to be a good probe of dark energy evolution, even with
limited knowledge on �, �8, and �M. This result is a strong motivation for performing large scale
structure simulations beyond the simple constant dark energy models, in order to calibrate the
nonlinear regime accurately. Such calibration could then be used for any large scale structure tests
of dark energy evolution. Prospective for the Canada France Hawaii Telescope Legacy Survey and
Super-Novae Acceleration Probe are given. These results complement nicely the cosmic microwave
background and supernovae constraints.
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The need for dark energy in modern cosmology is
driven by the necessity to describe the acceleration of
the expansion of the Universe.Within this framework, the
acceleration measured by the supernovae type Ia (SNIa)
surveys [1,2] is explained by a new component added to
the energy density of the Universe. In a Friedmann-
Lemaitre-Robertson-Walker (FRLW) metric, this com-
ponent is described by its equation of state (EOS), and
the cosmological constant is one possible model, among
others, of dark energy. Although the nature of dark energy
remains unknown, different observations have been pro-
posed to detect it, at least indirectly. Measurement of the
supernovae distances [3–5] or the location of the cosmic
microwave background (CMB) peaks [6,7] provide infor-
mation on the modification of the distance/redshift rela-
tion by the dark energy. The evolution of large scale
structures is also a probe of the dark energy: cluster
abundances [8–10], Ly-� forest [11], strong [12,13] and
weak lensing[14–18] are all sensitive to dark energy.

In this article, we investigate the weak lensing con-
straints on a varying equation of state. This case has been
first investigated qualitatively by Benabed and
Bernardeau [14] (hereafter BB01). Here, we expand their
results to propose a new probe of a varying dark energy
equation of state, based on the shear two-point function
measured simultaneously in the nonlinear and linear
regimes. The inclusion of the nonlinear structure forma-
tion process is particularly important, for the constraints
on the dark energy using the linear regime alone are not
particularly strong (which remains true even using the
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tomography technique [16]). Here, we take into account
the nonlinear regime of gravitational collapse, which is
known to convey much of the dark energy sensitivity [14],
to study the degeneracy of the dark energy parameters
with the matter density �M, the mass power spectrum
shape �, and normalization �8.

The sensitivity of the large scale structure growth to
dark energy is due to the reduction of the gravitational
collapse efficiency when the dark energy starts to domi-
nate the energy budget of the Universe. The effect is a
slower growth in the linear regime (for models within the
current SNIa constraints). The more positive the first
derivative of the pressure-over-density ratio wQ, the ear-
lier this effect occurs and the more suppressed will be the
structure growth. For a fixed amplitude of density fluctu-
ations today, a slower growth means an earlier entrance of
the fluctuations in the nonlinear regime, leading to more
concentrated dark matter halos [19,20], and therefore
‘‘stronger’’ lenses [13]. As shown in BB01, the shear
two-point function is sensitive to these two effects. It
provides an unbiased measure of the projected density
power spectrum in both the linear and nonlinear regimes,
which is a direct test of the evolution of large scale
structures, and consequently, of the evolution of dark
energy. The transition scale between the linear and non-
linear scales is particularly a good tracer of the dark
energy properties.

In the following, we first review the computation of the
shear two-point function when a dark energy component
is included. Then, we propose a simple two-parameter
model that encompasses the major features of the very
generic tracking quintessence models. Finally, we address
the question of the efficiency of future lensing surveys to
determine the dark energy properties.
-1  2004 The American Physical Society
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I. THEORY

This section is devoted to the theoretical basis for the
results presented later in Sec. II.We give here a description
of the nonlinear cosmic shear power spectrum with a
nontrivial dark energy. We propose a suitable equation
of state parametrization for the class of models studied
here.

A. Background cosmology

Let us assume that the dark energy component interacts
with the rest of the Universe via gravity only. The expan-
sion of the Universe is completely described by the
Friedmann equations
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and from an equation of state for each component

PX � wX	X: (3)

The radiation, matter and curvature equations of state are
known. The only unknown quantity is the equation of
state parameter of the dark energy, wQ. It usually varies
between �1 and �1, the case wQ � �1 corresponding to
a cosmological constant. It has been proposed recently
that wQ could also take values lower than �1 [21]. When
the dark energy component is assumed to behave like a
scalar field, this is only possible if the field has a negative
kinetic energy. However, such unusual behavior has only
been found in very specific models [22], and we do not
explore this possibility here. An equation of state with
wQ > 1 is also possible. It corresponds to a dark energy
decreasing very quickly with time; for example, wQ � 1
gives an evolution in a�6. This kind of behavior is quite
unlikely during the last stages of dark energy evolution,
and will be indistinguishable from a standard Friedmann
universe with no dark energy.

We assume that the dark energy does not clump; dark
energy fluctuations are suppressed by the evolution, and
clumping is only possible on the largest scales, near the
horizon. Thus, the dark energy does not modify the
primordial matter power spectrum in any other way
than through modification of the expansion [6,23,24].
This modification only occurs when dark energy becomes
subdominant, which translates into modification to the
power spectrum at scales higher than the horizon size,
much bigger than the ones probed by weak lensing.

With these assumptions, the impact of dark energy on
the evolution of the large structures is completely de-
scribed by the equation of state [25].
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B. Shear measurements on distant galaxies

The deviation of light by the gravitational potential
wells distorts the image of the distant galaxies. This shear
effect can be used to probe the projected mass distribution
along the line-of-sight (see [26] and references therein)
from a measurement of the shape of the lensed galaxies.
The lensing effect produced by the large scale structures
is weak, but has already been measured (see [27,28] and
references therein).

The gravitational lensing effect depends on the second
order derivatives of the gravitational potential projected
along the line-of-sight. The convergence � and the shear
� describe, respectively, the isotropic and anisotropic
distortions of the image of distant galaxies located at
redshifts zs. At linear order, convergence and shear field
are related
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At the same order, the convergence in the direction � for a
galaxy at distance �s is given by:
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where �s�zs� is the source radial distance at redshift zs,
and a � 1=�1 � z� is the scale factor. The radial distance
at redshift z is given by
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The angular diameter distance D is defined by
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where K is the curvature. The convergence power spec-
trum P��‘� is a measurable quantity, and the equations
above show that it is an unbiased estimate of the projected
mass density contrast. It can be shown [29–31] (see [32]
for notations) that it is directly related to the three-
dimensional mass power spectrum P3D via:
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where the g��� function describes the lensing efficiency,

g��� �
D��s � ��D���

D��s�
: (9)

For a broad redshift distribution ps��� of the source
galaxies, the observed signal is still given by Eq. (8),
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but with a different efficiency function g���:
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The source redshift distribution ps�z� is normalized, and
usually parametrized as
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The free parameters �, �, and zs are adjusted to accom-
modate different lensing survey properties.

The ellipticity of the galaxies is an unbiased measure
of the shear, from which we derive the convergence power
spectrum (see the most recent reviews [27,28]). Various
estimators can be used for this purpose, and the most
practical one is the aperture mass variance as function of
scale, hM2

ap���i [33], because it provides a direct link
between the observed shear and the projected mass den-
sity (which is of physical interest). Nevertheless, any two-
point statistics could be used, and all we say about the
aperture massMap can easily be transposed to the top-hat
variance and the shear correlation function. These statis-
tics have already been measured on several lensing sur-
veys [27]. The Map statistic at a scale �c is defined as the
convergence smoothed with a compensated filter U���.
Using Eq. (4), it is also given by a properly smoothed
shear component �t:
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The tangential shear �t at a location � � �� cos’; � sin’�
is defined by

�t��� � �<�����e�2i’�: (15)

The choice of U��� is arbitrary provided it has a zero
mean. In the following, we will use [27]
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For this particular choice, the variance of the conver-
gence is expressed in terms of the shear power spectrum
as
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The variance of the aperture mass is a broadband estimate
of the convergence power spectrum given in Eq. (8),
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which can be directly estimated from the galaxy shapes.
Predictions for the aperture mass require to compute the
convergence power spectrum in dark energy models. A
complete discussion on the computations of the weak
lensing power spectrum with a cosmology with a non-
trivial dark energy has been done in BB01. We only
reproduce here the features of this work that will be used.

C. Cosmological distances

The relation between the cosmological distance and
redshift is given by Eq. (6). The dark energy component
leaves an imprint only on ��z� by modifying the accel-
eration of the Universe obtained from Eqs. (1) and (2).

The modification of the distance-redshift relation af-
fects mildly the convergence power spectrum. It can be
summarized as the combination of two simple effects : a
normalization change and a scale shift (similar to the
modification of the position of peaks in CMB caused by
the dark energy). In order to understand the mechanism,
let us assume that the efficiency function [Eq. (9) and
(10)], which has its maximum roughly at mid-distance
between the observer and the source galaxies, can be
replaced by a Dirac function

g2��� � g2��mid����� �mid�: (18)

This galaxy selection can be approximated by replacing
the g���2 term in Eq. (8) by a Dirac function. Under this
approximation, the normalization change is driven by the
change in the position of the maximum of the selection
function, and the scale shift comes from the P3D�

‘
D����

term in Eq. (8). The modification of the maximum of the
efficiency window selects a different depth for projection.

In the following, we will show that the matter power
spectrum can be split into two evolution regimes. At large
scale, the linear regime is well described by a power law,
and the effect of dark energy can be completely reab-
sorbed into a normalization change. At small scales how-
ever, in the nonlinear regime, the power law
approximation breaks down, and the scale where the
transition from linear to nonlinear regime takes place
will be slightly shifted (this is also a similar effect in the
CMB power spectrum).

D. Power spectrum of matter

We need to compute the power spectrum for a narrow
range of scale, typically from a few arc seconds (galaxy
scale) to a few hundred arc minutes across the sky. Large
scales (> 5 degrees) are difficult to access observatio-
nally and are at the upper line of the largest surveys
planned so far. At scales smaller than a few arc seconds
(which is slightly smaller than a typical galaxy halo size),
the number of lensed galaxies drops, and the noise blows
up; no cosmological information can be extracted. At
redshift one, a few degrees corresponds to a few hundred
-3
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FIG. 1 (color online). The energy density of dark energy
normalized to the critical density as a function of redshift.
The solid line is the classic ! model. The thick, long-dashed
line and thin, dot-dashed line are, respectively, wQ � �0:8
and wQ � �0:6 models. The short-dashed line and dotted line
are, respectively, w0 � �0:8, w1 � 0:2 and w0 � �0:8, w1 �
0:3 models (complete description of the parametrization can be
found Sec. I E). The sooner the dark energy gets close to 1, the
sooner it will affect the expansion and the growth of structure.
As expected, models with an equation of state different from
wQ � �1 contribute significantly to the acceleration sooner.
Models with a varying equation of state contribute yet sooner.
A constant wQ � �0:6 model interpolates between the two
w1 � 0 ones.
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Mpc, which is far below the horizon size at recombina-
tion. As stated in Sec. I A, we can safely assume that the
cold dark matter model is a good description of the matter
power spectrum. We have yet to investigate the evolution
of the power spectrum from recombination until now
with the presence of a dynamical dark energy component.
At the linear order, it is given by the well-known equation
[34]

�D��t� � 2H _D��t� �
3

2
H2�0�t�D��t� � 0: (19)

In this equation, the matter acts as a source term which
increases the depth of the potential well and tends to
increase the density contrast. On the opposite, the expan-
sion of the universe acts, via the second term, as a friction
effect and reduces the efficiency of gravitation to increase
the density contrast. This term carries all the effect of
dark energy on the growth of structures. The well-known
integral solution of Eq. (19) is valid when the universe
only contains matter, radiation curvature, and a cosmo-
logical constant. It is also easy to check that there is no
growing solution to Eq. (19) that can be integrated back-
ward in time.

During the expansion, the growth follows the radia-
tion, and later, the matter solution. When dark energy gets
closer to the energy density of matter, the friction term
grows compared to the source one. The efficiency of
gravitational collapse to build up the density perturbation
decreases and the growth of structures is damped. For the
set of models where the dark energy happens to dominate
earlier, this reduction of the growth rate is experienced at
a higher redshift. The exact starting point of this damp-
ing depends on the evolution properties of the dark energy
model. Models with wQ >�1 experience this effect ear-
lier than for wQ � �1. For a constant equation of state,
the energy density of the dark energy goes as

�Q / a�3�1�wQ�: (20)

As said above, the wQ � �1 model is the cosmological
constant case. When wQ >�1, �Q grows when the scale
factor a goes to unity. In this case, the dark energy
contribution to the expansion is significant at a higher
redshift than when wQ � �1. This is even more impor-
tant for varying wQ, as shown Fig. 1. The modeling of the
dark energy used in this figure will be described later.

Figure 2 shows the result of a numerical integration of
Eq. (19) for different models. The damping of the growth
appears earlier in the varying equation of state models,
compared to the constant equation of state.

For a fixed redshift and for linear (i.e., large) scales, the
modification of the structure growth is degenerate with
the normalization of the power spectrum. A measurement
of the power spectrum as a function of redshift would
break this degeneracy. Unfortunately, the measured shear
power spectrum is only a projection of the mass power
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spectrum along the line-of-sight, and the integrated
growth effect will be, in the linear regime, indistinguish-
able from a normalization shift.

At small scales, the evolution of the density contrast
changes dramatically. Virialized objects are formed and
evolve in a different regime than the simple one described
by the linear approximation. BB01 showed that this re-
gime could potentially break part of the degeneracy seen
in the linear regime. The perturbation approach cannot
describe this regime, for the density contrast is very high
at the scale of virialized objects. A complete computation
of this regime cannot be done analytically. One has to rely
on numerical simulations to calibrate the nonlinear re-
gime in a ‘‘generic’’ way. Several ‘‘classical’’ descriptions
have been proposed (among others see [35–37]). We will
follow here the choices made in BB01, namely, that the
stable clustering ansatz provides a valid description of the
smallest scales. It states that virialized objects are stable,
that is to say that their physical size does not vary with
the expansion of the universe. Hence, at the scale of these
objects, the density contrast has to grow in order to match
exactly the expansion. Instead of a growth of order a or
smaller, the density contrast evolves as a3=2. One should
note that the scales described by the ansatz are much
below the shear measurement scales. The transition be-
tween the linear and nonlinear regimes is described by a
-4
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FIG. 2 (color online). Linear growth for different models.
Models are the same as in Fig. 1. The growth is normalized
to the recombination era. The modification of the equation of
state induces a precocious acceleration that decreases the effi-
ciency of gravitational collapse at higher redshift than in the
wQ � �1 case. A variation in the equation of state (w1 � 0)
amplifies this effect. As expected from Fig. 1, a constant
equation of state model can partly mimic a varying equation
of state: if one knows the CMB normalization and today
normalization of the fluctuation of structures, one cannot dis-
tinguish between a wQ � �0:6 and a w0 � �0:8, w1 � 0:3
model.

1Read fitted on N-body simulations.
2Usually the initial conditions are free within a few tens of

order of magnitude.
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mapping between the two regimes [35], which is cali-
brated from N-body simulations, as described by Peacock
and Dodds [36]. At large scale, the mapping keeps un-
changed the linear regime, and at small scales, it goes as
�a2=g2P�3=2.

We should note that, even if it has been widely tested
for many different cosmologies, this mapping has never
been directly tested for dark energy models.
Nevertheless, this is not an issue here. Indeed, numerical
simulations will be performed in the future to further
refine our knowledge of the nonlinear regime, even for
‘‘exotic’’ cosmological models. Already, the most recent
progress on the subject [37] suggests an accuracy of 3–5%
in the nonlinear regime prediction. This is to be compared
to the effect of dark energy on the amplitude of the power
spectrum which is found here to be around 10–20% for
the models studied in Sec. II.

The assumption that N-body simulation can accurately
describe the nonlinear clustering with quintessence is
quite a strong assumption regarding the physical proper-
ties of the dark matter. It can partly be justified by the fact
that it is unlikely that a smoothed dark energy component
with no coupling will affect directly the small scale
behavior of the matter. Its influence should only appear
as a change in the expansion and thus, as we have shown,
as a modification of the linear growth of structures. The
strength of this argument is enhanced by a recent result
from another description of the nonlinear regime usually
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called the halo model. This approach describes the virial-
ized object as dark matter halos of known1 profile and
abundance depending on the cosmological parameters
[37]. The results and concepts behind this approach have
been successfully tested in the context of dark energy
[19,20]. In particular, the differences observed between
halos in ! cosmologies and in cosmology with nontrivial
dark energy can be explained by an earlier entrance into
the nonlinear regime. The observed discrepancies are, as
expected, all explained by the modification of the linear
growth of structures [14,17].

The fact that the structures will enter the nonlinear
regime earlier will show up in the weak lensing power
spectrum in two ways. First, because of the projection,
the transition between the linear and nonlinear regimes
occurs at smaller ‘. Second, the increase of the amplitude
of the power spectrum will be stronger at small scale than
at large scale. BB01 proposed estimations of these two
effects. In particular, due to the different evolution in the
nonlinear regime, the modification of the asymptote
height is expected to go as the third power of the normal-
ization modification in the linear regime. At this point of
the discussion, we would like to emphasize that any
modification of the nature of the dark matter will likely
be degenerate with the effect of dark energy (in terms of
structure growth). For instance, a small hot dark matter
component will also modify the growth rate. It is ex-
pected that this modification should decrease the amount
of small scale structure, thus suppressing the effect of
dark energy.We are then likely to underestimate the effect
of dark energy in those models.

E. Dark energy model

The evolution of wQ has to be fixed by a proper model
of dark energy. Several models have been studied. The
simplest one is the so-called minimal quintessence model,
where wQ is constant, and another interesting set of
models is tracking potential models.

These models have been extensively described [38].
Their interest lie in the fact that wQ is constant during
most of the universe evolution, and that the constant
equation of state is an attractor solution for wQ when
the expansion of the universe is dominated by another
component (like the radiation or the matter). When the
dark energy reaches the order of magnitude of the other
energy densities, it leaves its attractor evolution. This
attractor ensures that the initial conditions of dark energy
do not have to be fine-tuned. For any starting value of the
dark energy,2 it has to reach the attractor and will always
exit the domination of matter at the same point, which in
turn depends on the exact model. This explains the inter-
-5
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est these models have met among the high energy physics
community. In particular, it has been shown that some
tracking potential models can be built within particle
physics models. For example, P. Brax and J. Martin [39]
proposed a version of the Ratra-Peebles model [40] that
can be embedded in supergravity models.

Minimal and tracking models are not the only dark
energy models available. The problem is that a common
framework does not exist to describe the different dark
energy models, that would allow a direct comparison with
cosmological observations like weak lensing. To make
such comparison possible, one has to parametrize the
evolution of dark energy that can leave an imprint on
the weak lensing power spectrum. As a consequence, we
only have to consider its impact on the growth of struc-
ture and on the relation distance-redshift. We choose to
parametrize the evolution of dark energy in terms of its
equation of state. This choice is the most prevalent one.
This is by no means the only possible parametrization
(see, for example, [41,42]). As stated in Sec. I A, the
knowledge of the EOS of dark energy is sufficient to solve
Eqs. (1) and (2) and to compute ��z� and D�.

As we described in Sec. I A, we assume that wQ can
freely vary between �1 and 1. An easy solution is to
decompose wQ in terms of a power series of the redshift

wQ �
X
wizi: (21)

The possible determination of the two first orders of this
development has been studied in many different articles
[3–5,43–47]. This is the way most SNIa data are ana-
lyzed, assuming the perturbative development

wQ � w0 � w1z . . . : (22)

This approach is not valid in our case: one can only
compute the growth of structure from recombination,
therefore a perturbative development as Eq. (22) is not
suitable for our purpose for it leads to an unphysical,
arbitrarily growing equation of state. Attempts have
been made to generically describe dark energy with a
simpler parametrization than the naive power series but
they are not suitable for our purpose here. Some of them
have too many parameters and are too general [48,49].
Others [50] do not share the same Taylor expansion as
those models they are attempting to fit which is a feature
we want to include in our modelization.

In order to reduce the complexity of the parametriza-
tion issue, we will only be interested in models which
exhibit a behavior similar to the tracking potential mod-
els. There are few arguments in favor of these models. The
behavior of the dark energy equation of state at large
redshift is irrelevant for us. Indeed, tracking models
ensure that the equation of state of the dark energy is
constant as long as it is dominated by the other compo-
nents [38]. In that case, a variation of wQ has little or no
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impact on the expansion of the universe, and the growth
of structure is not affected. If one assumes that dark
energy can be dominant at high redshift, this discussion
is not valid. However, such a model would leave a huge
imprint on the CMB and would be most probably already
ruled out by observations.

At low redshift, when dark energy reaches the order of
magnitude of the energy density of matter, it will start to
contribute to the expansion, and induce a new period of
acceleration. Variations of wQ will leave a strong imprint
on the shear power spectrum through modifications of
the cosmological distances and structure growth. This is
where our assumption on the shape of the EOS is impor-
tant. It has been shown [51] that the equation of state of
tracking models can be fitted at low redshift by a log
function

wQ � w0 � w1 log�1 � z�; (23)

where w0 and w1 are free parameters. This behavior is
roughly valid up to redshift z� 1 at least for SUGRA and
Ratra-Peebles potentials. Note that this EOS admits
Eq. (22) as Taylor expansion for small z. The parametri-
zation given in Eq. (23) fails quickly above z� 1 (see
Fig. 3 ); we used an arc tangent for higher redshifts:

wQ �

�
w0 �w1 log�1� z�; if z� 1
w0 �w1�log�2�� arctan�1�� arctan�z��; if z> 1;

(24)

The arbitrary behavior at high z, which is w0 �
w1�log�2� � arctan�1� � �=2�, has no reason to fit the
high z asymptote of a given tracking potential model.
This is irrelevant for us as long as the energy density is
dominated by the matter density. In the end, the only
thing that matters is the evolution of dark energy from
the epoch when it starts to dominate. This epoch can be at
redshift as high as ten. For example, in a SUGRA � � 6
model [39] the energy density of dark energy represents
10% of the total energy density at redshift as low as z� 5
(see Figs. 3 and 1).

The parametrization, Eq. (24), is not very good at
fitting the equation of state. In Fig. 3, for instance, the
fit agrees reasonably well with the SUGRA � � 6 model.
However, for our purpose, the relevant comparison is not
for the EOS, but it is for the growth and distances of the
different models, which are the quantities intervening
into the power spectrum calculation (see Fig. 4).

The fit accuracy for the tracking models we tested is
around 3%. Another advantage of this parametrization is
that it is described by two parameters only,w0 andw1. We
have fixed the change between the log and tan branches to
zc � 1. This choice is arbitrary, and a small change in the
value of zc means a small modification of the growth of
structure. A value zc � 1:5 corresponds to 1% change in
D�=a, comparable with the error on the modeling.
Overall, this arbitrariness on zc leads to negligible mod-
-6
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FIG. 4. Comparison between real tracking models and their
approximated version using Eq. (24). The top panel presents the
comoving distances, the bottom panel the growth of structure.
The solid line is a SUGRA � � 6 model, the dashed line a
SUGRA � � 11 model, and the dotted line a Ratra-Peebles,
� � 4 model. The discrepancy on the angular distances com-
puted with the real model and our parametrization is below the
percent up to z � 4. The discrepancy for the linear growth is of
order 3% up to the recombination. Our approximated formula
with its very small number of parameters gives a good ap-
proximation of the quantities on which are computed the weak
lensing effect.

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

 0  1  2  3  4  5  6  7  8  9  10

w(z )

z

 0.1

 1

 0  1  2  3  4  5  6  7  8  9  10

ΩQ(z)

z

FIG. 3 (color online). Comparison between an explicit
SUGRA model and its parametrization. The equations of state
are presented in the top panel, whereas the energy density,
normalized to the critical density are in the bottom panel. The
solid line is the SUGRA � � 6 model, the long-dashed line is
the logtan parametrization, and the short-dashed line is the log
parametrization [see Eqs. (23) and (24)]. The parameters w0 �
�0:84, w1 � 0:32 are measured on the SUGRA model. The log
parametrization quickly fails to fit the equation of state above
z� 1. It keeps a relatively good agreement on the dark energy
density to a higher redshift. It is not unexpected as the
dominant contribution to H2 is already the matter energy
density. Thus slight variations on the equation of state of the
dark energy are softened on �Q. The discrepancy, however,
builds up very quickly to a factor 2 around z� 8. While not
being in perfect agreement with the SUGRA model, the logtan
parametrization does a better job at following �Q.
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ifications in the cosmological distances and projection
effect.3 Finally, since the parametrization (24) admits
Eq. (22) as its Taylor expansion, our results are directly
comparable with the well-known SNIa ones [5].
3We do have a small dependency on redshift higher than one
through the broad distribution of the source ps�z�. This effect is
small enough to be neglected here.
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II. RESULTS

We perform a maximum likelihood analysis of the
aperture mass statistic for a set of dark energy models.
The method is well known and has been formerly de-
scribed in [52]. Section II A describes the models and
surveys that will be investigated. The numerical results
are shown and discussed in Sec. II B.

A. Parameter estimation

We know from previous studies that the gravitational
lensing by large scale structures depends mainly on four
-7



TABLE I. Lensing surveys that will be part of the CFHTLS
and SNAP projects (see text). Entries are source mean redshift
$zs, survey total area �2

deg, source galaxy number density (per
arcmin2), and intrinsic ellipticity dispersion �e.

$zs �2
deg ngal �e

CFHTLS 0.9 1790 20 0.44
SNAP 1.2 300 100 0.32
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parameters: the matter energy density �0, the mass power
spectrum normalization �8, its slope, and the redshift of
the sources [53]. As described above, we can safely ignore
modification to the cold dark matter transfer function
[54] due to dark energy. We thus use it and describe the
slope of the power spectrum by the parameter �, which is
supposed to include the subtle effects of baryons, neu-
trinos, any component that could potentially affect the
power spectrum shape. There are specific sensitivities of
the lensing effect on these parameters taken individually,
but this is weak, and the complete study of all degeneracy
directions is left for future work. We assume that the
redshift distribution of the sources is known, because
forthcoming optical surveys are expected to provide an
accurate measurement of it from photometric redshifts.
The redshift dependence is very similar to the �8 depen-
dence, hence any uncertainty could be reabsorbed in a
broader �8 prior, or constraint. Our set of free parameters
is chosen as p � �w0; w1;�0; �8;��. We choose a flat
universe prior, given that the current CMB results are in
very good agreement with a flat geometry [55].

We compute the likelihood L�pjd�, where the data
vector d is the aperture mass hM2

api as function of scale:
FIG. 5 (color online). Aperture mass variance as function of
scale for model 3 (solid lines) and model 2 (dashed lines), for
CFHTLS (thick bottom lines) and SNAP (thin top lines). The
error bars show the statistical and sampling errors, assuming a
Gaussian statistic for the sampling error.
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L �
1

�2��n=2jSj1=2
exp

	
�

1

2
�d� s�TS�1�d� s�



; (25)

where s is the fiducial model vector and

S � h�d� s�T�d� s�i (26)

is the covariance matrix. The covariance matrix is com-
puted following the method described in [53] assuming
the Gaussian field approximation. In this work we are
exploring two options: a large ground-based survey
(such as the Canada France Hawaii Telescope Legacy
FIG. 6 (color online). Contours in the �0, �8 space when
marginalized over the quintessence w0 2 ��1;�0:7� and w1 2
�0; 0:4�. This is given for the CFHTLS experiment. The top
panel corresponds to model 1, the bottom panel to model 2.
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FIG. 7 (color online). CFHTLS constraints with lensing alone on w0 and w1. Top panels: model 2, bottom panels: model 3. The
left plots assume all other parameters are known (see Figs. 10 and 11). For the middle plots the mean density and the power
normalization are marginalized (flat prior) over �0 2 �0:1; 0:5� and �8 2 �0:6; 1:1�. The right plots show the contour for the
marginalization � 2 �0:1; 0:4�.

CONSTRAINING DARK ENERGY EVOLUTION WITH. . . PHYSICAL REVIEW D 70, 123515 (2004)
Survey (CFHTLS) [56]).4 and a space survey (such as the
Super-Novae Acceleration Probe (SNAP) [57]).5 The ob-
servational properties of the lensing survey associated
with these two projects are summarized in Table I.

For the two surveys, we selected three fiducial models
(with a cosmological constant �! � 0:7):
(i) m
4http:
5http:
odel 1: p1 � ��1; 0; 0:3; 0:9; 0:24�

(ii) m
odel 2: p2 � ��0:8; 0; 0:3; 0:9; 0:24�
(iii) m
odel 3: p3 � ��0:8; 0:32; 0:3; 0:9; 0:24�

The first model is a pure cosmological constant case.
Second is a minimal dark energy model with no variation
of the equation of state. This type of model is widely used
in the literature. From the discussion of Sec. I D, it is
expected that this kind of model underevaluates greatly
the effect of a varying EOS with identical final value. The
last model has a varying EOS. The value of w1 has been
chosen in order to agree with an � � 6 SUGRA model. It
corresponds to a strongly evolving equation of state
model. Models with a smaller w1 interpolate between
model 2 and model 3.
//www.cfht.Hawaii.edu/Science/CFHLS/
//snap.lbl.gov/
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We also have to make a choice on the range of parame-
ters we want to investigate. Maximum likelihood analy-
sis with five parameters is already a computationally
expensive task. It can be reduced in part by narrowing
the range of the parameters and the number of points in
each direction.

For the CFHTLS-like analysis, it is expected that we
will mildly constrain the parameters. We thus used a
relatively sparse grid and relatively wide parameter
ranges. The matter density �0 will be allowed to vary
between 0.1 and 0.5, while �8 will be free between 0.6 and
1.1. The choices for these two parameters are quite con-
servative. They allow to probe the full one-sigma contour.
The slope of the power spectrum is weakly constrained
by the weak lensing measurement; we probe its values
between 0.08 and 0.4. The results below (Figs. 9–11) show
that the parameter space is correctly sampled.

For SNAP-like analysis, we greatly reduce the range of
parameters. The precision required here forces us to in-
crease the number of computed models, in particular, in
the �0; �8 space. We thus suppose that it is enough to
probe �0 between 0.28 and 0.32, and�8 between 0:85 and
0.95. Nevertheless, it is expected that by the time SNAP
-9



KARIM BENABED AND LUDOVIC VAN WAERBEKE PHYSICAL REVIEW D 70, 123515 (2004)
will collect data, previous weak lensing measurements,
CMB, galaxy and cluster surveys will have cut down the
accuracy on these parameters below these levels. We con-
servatively keep a relatively wide range on � (0.1 to 0.3, in
agreement with the results for CFHTLS).

For both models, we probed the dark energy parameter
space between �1 and �0:6 for w0 and 0 and 0.4 for w1.
Note that we do not take into account models with an
equation of state more negative than �1, as we mentioned
in the introduction. The upper bound on w0 corresponds
roughly to the degeneracy expected between our target
varying equation of state and a constant equation of state
model (see Sec. I D). We do not investigate negative w1

models. Negative w1 models are very close to the cosmo-
logical constant case, and should be strongly degenerated
with it, with little hope for the observer to see anything.
The w1 upper bound corresponds to a strongly varying
equation of state. The SUGRA and Ratra-Peebles models
lie in between.

B. Numerical results—discussion

We first compute the aperture mass for our dark energy
models. Figure 5 presents the results for SNAP and the
CFHTLS surveys. It shows that the evolution of the dark
FIG. 8 (color online). Same as Fig. 7 for the SNAP survey. The ma
and �8 2 �0:85; 0:95� for the middle plots and � 2 �0:1; 0:3� for th
SNIa (with the supposition of a perfect �0 knowledge).
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energy can lead to a 10 to 20% effect at small scale. As
emphasized in Sec. I D, this is precisely the expected
effect. This is a large effect, already accessible with the
current data quality and measurement techniques, if all
other parameters were known, with no systematics.

Next we perform the likelihood analysis on our target
models. Figs. 9–11 show, respectively, the parameter pre-
dictions for the models 1, 2, and 3. All possible combi-
nations of pairs of parameters are plotted in order to show
the direction of degeneracies. On each plot, the two hid-
den parameters are assumed to be perfectly known. We
first note the strong degeneracy between the dark energy
parameters �w0; w1� and the other parameters. The full
degeneracy between w1 and � is understood by the fact
that the shape parameter describes the slope of the power
spectrum, for a fixed normalization �8. Changing � will
modify the ratio between linear and nonlinear regime
and the scale of transition. As shown in Sec. I D, a change
in w1 has a similar effect.

Even allowing for dark energy, the shear two-point
function remains a good constraint on �0 and �8.
Figure 6 shows the effect of unknown dark energy pa-
rameters (marginalized on w0 and w1) on the measure-
ment of �0 and �8. For the pure cosmological constant
rginalization is performed over the intervals �0 2 �0:28; 0:32�
e right plots. The lines show the direction of degeneracy of the
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model (top panel), we see that the most probable models
correspond to higher �0 and lower �8 than the fiducial
model. For the model 2 (bottom panel), the normalization
is underestimated. This figure shows that the widths of the
�0, �8 contours are not dramatically affected, but the
most probable models are changed.

Supernovae surveys have a small sensitivity to the
variation of the equation of state. In particular, it is
expected that without a strong prior on �0 they cannot
provide much information on w1 [3–5,43–47]. The ques-
tion is whether the shear two-point function also suffers
from this kind of limitation or not. Figures 7 and 8 show
the predictions for w0 and w1, respectively, for the
CFHTLS and SNAP cosmic shear predictions. The left
panels correspond to the contours obtained with a perfect
knowledge of �0, �8, and �. The middle panels are for a
known �, but marginalized over �0 and �8. The right
panels are for known �0 and �8, and marginalized over
FIG. 9 (color online). Constraints obtained with the CFHTLS su
strong prior for the hidden (not shown) parameter on each plot. Th

123515
�. The top panels are for model 2, and the bottom panels
for model 3. The important result here is that the margin-
alization over �M and �8 do not increase too much the
widths of the contours; it only restores a degeneracy
between w0 and w1.

Contrary to the angular diameter distance tests, the
weak lensing is sensitive to the evolution parameter w1.
The marginalization over � restores the degeneracy along
a different direction, but still does not increase the con-
tours’ widths significantly. It means that even with a
limited knowledge on external important parameters, it
is still possible to constrain the quintessence, in particu-
lar, when it evolves with time. In that case indeed (i.e.,
w1 � 0), the increase of the lensing signal is large enough
to allow the CFHTLS observations to rule out a pure
cosmological constant case. However, an accurate joint
measurement of the quintessence parameters and the
others is not possible using the lensing power spectrum
rvey for a cosmological constant model (model 1). We assumed
e cross represents the fiducial model.
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alone, because of the strong degeneracy between �0 and
�8.

This degeneracy is broken with the SNAP lensing sur-
vey: according to Fig. 8, one sees that cosmic shear
observations alone with the SNAP satellite, provide con-
straints which are competitive with the SNIa constraints
from the same satellite. The expected constraints from
SNIa alone, assuming a perfect knowledge of �0, is
sketched on this figure (solid line). It shows that SNIa
are less sensitive to w1 than weak lensing. Therefore a
combination of SNIa and cosmic shear could simulta-
neously probe the dark energy and its evolution. More
precisely, Figs. 9–11 show that the knowledge of w0 is
irrelevant for constraining �0 from cosmic shear. On the
other hand, the SNIa measurements are degenerate be-
tween w0 and �0. A combination of the two experiments
provide a simultaneous measure of w0 and �0 without the
need for an external measurement of �0. We can then use
the lensing constraints on w0 and w1 (Figs. 7 and 8) to
FIG. 10 (color online). Same as Fig. 9 for a qui

123515
estimate the dark energy evolution w1. In fact even a poor
knowledge of �0 could be tolerated; we know from
[5,44,45] that a marginalization over �0 of the SNIa
measurements increases the w0, w1 contours perpendicu-
lar to the increase of the same contours from cosmic shear
with poor knowledge on �0 (Figs. 7and 8, middle panels).
Adding the cosmic microwave background overcon-
strains the parameter space, because the contours in the
�0,w0 space are ‘‘perpendicular’’ to the SNIa and cosmic
shear constraints [55]. Weak lensing, cosmic microwave
background, and SNIa provide therefore an ideal set of
complementary experiments for constraining the dark
energy beyond the constant energy density case [58],
because weak lensing measurement breaks the degener-
acy with the dark energy evolution.

Earlier work has shown that cosmic shear provides also
independent constraints on �0 from the measurement of
high order statistics of the convergence [59–62]. Dark
energy modifies mildly this picture. At the level of the
ntessence, nonevolving model 2 (see Table I).
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quasilinear regime, it only affects the three-point func-
tion of the convergence field through the projection effect
[14]. The modifications are expected to be more impor-
tant at small scales [63]. One can see from Figs. 9–11 that
this additional information is not necessary, given the
degeneracy among w0 in the �w0;�0� space. However,
such external constraint could be very helpful to pin
down the degeneracy with�8, and consequently to reduce
the degeneracy between w0 and w1, helping to narrow the
constraint on w1.
III. CONCLUSION

We investigated the possibility to constrain the evolu-
tion of dark energy evolution from measurements of the
gravitational lensing by large scale structures. We used
the fact that the nonlinear growth rate of structures is
significantly affected. This is a consequence of an earlier
influence of dark energy on the expansion of the Universe.
FIG. 11 (color online). Same as Fig. 10 for a

123515
It was found that the cosmic shear effect is a good probe
of the evolution of dark energy, in opposition with experi-
ments based on angular diameter distances only, like
SNIa and cosmic microwave background, which are bet-
ter suited to measure the ‘‘constant’’ part w0 of dark
energy equation of state (in a particular parametrization).
The degeneracy with other parameters (�0, �8, and �)
restores a degeneracy between w0 and w1, but the widths
of the contours in that space are slightly affected.
Therefore a linear combination of w0 and w1 is well
measured using weak lensing, even with a poor knowl-
edge on �0 and �8.

It is generally believed that the measurement of the
dark energy equation of state parameter as a constant is
such a difficult task that we should not even dream to
measure its evolution. We have shown here, for a class of
models, that the sensitivity of the large scale structures to
a simple evolution parameter w1 is as easy (or difficult!)
as w0 to measure. Consequently, we found out that a
n evolving dark energy model (model 3).
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combination of cosmic shear, SNIa, and cosmic micro-
wave background provide orthogonal constraints of the
parameters w0, w1, and �0, which opens great opportu-
nities to probe nontrivial models of dark energy. For the
set of models studied here, we found that these three
experiments overconstrain these parameters.

One should note that the difference in the amplitude of
the cosmic shear signal between model 2 (w0 � �0:8,
w1 � 0) and model 3 (w0 � �0:8, w1 � 0:32), at scales
below 50, reaches 10%. This is large compared to the
statistical errors of the CFHTLS and SNAP surveys.
However, it is yet within the limits of the point spread
function (PSF) correction and nonlinear modeling accu-
racies [52]. If one wants to measure the dark energy
evolution as proposed here, it is clear that we need to
perform ray-tracing simulations for the class of models
we want to investigate, in order to calibrate the nonlinear
modeling [64]. The PSF correction is an entirely different
123515
issue, which is not discussed here, but there is good hope
to be able to reduce the systematics level by a factor of 5 to
10 [65], which should be enough for our purpose here.

Redshift degeneracy was not discussed, but it is not
different from the �8 and the �0 degeneracies. What has
been said for these parameters also applies to the source
redshift. In the future, photometric redshifts will provide
accurate source redshift measurements, as we do not need
an accurate redshift for each lensed galaxy.
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