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We show that the abundance and redshift distribution (dN=dz) of galaxy clusters in future high-yield
cluster surveys, combined with the spatial power spectrum [Pc�k�] of the same clusters, can place
significant constraints on the evolution of the dark energy equation of state, w � w�a�. We evaluate the
expected errors on wa � �dw=da and other cosmological parameters using a Fisher matrix approach,
and simultaneously including cluster structure evolution parameters in our analysis. We study three
different types of forthcoming surveys that will identify clusters based on their x-ray emission (such as
DUO, the Dark Universe Observatory), their Sunyaev-Zel’dovich (SZ) decrement (such as SPT, the South
Pole Telescope), or their weak-lensing shear (such as LSST, the Large Synoptic Survey Telescope). We
find that combining the cluster abundance and power spectrum significantly enhances constraints from
either method alone. We show that the weak-lensing survey can deliver a constraint as tight as �wa � 0:1
on the evolution of the dark energy equation of state, and that the x-ray and SZ surveys each yield �wa �
0:4 separately, or �wa � 0:2 when these two surveys are combined. For the x-ray and SZ surveys,
constraints on dark energy parameters are improved by a factor of 2 by combining the cluster data with
cosmic microwave background anisotropy measurements by Planck, but degrade by a factor of 2 if the
survey is required to solve simultaneously for cosmological and cluster structure evolution parameters.
The constraint on wa from the weak-lensing survey is improved by �25% with the addition of Planck
data.
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I. INTRODUCTION

It has long been realized that clusters of galaxies provide
a useful probe of fundamental cosmological parameters.
The formation of the massive dark matter potential wells is
dictated by simple gravitational physics, and the abun-
dance and redshift distribution of clusters (dN=dz) should
be determined by the geometry of the universe and the
power spectrum of initial density fluctuations. Early stud-
ies of nearby clusters used this relation to constrain the
amplitude �8 of the power spectrum (e.g., [1,2]).
Subsequent works (e.g., [3–5]) have shown that the red-
shift evolution of the observed cluster abundance places
useful constrains on the matter density parameter 	m.

The next generation of surveys, utilizing the Sunyaev-
Zel’dovich effect (SZE), x-ray flux, or weak-lensing sig-
natures to identify galaxy clusters, will be able to deliver
large catalogs, containing many thousands of clusters, with
complementary selection criteria. Such forthcoming data
sets have rekindled a strong theoretical and experimental
interest in galaxy clusters. In particular, Wang and
Steinhardt [6] first argued that the cluster abundance can
be used to probe the properties of dark energy, and Haiman,
Mohr, and Holder [7] showed that a survey with several
thousand clusters can yield precise statistical constraints on
both its density �	DE� and its equation of state (w � P=).
Several subsequent recent works have focused on various
aspects of extracting cosmological parameters from high-
yield, future surveys, such as the statistical constraints
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available on curvature 	k [8]; assessing the impact of
sample variance [9] and other uncertainties [10] on pa-
rameter estimates; and controlling such uncertainties by
utilizing information from the shape of the cluster mass
function dN=dM [11]. Closest to the subject of the present
paper, Weller et al. [12] and Weller and Battye [13] con-
sidered constraints on the time evolution of the dark energy
equation of state in forthcoming SZE cluster surveys.

Recent studies have elucidated the additional cosmo-
logical information available from the spatial distribution
of galaxy clusters through a measurement of their three-
dimensional power spectrum Pc�k� [14] (see [15] for a
more general treatment of extracting cosmological infor-
mation from redshift surveys). The power spectrum con-
tains cosmological information from the intrinsic shape of
the transfer function [16] and from baryon features [17–
19]. The existing sample of �400 nearby clusters in the
REFLEX survey has already been used to derive their
power spectrum; combined with the number counts, this
has yielded constraints on �8 and 	m that are consistent
with other recent determinations [20].

Most importantly, the cluster abundance and power
spectrum can provide two independent powerful probes
of cosmological parameters from a single data set. The
dependence of dN=dz and Pc�k� on the cosmological
parameters are different. Combining the two pieces of
information can therefore break degeneracies present in
either method alone, and yield tighter statistical con-
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straints. Furthermore, this can be used to significantly
reduce systematic errors arising from the mass-observable
relation, making cluster surveys ‘‘self-calibrating’’ [21].
This self-calibration is especially strong when the abun-
dance and power spectrum information is combined with
even a modest follow-up mass calibration program [22].

In this paper, we return to the question of constraining
the time evolution of the dark energy equation of state.
Specifically, we ask the question: Can improved con-
straints be obtained on the time evolution of w � w�z�
when the cluster counts and power spectrum are com-
bined? We quantify the statistical constraints expected to
be available from future samples of * 10 000 galaxy
clusters.

We study constraints from three different types of forth-
coming cluster surveys. The proposed DUO (Dark
Universe Observatory) [23] x-ray survey will be performed
by an Earth-orbiting satellite consisting of seven telescopes
that take a wide survey of the sky in soft x-ray bands. The
SPT-like (South Pole Telescope) [24] SZE survey will be
performed by an eight-meter precision submillimeter-wave
telescope detecting distant galaxy clusters by their
Sunyaev-Zel’dovich decrement. The LSST-like (Large
Synoptic Survey Telescope) [25] survey will be performed
by a ground-based telescope detecting clusters by their
weak-lensing shear signature on background galaxies.

The most important differences between the present
paper and earlier works that have addressed the time
evolution of the equation of state [12,13] are that here (i)
we simultaneously include the abundance and power spec-
trum in our analysis; (ii) in addition to the cosmological
parameters, we simultaneously include several parameters
that describe cluster structure and evolution; and (iii) we
study three different types of forthcoming surveys. We also
choose a different fiducial model for our analysis (one
close to the standard ‘‘concordance’’ cosmology). Our
calculational method, based on Fisher matrices, is, on the
other hand, only a simple approximation to the Monte
Carlo likelihood analysis performed in [12,13].

This paper is organized as follows. In Sec. II, we de-
scribe our basic calculational methods. In Sec. III, we
present our results for different future cluster surveys. In
Sec. IV, we critically discuss our results, including their
uncertainties, and summarize the implications of this work.
1Note that we use the fitting formula describing the un-
smoothed mass function in the simulations, given in Eq. (B3)
in Jenkins et al. [26], which is more appropriate to galaxy
clusters than the smoothed mass function [9].
II. CALCULATIONAL METHOD

A. Simulating cluster surveys

We follow the standard approach, and identify galaxy
clusters with dark matter halos. The differential comoving
number density of clusters is given by Jenkins et al. [26]

dn
dM

�z;M� � 0:301
m
M

d ln��1�M; z�
dM

� exp��j ln��1�M; z� 
 0:64j3:82�; (1)
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where �2�M; z� is the variance of the linear density field at
redshift z, smoothed with a spherical top-hat filter which
would enclose mass M at the mean present-day matter
density m.1 The Jenkins et al. mass function was derived
from numerical simulations, and its self-similar form is
demonstrated to be accurate to within �15% in three
widely separated cosmologies (although see [27], who
find a more significant cosmology dependence of the
mass function). Jenkins et al. identify simulated clusters
using M180, the mass enclosed within a spherical over-
density of 180 with respect to the mean matter density.
However, it is customary to define the relation between x-
ray or SZE flux and halo mass M200, defined as the cluster
mass enclosed within a sphere with mean interior over-
density of 200 relative to the critical density. To combine
this relation with the mass function in Eq. (1), we convert
M200 to M180 assuming that the halo density profile is
described by the Navarro-Frenk-White (NFW) model
with a concentration parameter of cnfw � 5 [28].

The spatial distribution of clusters is assumed to follow
the spatial distribution of the dark matter halos and is
specified by the cluster power spectrum Pc�k�. We follow
Hu and Haiman [14] and obtain Pc�k� from the underlying
mass power spectrum, P�k�, modified by redshift-space
distortions [29]

Pc�k?; kk� �
�
1 
 �

�
kk
k

�
2
�

2
b2P�k�; (2)

k2 � k2
? 
 k2

k
; (3)

where k? and kk are the wave numbers of the sinusoidal
fluctuation modes transverse and parallel to the line of
sight, respectively. The redshift-distortion parameter � is
defined by [29]

� �
1

b

d lnDgrow

d lna
; (4)

where Dgrow is the linear growth rate, and a is the expan-
sion factor normalized to unity today. The parameter b in
Eqs. (2) and (4) represents the linear bias averaged over all
halos at redshift z:

b�z� �
Z 1

Mmin�z�

dn�M; z�
dM

b�M�dM

"Z 1

Mmin�z�

dn
dM

dM

#
�1

;

(5)

where Mmin�z� is the mass of the smallest detectable clus-
ter, which depends on the type of survey as discussed in
Sec. II D. The bias parameter of halos of a fixed mass M,
b�M�, is assumed to be scale independent and given by
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b�M� � 1 

a�2

c=�2 � 1

�c



2p=�c
1 
 �a�2

c=�2�p
; (6)

with a � 0:75 and p � 0:3 providing the best fits to the
clustering measured in cosmological simulations [30].
Finally, �c represents the threshold linear overdensity cor-
responding to spherical collapse, whose value is �c �
1:686 in an Einstein-de Sitter universe. We keep it fixed
throughout the calculation, as it was shown to be only
weakly dependent on cosmology and redshift in other
models [6].

B. Fisher matrix technique

The Fisher matrix formalism allows a forecasting of the
ability of a given survey to constrain cosmological parame-
ters [31]. It gives a lower bound to the statistical uncer-
tainty of each model parameter that is to be fit by future
data. The well-known advantages of the Fisher matrix
technique are that (i) it allows a quick estimate of errors
in a multidimensional parameter space, since the likeli-
hood functions do not have to be evaluated at each point of
the multidimensional grid, and (ii) constraints from inde-
pendent data sets or methods can be easily combined by
simply summing the individual Fisher matrices.

The Fisher matrix is defined as

Fij �

�
@2L

@pi@pj

	
; (7)

where L � � lnL is the log-likelihood function, and
where pi’s are the various model parameters which, in
our case, include both cosmological parameters and pa-
rameters describing cluster structure and evolution. The
inverse �F�1�ij gives the best attainable covariance matrix,
regardless of any specific method used to estimate the
parameters from the data [31]. In particular, the best sta-
tistical uncertainty attainable on any individual parameter
pi, after marginalization over all other parameters, is
�F�1�1=2ii .

We construct the Fisher matrix for the redshift distribu-
tion of the number density of galaxy clusters as [8]

Fcounts
�� �

X
i

@Ni

@p�

@Ni

@p�

1

Ni
; (8)

where

Ni � �	�z
d2V
dzd	

�zi�
Z 1

Mmin�zi�

dn�M; zi�
dM

dM (9)

is the number of clusters above the detection threshold in
each redshift bin i centered at zi. In Eq. (9), �	 is the solid
angle covered by a survey, d2V=dzd	 is the comoving
volume element, and dn=dM is the cluster mass function
[see Eq. (1)]. We sum over redshift bins of size �z � 0:05,
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between zmin � 0 and zmax � 2:0 for the DUO x-ray sur-
vey and the SPT-like SZE survey, and between zmin � 0:1
and zmax � 1:4 for the LSST-like survey, although accurate
redshifts are not required for the dN=dz test.

We construct the Fisher matrix for the redshift-space
power spectrum as [14]

Fpower
�� �

X
i;j

@ ln�k2
?kkPc�ij

@p�

@ ln�k2
?kkPc�ij

@p�

�VkVeff�ij

2
;

(10)

where Pc�k� is the cluster power spectrum. The two-
dimensional k-space cells and the set of redshift bins are
labeled by i and j, respectively. The factor of �VkVeff=2��1

estimates the uncertainty ��Pc=Pc�
2 in the measured

power spectrum, including the effects of shot noise and
cosmic variance [32]. Here Veff is the effective volume
probed by the survey

Veff�k� �
Z
dVs

�
 n�zj�Pc�k�

1 
  n�zj�Pc�k�

�
2
; (11)

where  n is the expected average number density, and Vk is
the cylindrical volume factor in k space:

Vk �
2���k2

?��kk
�2��3

: (12)

We sum over 292 linearly spaced k cells from k?;k � 0:005
to 0:15 Mpc�1, thus defining a cylinder in three-
dimensional k space. We sum over redshift bins of size
�z � 0:2, between zmin � 0 and zmax � 2:0 for the DUO-
like survey and the SPT-like survey, and between zmin �
0:1 and zmax � 1:4 for the LSST-like survey. The choice of
this relatively wide redshift bin size is dictated by the need
to have a sufficient number of clusters in each bin for an
accurate determination of the power spectrum (N * 1000),
as well as a wide enough �z that includes radial modes
with k?;k � 0:005 Mpc�1.

Finally, in addition to the constraints from clusters con-
sidered here, we construct the Fisher matrix that can be
used to forecast cosmological parameter errors from the
temperature and polarization anisotropy of the cosmic
microwave background (CMB). We have in mind a near-
future survey such as Planck [33] that will measure tem-
perature and E-mode polarization autocorrelation (respec-
tively, TT and EE), as well as temperature-polarization
cross correlation (TE). We neglect B-mode polarization.
The full CMB Fisher matrix is then given by [34,35]

Fcmb
�� �

X
‘

X
X;Y

@CX;‘

@p�
Cov�1�CX;‘; CY;‘�

@CY;‘

@p�
; (13)

where X; Y run over TT, EE, and TE correlations. The
covariance matrix, Cov�CX;‘; CY;‘�, has elements
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Cov�CTT;‘; CTT;‘� �
2

�2‘
 1�fsky
�CTT;‘ 
 B�2

T;‘�
2; Cov�CEE;‘; CEE;‘� �

2

�2‘
 1�fsky
�CEE;‘ 
 B�2

E;‘�
2;

Cov�CTE;‘; CTE;‘� �
1

�2‘
 1�fsky
�C2

TE;‘ 
 �CTT;‘ 
 B�2
T;‘��CEE;‘ 
 B�2

E;‘��;

Cov�CEE;‘; CTE;‘� �
2

�2‘
 1�fsky
CTE;‘�CEE;‘ 
 B�2

E;‘�; Cov�CTT;‘; CTE;‘� �
2

�2‘
 1�fsky
CTE;‘�CTT;‘ 
 B�2

T;‘�;

Cov�CTT;‘; CEE;‘� �
2

�2‘
 1�fsky
C2
TE;‘;

(14)
where fsky is the fraction of the sky covered. The BT;‘’s and
BE;‘’s account for experimental noise for temperature and
polarization measurements, respectively, and are given by
[36]

B2
‘ �

X
c

��c(c�
�2e�‘�‘
1�=‘2

c ; (15)

where the sum is over the different frequency channels
denoted by c, �c is the sensitivity, (c is the beam width,
and lc � 2

����������
2 ln2

p
=(c is the corresponding ‘‘cutoff’’ multi-

pole. Equation (15) assumes that different channels pro-
vide independent constraints. We follow previous
theoretical ‘‘error forecast’’ work in adopting this assump-
tion; however, we note that this implicitly assumes that all
foregrounds were perfectly removed from the temperature
and polarization maps. In reality, imperfect removal of
foregrounds will induce correlations among the channels,
which will have to be taken into account in a refined
analysis. Modeling foregrounds and the expected precision
with which they can be removed is beyond the scope of the
present paper.

In this paper, we focus on the Planck survey for con-
creteness. This survey will measure temperature and po-
larization anisotropy in three frequency bands, namely,
100, 143, and 217 GHz, with fractional sky coverage of
fsky � 0:8. The parameters for this experiment are listed in
Table I (taken from [36]). The various C‘’s are calculated
up to ‘max � 2000, as appropriate for Planck, using
KINKFAST [37], a modified version of CMBFAST [38] tai-
lored for time-varying w.

C. Fiducial cosmology

The Fisher matrix formalism estimates how well a sur-
vey can distinguish a fiducial model of the universe from
other models. The results depend on the fiducial model
TABLE I. Parameters for the Planck survey.

Frequency (GHz) 100 143 217

(c (arcmin) 10.7 8.0 5.5
�c;T (�K) 5.4 6.0 13.1
�c;E (�K) � � � 11.4 26.7

‘c 757.0 1012.0 1472.0
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itself. Throughout the paper, we take a seven-dimensional
parametrization of a spatially flat (	k � 0), cold dark
matter cosmological model, dominated by a cosmological
constant ()). The sensitivity of our results to the choice of
the fiducial parameters is discussed in Sec. IV below. The
parameters are adopted from recent measurements by the
Wilkinson microwave anisotropy probe (WMAP), as sum-
marized in Table 1 of [39]: baryon density 	bh2 � 0:024,
matter density 	mh2 � 0:14, dark energy density in units
of the critical density 	DE � 0:73 (or Hubble constant
H0 � 100h km s�1 Mpc�1 with h � 0:72), with present-
day normalization �8 � 0:9 and scalar power-law slope
ns � 1 of the primordial power spectrum. Following
Linder [19], we parametrize the evolving dark energy
equation of state as

w�z� � w0 
 wa�1 � a� � w0 
 wa
z

1 
 z
; (16)

with values in our fiducial model chosen to be w0 � �1
and wa � 0. An alternative parametrization sometimes
used in the literature is w�z� � w0 
 wzz. The errors we
obtain here on wa should be divided by approximately a
factor of 2 to obtain the corresponding errors on wz. This
follows from Taylor-expanding Eq. (16) about z � 1=2,
which is approximately where the sensitivity of cluster
surveys peak.

D. Survey parameters

To determine the detection mass limit Mmin�z� in Eq. (1),
a mass-observable relation is needed. We consider three
surveys for our analysis, a flux-limited x-ray survey, such
as DUO, an SZE survey that is similar to the one to be
carried out with the South Pole Telescope, and a weak-
lensing survey that is similar to that planned for the LSST.
For the x-ray and SZE surveys, we impose a minimum
mass of 1014h�1M� [if Mmin�z� as computed below turns
out to be less than 1014h�1M�] since less massive halos
correspond to small clusters or groups and are likely to
depart from the scaling relations adopted here. We do not
impose this lower bound for the weak-lensing survey since,
in principle, the dark matter halos of low-mass clusters or
groups should still produce shear signals with a well-
defined mass-shear relation.
-4
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For the DUO-like x-ray survey, we adopt a bolometric
flux-mass relation of the form

fx�z�4�d
2
L � AxM

�x
200E

2�z��1 
 z�/x ; (17)

where fx in units of erg s�1 cm�2 is the bolometric flux
limit, dL in units of Mpc is the luminosity distance, M200 is
the mass of the cluster, and H�z� � H0E�z� is the Hubble
parameter at redshift z. Following Majumdar and Mohr
[21], we adopt log10�Ax� � �4:159, �x � 1:807, and
/x � 0 as fiducial values. We model the DUO observations
as a combination of a ‘‘wide’’ survey, covering a sky area
of �	 � 6000 deg2 with a bolometric flux limit of fx >
1:75 � 10�14 erg s�1 cm�2 (corresponding to fx > 7 �
10�14 erg s�1 cm�2 in the 0:5:10 keV band); and a
‘‘deep’’ survey, spanning �	 � 150 deg2 with a bolomet-
ric flux limit of fx > 2:25 � 10�14 erg s�1 cm�2 (fx > 9 �
10�15 erg s�1 cm�2 in the 0:5:10 keV band). With these
parameters, for our fiducial cosmological model, the wide
survey yields �10 000 clusters while the deep survey
yields �1500 clusters. These numbers are consistent with
the existing data on the logN � logS relation for clusters in
soft x-ray bands [40] and also with independent estimates
for the total number of clusters expected to be detected by
DUO [21].

For an SPT-like SZE survey, we adopt an SZE flux-mass
relation:

fsz�z�d
2
A � f���fICMAszM

�sz
200E

2=3�z��1 
 z�/sz ; (18)

where fsz in units of mJy is the observed flux decrement,
dA in units of Mpc is the angular diameter distance, f��� is
the frequency dependence of the SZE distortion, and fICM

is the mass fraction of the intracluster medium. We model
the SPT-like SZE survey as a flux-limited survey with
fsz > 5 mJy at 150 GHz. While this is an oversimplifica-
tion, the threshold value approximately represents the total
flux decrement of the smallest cluster that can be detected
at 5� significance with SPT.2 We also adopt the fiducial
parameters log10�Asz� � 8:9, �sz � 1:68, /sz � 0, and
covering �	 � 4000 deg2. We also assume fICM �
0:12. With these parameters, for our fiducial cosmological
model, this survey yields �20 000 clusters.

Finally, for the LSST-like weak-lensing (WL) survey, we
follow Hamana et al. [41] to find a relation between the
dimensionless shear and halo mass, given by
2It has been pointed out [27] that clusters are extended sources,
and a convolution with SPT’s beam profile leads to a loss of
sensitivity. This reduces in [27] the number of clusters detectable
with SPT to �4500. However, this reduction stems from the
point source sensitivity of 5 mJy adopted in [27]. The threshold
of 5 mJy we chose represents the total flux of an extended
cluster, and it can be roughly understood as follows. The
sensitivity of SPT at 150 GHz within its one square arcminute
beam is �10 �K [24], corresponding to 0.3 mJy. The �2 arcmin
inner region of the smallest detectable cluster fills �12 beams,
yielding a total noise of �1 mJy within the cluster aperture.
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2G � 4�(G�
�
Mvir=��r2

s�

0cr

�
: (19)

Here 2G is the average shear within a Gaussian filter of
angular size (G; Mvir and rs are the mass and scale radius
of a cluster with an NFW density profile �rs � rvir=cnfw�; zl
is the redshift of the cluster; and dA is the angular diameter
distance to the cluster. The coefficient 4 is given by

4 �

R
1
0 dx�x=x2

G� exp��x2=x2
G�f�x�

log�1 
 cnfw� � cnfw=�1 
 cnfw�
; (20)

where x � 6=(s is a dimensionless angular coordinate,
and xG � (G=(s corresponds to the smoothing scale, with
(s � rs=dA�zl� denoting the angular scale radius. The di-
mensionless surface density profile f�x� is given by Eq. (7)
in Hamana et al. [41]. Finally, the mean inverse critical
surface mass density is given by

0�1
cr �

4�G

c2 a�zl�7�zl�

R
1
zl
dzdn=dz�1 � 7�zl�=7�z��R

1
0 dzdn=dz

;

(21)

where a is the scale factor and 7 denotes the comoving
radial distance (valid for the flat universe with 	k � 0 we
are assuming). We model the LSST-like survey to have a
constant detection threshold of 2G � 4:5�noise [42]. The
noise is given by the ratio of the mean ellipticity dispersion
(�8) of galaxies and the total number of background gal-
axies contained within a smoothing aperture (G [43],
�2

noise � �2
8=�4�(2

Gng�. We adopt �8 � 0:3 and a number
density of background galaxies ng � 65 arcmin�2 [44],
and the angular smoothing scale (G � 1 arcmin, which
corresponds to optimal S/N for the range of cluster masses
and redshifts we considered. We take the survey to cover
�	 � 18 000 deg2 and to extend over the cluster redshift
range 0:1 � z � 1:4. This yields �200 000 clusters for our
fiducial cosmology.

Evidently, the various surveys considered here span
different redshift range, sky coverage, and sensitivity. It
is therefore useful to compare the expected number of
clusters per redshift and unit solid angle for each survey
for our fiducial cosmology. This is shown in Fig. 1. We see
that the SPT-like survey is the most sensitive probe at high
redshift, a consequence of the fact that the mass limit for
SZE surveys is nearly redshift independent. In comparison,
the DUO x-ray and LSST-like surveys drop more sharply
with redshift. Note that the fixed ‘‘mass floor’’ of
1014h�1M� determines the number of clusters at z <
0:2; 0:25; 0:5 for DUO wide, SPT-like, and DUO deep,
respectively. In comparison, the LSST-like counts are
dominated by small clusters or groups with
M � 1014h�1M�.
-5



TABLE III. Estimated cosmological parameter constraints
from DUO. The dN=dz column includes priors from WMAP:
�	bh

2 � 0:0010, and �ns � 0:040.

Survey and parameter constraints dN=dz Pc�k�

DUO wide (6000 deg2)
�	DE 0.14 0.037
�	mh

2 0.25 0.096
��8 0.16 0.10
�w0 0.16 0.59
�wa 0.92 3.2

�	bh
2 0.0010 0.023

�ns 0.040 0.18

DUO deep (150 deg2)
�	DE 0.097 0.11
�	mh

2 0.33 0.25
��8 0.040 0.25
�w0 0.29 0.78
�wa 2.5 3.7

�	bh
2 0.0010 0.059

�ns 0.040 0.49

0 0.5 1 1.5 2

z

0.01

1

100

10000

1e+06

d2 N
/d

zd
Ω

DUO wide
DUO deep
LSST-like
SPT-like

FIG. 1. Expected number of clusters per redshift per unit solid
angle for the fiducial cosmology.
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III. RESULTS

Before discussing our results for the cluster surveys, we
first summarize constraints from the CMB alone. Our
projections for the Planck satellite, using the seven-
parameter Fisher matrix, are listed in Table II and are
consistent with well-known previous forecasts [35,45,46].
This table shows the power of the CMB in constraining the
matter and baryon density, 	mh2 and 	bh2, respectively,
as well as the spectral tilt, ns. However, as is well known,
the equation of state of the dark energy, parametrized byw0

and wa, is poorly constrained by CMB observations alone
[47,48]. This is because the dependence of the CMB power
spectrum on these two parameters comes mainly from the
distance to last scattering, dLS, which involves a double
integral of w�z�:

dLS

3000 Mpc
�

Z zrec

0

dz��������������������������������������������������������������������
	mh

2�1 
 z�3 
 �1 � 	m�h
2g�z�

p ;

(22)

where zrec is the redshift of recombination, and where

g�z� � exp

(
3
Z z

0

�1 
 w�z0��dz0

1 
 z0

)
: (23)
TABLE II. Estimated cosmological parameter constraints
from Planck.

Planck survey

�	DE 0.035
�	mh

2 0.0012
��8 0.041
�w0 0.32
�wa 1.0

�	bh2 0.000 14
�ns 0.0035
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Since w0 and wa only appear inside this double integral,
there is a severe degeneracy that can leave dLS nearly
invariant under changes in these parameters.

Table III summarizes the results for the DUO wide and
deep surveys, both from cluster counts (dN=dz) and power
spectrum [Pc�k�].

3 This table addresses the issue of the
relative merits of survey size versus depth. Starting with
the counts, we see that the constraints for the wide and the
deep surveys are of the same order, even though the latter
yields about 7 times fewer clusters. This is because the
deep survey, despite its limited angular coverage, measures
a higher fraction of high-redshift clusters. For the power
spectrum, however, the constraints are most sensitive to the
total number of clusters. Indeed, the errors on most pa-

rameters differ by roughly a factor of
������������������������
Nwide=Ndeep

q
� 2:6,

where Nwide and Ndeep are the total number of clusters for
the respective surveys. The power spectrum Pc�k� delivers
good constraints on the densities (	’s) and on �8 in the
wide survey, but has little sensitivity to w0 and wa.

Table IV addresses the issue of the relative merits of
dN=dz, Pc�k�, their combination, and their combination
with CMB anisotropy data from Planck, for all three
3In this table, as well as in Tables IV and V below, we have
included priors on 	bh

2 and ns from the present constraints on
these parameters from WMAP (0.001 and 0.04, respectively) for
the dN=dz Fisher matrix. The motivation of adding these priors
is that dN=dz has essentially no sensitivity to these two parame-
ters, resulting in large predicted uncertainties which obscure the
information content of dN=dz. The dN=dz and dN=dz
 P�k�
columns in all three tables reflect these WMAP priors. In the last
column, when CMB information from Planck is added in
Tables IV and V below, the WMAP priors become irrelevant.
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TABLE IV. Estimated cosmological parameter constraints from clusters and CMB combined.
The dN=dz column includes priors from WMAP: �	bh

2 � 0:0010, and �ns � 0:040.

Survey and parameter constraints dN=dz Pc�k� dN=dz
 Pc�k� dN=dz
 Pc�k� 
 Planck

DUO Combined
�	DE 0.011 0.032 0.0074 0.0064
�	mh

2 0.022 0.084 0.0098 0.000 41
��8 0.016 0.088 0.012 0.011
�w0 0.10 0.45 0.096 0.061
�wa 0.48 2.3 0.45 0.19

�	bh
2 0.0010 0.021 0.0010 0.000 11

�ns 0.040 0.15 0.033 0.0024

SPT-like Survey (4000 deg2)
�	DE 0.036 0.033 0.014 0.0097
�	mh

2 0.049 0.056 0.0083 0.000 27
��8 0.031 0.064 0.018 0.012
�w0 0.22 0.41 0.15 0.082
�wa 0.59 1.8 0.46 0.18

�	bh
2 0.0010 0.014 0.000 99 0.000 11

�ns 0.040 0.094 0.029 0.0023

LSST-like Survey (18 000 deg2)
�	DE 0.0053 0.0080 0.0024 0.0023
�	mh

2 0.026 0.021 0.0048 0.000 24
��8 0.0035 0.022 0.0025 0.0024
�w0 0.051 0.10 0.024 0.023
�wa 0.086 0.47 0.077 0.061

�	bh2 0.0010 0.0050 0.000 97 0.000 10
�ns 0.040 0.040 0.015 0.0022
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surveys. The top third of Table IV lists the results of
combining DUO wide and deep. Of particular interest is
the third column from the left, which shows the constraints
obtained by adding the Fisher matrices for dN=dz and
Pc�k� for the combined survey. These are, in short, the
most optimistic error bars from DUO alone. The table also
illustrates the power of combining cluster counts with two-
point function statistics. Indeed, the combined error bars
(column 3) for 	DE and 	mh2 are about 2 times smaller
than those derived from either dN=dz (column 1) or Pc�k�
(column 2) alone. Finally, we see in the last column that
combining DUO and Planck further reduces the uncer-
tainty on w0 and wa by approximately a factor of 2. This
underscores the complementarity of cluster and CMB data
in uncovering the nature of the dark energy.

The middle third of Table IV shows our results for the
SPT-like SZE survey. Overall, the constraints on the cos-
mological parameters are similar to those available from
the DUO-like survey.

The bottom third of Table IV shows our estimated
parameter uncertainties for the LSST-like cluster survey.
Comparing the third column with the previous two again
confirms the power of combining counts with power spec-
trum. The constraints on w0 and wa are of the order of a
few percent. These remarkably tight bounds [comparing
favorably with those from the Planck survey (Table II) for
123008
all cosmological parameters except 	mh2, 	bh2 and ns]
are the result of the very high cluster yield of this survey.
To examine the sensitivity of these results to the inclusion
of the lowest mass clusters, we follow a more conservative
approach by imposing a minimum mass of 2 �
1014h�1M�. This reduces the number of clusters to
�50 000. The constraints on w�a� from LSST alone de-
grade by a factor of about two (consistent with

����
N

p
scaling

of statistical errors), to �w0 � 0:030 and �wa � 0:23.
When combined with Planck, the errors are nearly unaf-
fected: �w0 � 0:024 and �wa � 0:070. Therefore we are
confident that, with enough clusters and combining with
Planck, LSST can constrain wa to a few percent. Finally,
we find that it is essential to include the cosmology depen-
dence of the limiting mass for the LSST survey. Repeating
our analysis adopting the redshift-dependent mass limit
from the fiducial cosmology, and not allowing it to vary
with cosmology, results in an increase by a factor of 3–4 in
the uncertainties.

In Table V, we repeat the analysis for the DUO and SPT-
like surveys, but this time taking into account the uncer-
tainty in the structure and evolution of clusters. In other
words, we require that the cluster surveys constrain not
only the cosmology, but also the parameters of the mass-
observable relation. For DUO, this is modeled by including
the parameters Ax, �x, and /x of Eq. (17) in the Fisher
-7



TABLE V. Parameter constraints including self-calibration. The dN=dz column includes
priors from WMAP: �	bh

2 � 0:0010, and �ns � 0:040.

Survey and parameter constraints dN=dz Pc�k� dN=dz
 Pc�k� dN=dz
 Pc�k� 
 Planck

DUO Combined
�	DE 0.030 0.043 0.015 0.012
�	mh

2 0.14 0.091 0.0098 0.000 67
��8 0.058 0.12 0.016 0.013
�w0 0.44 0.53 0.20 0.15
�wa 1.2 2.5 0.82 0.46

�	bh
2 0.0010 0.022 0.0010 0.000 11

�ns 0.040 0.18 0.034 0.0027
� logAx 0.27 0.18 0.050 0.037

�bx 0.29 0.18 0.030 0.027
�/x 0.67 0.63 0.17 0.081

SPT-like survey
�	DE 0.13 0.037 0.017 0.014
�	mh

2 0.65 0.077 0.0086 0.000 63
��8 0.14 0.099 0.019 0.017
�w0 0.42 0.46 0.19 0.14
�wa 2.4 1.8 0.81 0.40

�	bh
2 0.0010 0.018 0.0010 0.000 11

�ns 0.040 0.15 0.032 0.0026
� logAsz 0.59 0.35 0.12 0.056

�bsz 0.79 0.35 0.12 0.063
�/sz 1.7 0.62 0.19 0.057
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matrix analysis. Similarly, for the SPT-like survey, we
include Asz, �sz, and /sz from Eq. (18). For both surveys,
we see that adding self-calibration increases the error on
w0 and wa by a factor of & 2 in comparison with the
corresponding results in Table IV. Overall, we see that
including self-calibration parameters still yields very
good constraints on the cosmology. The constraints from
dN=dz
 Pc�k� and dN=dz
 Pc�k� 
 Planck are shown
graphically in Figs. 2 and 3, including self-calibration for
the DUO-like and SPT-like surveys.

Coming back to Table IVand comparing the first column
from the left (dN=dz) with the third [dN=dz
 Pc�k�], we
note that, for DUO, adding the power spectrum does not
significantly tighten the constraints on w0 and wa in this
case. However, for the ‘‘self-calibration’’ case (Table V),
combining the two methods helps greatly on all the con-
straints. For SPT-like and LSST-like surveys, combining
two methods always gives stronger constraints. This is
clearly illustrated in Fig. 2.

An obvious method to cross-check for systematic effects
due to cluster structure and evolution, and to improve
constraints, is to combine the x-ray and SZE data. We
have found that the uncertainties in w0 and wa reduce to
0.083 and 0.35 when the self-calibrated SPT and DUO
samples are considered in combination, and to 0.060 and
0.22 when Planck is added to this combined sample.

Uncertainties in cluster structure and evolution should
be less severe for WL signatures, which probe the dark
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matter potential directly. However, to compare the WL
error forecasts more fairly with the SZ and x-ray predic-
tions, in Table VI we show LSST predictions that incor-
porate two additional uncertainties inherent to WL
selection: false detections and incompleteness. We relied
on published results of numerical simulations [41,42] to
calibrate our results: We assumed 25% of detections are
false, and 30% of real clusters are undetected. These
effects increase the parameter errors, relative to those in
the bottom third of Table IV by � 50% (except for 	bh2

and ns, which are significantly determined by the WMAP
priors and are less affected). See the next section for a more
detailed discussion.
IV. DISCUSSION

In the previous section, we derived constraints on cos-
mological parameters from future SZE, x-ray, and WL
surveys. Our Fisher matrix approach should be interpreted
as yielding lower limits on the achievable statistical errors.
In our analysis, we adopted unique relations between the
observables and cluster mass, which come from simple
models of cluster structure and evolution. We required
the SZ and x-ray surveys to ‘‘self-calibrate’’ and constrain
structure and evolution parameters simultaneously with
cosmology. However, the power-law form of the relations
we adopted will have to be further constrained. This should
be feasible by combining the three observables in the
-8



FIG. 2. Constraints on dark energy parameters: w0 and wa (left), w0 and 	DE (right) for a DUO-like x-ray survey (top), an SPT-like
SZE survey (middle), and an LSST-like weak-lensing survey (bottom). The three curves in each figure show the constraints available
from dN=dz (dashed line), Pc�k� (dotted line), and from their combination (solid line). The star-shaped symbol at the center of each
figure indicates our fiducial cosmology. The constraints for x-ray survey and SZE survey are calculated for the self-calibration case.
The constraints are marginalized over all other cosmological and relevant structure parameters. In all cases, the constraints from the
combination of dN=dz and Pc�k� are at least a factor of 2 stronger than from either method alone.
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FIG. 3. Constraints on dark energy parameters: w0 and wa (left), w0 and 	DE (right), by combining a DUO-like x-ray survey (top),
an SPT-like SZE survey (middle), or an LSST-like weak-lensing survey (bottom) with Planck-like CMB observations. The three curves
in each figure show the constraints available from the combination of dN=dz and Pc�k� (dotted line), CMB alone (dot-dashed line), and
from the combination of all of the above (solid line). As in Fig. 2, the constraints for x-ray survey and SZE surveys are calculated for
the self-calibration case, and constraints are marginalized over all other relevant parameters. Note the different scales of the horizontal
and vertical axes compared to Fig. 2.
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TABLE VI. Calibrated cosmological parameter constraints from LSST and CMB combined.
The dN=dz column includes priors from WMAP: �	bh

2 � 0:0010, and �ns � 0:040.

Parameter constraints dN=dz Pc�k� dN=dz
 Pc�k� dN=dz
 Pc�k� 
 Planck

LSST-like Survey
�	DE 0.0081 0.012 0.0037 0.0033
�	mh

2 0.038 0.032 0.0059 0.000 24
��8 0.0054 0.034 0.0038 0.0037
�w0 0.079 0.16 0.037 0.036
�wa 0.13 0.72 0.12 0.093

�	bh
2 0.0010 0.0077 0.000 98 0.000 10

�ns 0.040 0.062 0.021 0.0022
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different wave bands for a subset of the samples, and by
adding new observables (such as the shape of the mass
function, the angular size, velocity dispersion), which we
have not considered here. In the case of the WL sample, we
relied on results from numerical simulations to calibrate
the mass-observable relation, an approach that can be
refined with a larger suite of simulations in the future.

The Fisher matrix technique, especially the way of
combining independent constraints by summing individual
Fisher matrices, allows us to explore the physical origin of
the cosmological information. A glance at Eqs. (8) and (10)
reveals that cosmology enters through several physical
quantities into the Fisher matrices, such as the cosmic
volume, growth function, transfer function, bias, etc.
Unfortunately, the marginalization over all other parame-
ters involves a nonlinear inversion of the Fisher matrix,
which makes isolating the various sources of information
difficult. As an example, we repeated the analysis above,
but keeping either the volume factor, k2

?kk, or the bias
parameter at their values in the fiducial model (i.e., ex-
cluding their derivatives from computing power spectrum
Fisher matrices). We find that, as a result, the constraint on
some of the parameters improve, while others degrade,
which does not offer a useful description of the amount
of information the volume factor or the bias parameter
provides.

In addition, we explored the implicit assumption made
above that the bias parameter b can be precisely modeled.
We take a similar approach to that used in addressing ‘‘self-
calibration,’’ by modeling the bias as b � b0�z��1 
 z�/b .
We effectively include an additional new parameter, /b, in
the Fisher matrix analysis. Note that a constant factor of
normalization would be degenerate with �8. In the fiducial
model, b0�z� follows from Eq. (5), and /b � 0. The con-
straints from cluster power spectrum including the ‘‘non-
standard evolution parameter’’ /b causes only a minor
degradation (under 10%) of the constraints on w0 and wa
(relative to column 2 in Table IV), suggesting that the bias
factor did not drive the cosmological constraints we de-
rived from the power spectrum.
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The results from the power spectrum also depend on the
assumption of the extent of the linear regime. To quantify
the importance of the small-scale modes, for the example
of the SPT-like survey, we decreased kmax from 0:15 to
0:10 Mpc�1. We found that this degrades the error bars by
a factor of up to � 1:4. Similarly, decreasing kmax further to
0:075 Mpc�1 degrades all the error bars by a factor of up to
� 2. (See also [14] for a detailed discussion of the depen-
dence of the constraints separately on k?;max and kk;max.)

In Table IV, we have assumed that the mass-observable
relations apply exactly. However, for real surveys, the
mass-observable relation is likely to have a non-negligible
scatter. We estimated the magnitude of scatter that would
bias the inferred parameters by an amount comparable to
their statistical errors, for the example of the SPT survey
[27]. We assumed that at a fixed flux fsz, the mass M180 has
a Gaussian distribution, with a mean given by Eq. (18) (but
converted from M200 to M180), and a fractional rms devia-
tion of �M=M � �M. We then recomputed the cluster
abundance dN=dz (which is increased in the presence of
scatter). We found that, at �M � 7%, the change caused in
the total number of detectable clusters is comparable to the����
N

p
error that is used to obtain the constraints on cosmo-

logical parameters. A scatter larger than �7% would there-
fore be important, and it would have to be modeled (i.e., by
parametrizing the scatter, calibrated directly from obser-
vations) in the analysis of real data.

A further complication, likely most relevant for the WL
survey, is the presence of false detections. In our analysis
of the LSST-like survey, we used a constant shear S/N to
select clusters, which directly measures how well the shear
signal stands out above the ellipticity shot noise of the
background galaxies. False detections can result from sta-
tistical fluctuations in these ellipticities. Furthermore,
physical structures, projected along the line of sight to a
given cluster, constitute additional background noise, and
can result in a false detection of two or more mass con-
centrations (projected along the line of sight but physically
separated in redshift). Hennawi and Spergel [42] have done
a comprehensive study of mass-selected clusters using
-11
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N-body simulations (see also [41,49] for other numerical
studies of WL cluster selection). Defining efficiency as the
fraction of the peaks in the mass map that corresponds to
real clusters, and completeness as the fraction of real
clusters we can detect, they find in their simulation that
for a 4:5 standard deviation detection threshold, � 75% of
the detected clusters are real and � 70% of the clusters can
be detected [41]. They emphasize that the expected cluster
distribution, including false detections and missing clus-
ters, can be reliably calculated for any cosmological model
since the simulations depend only on gravity. Thus, false
detections can be subtracted, and their presence serves only
to increase the statistical error. These effects would in-
crease the parameter errors in the bottom third of Table IV
by � 50% (summing in quadrature the errors on the num-
ber of real clusters and on the number of false detections,�������������������������������������������
��1=e� 1� 
 1=e�=c

p
� 1 � 50%, where e � 75% is the

efficiency and c � 70% is the completeness as we defined
above). We note that the study in [42] utilized only the
‘‘tomographic redshifts’’ derived from the shear map itself
(using photometric redshifts only for the background gal-
axies), which have large uncertainties. However, it should
be feasible to routinely measure photometric redshifts of
the cluster member galaxies, as well, and this additional
information could be used to reduce the rate of false
detections.

Obtaining redshifts is a general issue relevant for all
three future surveys. While accurate (spectroscopic) red-
shifts are not required for either the dN=dz or P�k� tests,
photometric redshift estimates will be required to utilize
the distribution of clusters in z, and also to use high-kk
modes of the power spectrum. In the case of the LSST
survey, we adopted a maximum redshift zmax � 1:4, the
redshift out to which it should be feasible to obtain photo-
metric redshifts with the planned filters and sensitivities
[25]. In the case of DUO, most of the clusters in the wide
survey ( * 80%) will have photometric redshifts from the
overlapping Sloan Digital Sky Survey (SDSS) galaxies; the
redshifts of the more distant galaxies in the deep survey
will be obtained in optical follow-up programs. Obtaining
photometric redshifts of a large fraction of clusters in the
SPT survey beyond z * 1:4 will be challenging. However,
we have recomputed our results for SPT ignoring all clus-
ters beyond z � 1:4, and found that none of the constraints
degraded by more than a few percent.

It has often been argued that weak lensing only involves
gravitational deflection of light, so the mass-shear relation
can be determined without fully understanding the com-
plex baryonic physics. Clearly this is an idealization, since
baryons can cool and contract to establish a more centrally
condensed density profile than the dark matter, altering the
total gravitational field. To quantify the resulting change in
the WL shear, we followed a simple spherical model in
[50], in which a fixed fraction fcool of baryons inside a
‘‘cooling radius’’ are allowed to cool and condense by a
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further factor of �10 after virialization. The effect of such
a ‘‘cooling flow’’ on the mass profiles of halos is relatively
small, except in the inner regions. In models with fcool up
to 30%, we find that the change in the Gaussian-averaged
shear 2G can be up to 15%. This reflects the enhanced
effect of baryons in the core of the cluster, which is
emphasized by the Gaussian weighting. However, this
bias only affects the initial selection of clusters. In practice,
one will go back and extract the total mass of the cluster
from the shear map in a separate analysis [51]. We find that
the total mass enclosed within the virial radius is changed
by a much smaller amount, <1%.

In this work, the constraints on cosmological parameters
were derived assuming a fiducial model with a cosmologi-
cal constant as the dark energy, i.e., w0 � �1 and wa � 0.
As mentioned above, the choice of the fiducial model can,
in principle, strongly affect the predicted errors. To assess
the robustness of our derived errors, we repeated the analy-
sis for a fiducial model with a strongly time-dependent
equation of state, namely w0 � �0:8 and wa � 0:3, which
is also consistent with current data. We find in this case that
all error bars derived from dN=dz and P�k� remain essen-
tially unchanged, except for �wa, which shrinks by about
25%. Therefore, by choosing a pure ) model as our
fiducial cosmology, we obtain a conservative estimate of
the error on wa.
V. CONCLUSIONS

Three main lessons can be drawn from our work. First,
the above results provide further support for the usefulness
of clusters as an independent and important probe of the
dark energy. At a general level, the main advantage of
clusters over other measurements lies in the fact that the
physics involved is predominantly gravitational and hence
simple; moreover, the observations are at low redshift and
therefore straddle the epoch of cosmic acceleration.

We have seen that even cluster counts (dN=dz) alone can
yield comparable or even better constraints on w0 and wa

than a full-sky, high-precision CMB survey such as Planck.
Our constraints are summarized in Table IV. Of course, this
assumes perfect knowledge of the mass-observable rela-
tion, i.e., that the clusters are standard candles. We have
shown, however, that, even after allowing for uncertainty in
cluster evolution and structure, and using the survey itself
as a calibration tool, the errors on w0 and wa still compare
respectably well with Planck, as seen from the third col-
umn of Table V. The constraints from cluster surveys also
compare favorably with other cosmological probes. For
instance, current constraints from type Ia supernovae are
on the order of �w0 � 0:3 and �wa � 1:6 [52], assuming
a strong prior of �	m � 0:04 from other measurements.
The expected errors from the Supernovae Acceleration
Probe (SNAP) are �w0 � 0:08 and �wa � 0:3, with the
same prior on 	m [53]. Relaxing this prior results in errors
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on the order of �w0 � 0:2 and �wa � 1:0 [47], compa-
rable to our projected constraints from DUO or SPT.

A second lesson we wish to draw is the power of
combining different cluster observables in constraining
cosmological parameters, in this case cluster counts
(dN=dz) and two-point statistics [Pc�k�]. The most striking
illustrations of this are the LSST-like survey (see Table IV)
where �w0 is a factor of �2 smaller after combining the
two methods; and the SPT-like self-calibrated case (see
Table V) where both �w0 and �wa shrink by a factor of
* 2. While we have focused here on dN=dz and Pc�k�,
other cluster observables that could be included are three-
point correlation functions, assuming a large enough sur-
vey, information from the shape of the mass function,
dN=dM, as described in [11], or scaling relations [54].
We leave a more comprehensive study of such additional
cluster observables for future work.

Finally, our work underscores the complementarity of
cluster observables to CMB anisotropy. In general, we have
seen that adding the information from a Planck-like survey
reduces �w0 and �wa by a factor of 2 or so (although the
LSST-like WL survey has already very small errors, and
adding Planck data improves the constraints by a more
123008
modest amount). Thus, clusters not only constitute a
powerful cosmological probe in their own right, but also
help in alleviating CMB observations from some of their
well-known degeneracies.

Future work includes the addition of other cluster ob-
servables, as mentioned earlier, as well as using cluster
surveys to place useful constraints on the neutrino mass
[55].
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