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A detailed numerical and analytical examination of the evolution of stochastic magnetic fields
between a putative magnetogenesis era at high cosmic temperatures T � 100 MeV–100 GeV and the
present epoch is presented. The analysis includes all relevant dissipation processes, such as neutrino-
and photon-induced fluid viscosities as well as ambipolar and hydrogen diffusion. A simple and
intuitive analytical model matching the results of the three-dimensional MHD simulations allows for
the prediction of prerecombination and present day magnetic field correlation lengths and energy
densities as a function of initial magnetic field energy density, helicity, and spectral index. Our
conclusions are multifold. (a) Initial primordial fields with only a small amount of helicity are evolving
into maximally helical fields at the present. Furthermore, the simulations show a self-similarity in the
evolution of maximally helical fields implying a seemingly acausual amplification of magnetic fields on
large scales is observed. (b) There exists a correlation between the strength of the magnetic field B at the
peak of its spectrum and the location of the peak, given at the present epoch by B � 5�
10�12 G�L=kpc�, where L is the magnetic field correlation length determined by the initial properties
of the magnetic field. (c) Concerning studies of the generation of cosmic microwave background
(CMBR) anisotropies due to primordial magnetic fields of B� 10�9 G on * 10 Mpc scales, such fields
are not only impossible to generate in early causal magnetogenesis scenarios but also seemingly ruled
out by distortions of the CMBR spectrum due to magnetic field dissipation on smaller scales and the
overproduction of cluster-magnetic fields. (d) The most promising detection possibility of CMBR
distortions due to primordial magnetic fields may be on much smaller scales at higher multipoles l�
106 where the signal is predicted to be the strongest. (e) It seems possible that magnetic fields in clusters
of galaxies are entirely of primordial origin, without invoking dynamo amplification. Such fields would
be of (precollapse) strength 10�12–10�11 G with correlation lengths in the kpc range and would also
exist in voids of galaxies.
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I. INTRODUCTION

Magnetic fields exist throughout the observable
Universe. They exist in stars, in the interstellar medium
(ISM), in galaxies, and clusters of galaxies (for a review
see [1]), where in the latter two environments they are
often observed with �G strength. Magnetic fields likely
also reside in the intergalactic medium, though at present,
their strength may be limited only by Faraday rotation
measures of distant quasars [2]. The origin of galactic-
and cluster-magnetic fields is still unknown. A plausible,
though by far not convincingly established, possibility is
the generation of magnetic seed fields and their subse-
quent amplification via a galactic dynamo mechanism.
Seed fields may be due to a variety of processes (and
with a variety of strengths), such as the Biermann battery
within intergalactic shocks [3], stellar magnetic fields
expelled in planetary nebulae, or during supernovae ex-
plosions, either into the intragalactic or in the presence of
galactic outflows into the intergalactic medium [4], as
well as due to quasar outflows of magnetized plasma
[5]. Seed fields may also be of primordial origin with a
multitude of proposed scenarios. These include the gen-
eration during first-order phase transitions (e.g., QCD or
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electroweak), around cosmic defects, or during an infla-
tionary epoch (with, nevertheless, extremely small am-
plitudes), as well as before the epoch of neutrino
decoupling or recombination. For a review of proposed
scenarios we refer the reader to [6,7].

The philosophy in prior studies of primordial magneto-
genesis is often (but not always) as follows. After estab-
lishing a battery mechanism (e.g., separation of charges
and production of currents) and a ‘‘prescription’’ or esti-
mate for the final, nonlinearly evolved magnetic field
strength (e.g., equipartition with turbulent flows), subse-
quent evolution is approximated by simply assuming
frozen-in magnetic field lines into the plasma. Though
this may be appropriate on the very largest scales, it
should be clear that this may not be the case on the
fundamental coherence scale of the field. Here, coupling
of the magnetic fields to the gas induces nonlinear cas-
cades of energy in Fourier space. The characteristics of
initially created magnetic field are thus vastly modified
during cosmic evolution between the epoch of magneto-
genesis and the present. The final step in such studies is
then often to determine field strengths on some prescribed
scale (e.g., 10 Mpc) typically falling in the range 10�30 &

B & 10�20 G, inferring that this may be sufficient to seed
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an efficient dynamo for the production of galactic- and
cluster-magnetic fields. This is observed in negligence of
the fact that much stronger fields on smaller scales result
not only from a variety of astrophysical seeds, but from
these very same primordial scenarios.

Considering the likelihood of a magnetized early
Universe (i.e., due to the large number of charged parti-
cles and the multitude possible of out-of-equilibrium
processes) it should be instructive to develop a somewhat
complete picture of magnetic field evolution in the early
Universe, subsequent to the epoch of magnetogenesis.
This should be accomplished irrespective of such fields
providing the seeds for galactic fields or not. For example,
it may be that at some later time relatively weak field
strengths in galactic voids are measurable via the propa-
gation of the highest energy-cosmic rays [8,9], or via
accurate measurements of �-ray bursts [10]. The interpre-
tation of such putative measurements, which could hint to
fields of primordial origin, is then possible only if one
understands the evolution of these fields between magne-
togenesis and the present.

One step in this direction has been performed by
Dimopoulos and Davis [11] as well as Son [12] who
exactly considered such nonlinear processing of magnetic
fields due to magnetohydrodynamic cascades in the early
Universe. Another step has been provided by Jedamzik et
al. [13] (hereafter, JKO98) and shortly after by
Subramanian and Barrow [14] who considered fluid-
viscosity (due to neutrinos and photons) induced damping
of magnetic fields. The study by Son, though describing
appropriately the gross nonlinear features of MHD evo-
lution, does not properly deal with the effect of fluid
viscosity [15], with the net effect of estimates of present
day coherence lengths being orders of magnitude smaller
than those we find. Moreover, this study, as most others,
does not provide explicit expressions for the final mag-
netic field energy. The study in Ref. [11], on the other
hand, though examining the effect of photon drag before
recombination, employs a somewhat particular model of
magnetic field coherence length growth which is not
supported by results of numerical simulations. The study
by JKO98 is strictly speaking applicable only in the linear
regime (i.e., under the assumption of a homogeneous
background magnetic field), whereas Subramanian and
Barrow also considered a limited class of nonlinear con-
figurations. Results of both studies on the magnetic field
coherence length at recombination are identical to those
found in the nonlinear analysis attempted here.
Nevertheless, at intermediate stages of evolution (i.e.,
well before recombination) the predicted magnetic coher-
ence length in these studies deviates from that found here.
Moreover, none of these works discusses the effects of
ambipolar diffusion after the epoch of recombination,
neither verifies claims by complete three-dimensional
numerical simulations.
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Two-dimensional (e.g., [16]) and three-dimensional
(e.g., [17]) numerical simulations of magnetohydrody-
namics in the early Universe were performed in the con-
text of maximal helical fields. Similarly, effective three-
dimensional cascade models [12] have also been em-
ployed. Helicity of primordial magnetic fields could
play an important role, as noted by a number of authors
[12,18–22], as it may significantly speed up the growth of
magnetic field coherence length, thereby leading to po-
tentially large magnetic fields strengths on comparatively
large scales ( � 1–10 kpc depending on the amount of
initial helicity). It has also been argued that a net pri-
mordial magnetic helicity may be potentially linked to
the cosmic baryon-to-entropy ratio (e.g., [18,21]).
Adopted models of field evolution are either appropriate
to turbulent evolution [20], or to viscous evolution (i.e.,
assuming a drag force due to photons [22]). Before pass-
ing, we also note studies of the effects of magnetic fields
on the cosmic microwave background radiation (CMBR),
as, for example, the generation of temperature anisotro-
pies below [23,24] or above [25] the Silk damping scale,
as well as the distortions of the CMBR Planck spectrum
by magnetic field dissipation [26]. These studies have also
to include certain evolutionary features of magnetic
fields, but due to the largeness of the Silk scale ( �
10 Mpc comoving) backreaction of the peculiar flows
generated by magnetic fields on the magnetic fields them-
selves. This is in contrast to the importance of backreac-
tion on the typically much smaller magnetic field
coherence scale (such as for the analysis in [26]).

In this paper we attempt to provide a unified picture for
the gross features of magnetic field evolution in the early
Universe. As a function of the initial conditions for the
magnetic fields generated during a putative magnetogen-
esis era, we predict the magnetic field coherence length
and magnetic-energy density for all subsequent epochs
for fields of arbitrary strength and helicity. Our treatment
incorporates all the relevant dissipative processes, in par-
ticular, due to photon and neutrino diffusion as well as
free streaming, and due to ambipolar and hydrogen
diffusion.

The outline of the paper is as follows. While many of
the preliminaries to the discussion, such as the equations,
treatment of Hubble expansion, and magnitudes of dis-
sipative terms, are deferred to the appendixes, Sec. II
immediately commences with a discussion of turbulent
MHD cascades and the presentation of results of three-
dimensional numerical simulations. In Sec. III magnetic
field evolution in the viscous regime before recombination
(which is a regime particular to the early Universe) is
discussed and numerically simulated, whereas Sec. IV
discusses the effects of ambipolar diffusion after recom-
bination. The general picture and detailed analytical re-
sults for cosmic magnetic field evolution are developed in
Sec. V, whereas Sec. VI provides a discussion of the high-
-2
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lights of our findings. In the Appendixes A and B we
compile the MHD equations appropriate for the study of
magnetohydrodynamics in the expanding Universe,
whereas Appendix C compiles the various dissipation
terms in the early Universe. Details on the generation of
helical fields are given in Appendix D and details on the
numerical simulations in Appendix E.
II. TURBULENT MAGNETOHYDRODYNAMICS

In this section we discuss general features of the evo-
lution of magnetized fluids in the turbulent regime
(Reynolds number Re � 1 as applicable well before neu-
trino coupling and recombination), such as the decay of
energy density as well as the growth of magnetic field
coherence length. The exceedingly large Prandtl numbers
(cf. Appendix C) in the early Universe allow one to
neglect dissipative effects due to finite conductivity.
Further, the generation of primordial magnetic fields in
magnetogenesis scenarios is generally believed to occur
during well-defined periods (e.g., QCD transition).
Subsequent evolution of these magnetic fields is therefore
described as a free decay without any further input of
kinetic or magnetic energy, i.e., as freely decaying MHD.
Because of the largeness of the speed of sound in a
relativistic plasma vs � 1=

���
3

p
, the assumption of incom-

pressibility of the fluid is appropriate during most epochs,
as well as for a large range of initial magnetic field
configurations and energy densities. An exception to the
incompressibility may occur for initial conditions which
result in magnetic fields of strength B * 6� 10�11 G
(comoving to the present epoch, cf. Sec.V) and only after
the decoupling of photons from the flow.

To verify theoretical expectations we have performed
numerical simulations of incompressible, freely decay-
ing, ideal, but viscous MHD. These simulations are per-
formed with the help of a modified version of the code
ZEUS-3D [27–29] in a nonexpanding (Minkowski) back-
ground. Modifications lie in the inclusion of fluid viscos-
ities, e.g., a drag coefficient � as given in Eqs. (3), (C8),
and (C9). From the discussion in Appendix B it should be
clear that for most purposes results of numerical simula-
tions with existing (or slightly extended) codes with
Minkowski metric may be reinterpreted into results of
MHD in an expanding universe with Friedmann-
Robertson-Walker (FRW) metric, when rescaled varia-
bles as given in the Appendix are considered. For details
of the numerical simulations the reader is referred to
Appendix E.

Incompressible MHD is described by the following
equations (for the equations of compressible MHD the
reader is referred to Appendixes A and B):

@v
@t


 �v � r�v� �vA � r�vA � f; (1)
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 �v � r�vA � �vA � r�v � �r2vA; (2)

where we have defined a local Alfvén velocity vA�x� �
B�x�=

�����������������������
4��%
 p�

p
, and where v, B, %, and p are the

velocity, magnetic field, mass-energy density, and pres-
sure, respectively. Here fluid dissipative terms in the Euler
equation are given by

f �

�
�r2v lmfp  l;
��v lmfp � l;

(3)

where there exists a distinction between dissipation due to
diffusing particles, with mean free path smaller than the
characteristic scale lmfp  L, or dissipation due to a free-
streaming (i.e., lmfp � L) background component exert-
ing drag on the fluid by occasional scatterings with fluid
particles. Both regimes are of importance in the early
Universe as already noted in JKO98. Note that in the
computation of vA only those particles with lmfp  L
contribute to % and p. An important characteristics of
the fluid flow is given by its local kinetic Reynolds
number

Re�l� �
v2=l
jfj

�

8<:
vl
� lmfp  l
v
�l

lmfp � l; (4)

with l some length scale. The Reynolds number is a
measure of the relative importance of fluid advective
terms and dissipative terms in the Euler equation, given
by the ratio of a typical dissipative time scale �d �
�l2=�; 1=�� to the eddy-turnover time scale �eddy � l=v.
For most magnetic field configurations it is possible to
define an integral scale, L, i.e., the scale which contains
most of the magnetic and fluid kinetic energy. We will
frequently refer to this scale as the coherence scale or
coherence length of the magnetic field. In the case of
turbulent flow, with Re�L� � 1 on this scale, the decay
rate of the total energy is independent of dissipative terms
and depends only on the flow properties on the integral
scale. This is in contrast to the decay of magnetic and fluid
energy in the viscous regime, Re�L�  1, where the total
decay rate depends on the magnitude of viscosities. In the
following, the dynamic evolution of magnetic fields in the
former (turbulent) regime will be studied.

A. Nonhelical fields

Consider Eqs. (1) and (2) with a stochastic, statistically
isotropic, magnetic field and, for the purpose of illustra-
tion, with initially zero fluid velocities. For the moment
we will also assume that the magnetic field does not
possess any net helicity. In the limit of large Reynolds
numbers on the coherence scale, the dissipative term may
be neglected on this scale. Magnetic stresses [the third
term on the left-hand side (LHS) of Eq. (1)] will establish
fluid motions of the order v � vA within an Alfvén
-3
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FIG. 2. Evolution of magnetic-energy spectra in the turbulent
regime for a magnetic field with no initial helicity. Here, the
spectral index of the initial energy spectra is n � 4.
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crossing time �A � l=vA, at which point backreaction of
the fluid flow on the magnetic fields will prevent further
conversion of magnetic field energy into kinetic energy.
The resultant fully turbulent state is characterized by
close-to-perfect equipartition (in the absence of net he-
licity)

hv2i � hv2Ai; (5)

between magnetic and kinetic energy. This may be seen in
Fig. 1, which shows the decay of magnetic and kinetic
energies in freely decaying turbulent MHD.

Nonlinear MHD processes quickly establish turbulence
on scales below the integral scale (cf. Fig. 2). Working
with Fourier transforms (assuming statistical isotropy
and homogeneity) and defining the total magnetic- and
kinetic-energy densities

E �
Z
d lnkk3�hjvkj

2i 
 hjvA;kj
2i� �

Z
d lnkEl; (6)

one finds that a typical root-mean-square velocity pertur-

bation on scale l � 2�=k is vl �
������������������
k3hjvkj

2i
p

�
�����
El

p
. Note

that in the above and for the remainder of this section we
set �%
 p�=2 � 1 [cf. Eq. (C1)], as frequently done in
studies of incompressible MHD, such that energy density
has the dimension of velocity square. By inspection of the
Fourier transformed Eqs. (C3) and (C4) it may be seen
that dissipation of energy is dominated by flows on the
smallest scales (largest k), given that energy spectra El
fall not too steeply with growing k. Dissipation of energy
into heat thus occurs at some much smaller-scale ldiss 
L [where Re�l� � 1]. The transport of the fluid energy
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FIG. 1. Comparison of the time evolution of the magnetic
(solid line) and the kinetic (dashed line) energy in the turbulent
regime (Re � 1) for a magnetic field without initial helicity.
For comparison, also the theoretical damping law, E / t�1:3, is
shown (dotted line). Here, the simulation was performed on a
mesh with 1283 grid points and the magnetic field is excited up
to kc � 16 with a spectral index n � 4 [cf. Eqs. (8) and (9) and
Appendix E].
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from the integral scale L to the dissipation scale ldiss
occurs via a cascading of energy from large scales to
small scales, referred to as direct cascade.

Ever since the work of Kolmogorov it is known that this
cascading of energy occurs as a quasilocal process in k
space, with flow eddies on a particular scale l breaking up
into eddies of somewhat smaller scale �l=2. This con-
tinuous flow of energy through k space,

dEl
dt

�
El
�l

� const�k�; (7)

results in a quasistationary energy spectrum on scales l &

L, with energy flow rates approximately independent of a
wave vector. We remind the reader that throughout L
denotes the integral scale. Typical energy dissipation
times �L are given by an eddy-turnover time at the
integral scale �L � �eddy � L=vL � L=�

������
EL

p
�.

Although the ‘‘Kolmogorov hypothesis,’’ Eq. (7), is
well established in turbulence studies in both the pure
hydrodynamic case as well as in MHD turbulence, the
resulting decay spectra (El for l < L) in MHD turbulence
is not. Early attempts by Iroshnikov [30] and Kraichnan
[31] (IK) to explain the cascading spectrum of MHD
turbulence by assuming isotropy in k space were shown
to be incorrect first by Goldreich and Sridhar [32].
Goldreich and Sridhar established that MHD turbulence
is intrinsically anisotropic with eddies elongated in the
direction of the background (integral scale) magnetic
field (i.e., kk � k2=3? L�1=3 where kk and k? are wave
vectors parallel and perpendicular to the background
magnetic field vA;L) and energy cascading more rapidly
in k? space orthogonal to the magnetic field. Though the
predicted anisotropy has been observed in numerical
simulations, the predicted modification of the MHD spec-
tra, in particular, the existence of ‘‘one-dimensional’’
-4
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Kolmogorov-type spectra ~Ek � Ek=k / k
�5=3
? has not

been [33]. Rather, these spectra seem to have a shallower
slope with a spectral index of � �3=2. In contrast,
Müller and Biskamp [34] find ‘‘three-dimensional’’ en-
ergy spectra consistent with a Kolmogorov spectra.
Inspection of Fig. 2, which shows such three-dimensional
spectra in our 2563 numerical simulations of freely de-
caying MHD, illustrates how difficult it is to distinguish
between exponents �5=3 and �3=2. This is due to the
inertial range between the dissipation scale (here given
by a few times the Nyquist frequency due to numerical
dissipation) and the integral scale being rather small.
Moreover, both scales do not seem to be well defined,
resulting in a small-scale spectrum more consistent with
an exponential than a power law. This is also not signifi-
cantly changed when one proceeds to 5123 simulations,
such that a numerical confirmation of one, or the other,
spectrum may be premature.

In this work we do not account for the possible effect of
intermittency, i.e., the non random distribution of eddies
in space, on the dynamics of MHD turbulence (see e.g.
[35]). The appearance of intermittency can in principle
modify the turbulent spectra but it has been shown that it
does not affect the inertial-range dynamics (see [33] and
references therein).

Evolution of global properties of the magnetic field in
freely decaying MHD, such as total energy density and
coherence length, depend on the magnetic field spectra on
scales above the integral scale, l > L, and are related to
initial conditions. Consider an initial magnetic field with
blue spectrum,
1
Ek � E0

�
k
k0

	
n
� E0

�
l
L0

	
�n

for l > L0: (8)
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FIG. 3. The evolution of the magnetic energy in the turbulent
regime for different initial energy spectra n, where Ek �
k3jbkj2 / kn with a cutoff kc � 32. Here, the initial magnetic
field is nonhelical. In this case, the damping law depends on the
spectral index [cf. Eq. (9)]. For comparison, the theoretical
predicted damping laws for n � 1 (E / t�0:67) and for n � 5
(E / t�1:4) are also shown.
The scale-dependent relaxation time, �l � l=vA;l �

l=
�����
El

p
(with vA;l �

����������������������
k3hjvA;kj

2i
q

) increases with scale as

�l / l
1
n=2. Transfer of magnetic energy to kinetic energy

and a fully developed turbulent state may only occur for
times t * �l. When such a state is reached the energy on
this scale decays through the cascading of large-scale
eddies to smaller-scale eddies down to the dissipation
scale. Since the relaxation time for the ‘‘next’’ larger scale
l is longer, this larger scale now starts to dominate the
energy density, i.e., becoming the integral or coherence
scale. This is sometimes referred to as selective decay of
modes in k space. The remaining energy density is then
the initial energy density of modes between the very
largest scales and this next larger scale. Given these argu-
ments and the initial spectrum of Eq. (8) one then may
derive for the time evolution of energy and coherence
length of the magnetic field
123003
E � E0

�
t
�0

	
�2n=�2
n�

L � L0

�
t
�0

	
2=�2
n�

no helicity;

Re � 1;
(9)

for t * �0, where �0 is the relaxation time on the scale L0,
i.e., �0 � L0=

������
E0

p
� L0=v

A
L;0, and where indices 0 denote

quantities at the initial time. For instance, for a spectral
index of n � 3 (which corresponds to the large-scale
magnetic field due to a large number of randomly oriented
and homogeneously distributed magnetic dipoles [36])
the energy density follows E / t�6=5 which is Saffman’s
law known from fluid dynamics [37,38].

An increase of the magnetic field coherence scale with
time due to selective decay may be observed in Fig. 2,
whereas the decay of magnetic-energy density for a vari-
ety of initial magnetic field spectra is shown in Fig. 3. It
can be seen that initial spectra with larger n indeed lead
to a more rapid decrease of energy with time as predicted
by Eq. (9). Nevertheless, comparison of the theoretically
expected decay exponents [cf. Eq. (9)] to the numerically
found exponents (cf. Fig. 3) indicate slight differences.
Generally, our numerical simulations result in a slower
energy decay than predicted by Eq. (9). For example, the
theoretically predicted damping exponent, i.e., E�t� /
t��, for a n � 3 initial energy spectrum is � � 1:2
whereas the best fit of our numerical simulations gives
� � 1:05. It is not easy to find a physical explanation for
this, as it would entail an additional with time increasing
slowdown of relaxation at large scales l * L and/or a
slowdown of energy dissipation of already turbulent
modes at small scales l & L. In either case, to explain
such a phenomenon a quantity with physical dimension of
-5
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ical magnetic field in the turbulent regime. In this case equi-
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length or velocity, which has not yet entered the analysis,
should exist. Given that the assumed initial magnetic field
distribution is statistically self-similar on different
scales, and that helicity is negligible, this quantity may
only be the dissipation length and/or length of the simu-
lation box. Whereas the latter is a complete numerical
artifact, the former is so widely separated from the in-
tegral scale during most periods of the high Reynolds
number flow in the early Universe that we expect it not to
influence the dynamics on the integral scale. We have
noted that spectra at late times show a peak region �L
quite spread and are likely only marginally resolved by
the simulations. In any case, larger numerical simulations
are required to address this effect seen also by others (e.g.,
[17,39]).

B. Helical fields

We have so far studied the evolution of a statistically
isotropic and homogeneous magnetic field in the absence
of net helicity (see Appendixes C and D for the definition
and dissipation of magnetic helicity). Given that magnetic
helicity should be an ideal invariant in the early Universe
(where the conductivity is almost perfect), and that mag-
netic fields with even small initial net helicity ultimately
reach maximal helicity density

H & Hmax � hB2Li � �8��EL; (10)

it should be of importance to also study the maximally
helical case. Note that, a maximally helical state is
reached during the course of MHD turbulent evolution
due to a slower decay of the helical component of fields as
compared to the nonhelical one [cf. Eqs. (9) and (12)].
When maximal helicity is reached magnetic field evolu-
tion is significantly altered with respect to the case of
zero, or submaximal helicity. Figure 4 shows the results of
2563 simulations of the evolution of the ratio between
kinetic- and magnetic-energy density " assuming initial
conditions of a maximally helical field and negligible
velocity perturbations. After a relaxation time of the
order of the Alfvén crossing time L=vA;L over the integral
scale a quasisteady state with constant " � 0:2 develops.
Note that in contrast to the turbulent, nonhelical case, full
equipartition is not reached. The associated spectrum of
" is shown in Fig. 5 showing that at the integral scale
kinetic-energy density is always smaller than magnetic-
energy density. Though not apparent from the figure, an
integral scale (i.e., the scale of maximum energy density)
defined for kinetic-energy density only Lkin trails the
integral scale for total energy density with time, i.e.,
Lkin=L < 1 with a ratio approximately constant in time.
Magnetic field spectra for this simulation are shown in
Fig. 6. It is seen that inertial-range magnetic spectra at
l & L are well described by power laws over a limited
range in k space. For this exponent (n � 4) we find Ek /
123003
k ,  � �1:7, significantly steeper than either
Komogorov or IK.

Figure 6 also illustrates the intriguing property of self-
similarity of spectra at different times. This phenomenon
of self-similarity has also been observed by [17].
Magnetic field amplification on very large scales occurs
even at times much shorter than the typical relaxation
time for magnetic fields (i.e., Alfvén crossing time) on
these scales, indicating the topological constraint (by
helicity) imposed on the field evolution. Note that if
magnetic fields on large scales would not be enhanced,
-6
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magnetic coherence length could not grow with time, as
generally the initially existing energy density on large
scales would not suffice to keep H constant. Having
performed simulations of maximally helical fields with
different initial spectral indices n we have noted that
though the amplitude of a large-scale magnetic field
grows with time, the spectral index of the magnetic field
configuration on large scales seems to be approximately
preserved.

There seems to be a misconception in the literature
(see, e.g., [20,21]) that maximally helical fields do not
dissipate energy via excitation of fluid flows and the
subsequent dissipation of these flows due to fluid viscos-
ities. It is argued, that maximally helical fields with a
fairly peaked spectrum are essentially force free [i.e.,
vA � �r� vA� � 0] and may thus not excite fluid flows.
Note that if this indeed would be the case, Eq. (2) would
imply trivial magnetic field evolution B � const for ini-
tially zero velocity fluctuations and resistivity. Though
the magnetic stresses in the Euler equation are indeed
found smaller for a maximally helical field as compared
to a nonhelical field of similar strength, an increase of
magnetic coherence length and the continuous excitation
of subequipartition fluid flows are observed in our simu-
lations. It may be that such fluid excitations are due to
force-free magnetic field configurations being unstable
equilibria. In any case, in the limit of large Prandtl
number, dissipation of these flows will provide the main
dissipation of magnetic field energy.

The decay rate of total magnetic energy in freely
decaying MHD turbulence of maximally helical fields
may be well approximated by the decay rate of energy
on the integral scale

dE
dt

�
E
�L

�
E3=2

L
"�

E5=2

H
"; (11)

where �L � L=vA;L, and Eq. (10) for a maximally helical
123003
field has been employed in the second step. Since H and
" (see Appendix C and Fig. 4) are constant it is straight-
forward to derive the power-law exponents for the decay
of energy and growth of coherence length with time

E � E0

�
t
�0

	
�2=3

� L0

�
t
�0

	
2=3

maximal helicity;

Re � 1;
(12)

for t * �0 � L0=
������
E0

p
� L0=vA

L;0, yielding a predicted
decay which is independent of the spectral index of the
large-scale magnetic field. The correctness of Eq. (12) has
been recently questioned by Biskamp and Müller [40].
These authors advocate a decay of kinetic energy with
time as " / E=H , yielding a modified Eq. (12) dE=dt�
E3=H 3=2, and energy decay E / t�1=2. We note here that a
decay of " was not found in our simulations. Moreover, a
relationship " / E=H is dimensionally incorrect, and
must be modified by an as yet unknown quantity of
dimension length. Because of the absence of a physically
well-motivated choice for this quantity (other than ldiss or
Lbox), we suspect their results to be an artifact of limited
resolution. In particular, Biskamp and Müller [40] ob-
serve a decay in " only at late times, when the coherence
scale has already moved dangerously close to Lbox. Note,
that larger kinetic (numerical) viscosities result in larger
magnetic dissipation times (cf. Sec. III). Therefore, the
rather moderate Reynolds numbers [O�103�] achieved in
numerical simulations could be responsible for the slower
decay rates found in these simulations.

Figure 7 shows the total magnetic energy as a function
of time for a variety of maximally helical magnetic fields
-7
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of different initial spectral index. With the exception of
the rather red spectrum n � 1, for which the Fourier
transform of helicity is not peaked in k space, the decay
of energy seems to be indeed approximately independent
of spectral index. Residual dependencies on n may pos-
sibly be associated with the nonconservation of helicity as
shown in Fig. 8. This dissipation of helicity in our simu-
lations is due to numerical dissipation at the Nyquist
frequency. Similar to the case of nonhelical fields, the
decay slopes observed in the simulations are somewhat
shallower than those predicted by Eq. (12). For example,
for n � 5 we find a damping exponent of � � 0:5 (co-
incidentally agreeing with [40]). Arguments very similar
to those presented at the end of the previous paragraph, in
particular, the absence of a quantity of dimension length
or velocity beyond those employed in Eq. (12), make us
believe this deviation to be unphysical.

To complete this section we would like to mention that
the magnetic helicity might evolve differently if the
decay spectra of the magnetic field is not declining to-
wards smaller scales. For instance such a situation can be
achieved if the turbulence is not freely decaying but
driven by turbulent energy input at a certain scale.
Studies of multiscale turbulence show that helicity peaks
appear at the integral scale as well as at the driving scale
[41]. However, scenarios like this are hard to envision in
the mostly quiescent early Universe, due to the absence of
turbulent energy injection, except during brief periods
(i.e., cosmic first-order phase transitions). MHD turbu-
lence in the early Universe should therefore be adequately
described as freely decaying.
III. VISCOUS MAGNETOHYDRODYNAMICS

Magnetic field dissipation in high Prandtl number flu-
ids may also occur in the viscous regime, where kinetic
Reynolds numbers are much smaller than unity. Of par-
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FIG. 8. Evolution of helicity as a function of time for differ-
ent spectral indices n. Note that in the case of no numerical
diffusion H �t�=H max � 1 should be achieved.
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ticular importance to MHD evolution in the early
Universe is the case of photons or neutrinos free stream-
ing over the scales of interest, lmfp � l, resulting in a drag
force in Eq. (1) with drag coefficient �. Such ‘‘dragged’’
MHD is rare in other astrophysical environments. One
exception might by the drag exerted by neutral atoms on
the magnetized ISM (see [42] for analytic results of the
cascading spectra). To our knowledge numerical simula-
tions of this regime have so far not been performed.

Consider again the Euler equation (1). Whereas in the
turbulent case there is a balance of the terms on the LHS,
which are all of similar magnitude, in the dragged case
there is a balance between the last term on the right-hand
side (RHS) and the dissipative term f, with all other
terms negligible. In the terminal velocity regime one
finds thus [using Eq. (3)]

v �
1

�
�vA � r�vA (13)

such that vl � vA;L��drag=�A;l�  vA;l for �drag � ��1 

�A;l. This yields a kinetic Reynolds number of

Re �
�
vA;l

�l

	
2
 1: (14)

Though one would naively expect that at small
Reynolds number the total energy gets immediately dis-
sipated due to viscous terms, this is not the case (JKO98).
For large Prandtl number the energy may only be dissi-
pated via the excitation of fluid motions. Nevertheless,
due to the strong drag, such excitation is slow and ineffi-
cient, and a system with "  1, i.e., well below equipar-
tition between magnetic- and kinetic-energy results.
Since the dissipation rate is proportional to the velocity
fluctuations v the net effect of strong fluid viscosities is a
delayed dissipation and quasi-frozen-in magnetic fields.
Note that in the case of viscous MHD, flows are effec-
tively dissipated on the integral scale, and cascading of
energy in k space is not required. One finds for the energy
dissipation rate

dE
dt

�
E
�L

�
E2

L2�
; with �L � L=vL �

L2�
E
; (15)

and where �L is a formal eddy turnover time scale iden-
tical to the overdamped time scale for the evolution of
overdamped Alfvén and slow-magnetosonic modes as
found in JKO98.

A. Nonhelical fields

With a blue spectrum (n > 0) for the magnetic fields on
large scales as given in Eq. (8), and with very similar
reasoning as in the turbulent case, one may compute the
asymptotic power law for decay of energy density and
growth of magnetic field coherence length as
-8
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FIG. 9. The evolution of the magnetic-energy spectra in the
viscous free-streaming regime (Re  1) for a magnetic field
without initial helicity. The simulations were performed on a
mesh with 2563 grid points, and the cutoff is kc � 16.

EVOLUTION OF COSMIC MAGNETIC FIELDS: FROM . . . PHYSICAL REVIEW D 70, 123003 (2004)
E � E0

�
t

�visc0

	
�n=�n
2�

L � L0

�
t

�visc0

	
1=�n
2�

no helicity;

Re  1;
(16)

for t * �visc0 and where �visc0 � �AL;0��
A
L;0=�drag� � L2

0�=E0.
Here, in contrast to the condition in the early Universe, a
constant (in time) drag coefficient � has been assumed.
Note that Eq. (16) indeed predicts slower magnetic field
energy decay than its counterpart Eq. (9) in the turbulent
case, in particular, a longer relaxation time �visc0 � �0
and smaller decay slope �visc � �turb=2 for the energy
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FIG. 10. Evolution of the magnetic energy without (solid
line) and with maximal (dashed line) initial helicity in the
viscous free-streaming regime (Re  1). The simulations were
performed on a mesh with 1283 grid points, the cutoff is kc �
16, and the spectral index n � 4. For comparison, also the
theoretical expected damping laws are shown, i.e., Emag /

t�0:67 (without helicity) and Emag / t�0:33 (with maximal he-
licity).
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density. In Figs. 9 and 10 results of our numerical simu-
lations of viscous nonhelical MHD in the free-streaming
regime are shown. For times longer than the relaxation
time on the integral scale, small-scale power spectra are
well described by power laws Ek / k of exponent  �
�2:0. This power law is approximately consistent with a
Reynolds number Re;l � const�l� independent of scale l.
Figure 11 illustrates that Eq. (16) is a good approximation
to the numerical simulations, though numerically simu-
lated fields tend to decay somewhat slower than pre-
dicted, as observed in the sections before.

B. Helical fields

In the case of maximally helical fields one may use the
constancy of helicity density in Eq. (10) to find

dE
dt

�
E4

H 2�
; (17)

yielding

E � E0

�
t

�visc0

	
�1=3

L � L0

�
t

�visc0

	
1=3

maximal helicity;

Re  1;
(18)

where �visc0 is as before. Results of our numerical simula-
tions for this case may be found in Figs. 10 and 11. As in
the nonhelical case these are consistent with a small-scale
power-law spectrum Ek / k

 with  � �2:0. Note that,
in contrast to before, agreement of Eq. (18) and the
simulation seems excellent.

IV. MHD WITH AMBIPOLAR DIFFUSION

After recombination the Universe is only weakly ion-
ized (i.e., Xe  1). Neutral particles, i.e., hydrogen
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FIG. 11. The evolution of the magnetic-energy spectra in the
viscous free-streaming regime (Re  1) for a magnetic field
with maximal helicity. The simulations were performed on a
mesh with 2563 grid points, and the cutoff is kc � 16.
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atoms, do not respond to magnetic stresses and may
therefore slip by the magnetic field lines, unless the
scattering between neutral and charged particles is rapid
enough. To investigate if this is the case one has to
consider the (here assumed incompressible) equations of
MHD with a significant neutral component

%i

�
@vi
@t


 vi � rvi

	
�

�r� B� �B
4�

� %i�in�vi � vn�;

(19)

%n

�
@vn
@t


 vn � rvn

	
� �%n�ni�vn � vi�; (20)

where %n, %i, vn, and vi are matter density and velocity of
neutrals and ions, respectively, and we will assume %i 
%n throughout. The momentum transfer rates due to
neutral-ion collisions satisfy

�ni �
%i

%n
�in � Xe�in: (21)

The equations of MHD are closed by including the in-
duction equation

@B
@t

� r� �vi � B� (22)

for ions. The condition of tight coupling between ions and
neutrals, i.e., vD � vi � vn  vi may be derived from
Eq. (20) (noting that the first two terms are usually of
the same magnitude) to be equivalent to

vi
L

�
vn
L

 Xe�in: (23)

One may show (cf. also [43–45]) self-consistently that in
this limit the LHS of Eq. (19) is negligible, leaving the
ion-neutral drift velocity vD in the terminal velocity
regime

v D �
�r�B� � B

4�%i�in
: (24)

Inserting this equality into Eq. (20), and for vn � v,
where v is the center-of-mass velocity, one obtains the
usual Euler equation (1). The induction Eq. (22) is modi-
fied to include a dissipative term. Replacing vi � vD 
 vn
one finds

@B
@t

� r� �v�B� 
 r�

�
�r �B� �B

4�%i�in
�B

	
: (25)

MHD of an ion-neutral mixture in the tightly coupled
regime behaves thus as ordinary MHD with an additional
dissipative term. The effect of this term may be estimated
by defining an ambipolar Reynolds number as the com-
parison of the two terms on the RHS of Eq. (25), i.e.,

Ramb �
vL�in

�vi
A�

2
�
vL�inXe
v2
A

; (26)
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where

vi
A � vA=

������
Xe

p
(27)

is the Alfvén propagation velocity in the ion-neutral
weakly coupled limit. It may be seen that the condition
Ramb � 1 (assuming self-consistently v� vA) automati-
cally implies the tight-coupling condition Eq. (24). It is
thus evident that MHD with dissipation due to ambipolar
diffusion in the tight-coupling regime may never become
viscous due to this ambipolar ‘‘drag’’ [46]. In the lan-
guage (JKO98) appropriate to linear MHD this implies
that overdamped modes proportional to the magnetic
stresses do not exist. This is in stark contrast to MHD
with fluid shear viscosity, or with momentum drag due to
a homogeneous background component, where viscous
MHD (i.e., overdamped modes) exist.

These arguments assume the absence of other sources
of dissipation. Consider, for example, shear viscosity due
to neutral-neutral scattering as described by a term
%n�r

2vn on the RHS of Eq. (20). Assuming viscous
MHD due to this term [i.e., the kinetic Reynolds number
Eq. (4) Re  1] the condition for tight coupling is modi-
fied and now reads �=L2  �inXe. Nevertheless, even in
this case one finds that the condition of tight coupling is
equivalent to the requirement Ramb � 1. The flow may
thus be viscous in the tight-coupling regime, but only due
to sources of dissipation other than ambipolar diffusion.

Once the flows reach the limit Ramb & 1 the neutral
species decouples from the flow. In this limit MHD evo-
lution is described by Eq. (19) with vn ! 0 and Eq. (22)
completely analogous to MHD with free-streaming pho-
tons or neutrinos (cf. Sec. III) and with a Reynolds
number given by Eq. (14). One may then show that the
flow is viscous due to ambipolar drag. Only when �in is
reduced by a further factor of �

������
Xe

p
(or equivalently, the

Alfvén crossing time is reduced by the same factor) does
turbulent MHD obtain again. When this happens typical
fluid velocities are v � vi

A, thus increased with respect to
the tight-coupling regime.

It is important to stress the following. The system of
equations (19), (20), and (22) provides only a proper
description of MHD in the fluid limit when particle
species have mean free paths much smaller than the scale
under consideration. Whereas for the scales we consider
(assuming magnetic fields not too weak) this may be the
case for protons and electrons due to Coulomb scattering;
this condition gets violated at late times for neutral par-
ticles. In this limit, i.e., lnmfp � L mixing of neutrals from
different regions becomes significant. Higher moments of
the particle distribution fn�x; v� (with the zeroth moment,
density and the first, velocity) become significant such
that a reduction of the Boltzmann equation to the Euler
equation is not anymore adequate. When lnmfp � L and
limfp  L one may nevertheless describe MHD by the
fluid equations (19) and (22) for ions, and to a good
-10
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approximation, assume vn � 0 due to mixing of neutrals
from different regions.
V. EVOLUTION OF COSMIC MAGNETIC FIELDS

In this section we present detailed analytical results for
the evolution of subhorizon magnetic fields between an
epoch of magnetogenesis (e.g., the electroweak transition
at T � 100 GeV) and the much later onset of cosmic
structure formation (at approximately redshift z � 10).
Our analysis draws on the general results found in the
previous sections, but includes viscosities as applicable in
the early Universe. In particular, we give coherence
length and energy density as functions of cosmic tem-
perature, with generation epoch, magnetic spectral index,
initial magnetic-energy density, and helicity left as free
parameters. Though the results are fairly straightforward,
when applied to the various regimes in the early Universe
(i.e., turbulent and viscous due to photon and neutrino
viscosities, respectively) a large number of expressions
emerges. We therefore advise the more superficially inter-
ested reader to skip the third subsection of this section
and proceed to the discussion of results in the next
section.

A. Initial conditions

We define the Fourier transform of the magnetic fields
such that the spatial average of magnetic field strength
may be written as follows:

hB�x�2i �
Z
d lnk ~B2

k: (28)

The spectrum of the magnetic field at the magnetogenesis
epoch is parametrized by

~B gc�lc� � ~Bgc�Lgc�
�
lc
Lgc

	
�n=2

: (29)

Here, and in what follows, a subscript g denotes quan-
tities at the magnetogenesis epoch and subscript c refers
to comoving values. Here comoving lengths are defined as
the lengths they would have at the present epoch [i.e.,
lc�T� � l�T��a�T0�=a�T�� where a is the scale factor and
T0 presents cosmic temperature] and we define comoving
field strength analogously as the field strength it would
have at the present epoch, if the field would only evolve
according to the requirement of flux conservation [i.e.,
Bc�T� � B�T��a�T�=a�T0��

2]. Note that k � 2�=l and that
whereas l denotes an arbitrary scale L always denotes the
integral scale (kI the integral wave vector), i.e., the energy
containing, scale. Our analysis will focus on blue spectra
n > 0 as appropriate for magnetic fields generated after
an inflationary epoch by a causal process. Different mag-
netogenesis scenarios often have different proposed n.
Since it is beyond the scope of the present paper to study
magnetogenesis scenarios, we treat n as a free parameter
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with n > 0 to ensure a well-defined magnetic coherence
length. We note, however, that n � 3 has been commonly
proposed to result from the superposition of a large num-
ber of randomly oriented magnetic dipoles [36].

Given these definitions one may compute the magnetic
field energy density at an arbitrary epoch as a function of
the temperature dependent integral scale and the scale
factor

%B�T� �
�
a�T�
a0

	
4 1

8�

Z kIc

0
d lnk ~B2

gc�Lgc�
�
kc�T�
kIgc

	
n

�

�
a�T�
a0

	
4 1

8�n
~B2
gc�Lgc�

�
Lc�T�
Lgc

	
�n
: (30)

It is convenient to define a ratio r between magnetic-
energy density and a power of the total radiation entropy
density

r �
%B
s4=3r

(31)

since for the constant comoving integral scale (i.e., no
dynamic magnetic field evolution) this ratio stays con-
stant with the expansion of the Universe. The dynamic (as
opposed to geometric) evolution of the field is therefore
more easily deduced from the evolution of r. The quantity
r may be related to the ratio of magnetic field energy
density and radiation energy density r% � %B=%r by

r% � r
4

3

�
2�2

45

	
1=3 g4=3S

gr
(32)

with gS, gr denoting statistical weight in entropy and
radiation, respectively. Note here that r may be converted
to average magnetic field strength

B�T� � 5:72� 10�6 Gr1=2�T�
�
gS

3:909

	
4=3

�

�
T

2:351� 10�4 eV

	
2

(33)

such that the comoving (present day) magnetic field
strength is Bc � 5:72� 10�6 G for r � 1. (For r� �

%B=%� � 1 the comoving field strength of Bc � 3:24�
10�6 G results.) The magnetic field strength given in
Eq. (33) yields an Alfvén velocity after the decoupling
of photons of

vA �
B����������
4�%

p

� 8:86� 105
cm

s

�
r

10�10

	
1=2

�
(bh2

0:02

	
�1=2

�
T

0:259 eV

	
1=2
;

(34)

where gS � 3:909 has been assumed and with % � %b in
the fully ionized case before recombination as well as in
the partially ionized case in the tightly coupled regime
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after recombination (cf. Sec. IV). Here %b and (b denote
baryonic density and fractional contribution to the criti-
cal density at the present epoch whereas h is the Hubble
constant in units of 100 km s�1 Mpc�1. We alert the
reader to the distinction between decoupling of photons
(i.e., l� * L) (typically occurring before recombination)
and recombination itself. Equation (34) may be compared
to the plasma speed of sound

vb �

�����������
�
Tb
mb

s
� 5:99� 105

cm

s
�1=2

�
Tb

0:259 eV

	
1=2
; (35)

where � � 10=3 and 2 for adiabatic and isothermal com-
pression, respectively, and where we have neglected cor-
rections due to the presence of helium. Note that below
redshift z & 100 the baryon temperature falls more rap-
idly than the photon temperature, i.e., as Tb � a�2.

To determine the integral scale at the generation epoch,
Lg, we assume that turbulence pertains, such that Lg is
obtained by setting the Hubble rate at the generation
epoch equal to the Alfvén eddy-turnover rate. This yields

Lgc � Lc�Tg� �
�
2025

4�7

	
1=6 MPl

T0Tg
g�1=3
S0

��������
nrg

p
(36)

’ 1:55� 10�4 pc
���
n

p
� rg
0:01

	
1=2

� Tg
100 GeV

	
�1
; (37)

where MPl � 1=
����
G

p
� 1:22� 1019 GeV is the Planck

mass. In the above, the subscript 0 denotes quantities
evaluated at the present epoch. Finally, we parametrize
initial helicity of the field by a dimensionless number hg

Hgc � hgH
gc
max; with H gc

max �
2�
n� 1

~B2
gc�Lgc�Lgc

(38)

such that hg � 1.

B. Evolution: The general picture

The evolution of a stochastic magnetic field in the early
Universe is described by alternating epochs of turbulent
MHD and viscous MHD. Here the latter epochs occur
when viscosities due to neutrinos, or photons, become
significant. Such a picture has already been established
by JKO98. With the assumed blue magnetic spectra, the
gross features of the magnetic field evolution are de-
scribed by the growth of the integral scale. Following
the arguments in Sec. II the instantaneous integral scale
is given by the equality between cosmic time and eddy-
turnover time at the scale L

1

teddy
�
v�L�
Lp�T�

� H�T� �
1

tH
(39)

holding equally for turbulent and viscous eras. In the
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above expression the subscript p denotes the proper (as
opposed to comoving) value of the integral scale, v�L� is
the fluid velocity on scale L, and H is the Hubble pa-
rameter. The velocities v may be determined from the
Euler equation [Eq. (1)] by an approximate balance of
either the second and third terms on the LHS in the
turbulent case (Re > 1) or the third term on the LHS
and the dissipation term on the RHS in the viscous case.
This yields

v�L� � vA�L�; Re > 1 (40)

in the turbulent case and

v�L� �
v2
A�L�L
�

; v�L� �
v2
A�L�
�L

; Re < 1 (41)

in the photon (neutrino) diffusive and free-streaming
viscous cases, respectively. Note that the velocities in
the viscous case may also be written in a unifying way
as v�L� � RevA with Re < 1 the Reynolds number Eq. (4)
evaluated with the Alfvén velocity, i.e., v � vA.

Equation (39) is to be evaluated with proper quantities.
Since a given scale expands continuously with the
Universe, i.e., lp � alc, the eddy-turnover (relaxation)
time on this scale increases with the expansion of the
Universe. This relaxation time increase is enhanced after
the decoupling of photons by an additional decrease of
the Alfvén velocity, i.e., vA / B�T�=

������������
4�%b

p
/ a�1=2

(whereas, vA / a0 when photons are still coupled to the
MHD evolution). On the other hand, the Hubble time
increases as tH / a2 during radiation domination (RD)
and as / a3=2 during matter domination (MD). During
turbulent evolution, the combined effect is such

teddy
tH

�
L=vA

tH
/
a

a2
/ 1=a �RD�

/
a=1=a1=2

a3=2
/ a0 �MD� (42)

that during RD larger and larger scales may be processed,
i.e., that the comoving integral scale Lc may grow as the
Universe expands. In contrast, during MD the ratio be-
tween eddy and Hubble time stays constant, permitting
only logarithmic growth of Lc. This, however, is only the
case while the fluid is turbulent. For sufficiently strong
fields (see below) turbulence recommences right after
recombination, with the fluid before recombination
strongly dragged by free-streaming photons. In the vis-
cous regime, with viscosity provided by photons, one
finds �� / a3 and �� / a�4 (cf. Appendix C). This yields
for the comparison of time scales

teddy
tH

�
L=v
tH

/ a �photon diffusion�

/ a�5=2 �photon free streaming�; (43)

where we have assumed radiation domination during the
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FIG. 12. The evolution of comoving coherence length for
initial magnetic field configurations with different spectral
indices n and initial magnetic helicities. Solid lines from top
to bottom: (a) hg � 1, rg � 0:01; (b) hg � 10�3, n � 3, rg �
0:01; (c) hg � 0, n � 3, rg � 0:01; (d) hg � 0, n � 3, rg �
10�5. The labels l�, l�, and lH refer to the comoving mean free
paths of neutrinos and photons and the comoving Hubble
length, respectively. The epoch of magnetogenesis was as-
sumed to occur during the electroweak phase transition (Tg �
100 GeV).

FIG. 13. The evolution of the relative magnetic-energy den-
sity r corresponding to the models shown in Fig. 12. Solid lines
from top to bottom: (a) hg � 1, rg � 0:01; (b) hg � 10�3, n �

3, rg � 0:01; (c) hg � 0, n � 3, rg � 0:01; (d) hg � 0, n � 3,
rg � 10�5. The epoch of magnetogenesis was assumed to
occur during the electroweak phase transition (Tg � 100 GeV).
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diffusive regime and matter domination during the free-
streaming regime. It may be seen from Eq. (43) that the
integral scale may further increase during the viscous
MHD regime when photons are free streaming. On the
other hand, one may show quite generally that an increase
during the photon diffusion regime is always prohibited.
Essentially identical conclusions result in the case of
neutrinos.

The following general picture for the evolution of the
integral scale thus emerges. At early times, close to the
epoch of magnetogenesis in the early Universe, the fluid is
turbulent and as the Universe expands the comoving scale
where one eddy turnover is possible in cosmic time is
continuously increasing. By the process of a direct cas-
cade the energy of this (integral) scale Lc may thus be
dissipated, leaving only the tail of the initial magnetic
field at scales larger than the integral scale. The spectrum
of the magnetic field is thus described by

~B c�lc� � ~Bgc�Lgc�
�
lc
Lgc

	
�n=2

; lc � Lc: (44)

As the Universe cools down shear viscosity due to
neutrinos becomes large, thereby reducing the Reynolds
number of the flow. At the epoch when the Reynolds
number becomes of order unity on the integral scale, a
regime of viscous MHD commences. At this point, a
further increase of Lc is prohibited, since in the diffusive
regime the relaxation time grows more rapid than the
Hubble time. Any existing fluid flows are dissipated,
leaving, nevertheless, the magnetic field at scales beyond
L�EOT intact. Here L�EOT refers to the integral scale when
Re��L�TEOT�� has decreased to unity. This is analogous to
the survival of magnetic fields in the overdamped regime
of linearized modes, as discussed in JKO98. Only some
time after neutrinos have decoupled from the fluctua-
tions, i.e., when l� � L, the integral scale may grow
beyond that given at the epoch of the end of turbulence,
L�EOT. During this dissipation of magnetic fields in the
viscous free-streaming regime, the integral scale grows
more rapidly then during the turbulent regime. This more
rapid increase (as opposed to a slower increase in the
nonexpanding case, cf. Sec. III) is mainly due to the
strong temperature dependence of the drag term. Since
the neutrino drag is continuously decreasing, some time
before neutrino decoupling at T � 2:6 MeV the fluid
enters again a turbulent stage. At this point, the integral
scale has grown to a value, as if the plasma would have
not at all gone through a viscous period. The viscous
period thus just delays the dissipation of magnetic fields.
These evolutionary trends are shown in Figs. 12–15,
which show the growth of magnetic coherence length,
and the decay of magnetic-energy density, for a number
of initial conditions. The evolution of the kinetic
Reynolds number Re is also shown for a particular sce-
nario. The frozen-in state of magnetic fields during the
123003
diffusive neutrino regime with Re & 1 and the first part of
the free-streaming neutrino regime becomes apparent by
the plateaus in Lc one finds at T � 107–108 eV.

A similar picture results for magnetic field evolution
after neutrino decoupling, but now with neutrinos re-
placed by photons. There are, however, subtle differences.
-13



FIG. 14. The evolution of comoving coherence length for
different initial magnetic field configurations. Solid lines
from top to bottom: (a) hg � 1, rg � 0:083, n � 3; (b) hg �
10�3, rg � 0:083, n � 3; (c) hg � 0, rg � 0:083, n � 3. The
labels l�, l�, and lH refer to the comoving mean free paths of
neutrinos and photons and the comoving Hubble length, re-
spectively. The epoch of magnetogenesis was assumed to occur
during the QCD phase transition (Tg � 100 MeV).
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After the electrons and positrons become nonrelativistic,
i.e., T <me, the photon mean free path increases rapidly.
This is particularly true during the period of the e�

annihilation, i.e., 500 * T * 20 keV [47]. Therefore, vis-
cous MHD evolution with photons diffusing commences
for a wide parameter space during this period. The epoch
of viscous MHD with drag provided by free-streaming
FIG. 15. The evolution of the relative magnetic-energy den-
sity r corresponding to the models shown in Fig. 14. Solid lines
from top to bottom: (a) hg � 1, rg � 0:083, n � 3; (b) hg �
10�3, rg � 0:083, n � 3; (c) hg � 0, rg � 0:083, n � 3. The
epoch of magnetogenesis was assumed to occur during the
QCD phase transition (Tg � 100 MeV).
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photons, which starts some time later, is always ended
right at recombination (T � 0:26 eV). This, of course, is
due to the virtually instantaneous decrease of �� by a
factor �104 which is the result of the loss of free electrons
during recombination. In contrast to dissipation due to
neutrinos, the viscous period due to photons thus does not
only simply delay the growth of the integral scale (i.e., the
dissipation). Rather, shortly before the end of the viscous
MHD regime before recombination magnetic field
strengths are genuinely larger and integral scales are
smaller as compared to a scenario where the flow would
have stayed turbulent all along. What happens after re-
combination depends then on the strength of the magnetic
field at recombination.

After recombination two different potential sources of
dissipation come into play; ambipolar diffusion as well as
shear viscosity due to hydrogen atoms.We assume, for the
moment, a turbulent flow, i.e., v � vA, with resulting
conclusions turning out independent of this assumption.
With the aid of Eq. (39), evaluated shortly after recom-
bination, one may determine the ambipolar Reynolds
number Eq. (26) to be approximately Ramb � 104. It fol-
lows that the hydrogen atoms are tightly coupled to the
flow (cf. Sec. IV). As this is the case, viscosity due to
neutrals may play a role. One may evaluate the kinetic
Reynolds number Re Eq. (4) on the integral scale at
recombination due to hydrogen viscosity by noting that
the Alfvén crossing rate on the integral scale shortly
before recombination �vA=L�rec is given by �

�����������
��H

p
�rec

[cf. Eqs. (39) and (41) applied in the viscous photon-
free-streaming regime shortly before recombination].
When this is done one finds that weak magnetic fields
with small coherence lengths [48] are entering a viscous
regime due to hydrogen viscosity immediately after re-
combination, whereas strong fields do not. Here, the di-
viding magnetic field strength is given approximately by
B�c � 10�13 G, corresponding to integral scales Lc �
10 pc (cf. Figs. 12 and 13). Thus, fields with Bc & B�c
are not significantly processed immediately after recom-
bination. Only some time later, when neutrals have de-
coupled from the flow, they are subject to further
processing (i.e., increase of coherence length). This fur-
ther increase in L mostly takes place at epochs with
redshift z & 100. The increase in integral scale then
occurs in a viscous regime with drag due to free-
streaming hydrogen atoms (cf. Sec. IV), quite analogous
to the regime shortly before recombination. The flows
become turbulent again only when the Universe is reion-
ized as ambipolar drag then disappears [49]. The epoch of
reionization occurs presumably at z ’ 10, at which point
the integral scale grows virtually instantaneous to a
larger value and stays approximately constant thereafter
[50].

In contrast, fields with strength B * B�c recommence
turbulence after recombination. The growth of the coher-
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ence scale during the recombination epoch is character-
ized by an almost instantaneous increase of a factor of
order �5, associated with dissipation into heat.
Subsequent evolution only increases the integral scale at
best logarithmically, due to the peculiar redshifting of
Alfvén crossing time and Hubble constant [cf. Eq. (42)].
One may show that even such fields enter a viscous period
later on, with viscosity first due to diffusing hydrogens in
the tight-coupling regime and later due to ion-hydrogen
collisions (ambipolar drag) in the weak ion-hydrogen
coupling limit. In any case, the magnetic coherence scale
is not modified much anymore, even after the epoch of
reionization [51]. Again, these trends may be followed in
Figs. 12–15.

We have so far assumed that magnetic helicity is neg-
ligible. Because of the high Prandtl numbers in the early
Universe helicity is conserved. Since for typical blue
spectra with n > 1 nonhelical fields decay more rapidly
than helical fields (cf. Sec. II), and initial fields with
submaximal helicity hg < 1 will ultimately reach a maxi-
mally helical configuration during the course of field
dissipation. Somewhat oversimplifying it may be under-
stood as the nonhelical component dissipating leaving the
fully helical component as a remnant. There exists a
simple criterion of when the fully maximal case is
reached. Using Eqs. (29) and (38) and the assumption of
initial nonhelical evolution, one may show that maximal
helicity is reached when the integral scale has grown to

Lmax
c � Lgch

�1=�n�1�
g : (45)

The subsequent evolution of the field is different from
the nonhelical case. Whereas processing (i.e., cascading
of energy to smaller scales) on the integral scale and the
growth thereof still proceeds according to the require-
ment Eq. (39), the required inverse cascade due to the
conservation of helicity implies a transfer of energy from
small scales to large scales. The instantaneous magnetic
field spectrum is thus modified compared to Eq. (29) and
given by

~Bc�lc� � ~Bgc�Lgc�h
1=2
g

�
Lc�T�
Lgc

	
�n�1�=2

�
lc
Lgc

	
�n=2

lc � Lc:
(46)

Note that, in contrast to Eq. (44), the prefactor of this
spectrum is time dependent (through the temperature
dependence of Lc). In accordance with the findings of
Sec. II, the spectrum retains its initial slope n on scales
lc � Lc. It may be noted that due to the large dynamic
increase of Lc�T� between magnetogenesis and recombi-
nation, even fields with initially very small helicity typi-
cally have reached maximal helicity by recombination.
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C. Evolution: Analytic results

As discussed above, and observed in Figs. 12 and 14,
the growth of the integral scale before recombination
takes place in different regimes, i.e., turbulent MHD
with neutrino viscosity, viscous MHD with free-
streaming neutrinos, turbulent MHD with photon viscos-
ity, and viscous MHD with free-streaming photons.
Moreover, it is dependent on whether maximal helicity
has been reached or not. After recombination strong
magnetic fields (Bc > B

�
c ) undergo only a slight further

evolution in the turbulent regime, whereas weaker mag-
netic fields may pass through an extended viscous hydro-
gen free-streaming regime.

In the following we give analytic results for the inte-
gral scale and energy density in the different regimes,
expressed as functions of the initial conditions. Here most
(but not all) of the notation should be clear from the
definitions in prior sections (e.g., subscripts of r, S, f, l,
q, �, �, b, and p indicate, total radiation, entropy, parti-
cles coupled to the fluid, leptons, quarks, neutrinos, pho-
tons, baryons, and protons, respectively, whereas a
subscript 0 denotes quantities at the present epoch). One
may in principle also derive the transition temperatures,
TEOT and TEOV, at which the fluid passes from a turbulent
state into a viscous one, and vice versa, defined byRe � 1.
We have nevertheless refrained from doing so, as the
number of expressions quickly exponentiates, and in
some circumstances (i.e., 0:5 MeV * T * 20 keV due
to the e� annihilation) closed forms may not be derived.

1. Evolution before neutrino decoupling

The expressions for the integral scale and energy den-
sity during turbulent MHD evolution before neutrino
decoupling are identical to those before recombination.
The reader is thus referred to Eqs. (54) and (55), for the
case of submaximally helical fields, and to (58) and (59),
for maximally helical fields. The expressions for Lc and r
in the viscous neutrino free-streaming regime, for sub-
maximally helical (i.e., Lc < Lmax

c ) fields are

Lc�T� � Lgc

�
G1

�
1

G2
FMplT3

g

	
1=�2
n�

�
T
Tg

	
�5=�2
n�

; (47)

r�T� � rg

�
G1

�
1

G2
FMplT

3
g

	
�n=�2
n�

�
T
Tg

	
5n=�2
n�

; (48)

with

G1 �
1

1�3�

�
49�7

405

	
1=2 g5=2r
gfg��gl 
 gq�

: (49)

Here Lgc is given in Eq. (37). As a numerical example,
with index n � 3 and gr � 10:75, gf � 5:5, g� � 5:25,
gl � 3:5, and gq � 0 as applicable between QCD transi-
tion and neutrino decoupling one finds
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Lc�T� ’ 2:1� 10�2 pc
� rg
0:01

	
1=2

� Tg
100 GeV

	
�3=5

�

�
T

2:6 MeV

	
�1
; (50)

r�T� ’ 2:1� 10�8

� rg
0:01

	� Tg
100 GeV

	
�6=5

�
T

2:6 MeV

	
3
:

(51)

For maximally helical fields (i.e., L> Lmax
c ) the appro-

priate expressions are found from Eqs. (47) and (48) by
replacing n! 1, except in LIgc which leaves a

���
n

p
depen-

dence in Lc, as well as multiplying the RHS of Eq. (47) by
h1=3g and the RHS of Eq. (48) by h2=3g . This yields the
following numerical examples:

Lc�T� ’ 4:8� 10�2 pc
���
n

p
� rg
0:01

	
1=2

� hg
0:01

	
1=3

�

� Tg
100 GeV

	
�1=3

�
T

2:6 MeV

	
�5=3

; (52)

r�T� ’ 3:2� 10�7

� rg
0:01

	� hg
0:01

	
2=3

� Tg
100 GeV

	
�2=3

�

�
T

2:6 MeV

	
5=3
; (53)

where the same parameters as above have been assumed.

2. Evolution before recombination

The integral scale and magnetic energy during MHD
turbulence Re > 1 (equally applicable before neutrino
coupling and recombination) before maximal helicity
has been reached (i.e., for Lc < Lmax

c ) read

Lc�T� � Lgc

�
gS

g1=2r g1=2f

	
2=�2
n�

�
T
Tg

	
�2=�2
n�

�

�
2025

4�7

	
1=6 ��������

nrg
p MPl

TgT0
g�1=3
S0

�
gS

g1=2r g1=2f

	
2=�2
n�

�

�
T
Tg

	
�2=�2
n�

; (54)

r�T� � rg

�
gS

g1=2r g1=2f

	
�2n=�2
n�

�
T
Tg

	
2n=�2
n�

: (55)

A numerical example for n � 3, gr � 3:36, gf � 2, and
gS � 3:909 as applicable after the e� annihilation is
given by

Lc�T� ’ 8:0� 10�2 pc
� rg
0:01

	
1=2

� Tg
100 GeV

	
�3=5

�

�
T

100 keV

	
�2=5

; (56)
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r�T� ’ 3:9� 10�10

� rg
0:01

	� Tg
100 GeV

	
�6=5

�
T

100 keV

	
6=5
:

(57)

Similarly, when maximal helicity has been reached Lc >
Lmax
c (essentially using the above equations with n! 1

replaced and inclusion of hg factors as in the preceding
section) one finds

Lc�T� � Lgc

�
gS

g1=2r g1=2f

	
2=3

�
T
Tg

	
�2=3

h1=3g ; (58)

r � rg

�
gS�T�

g1=2r g1=2f

	
�2=3

�
T
Tg

	
2=3
h2=3g : (59)

A numerical example for gr � 3:36, gf � 2, and gS �
3:909 is given by

Lc�T� ’ 4:4� 10�1 pc
���
n

p
� rg
0:01

	
1=2

� hg
0:01

	
1=3

�

� Tg
100 GeV

	
�1=3

�
T

100 keV

	
�2=3

; (60)

r�T� ’ 3:5� 10�8

� rg
0:01

	� hg
0:01

	
2=3

� Tg
100 GeV

	
�2=3

�

�
T

100 keV

	
2=3
; (61)

which is virtually independent of the spectral index n.
The expressions during viscous MHD with free-
streaming photons (where we assumed T < 20 keV as is
usually the case) for Lc < Lmax

c are

Lc�T� � Lgc

�
G2

T0

Mpl

T0

2Tnb0Xe

T0

Tg


1=�2
n�

�Tg
T

	
3=�2
n�

;

(62)

r�T� � rg

�
G2

T0

Mpl

T0

2Tnb0Xe

T0

Tg


�n=�2
n�

�
T
Tg

	
3n=�2
n�

;

(63)

with

G2 �

�
�3

45

	
1=2
g2Sg

�1=2
r R1=2

r ; (64)

and where 2T � 8��2=3m2
e � 6:65� 10�25 cm2 is the

Thomson cross section. Here, Rr � %r=�%r 
 %DM� ac-
counts for a significant contribution of dark matter to
the Hubble expansion shortly before recombination and
Xe is the ionization fraction (Xe � 1 before recombina-
tion and Xe � 10�4 after). As a numerical example for
n � 3, (bh2 � 0:02, and Xe � 1 one finds
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Lc�T� ’ 4:0 pc
� rg
0:01

	
1=2

�
Rr

0:235

	
1=10

� Tg
100 GeV

	
�3=5

�

�
T

0:259 eV

	
�3=5

; (65)

r�T� ’ 3:1� 10�15

� rg
0:01

	�
Rr

0:235

	
�3=10

� Tg
100 GeV

	
�6=5

�

�
T

0:259 eV

	
9=5
; (66)

where T ’ 0:259 eV corresponds to the temperature at
recombination and Rr ’ 0:235 for (toth2 � 0:15.
Similarly, for maximally helical fields L> Lhmax one finds
the analytic expressions from those for the submaximal
case, as above, by simply replacing in Eqs. (62) and (63)
n! 1, except in Lgc, as well as adding a factor h1=3g in

Eq. (62) and a factor h2=3g in Eq. (63). Numerical examples
are given by

Lc�T� ’ 0:3 kpc
���
n

p
� rg
0:01

	
1=2

� hg
0:01

	
1=3

�
Rr

0:235

	
1=6

�

� Tg
100 GeV

	
�1=3

�
T

0:259 eV

	
�1
; (67)

r�T� ’ 5:2� 10�11

� rg
0:01

	� hg
0:01

	
2=3

�
Rr

0:235

	
�1=6

�

� Tg
100 GeV

	
�2=3

�
T

0:259 eV

	
: (68)
3. Evolution after recombination

In the turbulent regime after recombination the quan-
tities of interest for Lc < Lmax

c are given by

Lc � Lgc

�
(�������������������

3(tot(b

p gS0 ln�a=arec�

2=�2
n�

�Tg
T0

	
2=�2
n�

;

(69)

r � rg

�
(�������������������

3(tot(b

p gS0 ln�a=arec�

�2n=�2
n�

�
T0

Tg

	
2n=�2
n�

;

(70)

including a mild logarithmic growth factor ln�a=arec�.
Here (�, (b, and (tot are the present day fractional
contributions to the critical density of CMBR photons,
baryons, and total matter, respectively. (In the derivation
of this expression the contribution of radiation to the total
density after recombination has been neglected. This
induces about �10% error in r and 5% in Lc immediately
at recombination for the values below, but is asymptoti-
cally correct.) Numerical examples for n � 3, gS0 �
3:909, (toth

2 � 0:15, (bh
2 � 0:02, and (�h

2 � 2:48�
10�5 are
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Lc�T� ’ 12 pc
� rg
0:01

	
1=2

� Tg
100 GeV

	
�3=5

; (71)

r�T� ’ 1:1� 10�16

� rg
0:01

	� Tg
100 GeV

	
�6=5

; (72)

Bc�T� ’ 6:0� 10�14 G
� rg
0:01

	
1=2

� Tg
100 GeV

	
�3=5

; (73)

where we have also evaluated the comoving field strength
via Eq. (33). For the above quantities we neglected the
factor ln�a=arec� (as for most fields the period of turbulent
MHD after recombination is rather short), Similarly, for
L> Lhmax (when having attained maximal helicity) one
finds

Lc � Lgc

�
(�������������������

3(tot(b

p gS0 ln�a=arec�

2=3

�Tg
T0

	
2=3
h1=3g ; (74)

r � rg

�
(�������������������

3(tot(b

p gS0 ln�a=arec�

�2=3

�
T0

Tg

	
2=3
h2=3g ; (75)

with numerical examples (with the input numerical val-
ues as above) given by

Lc�T� ’ 1:9 kpc
���
n

p
� rg
0:01

	
1=2

� hg
0:01

	
1=3

� Tg
100 GeV

	
�1=3

;

(76)

r�T� ’ 8:1� 10�12

� rg
0:01

	� hg
0:01

	
2=3

� Tg
100 GeV

	
�2=3

;

(77)

Bc�T� ’ 1:6� 10�11 G
� rg
0:01

	
1=2

� hg
0:01

	
1=3

�

� Tg
100 GeV

	
�1=3

: (78)

Note that there is only a residual dependence on spectral
index n.
VI. SUMMARY AND DISCUSSION

The detailed numerical and analytical examination
presented in the previous chapters has led to a surpris-
ingly simple picture concerning the gross features of
cosmic magnetic field evolution, in particular, the evolu-
tion of magnetic coherence scale and energy density. The
growth of the coherence scale is described by the simple
causality relation

v�L�=L � H�T� (79)

independent if occurring in high kinetic Reynolds num-
ber Re � 1 turbulent flow with v � vA or during the
multiple epochs of viscous (Re  1) MHD evolution
with v vA [with v given by Eq. (41)] and independent
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FIG. 17. Shown is the final coherence length, L�T0�, of sub-
maximal magnetic fields (i.e., L < Lmax) in the (n, Tg) parame-
ter space. Here, the initial magnetic field strength is rg � 0:01.
Results for different rg may be obtained by scaling the coher-
ence length by �rg=0:01�

1=2.

FIG. 16. Shown is the final magnetic field strength, B�T0�, for
submaximal (i.e., L < Lmax) magnetic fields in the (n, Tg)
parameter space. Here, the initial magnetic field strength is
rg � 0:01. Results for different rg may be obtained by scaling
the field strength by �rg=0:01�

1=2.
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of the helical properties of the fields. In particular, non-
linear (direct) cascading of magnetic energy to the dis-
sipation scale always occurs on that scale. Remaining
magnetic-energy densities after evolution from very
high temperature to an epoch with temperature T are
then simply given, in the submaximal case, by all the
initial magnetic energy present on scales l * L>, with L>

the as yet largest length scale having been processed
during prior evolution, and in the maximally helical
case, by conservation of helicity density [see Eq. (10)]
with the field sitting on scales l * L>. Quantities of
particular interest to cosmology are the anticipated
present day coherence length and magnetic field strength
given particular initial conditions immediately after the
epoch of magnetogenesis. We have shown that whereas
strong magnetic fields B� B�c � 10�13 G are essentially
undergoing no further evolution (i.e., growth of L>) after
recombination weak fields B & B�C do. In either case,
after the later epoch of reionization the distinction be-
tween strong and weak disappears such that any reason-
able strength field is turbulent at present. The present day
field strengths are then simply obtained by applying
Eq. (79) with v � vA today. This yields the correlation

B0 � 5� 10�12 G
�
Lc
kpc

	
(80)

between magnetic field strength and magnetic correlation
length [52]. The magnetic correlation length itself is
given by the initial conditions after the epoch of magne-
togenesis [cf. Eqs. (69) and (74) for the submaximal
helical and maximally helical cases, respectively, with
example values for an n � 3 spectrum given in Eqs. (71)–
(73) and for fields which during the course of evolution
have become maximally helical in Eqs. (76)–(78)]. Both
quantities are shown for nonhelical fields as a function of
spectral index and magnetogenesis temperature in
Figs. 16 and 17.

Concerning the evolution of maximally helical fields
we have found and reverified prior work [17] on the
intriguing property of self-similar evolution of such
fields. In particular, though maximal helical fields keep
their initial spectral index on large scales (i.e., for L *

L>) the amplitude of the large-scale tail of magnetic
fluctuations is subject to a seemingly ‘‘acausual’’ ampli-
fication on scales which are far larger than the distance an
Alfvén wave may travel (cf. Figs. 6 and 10). The large-
scale magnetic field spectrum for maximally helical
fields is given by Eq. (46), whereas Eq. (44) describes
that of submaximally helical fields. We have numerically
disputed the claimed effect (e.g.,[20,21]) that maximally
helical fields do not excite fluid motions and are therefore
not subject to viscous damping (cf. Sec. II B). Rather, only
due to the excitation of fluid motions the magnetic corre-
lation length of maximally helical fields may continu-
ously grow during the evolution of the early Universe. It is
important to note that due to the large dynamic increase
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of L> between the epoch of magnetogenesis and the
present (and the associated large dissipation of magnetic
energy) a field with a minute amount of initial helicity
typically evolves into a maximally helical field at present.
This happens when the magnetic correlation length has
grown beyond that given in Eq. (45). Figure 18 shows the
amount of initial helicity, hg [cf. Eq. (38)] as a function of
magnetic spectral index required to reach a maximally
helical state at present. Completely helical fields may thus
not necessarily be considered an unlikely remnant of the
early Universe. The current magnetic field strength and
correlation length of magnetic fields which became maxi-
-18



FIG. 18. Shown is the minimal relative initial magnetic he-
licity, hg, necessary for a magnetic field to have become
maximal helical (i.e., L * Lmax) at the present epoch. For
instance, initial magnetic fields generated at Tg � 100 MeV
with n � 3 become maximal helical if hg * 1:2� 10�7. Note,
this condition is independent of the initial magnetic field
strength, rg.
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mal helical are shown in Figs. 19 and 20 as a function of
initial helicity and magnetogenesis temperature.

The evolution of magnetic fields during epochs with
intermediate redshifts z � 103–107 is described by tur-
bulent evolution at higher redshifts, followed by a viscous
MHD period without further growth of L>, and a viscous
MHD period with comparatively rapid growth of L> with
viscosity due to free-streaming photons (cf. Figs. 12 and
14). For essentially all interesting magnetic field strengths
and spectra the plasma is, in this last state shortly before
recombination, allowing for the prediction of a correla-
FIG. 19. Shown is the final magnetic field strength, B�T0�, for
magnetic fields which have become maximal helical (i.e., L *

Lmax) in the (hg, Tg) parameter space. Here, the initial magnetic
field strength is rg � 0:01, and for different rg the results scale
with �rg=0:01�

1=2. Note the absence of a dependence on spectral
index n.
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tion

Brec � 8� 10�11 G
�
Lc
kpc

	
(81)

between magnetic field strength and correlation length
shortly before recombination. Equation (81) is obtained
via Eq. (79) and noting that v � v2

A=���L� during vis-
cous photon free streaming. The correlation length to be
employed in Eq. (81) may be derived only when the initial
conditions shortly after the magnetogenesis scenario are
known, i.e., via Eq. (62) and the comments further below
concerning maximally helical fields, whereas the instan-
taneous spectra are again given by Eqs. (44) and (46).

The correlation in Eq. (81) is almost identical to what
one expects from a linear analysis (JKO98). In contrast,
for the formulation of limits on primordial magnetic
fields due to magnetic field dissipation at redshift z �
2:5� 106 and the concomitant production of spectral �
distortions in the CMBR, Ref. [26] has employed the
results of a linear analysis leading to the claim that fields
of 3� 10�8 G on scales of 400 pc are disallowed. Though
the limiting field strength does not change when non-
linear evolution is considered, as it is an energetic con-
straint, the comoving length scale does. This is due to the
bulk of energy not being contained on the dissipation
scale (at �400 pc) but rather on the integral scale given
by applying Eq. (80) at z � 2:5� 106. However, coinci-
dentally the change is only mild, moving the limiting
scale from 400 pc up to 1 kpc, since for such field strength
the flow at z � 2:5� 106 is only mildly turbulent (i.e.,
Re � 100) and since in the viscous regime both treat-
ments almost coincide. When B * B�c the cosmic recom-
bination process is associated with an almost
instantaneous jump in the magnetic correlation length.
How large this jump is then depends on the magnetic field
FIG. 20. Shown is the final coherence length, L�T0�, for
magnetic fields which became maximal helical (i.e., L *

Lmax) in the (hg, Tg) parameter space. Here, the initial magnetic
field strength is rg � 0:01, and for different rg results may be
rescaled by �rg=0:01�

1=2.
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FIG. 21. Exclusion plot on the comoving magnetic field
strength on L � 10 Mpc (equally applicable to the present
epoch and recombination) as a function of magnetic field
spectral index. The solid line shows the upper limit on
Bc�10 Mpc� from an excessive distortion of the CMBR black-
body spectrum by magnetic field dissipation at redshift z �
3� 106 [26], whereas the horizontal lines (from top to bottom)
show the upper limits from present day intergalactic Faraday
rotation measurements [2] and the possible overproduction of
cluster-magnetic fields (see text), respectively.
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spectral index determined during the magnetogenesis
epoch. It would be interesting to examine at what field
strength the associated energy dissipation could impact
on the recombination process itself, especially in light of
fields with strength B * 6� 10�11 G being able to pro-
duce small-scale density perturbations as then vA * vb
[cf. Eqs. (33)–(35)].

With the advances in high-precision CMBR anisotropy
observations the interest in putative signals due to pri-
mordial magnetic fields has immensely risen. Essentially
all current magnetic field induced CMBR anisotropy
examinations assume fields of strengths �10�10–10�9 G
on scales roughly the Silk scale, L � 10 Mpc. This is
done, of course, since for much weaker fields the signal is
hardly observable and when moving to much smaller
scales not only are satellite missions like the Wilkinson
Microwave Anisotropy Probe and Planck not able to
resolve these but also the signals are naively expected to
be reduced due to the thickness of the last scattering
surface 2 � 10 Mpc. By inspection of Eq. (81) it is clear
that the scale of �10 Mpc may not be the integral scale
but rather a scale much beyond. We argue here that unless
substantial primordial magnetic fields have their origin
during an inflationary phase a search for primordial
magnetic fields of �10�9 G on 10 Mpc seems futile (at
best controversial). This is due to a number of reasons.
First, with fields which are causally generated during, for
example, early cosmic phase transitions such strengths on
these scales are impossible to reach. This is of course due
to the smallness of the Hubble scale in the very early
Universe and since due to causality the spectrum must be
sufficiently blue. Second, due to the blueness of the spec-
trum of causally generated magnetic fields, limits on
smaller scales are easily violated. Figure 21 shows the
maximum possible magnetic field strength on the scale
10 Mpc as a function of magnetic field spectral index.
Fields which are above this value produce CMBR spectral
� distortions in excess of those observed [26]. It is seen
that only for unrealistically small spectral indices B�
10�9 G on 10 Mpc may be reached. Finally, a direct
constraint on the scale �10 Mpc may be applied when
the low-redshift collapse of a magnetized plasma to a
cluster is considered [53]. It is found that pre-cluster-
collapse fields of 4� 10�12 G (corresponding to the au-
thors 10�9 G at redshift z � 15) are sufficient to repro-
duce observed Faraday rotation measures in present day
clusters. Larger fields seem to overproduce the Faraday
rotation measure and should therefore be ruled out.

When trying to detect primordial magnetic fields a
more promising and realistic alley should be the search
for CMBR anisotropies on very small scales, in particu-
lar, on scales �10 kpc (corresponding to multipoles l�
106), possibly close or only slightly above the integral
scale, rather than the canonical 10 Mpc (multipoles l�
103). This is due to the existence of viable scenarios
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producing fields of interesting amplitude �10�9 G on
such scales and further such fields evading constraints
from CMBR spectral distortions and observed cluster-
magnetic fields. Moreover, though this scale is much
below the width of the last scattering surface, the ex-
pected signal is not necessarily small. In particular, for
small scales l & 1 Mpc the magnetic field induced pecu-
liar velocities are v � v2

A=���l�. CMBR temperature
fluctuations follow 4T=T / v and for scales l < 2 are
additionally suppressed by

��������
l=2

p
due to the thickness of

the last scattering surface. Combing these factors one
finds 4T=T / l�n�1=2 for l * L, thus an increasing signal
with decreasing scale. Here n is the spectral index of the
primordial magnetic field. Primordial magnetic fields
should therefore leave their strongest CMBR signal on
small scales l� 106. It remains to be seen if contamina-
tion of the primordial CMBR anisotropies by foregrounds
may pose serious problems to such observations.

Last but not least, we have already challenged in a prior
publication [54] the long-standing and widespread belief
that cluster-magnetic fields may not be entirely of primor-
dial origin. It is typically argued that causal magneto-
genesis scenarios (as, for example, due to local processes
during the QCD or electroweak transitions) yield only
weak magnetic fields & 10�20 G on the (precollapse)
scale of a cluster of galaxies. Since during cluster collapse
further magnetic field amplification by only modest fac-
tors 103–105 due to magnetic flux conservation result,
starting from 10�20 G implies that one is still far from
the observed �G fields in clusters, requiring further field
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amplification processes such as a dynamo. The problem
with this argument is that, a priori, it is not clear if the
initial magnetic fields have to reside on the cluster scale
itself, or if magnetic field energy density contained on
much smaller scales may during the collapse be trans-
ferred to the cluster scale. In fact, the only numerical
simulation of the collapse of a magnetized plasma to a
cluster to date [53] seems to indicate an approximate
independence of the final result on initial magnetic co-
herence length, with the final cluster Faraday rotation
measures only dependent on the precollapse magnetic-
energy density (required are B � 4� 10�12 G). It is cur-
rently not clear by what mechanism magnetic energy may
inverse cascade from small scales to large scales during
the cluster collapse. But if indeed it does, cluster-
magnetic fields could be entirely primordial, since mag-
netic fields of �10�12–10�11 G on approximately �kpc
scales are possible by either having magnetogenesis occur
late, during the QCD phase transition, and/or magneto-
genesis scenarios which generate a very small amount of
initial helicity [cf. Eqs. (69), (74), and (80)]. It is interest-
ing to note that such a scenario also led to a ‘‘prediction’’
of magnetic field strength and amplitudes in voids, far
from galaxies. Fields in such environments are presum-
ably not affected by magnetic fields in galactic outflows
and could be in the optimistic case observable by future
technology [8–10].
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APPENDIX A: THE MHD EQUATIONS IN
MINKOWSKI SPACE

We are using Gaussian natural units, i.e., �0 � 1 � 50,
and c � 1, for solving the MHD equations. On a static
background in the Newtonian and nonrelativistic limit
the MHD equations are given by (see, e.g., [55])

@%
@t


r � �v%� � 0; (A1)

@v
@t


 �v � r�v � �
1

%
rp�

B� �r� B�
4�%

�r2; (A2)

@B
@t

� r� �v� B� 

1

4�2
r2B; (A3)

42 � 4�%; (A4)

where %, v, p, B, 2, and 2 are matter density, fluid
velocity, thermal pressure, magnetic field, gravitational
potential, and electrical conductivity, respectively. The
above equations have to be closed by an equation of state.
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APPENDIX B: CONFORMAL PROPERTIES
OF THE MHD EQUATIONS IN
AN EXPANDING UNIVERSE

In the following we assemble the MHD equations in
the FRW universe with the scale factor a and the Hubble
parameter H for (a) relativistic MHD, i.e., when photons
are still coupled to the plasma on the scale of the magnetic
fluctuations, l�  L, and (b) for nonrelativistic MHD in
the opposite limit l� � L. In both limits, the equation of
state in the early Universe is well approximated by being
isothermal due to incompressibility in the limit (a) and
due to the efficiency of electron-photon Thomson scatter-
ing and the associated cooling in the limit (b). We then
show how in both limits the MHD equations in the FRW
background may be essentially reduced to those in
Minkowski space, when appropriate scalings with a scale
factor of the physical quantities are introduced. For fur-
ther details on the derivation of the equations we refer the
reader to JKO98. To lowest nontrivial order in 1=2, the
relativistic MHD equations are

@%
@t



1

a
r � ��%
 p�v�
 3H�%
 p� � 0; (B1)
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1
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�
B� �r�B�
4��%
 p�

	

�
�

a2

�
r2v


1

3
r�r � v�


; (B2)

�
@
@t


 2H
	
B �

1

a
r� �v� B� 


1

4�2a2
r2B; (B3)

where we assumed that %em  % � %fluid (here % refers to
internal energy density for radiation) and we kept only
terms of the lowest order in v=c. The shear viscosity � is
given by [56]

� �
4

15

�2

30
gtT4lmfp=�%
 p�; (B4)

where gt is the number of relativistic degrees of freedom
of the particles with the longest mean free path lmfp.
Using the following the rescaled variables (e.g.,
[14,16,57]):

~% � %a4; ~p � pa4; ~B � Ba2;

~v � v; ~T � Ta; ~� � �a�1;

d~t � dta�1; ~2 � 2a;
(B5)

the MHD Eqs. (B1)–(B3) in the radiation dominated
universe (i.e., a / t�1=2 and p � %=3) can be written as

@~%
@~t


r � ��~%
 ~p�~v� � 0; (B6)
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� r� �~v� ~B� 

1

4�2
r2 ~B: (B8)

A similar rescaling transformation can be done in the
MD regime (i.e., a / t3=2 and p %) using super comov-
ing variables [58]:

~% � %a3; ~p � pa4; ~B � Ba2;

~v � va1=2; ~� � �a�1=2; d~t � dta�3=2;
~H � a3=2H; ~2 � 2a1=2:

(B9)

The transformations yield almost the form of the ordi-
nary nonrelativistic MHD equations [cf. Eqs. (A1)–(A3)]:

@~%
@~t


r � �~% ~v� � 0; (B10)

@~v
@~t


 �~v � r�~v

1
~%
r~p


1

4�~%
~B� �r� ~B� � �~s;

(B11)

@~B
@~t

�r� �~v� ~B� �
1

4�2
r2 ~B: (B12)

Here, the dissipation term is

~s �
1

2
~H ~v�~�

�
r2~v


1

3
r�r � ~v�


; (B13)

where % is again matter density. Here the term 1
2
~H ~v in

Eq. (B13) represents the only difference to the MHD
equations in Minkowski space and may be interpreted
as a drag term. In particular, fluid momentum dissipation
due to a homogeneous photon background with l� � L,
i.e., photon drag, is described by the addition of a term
��v on the RHS of Eq. (B2) due to free-streaming
photons (and the dropping of the terms proportional to
shear viscosity � due to diffusing photons). In the scaled
variables this leads to the following dissipation term:

~s � �12
~H 
 ~��~v (B14)

with ~� � a3=2�.
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FIG. 22. Time evolution of the magnetic helicity H in the
case of a maximal helical magnetic field. The loss of helicity is
due to magnetic diffusion, which is solely due to numerical
diffusion which can be seen by the resolution study.
APPENDIX C: DISSIPATION OF
ENERGY AND HELICITY

With a homogeneous density and pressure distribution
the total energy density is given by

E �
%
 p

2

1

V

Z
V
d3x�v2 
 v2A�; (C1)
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where vA � B=
�����������������������
4��%
 p�

p
is the Alfvén velocity. The

magnetic helicity density is

H �
1

V

Z
V
d3xA � B; (C2)

where A is the vector potential, i.e., B � r�A. Using
the MHD equations of Appendix A the time evolution of
the above quantities is given by (up to surface terms)

V
dE
dt

� ���%
 p�
Z
V
d3x�r � v�2

�
1

�4��22

Z
V
d3x�r � B�2; (C3)

V
dH
dt

� �
1

2�2

Z
V
d3xB � �r � B�: (C4)

In the case when fluid momentum dissipation occurs by
free-streaming particles rather than diffusing particles,
i.e., �r2v ! ��v, the first integrand (and prefactor) of
the RHS of Eq. (C3) must be replaced by �%v2. Note that
in the case of ideal MHD (i.e., 2! 1) the helicity (C2)
becomes a conserved quantity. In Fig. 22 we present the
results of our resolution study for helicity conservation
which show increasingly conserved magnetic helicity
with increasing resolution. Simulations with � 1283

grid points do not exhibit significant loss of magnetic
helicity over several dynamical times.

In the radiation dominated regime the shear viscosity is
given by (cf. also JKO98)

� �
1

5

gt
gf
lmfp; (C5)

with lmfp being the mean free path of neutrinos or photons
with statistical weight gt, and where gf denotes the
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statistical weight of the total fluid energy radiation den-
sity. Here, the photon mean free path, l�mfp � 1=�2Tne�, as
measured in comoving units, is

l�mfp;c � 1:77 MpcX�1
e

�
(bh2

0:02

	
�1
�

T
0:26eV

	
�2
; (C6)

for T & 20 keV. For the neutrino mean free path we
assume l�mfp ’ 1=�G2

FT
2�nl 
 nq�� (with the Fermi con-

stant GF � 1:1663� 10�5 GeV�2 and the number den-
sities nl and nq of relativistic leptons and quarks,
respectively). We find at T � 2:6 MeV the comoving
value

l�mfp;c ’ 6:7 pc
�gl 
 gq

8:75

	
�1
�

T
2:6 MeV

	
�4
; (C7)

where gl � �7=8�10 and gq � 0 has been assumed. Note
that when using Eq. (C7) for the computation of �� care
has to be taken to not only include scattering but also
neutrino annihilation (cf. [59]). On the other hand, neu-
trino self-scattering does not contribute such that, below
the QCD transition, gl should be effectively reduced to
3.5 (only e�). We use the following drag coefficients for
neutrinos and photons, respectively [59,60]

�� ’
g�
gf

1

l�mfp

; (C8)

�� ’
4

3

%�
%b

1

l�mfp

�
4

3
Xe
2T%�
mp

; (C9)

with 2T the Thomson cross section, mp the proton mass,
and %�, %b denoting photon and baryon densities, respec-
tively. In the high temperature regime (1 MeV & T &

mW) the electrical conductivity 2 is given by [61]

0:76T & 2 & 6:7T; (C10)

where the larger value refers to the upper temperature
bound. At temperatures below the electron mass the con-
ductivity becomes [55]

2 �
�ne�c
me

’
me
� ln3

�
2

�
T
me

	
3=2
; (C11)

where �c is the mean time between two collisions, 3 �

�1=6�1=2��1=�1=2��m3
e=ne�1=2�T=me�, and �, me, and ne

are fine structure constant, electron mass, and electron
density, respectively. The magnetic Prandtl number Pm
which gives the relative importance of the kinetic and
magnetic diffusion is very large in the early Universe,

Pm � 4��2 ’ 2:9� 108
�
keV

T

	
3=2

(C12)

for T <me. This allows one to neglect the dissipation of
magnetic field energy due to finite conductivity. We use
the ion-neutral momentum transfer at low temperatures
given by [62]
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�in � 3:2� 10�9 s�1

�
nH

cm�3

	
� �in(bh

2

�
a
a0

	
�3
;

(C13)

where �in � 4:4� 10�14 s�1 (note �in � �ni), nH � nb
denotes hydrogen density, and a0 is the present day scale
factor. The hydrogen mean free path lHmfp after recombi-
nation is determined by hydrogen-hydrogen elastic scat-
tering. Scattering on electrons (or protons) may be
neglected in computing lHmfp due to the small degree of
ionization (i.e., Xe � 4� 10�4). Assuming a temperature
independent [63], cross section which is approximately
2HH � �a2B, where aB � 5:29� 10�9 cm is the Bohr
radius one finds

lHmfp;c � 9:9� 10�3 pc
�

2HH
10�16 cm2

	
�1
�

T
0:259 eV

	
�2

(C14)

for the comoving mean free path. Shear viscosity due to
hydrogen-hydrogen elastic scattering may be estimated
by

�HH �
1

3
vth
Hl
H
mfp � 8:0� 1018

cm2

s

�
2HH

10�16 cm2

	
�1

�

�
T

0:259 eV

	
�5=2

; (C15)

where vth
H �

���������������
3T=mp

q
denotes hydrogen thermal velocity.

Finally we estimate the mean free path of electrons in the
plasma. After recombination, and with an effective cross
section 2� ��=Te�

2 [64], where � is the fine structure
constant and Te the electron temperature we find

lemfp;c � 10�2 pc (C16)

between the epochs with redshift z � 1100 and z � 100.
Note that the comoving mean free path is independent of
temperature. Below redshift z � 100 the mean free path
decreases even further due to a more rapid decrease in
electron temperature than photon temperature. We take a
constant ionization fraction after recombination of

Xe � 4� 10�4 (C17)

neglecting residual dependencies on (b and (.

APPENDIX D: GENERATION
OF HELICAL FIELDS

To excite a stochastic magnetic field with or without
initial helicity we choose a coordinate system in k space
useful for helical fields with the orthogonal unit vectors
fe
; e�; k̂g (see, e.g., [55]). By expanding the Fourier
transformed vector potential Â in this basis, i.e.,

Â k � A

k e
 
 A�

k e� 
 Akkk̂; (D1)

one obtains the magnetic field in the new basis
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B̂ k � �ik� Âk � �k�A

k e
 � A�

k e��: (D2)

With this set of basis vectors the magnetic field spectra
are given by (cf. also [17])

jB̂kj
2 � k2�jA


k j
2 
 jA�

k j
2�; (D3)

whereas the magnetic helicity becomes

H �
1

�2��3
Z
d3kÂ 

k � B̂k �
1

�2��3
Z
d3kHk (D4)

with

Hk � Â 
k � B̂k � �k�jA


k j
2 � jA�

k j
2�: (D5)

Note that this choice of coordinate system reflects also
that the helicity (D4) is a well-defined physical quantity
as it is gauge independent, i.e., independent of Akk. To
ensure a real vector potential A�x� and from that a real
magnetic field B�x� the A�

k have to fulfill the relation

�A�
k �

 � �A�
�k: (D6)

The magnetic helicity can be of either sign but the mag-
nitude jHkj is limited by the relation

jHkj � k�1jB̂kj
2: (D7)

A magnetic field is said to be maximally helical if the
equals sign in the above equation holds. From the rela-
tions (D3) and (D5) it can be seen that the strength of the
magnetic field can be chosen independently of the mag-
netic helicity [in this approach one can consider either
�A


k ; A
�
k � or �Bk; Hk� as independent variables]. This al-

lows one to excite stochastic magnetic fields with arbi-
trary helicity. To excite stochastic magnetic fields with a
fractional helicity we choose

A�
k �

���
f

p
A

k ; (D8)

where f 2 �0; 1�. This convention leads to

jHkj �
1

k
jB̂kj

2 1� f
1
 f

(D9)

for the magnitude of the helicity in terms of the magnetic
field. From Eq. (D9) it can be seen that �1� f�=�1
 f� is
the fraction of the maximal helicity magnitude Hmax �

k�1jB̂kj
2. This can be used to adjust the magnetic helicity

to an arbitrary magnitude.
Note that the choice of exciting magnetic fields with a

fractional helicity (D9) is not unique. This particular
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choice just reduces the amplitude of the helicity spectra
(compared to that of the maximal helicity spectra) by a
factor of �1� f�=�1
 f�. For nonmaximal helicity it is
also possible that the helicity spectraHk do not follow the
spectra of the magnetic field jB̂kj

2, but are rather inde-
pendently distributed in k space. The particular choice of
the implementation of a fractional helicity may influence
the evolution of magnetic fields.
APPENDIX E: NUMERICAL METHODS

We performed the numerical simulation using ZEUS-3D

[27,28,65]. All simulations were performed with periodic
boundary conditions. This mimics an infinitely large
volume, where the surface integrals of the MHD variables
around the entire box vanish exactly. Furthermore, we
extended the code for the purposes of our studies.We used
a Gaussian random field for the initial fluctuations of the
magnetic components with zero mean. To ensure a
divergence-free magnetic field this is done by exciting
modes of the vector potential Âk in k space in the
following way: The complex vector potential Âk �

�Â1
k; Â

2
k; Â

3
k� is generated by

Â i
k � jÂikje

i’k i 2 �1; 2; 3�; (E1)

where the amplitudes jÂij are randomly selected using a
Gaussian distribution, i.e.,

P�jÂikj� �
1�������

2�
p

2k
exp

�
�
jÂikj

2

222
k

�
; (E2)

and the phases ’k are randomly selected with a uniform
distribution from the interval �0; 2��. The amplitudes are
related to the variance 2k by

jÂikj
2 / 22

k / k
n; (E3)

where we assumed an isotropic universe, i.e., Âik � Âik.
These modes were excited up to a cutoff kc. The initial
stochastic velocity field is generated in the same way as
the initial magnetic field described above. In addition one
can either generate the stochastic velocity field v by using
Eq. (E2) directly, or one can generate a divergence-free
velocity field by first exciting a vector potential A and
then computing v � r�A. The latter avoids strong den-
sity perturbations.
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