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Geodesic behavior of sudden future singularities
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In this paper we analyze the effect of recently proposed classes of sudden future singularities on causal
geodesics of FLRW spacetimes. Geodesics are shown to be extendible and just the equations for geodesic
deviation are singular, although tidal forces are not strong enough to produce a Big Rip. For the sake of
completeness, we compare with the typical sudden future singularities of phantom cosmologies.

DOI: 10.1103/PhysRevD.70.121503 PACS numbers: 04.20.Dw, 98.80.Jk
Recently it has been suggested [1] that in an expanding
FLRW universe a curvature singularity may appear at a
finite time before Big Crunch for matter contents that
satisfy both weak and strong energy conditions. This fam-
ily of models has been further enlarged [2], and the same
sort of behavior has also been found in inhomogeneous
models [3]. It has been remarked, however, that the domi-
nant energy condition must be violated in order to produce
such sudden singularities [4], and that the inclusion of
quantum corrections may appease their strength [5].

In these models, the energy density of the formal perfect
fluid is finite at the singularity, but the pressure is infinite.
More specifically, in the models proposed in [1,2] the scale
factor and its first derivative are also finite, whereas second
and higher order derivatives become infinite (in the models
presented in [5] the singularity does not appear in the scale
factor and its first three derivatives are finite).

These sorts of sudden future singularities are quite dif-
ferent from those in phantom cosmologies [6], because for
the latter not only does the second derivative of the scale
factor blow up at the singularity, but also do the energy
density, the scale factor and its derivatives from the first
order up.

In this paper we want to analyze the behavior of the
sudden future singularities in [1–5] from a different point
of view. Instead of regarding the curvature scalar polyno-
mials we shall take a look at causal geodesics, since they
describe the trajectories and the fate of nonaccelerated
observers on these universes. This is not a difficult task
since FLRW cosmologies,
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which yield six different constants of geodesic motion, i.e.,
three linear momenta and three angular momenta:
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for a geodesic parametrized by its proper time �, so that
d�2 � �ds2. The dots stand for derivation with respect to
this proper time. We define now

� 	 _t2 � a�t�ff2�r� _r2 � r2� _�2 � sin2� _�2�g; (4)

where � is zero for null geodesics and one for timelike
geodesics. With such an amount of conserved quantities,
geodesic equations reduce to first order differential equa-
tions:
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in terms of total linear momentum and angular momentum
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The system may be further simplified, since due to spheri-
cal symmetry every geodesic may be fit in the hypersurface
� � �=2, with L1 � L2 � 0 � P3, by a suitable choice of
the coordinates, then
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It can be easily noticed that these equations are singular if
and only if a�t� has a zero, which corresponds to either a
Big Bang or a Big Crunch singularity. Therefore, if we
consider models with sudden future singularities like those
in [1],
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with constants as, ts, 0< q 
 1, 1< n< 2, we realize that
the geodesics just see the Big Bang singularity at t � 0, but
not the sudden singularity at t � ts, where the scale factor
does not vanish. This is obvious, since these universes are
C1-differentiable manifolds but for the Big Bang.

Generalizations to (8) have been also considered. For
instance, in [2], the following evolution was put forward
(among others):

a�t� � as � 1� exp���t� ts�� �
�
1�

t
ts

�
n
; (9)

with � > 0 and n in the same range as above. Similarly, in
[5] a quantum inspired model was proposed for which a�t�
has functionally the form of (8), but with 3< n< 4 in-
stead, so that these universes are C3-differentiable mani-
folds but for the Big Bang.

Furthermore, since in these settings a, a0 are finite at ts
and the singularity appears just in higher order derivatives
of a, the acceleration vector of the geodesic, ��t; �r; ��; ���,
which comprises the effect of inertial forces, is also regu-
lar. Only the third derivative of the parametrization of the
geodesic is singular at ts, but we just require first and
121503
second derivatives to define geodesic equations. Causal
geodesics in such universes do not see the singularities
but through geodesic deviation effects, since they are due
to the Riemann tensor. Point particles travelling along
causal geodesics do not experience any singularity, but
extended objects might suffer infinite tidal forces at t � ts.

According to Tipler’s definition [7] a strong curvature
singularity is encountered at a point p if every volume
element defined by three linearly independent, vorticity-
free, geodesic deviation vectors along every causal geode-
sic through p vanishes at this point. This definition comes
to say that an extended finite object is crushed to zero
volume by tidal forces at a strong singularity.
Generalizations of this widely accepted definition may be
found in [8,9].

In [10], necessary and sufficient conditions for the ap-
pearance of strong curvature singularities are shown. For
instance, if a causal geodesic meets a strong singularity at a
value �s of its affine parametrization, expressions of the
form

Z �

0
d�0

Z �0

0
d�00jRi

0j0��
00�j; (10)

will diverge along the geodesic on approaching �s. The
components of the Riemann tensor are understood to be
written in a frame parallelly transported along the geode-
sic. Similar results involving double integrals of the com-
ponent R00 of the Ricci tensor or triple integrals of
components Ci

0j0 of the Weyl tensor are written for light-
like geodesics.

For Krolak’s definition, necessary conditions are milder,
since they involve a simple integral of components of the
curvature tensor:

Z �

0
d�0jRi

0j0��
0�j: (11)

For null geodesics conditions are relaxed in a similar way.
In the case of the sudden singularities in [1,2] the

components of the Riemann tensor diverge as a00, since
a0 and a are finite; and in the worst case they diverge as a
power n� 2, for 1< n< 2. Therefore after one integra-
tion of the components of the Riemann tensor, the power
will be positive and the integral will not diverge. Of course,
the situation is even more favorable if singularities do not
arise in a00 but in higher derivatives like in those in [5].

Hence we have shown that sudden singularities are not
strong according to Tipler and Krolak’s definitions and
therefore tidal forces do not crush all finite bodies. This
is quite important, since it means that the spacetime may be
extended across sudden singularities [7] and cannot be
considered the final fate of these universes.

Let us come to conclusions now. In this paper we have
shown that causal geodesics are not affected by the sudden
future singularities in some recently put forward models,
since these singularities are not seen by geodesic equa-
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tions. Recall that geodesic incompleteness is the standard
definition for singularities in General Relativity [11].

Furthermore, considering just curvature singularities, it
has been shown that they are weak according to Tipler’s
and Krolak’s definitions, and therefore finite objects are not
necessarily torn on crossing the singularities.

In contrast, since in the typical sudden future singular-
ities of phantom cosmologies there is a blow up of the scale
121503
factor and all its derivatives, such singularities are indeed
seen by geodesic equations, thus altering causal geodesics,
and leading to destruction of structure (or Big Rip) [6,12].
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