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Are there hyperentropic objects?
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By treating the Hawking radiation as a system in thermal equilibrium, Marolf and Sorkin have argued
that hyperentropic objects (those violating the entropy bounds) would be emitted profusely with the
radiation, thus opening a loophole in black hole based arguments for such entropy bounds. We
demonstrate, on kinetic grounds, that hyperentropic objects could be formed only extremely slowly
and so would be rare in the Hawking radiance, thus contributing negligibly to its entropy. The arguments
based on the generalized second law of thermodynamics then rule out weakly self-gravitating hyper-
entropic objects and a class of strongly self-gravitating ones.
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I. INTRODUCTION

Hyperentropic objects (HEOs) were conjectured by
Marolf and Sorkin (MS) [1] as a challenge to the holo-
graphic bound [2–4] and the universal entropy bound [5–
7]. The holographic bound claims that, within a closed 2-
surface of area A, the entropy S is restricted by (henceforth,
we set G � c � 1 but display �h)

S � A=4 �h: (1)

The universal entropy bound maintains that the entropy
contained in an isolated and weakly self-gravitating object
with total proper energy E and radius R is restricted by

S � 2
ER= �h: (2)

For weak self-gravity systems Eq. (2) implies Eq. (1) [4].
Equations (1) and (2) and Bousso’s covariant entropy
bound [8,9] from which these two follow—each under
specific assumptions—have been widely regarded as con-
straining the form of the fundamental physical theory.

Although no known systems subject to accepted physics
exceed bounds (1) and (2), it has been of interest to derive
them from gedanken experiments [3,5,6,10] in which the
generalized second law of thermodynamics (GSL) [11] is
challenged by hypothetical systems disobeying one of the
said bounds. An opposing school of thought [12,13] main-
tains that the GSL holds automatically, so that entropy
bounds cannot be inferred from situations where the law
seems to be violated. Thus, for example, the derivation of
bound (2), which considers the lowering of an entropy
bearing object into a black hole (BH) [5], and then looks
at the impact on the GSL, was countered with the sugges-
tion [12] that quantum buoyancy near the BH would mod-
ify the energetics of the process sufficiently to obviate any
conflict with the GSL without requiring the help of an
entropy bound. Later work found that the buoyancy is
significant only when the object is a proper distance from
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the horizon of order of its own height [6,14]. In this near
region the thermal ambience which buoys it up is not well
described by the fluid model of Ref. [12]. A wave-scatter-
ing-based buoyancy calculation [7], which thus comple-
mented older derivations [6,14], again recovered bound (2)
by invoking the GSL. Regrettably, the controversy regard-
ing the relation between the GSL and entropy bounds did
not then abate.

At any rate, quantum buoyancy is irrelevant for an object
allowed to fall freely into a BH. This made possible an
alternative argument for a bound on a weakly self-
gravitating object’s entropy which is just a factor of
O�10� above bound (2) [15–17]. In the new argument the
object is dropped from such a distance that the energy
drawn from the hole by the Hawking radiance during the
whole infall is balanced by the energy (at infinity) brought
in by the object—the BH is left unchanged. By the GSL
the entropy carried by the object (the entropy lost to the
hole) must be dominated by that of the Hawking radiance
emitted concurrently. This last depends on the number of
(massless) species emitted, but for reasonable numbers the
said weak version of bound (2) is recovered.

In their critique of this second derivation, MS contend
that, were the object’s entropy S to exceed the bound by
however large a factor, a confrontation with the GSL would
still be avoided because the outgoing Hawking radiation
would then contain a multitude of similar objects, and their
associated entropy would more than balance the entropy
influx associated with the dropped object. Now, as a rule,
composite objects with energies above Planck’s will not
show up in the Hawking radiation [15], being strongly
suppressed by the usual Boltzmann factor. The MS pro-
posal gets around this hurdle by relying on the very large
numbers of internal states appropriate for objects that
violate bound (2).

MS’s argument may be paraphrased as follows. In a
canonical ensemble of temperature T, the probability to
find some state of energy E of an object is p � Z�1e�E=T ,
where Z is the total partition function which can be written
e�Ft=T , with Ft the total free energy. The multiplicity of
-1  2004 The American Physical Society
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states of the object having energy E can be expressed in
terms of the object’s internal entropy S as eS. Hence, the
probability to find the object in any state is p � e�Ft�F�=T ,
where F � E� TS denotes its free energy at temperature
T. If the object in question is bosonic, there are

g�n� �
�n� eS � 1�!

n!�eS � 1�!
(3)

ways for n identical objects to appear, with the correspond-
ing probability being p�n� � g�n�e�Ft�nE�=T . When F < 0,
or T > E=S, p�n� grows with n at first peaking for large eS

at n� ejFj=T . A similar result is obtained for fermions.
Thus, the ensemble may become dominated by objects
that have F < 0.

MS apply this result to objects in the thermal ambience
of a Schwarzschild BH of mass M and temperature

TBH � �h=�8
M�: (4)

Regarding the typical object as spherical with radius R, and
parametrizing its entropy by S � �RE= �h with � dimen-
sionless, one finds that F � E�1� �R=8
M�. In the infall
derivation of bound (2), one is particularly interested in the
case R & 2M. Accordingly, if � 	 2
, F < 0. Therefore,
MS contend that objects of this same kind may be emitted
profusely with the Hawking radiation and that the conse-
quent entropy outflux will overpower the influx from the
single infalling object. (The profuse emission will shorten
the black hole’s lifetime, possibly rendering the whole
discussion sterile. Here we pass over this possibility.) In
particular, MS conclude that the existence of HEOs with
however large an � cannot be ruled out by appealing to the
GSL; they reach a similar conclusion in regard to objects
that exceed the holographic bound. The arguments detailed
below, focusing mainly on the case � 	 2
, refute these
conclusions.

Whatever the merit of MS’s argument for true thermo-
dynamic equilibrium, it is found wanting for the Hawking
radiation from the viewpoint of kinetics. The success of
simple statistical-thermodynamic formulas in describing
the spectrum and statistics of Hawking emission into
empty space should not obscure the fact that the emission
is a nonequilibrium process; e.g., entropy increases during
Hawking emission [18,19]. Thus, the question ‘‘at what
rate are HEOs formed in the Hawking radiation’’ is para-
mount; equilibrium formulas may not accurately reflect
their true abundance.

In this connection it is important to realize that HEOs
must be composite objects. For, if we denote a HEO’s
energy and radius by E
 and R
, respectively, then as for
any quantum system, E
R
= �h > 1 (radius exceeds
Compton wavelength). Now if � 	 2
, we have S
 	
2
, meaning the HEO has a large number eS
 	 535 of
internal states. But an elementary particle has just a few
internal (spin) states, so the HEO is composite. Of course,
in that case E
R
= �h 	 1 because E
 is many times the
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energy of a single component, and that component’s
Compton length must bound R
 from below. Thus, eS
 is
actually much larger than appears from the above
argument.

Because a HEO is composite, it makes sense to ask what
does it take for one to assemble spontaneously out of
equilibrium thermal radiation at temperature T? Now a
volume V of such radiation has mean energy

hEi � VN�
2T4=30 �h3�; (5)

where N is the effective number of helicity species (2 for
the photon, 7=8 for each chiral neutrino species, etc.). In
the real world N � O�10�; the arguments below work for
N < 180
2  1776. (They certainly will not work when
the number of species, particularly massless ones, is im-
agined to be arbitrarily large, a scenario often discussed in
connection with entropy bounds [12]; we ignore this pos-
sibility here since proliferation of particle species plays the
same role in the arguments as existence of HEOs.) Thus, at
the MS temperature

T0 � E
=S
 � �h=��R
�; (6)

a mean energy E
 of radiation is spread over a length scale
V1=3 � ��30=
2N�1=3S1=3
 R
 	 R
. (By contrast, the en-
ergy of a typical massless quantum—one with wavelength
�� �h=T—is contained in a volume ��3.) Thus, according
to the usual understanding, it will take a long time for
fluctuations to concentrate energy E
 within a scale R
.
Note that one cannot rely on gravitation to concentrate the
energy. Even if the to-be-formed HEO is strongly self-
gravitating, V 	 �4
=3�R3


, so the energy in V is still
weakly self-gravitating, and gravity is powerless to con-
centrate it. Thus, at T * T0 HEO self-assembly is very
slow.

Another way to say this is that, for T * T0, the equilib-
rium probability P�E
� to find radiation energy E
 in a
volume 4
R3


=3 is tiny. One calculates this by noting that,
since each mode of radiation is statistically independent,
the total energy in all the many modes must, by the central
limit theorem, be distributed normally about the mean hEi
given by Eq. (5) with the corresponding variance whose
textbook value is ��E�2 � T2@hEi=@T, or

��E�2 � VN�2
2T5=15 �h3�: (7)

Putting V � 4
R3

=3 and defining � � T=��T0�, we find

P�E
� / exp
�
�


3

90

�N�4 � �45=2
3��R
E
= �h��2

N�5

�
: (8)

At T * T0 we have � � 1=�2
� so that the N�4 term in
the square is negligible (recall that R
E
= �h 	 1). Thus, in
this temperature range the probability is that for which
E
 � hEi multiplied by an exponentially small factor �
exp���180
2=N��R
E
= �h�2�. In fact, this suppression is
stronger than the enhancement factor eS
 � exp��R
E
= �h�
invoked by MS. Hence, although equilibrium thermal ra-
-2
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diation at a temperature substantially above T0 may even-
tually contain HEOs, it will take a long time for a fluctua-
tion large enough to make the first HEO.

This remains true until T is raised so much that N�4

approaches 0:73�R
E
= �h�; only then, as the argument of
the exponential in (8) becomes small, will exponential
suppression cease. This corresponds to E
  hEi with V �
4
R3


=3 and happens when T  T
, where the new tem-
perature scale,

T
 � �N�1=4�R
E
= �h�1=4T0; (9)

is well above T0. The value (9) for T
 for strong self-gravity
HEOs is changed by only a factor close to unity because all
stable self-gravitating objects—BHs aside–involve red-
shift and length contraction factors of O�1�.

Let us apply these results to HEO formation in the
thermal ambience of a Schwarzschild BH. Suppose first
that R
 � 2M. Then E
 � M even if the object is strongly
self-gravitating, so that it causes a small perturbation of the
BH background. Now at proper distance ‘ � 2M from the
horizon, the local temperature is T � �h=2
‘ [6,20,21];
therefore, the highest available temperature Th is the local
temperature a proper distance ‘  R
 from the horizon at
which point the bottom of the HEO almost touches it.
Thus, Th  �h=2
R
, or

Th  �2
��1N1=4�E
R
= �h�
�1=4T
 � T
: (10)

Accordingly, since the available temperatures are well
below T
, the exponential suppression reemerges, and
HEOs with R
 � 2M will form extremely slowly in the
Hawking radiance; since that streams rapidly out, they
should occur only rarely. Of course, it could be claimed,
in the spirit of Hawking’s original derivation, that the
HEOs in question already emerge whole from the BH in
late time modes of some effective quantum field. But such
HEOs would be quasiparticles of a composite field; as
such, they would be subject to decay. The prospect for a
treatment by nonequilibrium quantum field theory of HEO
Hawking emission, which could clarify this issue, seems
remote. In any case, the long time nature of the Hawking
modes does not favor the claim since it refers to global
time, while the relevant time for kinetic processes is the
more rapidly elapsing local time. Our conservative con-
clusion is that R
 � 2M HEOs contribute insignificant
entropy outflow.

A HEO with R
 � 2M cannot, by virtue of its size, come
from the BH itself, but it might be formed in the Hawking
radiation at some distance from the horizon. The largest
temperature available for it is thus about TBH, namely,
Th � �h=4
R
 � T
, which is again too low for significant
HEO presence. We remark that, if strongly self-gravitating,
the HEO in question would have an E
 amounting to a
significant fraction of M and would thus constitute a
sizable energy burden on the radiation and, ultimately, on
the hole. This fact alone should further suppress the abun-
dance of strongly self-gravitating HEOs with R
 � 2M.
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The last case is R
 	 2M. Here we can only contem-
plate weakly self-gravitating objects; otherwise, E
 would
be comparable to or exceed M, and such objects would not
appear in the radiation. What is Th here? Although TBH is
the temperature that characterizes the spectrum and statis-
tics of the Hawking radiation, the density of radiation
energy is characterized by a lower ‘‘radiation temperature’’
because at distance r 	 2M from the hole (r is the usual
Schwarzschild radial coordinate and approximates radial
distance), the radiation energy density has been diluted by
the factor �2M=r�2. Accordingly, Th � �2M=r�1=2TBH.
Putting r > R
 we have

Th <
� p

N

16
2

�h=E


2M

�
1=2

T
: (11)

Thus, significant presence of R
 	 2M HEOs in the ra-
diation requires that the HEO Compton wavelengths be
fairly large compared to the hole’s radius 2M.

Motivated by the compositeness of HEOs, we now make
the physically reasonable hypothesis that there is a largest
HEO radius for given E
, Rmax�E
�, and that it does not
decrease with increasing E
. Of course, gravity can make
the more massive of a family of composite objects smaller
than the lighter ones, e.g., neutron stars, but as already
mentioned, for R
 	 2M we are restricted to weak self-
gravity HEOs, so that this complication is excluded.

Imagine dropping a HEO candidate with mass E1 and
radius R1 � Rmax�E1� into a Schwarzschild BH of radius
M �  R1; here  is chosen a few times unity, so that the
object can fall into the BH without being torn up. Note that
the candidate must have weak self-gravity; otherwise, E1

would not be small compared to M, so that the procedure
would severely perturb the BH. The drop is performed in
harmony with the prescriptions of Ref. [16].

Now by the results mentioned following our Eq. (10),
HEOs smaller than R1, comparable to it, or just a few times
larger are not found in the said BH’s radiation. What about
HEOs with R
 > 2M >R1 and some allowed energy E
?
We have Rmax�E
� � R
 >R1. By our hypothesis, the
HEO energies must satisfy E
 >E1. Hence, 2M >R1 >
�h=E1 > �h=E
. Thus, by result (11), these bigger HEOs are
also essentially absent from the Hawking radiation of our
BH. In summary, HEOs (other than the dropped one),
whether weakly or strongly self-gravitating, play a negli-
gible role in the energy and entropy balances of the envis-
aged gedanken experiment.

By the dropping protocol [16], the mass loss of the BH to
Hawking emission of elementary quanta during the infall is
designed to just compensate the mass gain from the
dropped object—the BH does not change overall. Were
the emission reversible, the radiated entropy would be just
E1=TBH. Irreversibility and the curvature of the spacetime
make the entropy larger by a factor ! � 1:35–1:64 [19].
Thus, the overall change in world entropy is

"Stot � !E1=TBH � S1: (12)
-3
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Then by the GSL

S1 < 8
! R1E1= �h; (13)

i.e., �< 8
! [15–17]. Hence, the candidate with R1 �
Rmax�E1� cannot have very large � values and is not a HEO
as defined here. Let us discard it and other candidates with
R � Rmax�E1� and repeat our argument using the narrowed
HEO candidate strip in the E
 � R
 plane. The end result is
that by the GSL, objects with weak self-gravity (R
 	
2E
) cannot have �’s larger than a few times 2
 [weak
version of bound (2)].

For objects with weak self-gravity, the traditional holo-
graphic bound (1) follows immediately from our last result
because A1 	 8
E1R1= �h for weak self-gravity. Or it can
be proved directly by considering the infall protocol of
Ref. [10] and allowing for the possibility of Hawking
radiation HEOs as done here.

Can the holographic bound be violated by a strongly
self-gravitating object? Not by a large factor, as the follow-
ing rough argument shows. Again denote the object’s
radius, energy, and entropy by R1, E1, and S1, respectively.
Strongly gravitating means R1 � 2#E1 with # just a few
times unity. Let us repeat the drop into a BH as detailed in
the last paragraphs. To avoid strong perturbation of the BH,
we take  sufficiently large; since M � 2 #E1,  � O�10�
will suffice. The argument against Hawking radiation
HEOs goes as above; in particular, for R
 	 2M we
have to consider only weakly self-gravitating HEOs and
may again employ the argument based on Rmax�E
�.
Inequality (13) is recovered and translates into S1 <
�4! =#�
R2

1= �h. Evidently, any violation of bound (1) by
weak self-gravity objects is by a factor smaller than
�4! =#�, i.e., by no more than an order of magnitude.
121502
The original holographic bound (1) can be recovered for
a strongly self-gravitating object massive on Planck scale
by revamping Susskind’s original GSL argument for that
bound [3]. That argument envisages adding entropy-free
matter to the candidate object to coax it into collapsing to a
black hole. MS dismiss the argument by suggesting that the
collapse may lead, not to a black hole, but to an ephemeral
thermal fluctuation that soon disperses. But there is, in fact,
a gedanken experiment in which a preexisting black hole of
small dimensions and negligible entropy is used to catalyze
the collapse of the candidate object to a black hole while
the whole system is confined to a cavity [10]. The slow
formation of HEOs in the auxiliary hole’s radiation allows
the system to reach the partial thermal equilibrium state
required for the deduction of the bound before HEOs
become significant for the entropy balance. Bound (1) is
then recovered.

We have established here under mild assumptions that
any overshoot of the universal and holographic bounds is
by no more than a factor of O�10�. Accordingly, HEOs
surpassing either of the bounds by arbitrarily large factors,
a possibility suggested by MS, would be inconsistent with
the GSL. It should be stressed that the method described
here is not particularly well suited to derive optimal en-
tropy bounds. We believe bounds (1) and (2) are valid as
stated, each within the specified limitations [9].
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