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Single-spin asymmetries: The Trento conventions
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During the workshop ‘‘Transversity: New Developments in Nucleon Spin Structure’’ (ECT�, Trento,
Italy, 14–18 June 2004), a series of recommendations was put forward by the participants concerning
definitions and notations for describing effects of intrinsic transverse-momentum of partons in semi-
inclusive deep inelastic scattering.
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2This direction can for instance be taken along the virtual
I. DEFINITION OF TRANSVERSE-MOMENTUM
DEPENDENT FUNCTIONS

A standard set of definitions and notations for
transverse-momentum dependent distribution and frag-
mentation functions is given in Refs. [1–3]. We note that
the definition of the antisymmetric tensor in those articles
and in the present note is such that

�0123 � �1: (1)

Transverse-momentum dependent parton distributions
of leading twist can be interpreted as number densities
(see, e.g., Refs. [4–6]). To connect with this interpretation,
we take the example of the distribution of unpolarized
quarks in a polarized proton, which is given by1
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where fq1 is the unpolarized quark density and f?q1T de-
scribes the Sivers effect [7]. HereP is the momentum of the
proton, S is its covariant spin vector normalized to S2 �
�1, and M is the proton mass. The covariant definition of
parton distributions requires an auxiliary lightlike vector n,
which plays the role of a preferred direction in a given
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ing expression is obtained from the quark corre-
n in Eq. (2) of Ref. [2] by identifying n � n�,
ith 6n=2 and taking the trace.
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physical process.2 Furthermore, k is the momentum of the
quark, kT its component perpendicular to P and n, and x �
�k 
 n�=�P 
 n� its light-cone momentum fraction. The sec-
ond expression in (2) holds in any frame where n and the
direction P̂ of the proton momentum point in opposite
directions.3 Therefore f?q1T > 0 corresponds to a preference
of the quark to move to the left if the proton is moving
towards the observer and the proton spin is pointing up-
wards. In the convention of Ref. [8] the Sivers effect is
described by

fq=p" �x; kT� � fq=p" �x;�kT�
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	Nfq=p" �x; k
2
T� � �

2jkTj

M
f?q1T �x; k

2
T�: (4)

Either f?q1T or 	Nfq=p" may be referred to as the ‘‘Sivers
function’’. It is strongly encouraged that authors use one or
the other of these notations, or provide the relation of the
functions they might use to the ones discussed here.
photon momentum in deep inelastic scattering, or along the
momentum of the second incoming hadron in Drell-Yan lepton
pair production. Other choices of n are possible, provided that
the corresponding changes in the result are sufficiently sup-
pressed by inverse powers of the large momentum scale.

3We use the four-vector kT and its square as arguments in the
distribution functions to emphasize that they are Lorentz invari-
ant. One may instead use kT if it is clear from the context to
which frame the vectors refer.
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Let us give the corresponding relation for the Boer-
Mulders function, introduced in Ref. [2]. The distribution
of transversely polarized quarks in an unpolarized proton
is4
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where Sq is the covariant spin vector of the quark.
Introducing
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we get the relation
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Likewise there are two common notations for the Collins
fragmentation function [10]. With the conventions of
Refs. [1–3] the number density of an unpolarized hadron
h in a transversely polarized quark is5
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where the measure of the density is dzd2PhT . Here Dq
1 is

the unpolarized fragmentation function, Ph is the hadron
momentum, Mh its mass, k is the momentum of the quark,
Sq its covariant spin vector, and n0 an auxiliary lightlike
vector. Furthermore, z � �Ph 
 n0�=�k 
 n0� is the light-cone
momentum fraction of the hadron with respect to the
fragmenting quark, and PhT the component of Ph trans-
verse to k and n0. One can trade PhT for kT � �PhT=z, the
component of k transverse to Ph and n0. The second line of
(8) holds in frames where n0 and the direction k̂ of the
quark momentum point in opposite directions. Therefore,
H?q1 > 0 corresponds to a preference of the hadron to
move to the left if the quark is moving away from the
observer and the quark spin is pointing upwards. In the
4The following expression is obtained by identifying n � n�,
setting ST and � to zero, multiplying Eq. (2) in Ref. [2] with
��n�=2� i����5n

�S�q=2, taking the trace and dividing by 2.
See Eq. (11) and (12) of [9] for this connection to the number
density interpretation.

5The following expression is obtained by identifying n0 � n�,
setting ShT and �h to zero, multiplying Eq. (5) in Ref. [2] with
��n0�=2� i����5n

0�S�q=2 and taking the trace. See Eqs. (40)
and (41) of [9].
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notation of [11] the Collins effect is described by
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Either H?q1 or 	NDh=q" may be referred to as ‘‘Collins
function’’. Our relations (4), (7), and (10) agree with
(4.8.3a), (4.8.3b), (6.5.11) in Ref. [6].

We finally discuss the analog of the Sivers function in
fragmentation, introduced by Mulders and Tangerman in
Ref. [1]. The number density of a polarized spin-half
hadron h in an unpolarized quark is6
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where Sh is the covariant spin vector of the hadron. As
indicated in Ref. [12], we can write
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which leads to7
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The definition of each parton distribution contains a
Wilson line, which describes interactions with the specta-
tor partons before or after the hard-scattering process. The
path of this Wilson line in space-time is selected by the
hard process in which the parton distribution appears. Each
such path corresponds to its own set of distribution func-
tions, which thus give the number of quarks found in the
presence of the specified spectator interactions. Different
paths can lead to different distributions, and the path
should be specified in the notation when it is not evident
from the context.8 Using time reversal symmetry one can
show [13]
6The following expression is obtained by identifying n0 � n�,
multiplying Eq. (5) in Ref. [2] with 6n0=2, taking the trace and
dividing by 2.

7Note that there is a factor�2 too much in Eq. (5) of Ref. [12].
This does not affect any results in that work.

8This has been realized only recently, and the necessary
distinction is not made in [1–12].
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FIG. 1 (color online). Definition of azimuthal angles for the
process (19) in the target rest frame. Ph? and S? are the
components of Ph and S transverse to the photon momentum.

9There is an inconsistency in Fig. 1 of Ref. [3] and Fig. 1 of
Ref. [2]: according to the formulae given in those papers, the
azimuthal angle shown in those figures (which is positive ac-
cording to graphical convention A) is equal to �" and not to ".
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where the superscripts, respectively, specify the distribu-
tions with Wilson lines appropriate for semi-inclusive deep
inelastic scattering (SIDIS) and for Drell-Yan lepton pair
production.

Wilson lines with a path selected by the process also
appear in the definition of fragmentation functions. The
relation between the functions relevant for different pro-
cesses (such as e�e� annihilation or SIDIS) is currently
under study.

II. AZIMUTHAL ANGLES IN SEMI-INCLUSIVE
DEEP INELASTIC SCATTERING

A recommendation is made concerning the azimuthal
angles relevant in the semi-inclusive cross section for

‘�l� � p�P� ! ‘�l0� � h�Ph� � X; (15)

where ‘ denotes the beam lepton, p the proton target, and h
the produced hadron. As usual we define q � l� l0 and
Q2 � �q2. The azimuthal angle "h between the lepton
and the hadron planes should be defined as
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;

sin"h �
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 q̂

jq̂� ljjq̂� Phj
;

(16)

with q̂ � q=jqj, where all vectors refer to the target rest
frame (or to any frame reached from the target rest frame
by a boost along q̂). Writing the right-hand sides of (16) in
a Lorentz invariant form, one has
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;

sin"h � �
���? l�Ph�
jl?jjPh?j

(17)
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Here we introduced perpendicular projection tensors
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with � � 2xM=Q, where x is the Bjorken variable and M
again the target mass. Evaluating the right-hand sides of
(17) in the target rest frame, one recovers (16). The azimu-
thal angle"S relevant for specifying the target polarization
is defined in analogy to (16) and (17), with Ph replaced by
the covariant spin vector S of the target. The definitions of
"h and "S are illustrated in Fig. 1. We emphasize that
(16)–(18) do not depend on the choice of coordinate axes.
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For definiteness we show in Fig. 1 one frequently used
coordinate system. In this system the tensors defined in
Eq. (18) have nonzero components g11? � g22? � �1 and
�12? � ��

21
? � �1. Note that two different conventions for

drawing angles and interpreting their sign in figures are in
general use in the literature:
(A) T
-3
he z axis is specified and angles are drawn as arcs
with one arrowhead. If an angle is oriented accord-
ing to the right-hand rule it is positive, otherwise it
is negative. Figure 1 illustrates the application of
this convention.
(B) I
llustrated angles are always assumed to be positive.
Only the location of the arc affects the definition of
the angle. No orientation should be assigned to the
arc, and any z axis that may be present does not
affect the angle definition.
It is strongly recommended that authors avoid placing
single arrowheads on arcs when using convention B.
When using convention A, an explicit remark in the cap-
tion may be useful when the figure illustrates a situation in
which an angle has a negative value.

Theorists often prefer a coordinate system with the same
x axis but with y and z axes opposite to those shown in
Fig. 1, so that in the ��p center of mass the target moves in
the positive z direction (cf. Sec. I). When working in that
coordinate system in the context of graphical convention A
one can conform with the definition of angles recom-
mended here by using the opposite orientation for both
"h and "S.

We note that the angles "h and "S defined here are
opposite to those defined in Refs. [1–3], which must be
taken into account when using expressions for azimuthal
asymmetries from these papers.9
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III. ASYMMETRIES AND AZIMUTHAL MOMENTS

Longitudinal single-spin asymmetries in lepton-proton
scattering should always be defined so that

A�"h� �
d�!�"h� � d� �"h�

d�!�"h� � d� �"h�
; (19)

where in the case of a beam spin asymmetry d�! refers to
positive helicity of the lepton. In the case of a target spin
asymmetry d�! denotes target polarization opposite to the
direction either of the lepton beam or of the virtual pho-
ton.10 Azimuthal moments associated with beam or target
spin asymmetries are defined as, e.g.

hsin"hi �

R
d"h sin"h�d�

!�"h� � d�
 �"h��R

d"h�d�
!�"h� � d

 ��"h��
(20)

and similarly for hsin2"hi etc. As an alternative notation
one may use Asin"h � 2hsin"hi.

11 If the cross section is of
the form

d�!

d"h
� a0 � a1 sin"h;

d� 

d"h
� a0 � a1 sin"h; (21)
10Note that target polarization opposite to the virtual photon
momentum corresponds to positive helicity of the proton in the
��p center of mass.

11In the literature sometimes the factor two is not included, a
choice that we do not recommend
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then Asin"h � a1=a0 has values between �1 and �1, as is
natural for an asymmetry.

The single spin asymmetry for transverse target polar-
ization can be written as

A�"h;"S� �
d��"h;"S� � d��"h;"S � '�
d��"h;"S� � d��"h;"S � '�

(22)

and associated azimuthal moments as, e.g.

hsin�"h�"S�i

�

R
d"hd"S sin�"h�"S��d��"h;"S��d��"h;"S�'��R

d"hd"S�d��"h;"S��d��"h;"S�'��

(23)

and similarly for hsin�"h �"S�i etc. It should be straight-
forward to generalize these conventions to the case of
double spin asymmetries and of jPh?j-weighted asymme-
tries [2].
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