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The thermodynamics of the O�N� linear and nonlinear sigma models in 3� 1 dimensions is studied.
We calculate the pressure to next-to-leading order in the 1=N expansion and show that at this order,
temperature-independent renormalization is only possible at the minimum of the effective potential.
The 1=N expansion is found to be a good expansion for N as low as 4, which is the case relevant for low-
energy QCD phenomenology. We consider the cases with and without explicit symmetry breaking. We
show that previous next-to-leading-order calculations of the pressure are either breaking down at the
temperatures of interest, or based on unjustifiable high-energy approximations.
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I. INTRODUCTION

It is well known that although the QCD Lagrangian
possesses a chiral symmetry in the limit of zero quark
masses, the true QCD ground state does not respect this
symmetry. The chiral symmetry is spontaneously broken
by quantum effects. To be specific, the QCD Lagrangian
with Nf massless quarks has a global SU�Nf�L �
SU�Nf�R symmetry, which for the ground state at low
temperatures is broken down to a SU�Nf�V symmetry.
According to Goldstone’s theorem, there is a massless,
spinless particle for each generator of a broken global
continuous symmetry. In this case this implies the occur-
rence of N2f � 1 Goldstone bosons. In phenomenological
applications Nf is either two or three, and one also has to
take into account the explicit symmetry breaking due to
the nonzero quark masses. Both the spontaneous and the
explicit chiral symmetry breaking are apparent in the
low-energy hadronic particle spectrum, where the ex-
pected number of relatively light mesons is observed
(e.g., the three pions for Nf � 2). At sufficiently high
temperatures one expects the chiral symmetry to be
restored and lattice simulations of QCD suggest that
this happens at a temperature of approximately 150 MeV
depending on the number of quarks and their masses.
Heavy-ion collisions at Relativistic Heavy Ion Collider
and Large Hadron Collider are expected to reach such
temperatures and will allow experimental studies of the
deconfined, chirally symmetric phase of QCD [1].

Apart from using lattice simulations it has not yet been
possible to calculate thermodynamic properties, such as
the pressure, from QCD in the low-temperature hadronic
address: jensoa@nordita.dk
address: dboer@nat.vu.nl
address: harmen@nat.vu.nl

04=70(11)=116007(11)$22.50 116007
phase. However, this can be done using low-energy effec-
tive theories. Such effective theories for the low-energy
particle spectrum, involving both mesons and baryons
and displaying the above-mentioned pattern of chiral
symmetry breaking, were constructed before QCD itself.
In the case of two flavors, the situation is the simplest,
since one can exploit the fact that the SU�2�L � SU�2�R
symmetry is locally isomorphic to SO�4�. If baryons
(nucleons in this case) are not included the simpler O�4�
linear sigma model can be used as a low-energy effective
theory for describing the dynamics of three pion fields
and one sigma field. These four fields form a four-
dimensional vector � in the fundamental representation
of O�4�. At low temperature, the O�4� symmetry is spon-
taneously broken down to O�3�, where the sigma field
acquires a vacuum expectation value and the three pions
are interpreted as the Goldstone bosons. For Nf > 2 there
is no connection between the SU�Nf�L � SU�Nf�R model
and the O�N� linear sigma model, but the latter has been
studied in great detail for general N due to its relevance to
spin models.

In this paper the O�N� linear sigma model (LSM) and
O�N� nonlinear sigma model (NLSM) in 3� 1 dimen-
sions will be studied at finite temperature and to next-to-
leading order in the 1=N expansion. At zero temperature,
the 1=N expansion was applied to O�N� sigma models a
long time ago at leading order (LO) [2] and at next-to-
leading order (NLO) [3]. At finite temperature the LO in
1=N has been studied in Ref. [4]. The effective potential
in the large-N limit is that of an ideal gas and thus
straightforward to compute. The NLO 1=N corrections
to the free energy involve a momentum-dependent self-
energy and cannot be evaluated analytically. In Ref. [5],
the author therefore carried out a high-temperature ex-
pansion to obtain purely analytical results for the LSM.
Similarly, in Ref. [6] the authors resorted to a ‘‘high-
-1  2004 The American Physical Society
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energy’’ approximation, which makes the calculations
manageable. However, this approximation is uncontrolled
and it is difficult to assess how reasonable it is, unless one
calculates the full NLO 1=N corrections.

The O�N� sigma models have also been studied in
detail at finite temperature using various other ap-
proaches. A systematic study has been carried out by
Chiku and Hatsuda using optimized perturbation theory
[7]. The method was used to calculate spectral functions,
properties of the effective potential, and dilepton emis-
sion rates. This method is convenient from the point of
view of renormalization. The Cornwall-Jackiw-
Tomboulis or 2PI formalism [8] has also been used to
examine various properties of the O�N� linear sigma
models at finite temperature [9–16], see Ref. [17] for a
recent review. For example, in several papers the tem-
perature dependence of the pion and sigma masses, and of
the vacuum expectation value of the sigma field, have
been investigated. In the low-temperature phase, the
O�N� symmetry is spontaneously broken and it is ex-
pected that the symmetry is restored via a second-order
phase transition. The calculations of the effective poten-
tial as a function of temperature have been carried out in
the Hartree approximation and the large-N limit [10–15].
In these cases, the gap equations for the propagators are
easy to solve since the self-energy reduces to a local mass
term. In the Hartree approximation, the result has been
shown to be problematic (and a first-order phase transition
occurs), which has been remedied by including more
diagrams in the truncation [18,19], resulting in a
second-order phase transition. If one goes beyond the
Hartree approximation or includes the NLO contributions
in the 1=N expansion, the gap equations become nonlocal
and very difficult to solve.

In this paper, we will study the one particle irreducible
effective potential at NLO in the 1=N expansion without
resorting to a high-temperature or high-energy approxi-
mation. Thus the analysis presented here is an extension of
the papers by Jain [5] and by Bochkarev and Kapusta [6].
We will follow the approach to the NLSM in 1� 1
dimension of Ref. [20]. In the present case we do not
need to deal with thermal infrared renormalons, which
simplifies the renormalization procedure. Nevertheless,
we will obtain similar conclusions about the renormal-
ization of the effective potential in 3� 1 dimensions as in
1� 1 dimensions. It turns out that at NLO, temperature-
independent renormalization is only possible at the mini-
mum of the effective potential. This aspect of the 1=N
expansion was missed in previous work [5,6], since the
renormalization is considerably simplified or even
ignored in the various approximations.

Since explicit chiral symmetry breaking plays a very
important role in the actual hadron spectrum at low
energy, we will consider also the case of explicit symme-
try breaking. The results change considerably and more-
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over, a critical temperature cannot be determined in that
case, since the second-order phase transition turns into a
smooth crossover.

The NLSM in 3� 1 dimensions is nonrenormalizable
and should be viewed as an effective theory, which is
valid up to a certain energy scale where new physics
enters. Strictly speaking the LSM is renormalizable, but
since it becomes a trivial theory in the limit where the
cutoff goes to infinity, we treat it as a theory with a finite
cutoff. Given a finite cutoff, we speak of divergences
when terms are increasing in magnitude without bound
as the cutoff is increased. The low-energy physics should
be independent of such terms (decoupling) and one can
subtract them in the renormalization procedure in order to
avoid increasing sensitivity to the ultraviolet cutoff as it
grows. On general grounds, one expects the temperature
dependence to be insensitive to an increasing cutoff due to
the exponential suppression provided by the Bose-
Einstein distribution. Therefore one expects the renormal-
ization to be possible in a temperature-independent way.

The paper is organized as follows: In Sec. II, we dis-
cuss effective actions of the LSM and NLSM in the 1=N
expansion. In Sec. III, we calculate the effective potential
and gap equations at NLO. In Sec. IV, we discuss our
results for the pressure at NLO for general N and for the
special case of N � 4. Also, the so-called high-energy
approximation is discussed and compared with exact
numerical results. In Sec. V, we elaborate on the choice
of parameters for N � 4, in order to make contact with
low-energy QCD phenomenology. In Sec. VI, we summa-
rize and conclude.
II. EFFECTIVE ACTIONS

The Euclidean Lagrangian of the O�N�-symmetric lin-
ear sigma model with a symmetry breaking term H is
given by

L �
1

2
�@��i�2 �


b
8N

��i�i � Nf2�;b�
2 �

����
N

p
H�N; (1)

where i � 1 . . .N. Summation over repeated indices is
implicitly understood. The subscript b denotes a bare
quantity. The coupling constants are rescaled with factors
of N in such a way that for large N the action naturally
scales as N.

It is possible to eliminate the quartic interaction term
from Eq. (1) by introducing an auxiliary field which is
denoted by �, in order to allow for Gaussian integration.
To this end, we add to the Lagrangian Eq. (1) the term

L � �
N
2
b

�
��

i
b
2N

��i�i � Nf2�;b�
�
2
; (2)

such that one has
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L �
1

2
�@��i�2 �

i
2
���i�i � Nf2�;b� �

N
2
b

�2

�
����
N

p
H�N: (3)

Using the equation of motion for �, one recovers the
original Lagrangian in Eq. (1). In the limit 
b ! 1,
one obtains the Lagrangian of the nonlinear sigma model.

If explicit symmetry breaking is absent (H � 0), the
field � acquires a vacuum expectation value by sponta-
neously breaking the symmetry. Because of the residual
O�N � 1� symmetry, we can write � �
��1; �2; . . . ; �N�1; ��, such that only �N � � has a non-
zero expectation value. For H > 0 the same argument
applies, because the action is minimal when the � field
is the only one that acquires an expectation value.

Integrating over the �’s gives the following effective
action

Seff �
1

2
�N � 1�Tr log��@2 � i�� �

Z �

0
d�

�
Z
d3x

�
1

2
�@���2 �

i
2
��2 �

i
2
Nf2�;b�

�
N
2
b

�2 �
����
N

p
H�

�
: (4)

We next parametrize the quantum fields � and � by
writing them as a sum of space-time independent vacuum
expectation values im2 and �� and quantum fluctuating
fields ~� and ~�:

� � im2 �
~�����
N

p ; (5)

� �
����
N

p
��� ~�: (6)

Using Eq. (2) one can show that the vacuum expectation
value of � is purely imaginary. The vacuum expectation
value of � is proportional to

����
N

p
, which follows from

Eq. (1). Substituting Eqs. (5) and (6) into Eq. (4), the
effective action Seff can be written as

Seff �
1

2
�N � 1�Tr log

�
�@2 �m2 �

i~�����
N

p

�
� �VNH ��

�
Z �

0
d�
Z
d3x

�
1

2
�@� ~��

2 �
1

2

�
m2 �

i~�����
N

p

�

� �
����
N

p
��� ~��2 �

N
2
f2�;b

�
m2 �

i~�����
N

p

�

�
N
2
b

�
m2 �

i~�����
N

p

�
2
�

����
N

p
H ~�

�
: (7)

Expanding Eq. (7) in powers of 1=
����
N

p
up to corrections of

order 1=
����
N

p
, one finds1
1The terms that are linear in ~� and ~� vanish at the minimum
of the effective potential.
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Seff
�V

�
1

2
�N � 1�

ZX
P
log�P2 �m2� �

Nm2

2
�f2�;b � ��2�

�
Nm4

2
b
� NH ���

����
N

p
� terms linear in �� and ~�

�
1

2

ZX
P
�T

1
2��P;m� � 1


b
�i ��

�i �� P2 �m2

 !
�
; (8)

where �T � �~�P; ~�P� is a vector containing the Fourier
transforms of ~� and ~�, and the function ��P;m� is given
by

��P;m� �
ZX
Q

1

Q2 �m2
1

�P�Q�2 �m2
: (9)

We have introduced the sum-integral

ZX
Q
� T

X
q0�2�nT

Z d3q

�2��3
; (10)

which involves a summation over Matsubara frequencies
q0 and an integral over three-momenta q. For later con-
venience we also introduce a symbol for the difference
between a sum-integral and an integral

a
Q
�

ZX
Q
�
Z
Q
; (11)

where
R
Q �

R
d4Q=�2��4.
III. EFFECTIVE POTENTIAL
AND GAP EQUATIONS

One can obtain the effective potential through next-to-
leading order in the 1=N expansion from Eq. (8) by
performing the Gaussian integral over the fluctuating
fields ~� and ~�. Up to corrections of order 1=N, the
effective potential can be written as

V �m2; ��� � NV LO�m2; ��� �V NLO�m2; ���; (12)

where

V LO�m
2; ��� �

m2

2
�f2�;b � ��2� �

m4

2
b
�H ��

�
1

2

ZX
P
log�P2 �m2�; (13)

V NLO�m2; ��� � �
1

2

ZX
P
logI�P;m�: (14)

Here,

I�P;m� � 16�2��P;m� �
32�2


b
�
32�2 ��2

P2 �m2
: (15)

To derive the effective potential, we subtracted divergent
constants which are independent of ��, m and the tem-
perature. Equivalently, these terms can be removed by
-3
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adding a vacuum counterterm �E to the effective poten-
tial. In the following, we simply drop these terms.

In thermodynamic equilibrium, the system will be in
the state that minimizes the effective potential with
respect to m2 and maximizes it with respect to ��. This
difference is due to the fact that the vacuum expectation
value of � is imaginary and that of � is real.
Differentiating the NLO effective potential with respect
to m2 and ��, one obtains

ZX
P

1

P2 �m2
�
2m2


b
�
1

N

ZX
P

d��P;m�
dm2 � 2 ��2

�P2�m2�2

��P;m� � 2

b
� 2 ��2

P2�m2

� �f2�;b � ��2�; (16)

 
m2 �

2

N

ZX
P

1

P2 �m2
1

��P;m� � 2

b
� 2 ��2

P2�m2

!
�� � H:

(17)

These equations are often referred to as gap equations.
Solving the gap equations gives m and �� as a function of
the parameters f�, H, and 
, and of the temperature.

The inverse ~� and ~� propagators can be obtained from
Eq. (8). One finds

D�1
~� �P;m� �

1

2
��P;m� �

1


b
�

��2

P2 �m2
; (18)

D�1
~� �P;m� � P2 �m2 �

2 ��2

��P;m� � 2=
b
: (19)

The values for m2 and �� are determined by solving the
gap equations. Using the ~� propagator, one finds that the
inverse � propagator is given by

D�1
� �P;m� � P2 �m2 �

2

N

ZX
Q

1

�P�Q�2 �m2

�
1

��Q;m� � 2

b
� 2 ��2

Q2�m2

: (20)

From this equation and the gap equation (17) one sees that
also at NLO in the broken phase where �� � 0 (for H �
0), the pions are massless, in accordance with Goldstone’s
theorem.

From Eq. (19) one can see that in the unbroken phase,
the � mass becomes equal to the LO mass of the � field,
which is m2. It may appear therefore that the � and �
masses are not equal at next-to-leading order, but this is
not a correct conclusion. We note that the � field only
starts to propagate at NLO, so its 1=N mass corrections
require a next-to-next-to-leading-order calculation. We
emphasize that in the calculation of the NLO pressure
one only needs the LO masses, as we will see explicitly
below in Eq. (53).

In Secs. III A and III B we will explicitly calculate the
leading order and next-to-leading order contributions to
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the effective potential in 3� 1 dimensions.We will evalu-
ate integrals using an ultraviolet momentum cut-off �
and assume that �� m; 2�T.

A. Leading-order contribution

The leading-order contribution to the effective poten-
tial is

V LO �
m2

2

�
f2�;b �

�2

16�2
� ��2

�
�

T4

64�2
J0��m�

�
m4

64�2

�
32�2


b
� log

�
�2

m2

�
�
1

2

�
�H ��: (21)

Equation (21) contains ultraviolet divergences in the
sense explained in the introduction. These divergences
can be dealt with by defining the renormalized parame-
ters f2� and 
 as

f2� � f2�;b ��2=16�2; (22)

32�2



� log

�
�2

�2

�
�
32�2


b
; (23)

where 
 � 
���. After this renormalization, the leading-
order effective potential becomes

V LO �
m2

2
�f2� � ��2� �

m4

64�2

�
32�2



� log

�
�2

m2

�
�
1

2

�

�
T4

64�2
J0��m� �H ��; (24)

where the function J0��m� is

J0��m� �
32

3T4
Z 1

0
dp
p4

!p
n�!p�: (25)

Here, n�!p� � 
exp��!p� � 1��1 is the Bose-Einstein
distribution function. Note that one makes an error in
the evaluation of J0 by integrating up to infinite momenta
instead of up to �. However, this error is negligible as
long as �� m; 2�T. This remark also applies to the
functions J1, K�

0 , and K�
1 defined below. For an inves-

tigation of how to deal with a finite cutoff in the calcu-
lation of sum-integrals cf. Ref. [21].

The renormalization group equation for the running
coupling 
 that follows from Eq. (23) is

��
� � �
d

d�

�

2

16�2
: (26)

Note that the �-function is exact to all orders in 
2 in the
large-N limit but differs from the perturbative one ob-
tained at one loop. However, at NLO they agree.

Since the potential term in the Lagrangian should al-
ways have a minimum in order to have a stable theory, 
b
must be positive (cf. [11] for a detailed discussion). From
Eq. (23) it immediately follows that there is a maximal
value for the cutoff given by
-4
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�max � � exp
�
16�2




�
: (27)

Therefore this theory should be viewed as an effective
theory, which is valid up to the cutoff given by Eq. (27).
Taking the cutoff to infinity is equivalent to taking 
 to
zero, which implies that the theory is trivial. One should
keep in mind that the renormalized leading-order effec-
tive potential does not depend explicitly on � but is only
valid for m and T much smaller than �max. When � �
�max the linear sigma model reduces to the nonlinear
sigma model, since in this case 
b � 1.

The leading-order renormalized gap equations follow
from differentiating Eq. (24) with respect to m2 and ��
and are given by

G � 16�2f2�; (28)

H � m2 ��; (29)

where

G � T2J1��m� � 16�2 ��2 �m2 log
�
�2

m2

�
�
32�2m2



:

(30)

Here, we have defined the function J1��m� as

J1��m� �
8

T2
Z 1

0
dp
p2

!p
n�!p�: (31)

If H � 0, one can show by using the gap equation (29)
that either m � 0 or �� � 0. From the gap equation (28) it
follows that for m � 0 the expectation value of � has the
temperature dependence

�� �

������������������
f2� �

T2

12

s
: (32)

At T � Tc �
������
12

p
f� there is a second-order phase tran-

sition [6]. Below Tc the O�N� symmetry is broken sponta-
neously to O�N � 1� since �� � 0. Above Tc the O�N�
symmetry is restored and one has �� � 0 and m � 0.

B. Next-to-leading-order contribution

In this section we will show that it is not possible to
renormalize the next-to-leading-order effective potential
in a temperature-independent way. It turns out that we
can only renormalize the effective potential at the mini-
mum, since the temperature-dependent divergences be-
come temperature-independent by using the leading-
order gap equations. To show this, we will extract the
divergent parts of the effective potential, which can be
done analytically.

In order to isolate all divergences, in principle we need
to evaluate ��P;m� including corrections of order
m2=�2, since such terms can also give rise to divergences
in the effective potential. However, since the linear sigma
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model is an effective theory, Eq. (1) should be viewed as
the part containing only the relevant operators. For in-
stance, we have not included irrelevant operators of di-
mension six, which also contribute to ��P;m� at order
1=�2. Therefore, for consistency with Eq. (1) we do not
consider order 1=�2 terms in��P;m� [22].We only retain
the unsuppressed terms of ��P;m� in an expansion in
1=�2, since this expression is much less complicated than
the exact one. We find

��P;m� �
1

16�2

�
log

�
�2

m2

�
� 1�

���������������������
P2 � 4m2

P2

s

� log
� ���������������������
P2 � 4m2

p
�

������
P2

p

���������������������
P2 � 4m2

p
�

������
P2

p

��
��T�P;m�;

(33)

where the temperature-dependent part of ��P;m� equals

�T�P;m� �
1

8�2p

Z 1

0
dq

q
!q

log
�
q2 � pq� A2

q2 � pq� A2

�
n�!q�:

(34)

Here

A2 �
P4 � 4m2p20

4P2
: (35)

In the limit P� m; T, we can approximate �T�P;m� by

�T�P;m� �
1

8�2

�
T2

P2
J1��m� �

4m2T2p20
P6

J1��m�

�
�3P2 � 4p2�T4

P6
J0��m�

�
: (36)

The next-to-leading-order effective potential has only
ultraviolet divergences. Using the leading-order renor-
malization of 
b, it is easily seen that I�P;m� becomes
finite. Also, the difference

a
P
logI�P;m�; (37)

is finite (cf. Sec. IV B). Therefore, all possible divergences
of V NLO can be isolated by calculating

�
1

2

Z
P
logIHE�P;m�; (38)

where IHE�P;m� is the high-energy (HE) approximation
to I�P;m�. It gives the large-P behavior of I�P;m�. After
averaging over angles, we find

logIHE � logC1 �
1

P2
C2
C1

�
1

2P4

�
C2
C1

�
2
�
1

P4
C3
C1
; (39)

where
-5
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C1 � log
�
�2

P2

�
� 1�

32�2



; (40)

C2 � �2m2
�
1� log

�
P2

m2

��
� 32�2 ��2 � 2T2J1��m�;

(41)

C3 � �m4
�
2 log

�
P2

m2

�
� 1

�
�m2
32�2 ��2

� 2T2J1��m��: (42)

By integrating the function logIHE over P, we obtain all
the divergences of the NLO effective potential. The loga-
rithmic and power divergences are given by the quantity
D, which is

D �
1

16�2

�
�2e1�32�

2=
b li
�

1

e1�32�
2=
b

�
G

�m2�2
�
1� 2e1�32�

2=
b li
�

1

e1�32�
2=
b

��

� 2m4 log
�
�2

m2

�

; (43)

while the terms that have a small cut-off dependence
through their dependence on 
b, are given by the quantity
E, which is

E �
1

16�2

�
3m2

�
�G�

3

2
m2
�
log

�
1�

32�2


b

�

� �G� 2m2�2
1

1� 32�2

b

�
: (44)

Since G depends explicitly on the temperature, it is im-
possible to renormalize the next-to-leading-order effec-
tive potential in a temperature-independent way.
However, at the minimum, one can use the leading-order
gap equation (28), to show that G � 16�2f2�. Hence, the
divergences become independent of the temperature at the
minimum and we can renormalize in a temperature-
independent manner. We discuss this next.

The divergence in the first line of Eq. (43) is indepen-
dent of m in the minimum. This divergence can be re-
moved by vacuum renormalization. The divergent terms
which are proportional to m2 can be removed by defining
the renormalized parameter f� as

f2� � f2�;b �
�
1�

2

N

�
�2

16�2
�
1

N
�2

4�2

�

�
e1�32�

2=
b li
�

1

e1�32�
2=
b

��
: (45)

The remaining divergence is proportional to m4 and is
removed by renormalizing 
b as follows
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32�2



�
32�2


b
�

�
1�

8

N

�
log

�
�2

�2

�
: (46)

From Eq. (46), we obtain the �-function governing the
running of 
:

��
� �

2

16�2

�
1�

8

N

�
; (47)

which coincides with the standard one-loop �-function in
perturbation theory. One could argue from the renormal-
ization that one can only trust the 1=N expansion for
N � 8. Although the 1=N correction to the � function
indeed has a large coefficient, this is not the case for the
effective potential itself as we will see below.

As mentioned, the terms in E have a small cut-off
dependence through their dependence on 
b. We do not
renormalize them, since they do not grow without bound
with increasing cutoff and are not strictly speaking di-
vergences. The effective potential does not become in-
creasingly sensitive to them with increasing cutoff.2 The
term in the first line of Eq. (44) becomes smaller if we
increase � and the absolute value of the other term from
E increases as a function of � but is bounded by a finite
number which is independent of 
b and �. Moreover,
renormalizing these terms would invalidate the 1=N ex-
pansion, because of their magnitude. This is similar to
ordinary perturbation theory, where one is only allowed
to do finite renormalizations that do not invalidate the
perturbative expansion. A final reason for not renormal-
izing these terms is the connection with the nonlinear
sigma model (
b � 1). In that case, the terms from E are
not divergent and we would choose to renormalize f� just
as in Eq. (45) with 
b � 1.

The NLO correction changes the critical temperature
Tc. Since the NLO gap equations are complicated, we are
not able to get an analytical expression for the NLO
critical temperature. In the limit of small 
b and H � 0
the gap equations however simplify to

ZX
P

1

P2 �m2
�
2m2


b
� �f2�;b � ��2�; (48)

 
m2 �


b
N

ZX
P

1

P2 �m2

!
�� � 0: (49)

From the gap equations it follows that the critical tem-
perature at NLO is

Tc �

������������������
12

1� 2=N

s
f�: (50)

This result is the same as those obtained in Refs. [5,6].
This result is probably only correct in the weak-coupling
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limit and Tc may depend on 
 at NLO in 1=N. As we will
see in the next section the transition is of second (or
higher) order.
FIG. 1. Leading-order pressure P LO normalized to T4 as a
function of temperature without and with explicit symmetry
breaking.
IV. PRESSURE

The pressure P �T� is equal to the value of the effective
potential at the minimum at temperature T minus its
value at the minimum at zero temperature. As we showed
in the previous section, we can renormalize the effective
potential at the minimum. The pressure is therefore a
well-defined quantity. In order to determine the NLO
effective potential in the minimum, we need the gap
equation only to leading order [3]. Writing the solutions
to the gap equations as

m2 � m2LO �m2NLO=N; (51)

�� � ��LO � ��NLO=N; (52)

and Taylor expanding the effective potential (12), we
obtain [up to O�1=N� corrections]

V �m2; ��� � NV LO�m2LO; ��LO� �V NLO�m2LO; ��LO�

�m2NLO
@V LO�m2�

@m2

��������m2�m2LO
� ��NLO

@V LO� ���
@ ��

�������� ��� ��LO

: (53)

The last two lines of Eq. (53) vanish by using the leading-
order gap equations. In the following, we will write the
pressure P as

P � NP LO � PNLO: (54)

From the discussion above, it follows that

P LO � V T
LO�m

2
T; ��T� �V T�0

LO �m20; ��0�; (55)

P NLO � V T
NLO�m

2
T; ��T� �V T�0

NLO�m
2
0; ��0�; (56)

where m2T and ��T are the solutions of the leading-order
gap equations (28) and (29) at temperature T.

In the following, we will present the results for the
numerical evaluation of the leading- and the next-to-
leading-order contributions to the pressure for general
N. In Secs. IV C and IV D, we specialize to N � 4. As
we will motivate in Sec. V, we will use the following
values for the parameters: 
�� � 100 MeV� � 30, f� �
47 MeV (note that our f� is 1=2 times the more conven-
tional definition), and if there is explicit symmetry break-
ing H � �104 MeV�3. Otherwise H vanishes. A realistic
choice of parameters would allow us to compare to
lattice-QCD simulations of the Nf � 2 case for T & Tc,
although this would require extrapolation of the lattice
results down to the actual pion masses.
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A. Leading-order contribution to the pressure

Using Eqs. (24) and (55), we can easily calculate the
leading-order pressure. In Fig. 1, we show the leading-
order pressure normalized by T4. If H � 0, the pions are
massless below Tc and the leading-order effective poten-
tial (24) reduces to the free energy of an ideal gas of
massless particles: V LO � �2T4=90.

B. Next-to-leading-order contribution to the pressure

To calculate the next-to-leading-order contribution to
the pressure, we decompose PNLO as follows

P NLO � D�mT� �D�m0� � F1 � F2; (57)

whereD�m� is the term containing logarithmic and power
ultraviolet divergences given in Eq. (43), and F1 and F2
are finite terms defined below.

The term F1 has a weak cut-off dependence and is
defined by

F1 � �
1

2

Z
P

�
log

�
��P;mT� �

2


b
�

2 ��2T
P2 �m2T

�

� log
�
��P;m0� �

2


b
�

2 ��20
P2 �m20

�

�D�mT� �D�m0�: (58)

We calculated F1 numerically by rewriting the terms
involving D as an integral. We can then subtract the
integrands, instead of the large values of the integral. In
this way, it is easier to avoid large numerical errors.

The function F2 is defined by

F2 � �
1

2
a
P
log

�
��P;mT� �

2


b
�

2 ��2T
P2 �m2T

�
: (59)

In order to calculate the function F2, we have modified
the Abel-Plana formula [23] to obtain the relation
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�N �
X1
n�N

f�p0 � 2�n� �
1

2�

Z 1

a
dp0f�p0�

�
1

�

Z 1

0
d-Imf�a� i-�

1

e- � 1
; (60)

where a � 2��N � 1=2�. This formula is valid as long as
f�p0� has no poles or cuts for Re�p0� � a, f�p0� 2 R for
p0 2 R and f�p0� grows slower than an exponential for
p0 ! 1. This relation is useful for numerical calcula-
tions, since it prevents us from subtracting two large
quantities. In our case f�p0� � logI�P;m� which is even
in p0 and has a cut for Re�p0� � 0. Then we can use that

��1 � 2�N �
XN�1

n��N�1

f�p0 � 2�n�

�
1

2�

Z a

�a
dp0f�p0�; (61)

where N � 1 because of the cut. We checked that chang-
ingN has no effects on the results. After calculating��1,
we integrate over three-momentum p up to �max, which
gives a finite result for F2. We observe that the difference
of a sum-integral and an integral is dominated by the
low-momentum modes. This shows that the high-energy
approximation in Ref. [6] applied to their ‘‘interaction
pressure’’ (implicitly defined as such a difference and
directly related to F2) is invalid, since the high-
momentum modes are assumed to give the main
contribution.

After renormalization, we find that the next-to-lead-
ing-order contribution to the pressure is

P NLO �
m4T
8�2

log
�
�2

m2T

�
�
m40
8�2

log
�
�2

m20

�
� F1 � F2;

(62)

which is shown in Fig. 2. At T � 0, we can calculate
PNLO=T

4 exactly and use it as a check of the numerical
calculations. At T � 0, clearly F1 � 0, and hence
FIG. 2. Next-to-leading-order contribution to the pressure
normalized to T4, as function of temperature for H � 0 and
H � �104 MeV�3, for different values of the cut-off �.
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PNLO=T
4 � F2=T

4. At T � 0, it is easy to see that for
low P, I�P;m� is dominated by 32�2 ��2=�P2 �m2�. This
gives

F2 �
1

2
a
P
log�P2 �m2�: (63)

For H � 0, the mass m vanishes and so PNLO=T4 �
��2=90. For H � �104 MeV�3 we have that PNLO=T4 �
0, since T is in that case much smaller than m, such that
the pressure is exponentially suppressed.

The pressure for H � 0 is approaching the H � 0
pressure at high temperatures, indicating that the effects
of the explicit symmetry breaking terms become smaller
at higher temperatures. This is because H is a
temperature-independent constant.

C. Pressure of the O�4� linear sigma model

In order to make contact with two-flavor low-energy
QCD, we specialize to N � 4. In Fig. 3, we show the
pressure for N � 4 and H � 0 to next-to-leading order as
function of T normalized by T4. The LO pressure below
Tc equals the pressure of a gas of four massless non-
interacting scalars. This follows immediately from
Eqs. (24) and (25). At NLO the sigma field becomes
massive. For temperatures much lower than m�, the con-
tribution to the pressure from the sigma is Boltzmann
suppressed and we have (to good approximation) P �
�2T4=30, which is the pressure of a gas of three massless
noninteracting scalars. From the calculations we conclude
that the transition to NLO is of second (or higher) order
since the derivative of the pressure is not diverging.

In Fig. 4, we show the pressure for N � 4 and H �
�104 MeV�3 to next-to-leading order as function of T
normalized by T4.

In Figs. 3 and 4 we have chosen the cut-off � �
5:0 GeV. Because we wish to make contact with low-
energy QCD, a few comments on this choice are in order.
For the low-energy chiral Lagrangian, the cutoff is usu-
ally taken to be 8�f� (using our definition of f�), which
FIG. 3. LO and NLO pressure normalized to T4, for N � 4 as
a function of temperature, for H � 0 and � � 5:0 GeV.
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FIG. 5. NLO pressure of the nonlinear sigma model for N �
4 normalized to T4, as a function of temperature for different
values of the cut-off �. For comparison we have included the
LO pressure and a curve corresponding to the NLO pressure
expression from Ref. [6].

FIG. 4. LO and NLO pressure for N � 4 normalized to T4, as
a function of temperature for H � �104 MeV�3 and � �
5:0 GeV.
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is around 1.2 GeV. However, for the present purpose this
value would be at the limit of applicability, since the
critical temperature at which chiral symmetry is (ap-
proximately) restored is only about a factor of 8 smaller
and we have to satisfy the requirement that 2�T � �. In
this way one ensures that one sums over sufficient
Matsubara modes.3 Therefore, we have taken the cutoff
considerably larger to reduce the sensitivity to the cutoff
but emphasize that only for the region below Tc can one
expect the result to be of relevance for the QCD pressure.

D. Pressure of the O�4� nonlinear sigma model

In the limit 
b � 1, we obtain the Lagrangian for the
nonlinear sigma model. So there are no counterterms for
logarithmic divergences.We will only renormalize f�;b as
in Eq. (45) with 
b � 1. This implies that F2 has a small
cut-off dependence.

In Fig. 5 we show the pressure of the O�4� nonlinear
sigma model without explicit symmetry breaking (H �
0), through next-to-leading order in 1=N. We have calcu-
lated the pressure for different values of the cutoff. The
LO result for � � 20 GeV is included. For comparison,
we also show the pressure resulting from the approxima-
tions employed by Bochkarev and Kapusta, Ref. [6]. A
considerable difference between our results and those of
Bochkarev and Kapusta is observed.

We next discuss the approximations made in Ref. [6].
The T � 0 part of sum-integrals are omitted such that
every

RP is replaced by a. Hence ��P;m� is replaced by

�T�P;m�. In the high-energy approximation the latter is
approximated by

�T�P;m� �
T2J1��m�

32�2A2
; (64)

where J1 and A2 are given by Eqs. (31) and (35), respec-
3The amount of Matsubara modes to be summed over de-
pends on how one implements the cutoff on sum-integrals [21].
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tively. The term involving ��2 in Eq. (15) is omitted and
the pressure reduces to

P �
Nm2

2
�f2� � ��2� �

N
2
a
P
log�P2 �m2�

�
1

2
a
P
log

P2

P4 � 4m2p20
: (65)

Defining the functions

K�
0 ��m� �

32

3T4
Z 1

0
dp
p4

!p
n�!��; (66)

where !� �
������������������
p2 �m2

p
�m, the pressure becomes

P �
Nm2

2
�f2� � ��2� �

NT4J0��m�

64�2
�
�2

90
T4

�
T4

64�2

K�

0 ��m� � K
�
0 ��m��: (67)

Expanding Eq. (67) in powers of m=T and rescaling with
factors of N, one obtains Eq. (52) of Ref. [6].

For completeness, we also give the gap equations in this
approximation:

16�2f2� � T2J1��m� � 16�2 ��2

�
T2

N

K�

1 ��m� � K
�
1 ��m��; (68)

m2 �� � 0; (69)

where the functions K�
1 are

K�
1 ��m� � �

8

T2
Z 1

0
dp
p2

!p

!�

m
n�!��: (70)

There are several problems with the approach in
Ref. [6]. First, it is incorrect to ignore zero-temperature
contributions to the pressure and it also obscures renor-
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malization issues. Then, as we saw in Sec. IV B, the
arguments for applying the high-energy approximation
are not valid. Furthermore the term proportional to �� is
not suppressed by 1=N compared to the other terms
appearing in I�P;m�. Fourthly, as the solutions to the
gap Eq. (67) indicate for T > Tc m=T becomes signifi-
cantly larger than 1, hence the m=T expansion breaks
down. If one were to use Eq. (68) instead, one finds that
the pressure even becomes negative above T * 300 MeV.
Another problem is that for T < Tc their pressure is equal
to that of a massless gas. However, this is incorrect since
the sigma meson is massive and included at NLO. Hence
one expects a deviation from the ideal-gas pressure at T <
Tc. Finally, at high temperatures we expect that the NLO
pressure will become approximately equal to the LO
pressure because chiral symmetry will be restored. This
is not the case for the pressure of Ref. [6].

We briefly comment on the paper by Jain [5]. In that
paper the author is calculating the thermodynamic po-
tential to NLO in the O�N� linear sigma model using a
high-temperature expansion. Since this approximation
breaks down at low temperatures, we will refrain from
comparing with our results.
V. CHOICE OF PARAMETERS

In the preceding sections we have shown plots for
particular choices of the parameters, namely, 
�� �
100 MeV� � 30, f� � 47 MeV, and if there is explicit
symmetry breaking, we take H � �104 MeV�3. In this
section we will motivate these choices. For simplicity we
partly use leading-order calculations for fixing the
parameters.

We start with choosing the values for f� and m� to be
roughly equal to their measured values: f� � 47 MeV
(note that our f� differs from the more conventional
definition by a factor of 1=2) and m� � 138 MeV (the
average of the measured masses of the �0; �� and ��).
We will use this for choosing our parameter H as follows.
Given a choice of 
 at a given scale � we solve the LO
renormalized gap equations (28) and (29), for �� and m2,
such that m2 � m2� (which is the correct identification at
LO). For our choice of 
�� � 100 MeV� � 30, this re-
sults in H � �104 MeV�3.

The choice of 
 is motivated by considerations on the
maximal value of the cutoff and the sigma mass. To
obtain this mass, one has to find the poles of the propa-
gators in Minkowski space. The physical mass mph is
often defined by the solution to the equation

�m2ph �m
2 � Re+�p0 � imph � /; p � 0; m� � 0;

(71)

where + is the self-energy. Using Eq. (19) and choosing
� � m�, we find that at T � 0 and for H � 0
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m2� �
32�2f2�

1� 32�2

�m��

� �2

1�32�2=
�m��

: (72)

Equation (72) implies that m� �
���������
16�

p
f� � 333 MeV,

which is lower than 600 MeV. For H � 0 a similar bound
applies. In that case we find that the maximal value of the
sigma mass can be found by solving the following equa-
tion for m�

m2� �

�
2�

����������������������������������
1� A2�m2�=m2��

q �
m2�; (73)

where

A�x� �
�
16�f2�
m2�

�
1

�

�
1�����������������

1� 4=x
p

�
1

�
log

�
1�

�����������������
1� 4=x

p
1�

�����������������
1� 4=x

p �
: (74)

We find by solving this equation that the maximal value
of m� is equal to 433 MeV. This is also smaller than the
average measured value of 600 MeV. The reason that we
find an unphysical bound for the sigma mass could be that
we consider Nf � 2 and may miss out on essential three-
flavor physics.

The sigma mass turns out to be maximal if 
�� �
100 MeV� � 80. The problem with this choice of 
 is that
in that case the maximal value of the cutoff is 720 MeV.
This is very low and allows us only to do calculations up
to around T � 50 MeV. Therefore we choose a lower
value: 
�� � 100 MeV� � 30. Using that parameter
choice �max � 19 GeV and the sigma mass is equal to
256 MeV and 350 MeV in the case of H � 0 and H �
�104 MeV�3, respectively.
VI. SUMMARY AND CONCLUSIONS

In this paper, we have considered the thermodynamics
of theO�N� linear and nonlinear sigma models to NLO in
the 1=N expansion.

At NLO we have shown that one can renormalize the
effective potential in a temperature-independent manner
only at the minimum of the effective potential. This is
another example of the ambiguity in the definition of off-
shell Green’s functions. A perhaps more familiar example
comes from the calculation of the zero-temperature ef-
fective potential in gauge theories. In this case, the effec-
tive potential depends on the gauge-fixing condition
except at the minimum [24–26]. By renormalizing the
NLO effective potential in the minimum we found the
beta function for 
 to NLO. This beta function is con-
sistent with the perturbative calculation.

We calculated numerically the pressure for the linear
and nonlinear sigma model to NLO as a function of
temperature. Our calculations show that for the calcula-
tion of the pressure 1=N is a good expansion, even if N �
4. With a relatively realistic choice of the parameters we
-10
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made a prediction for the pressure of QCD at low tem-
peratures. Our results for the pressure disagree signifi-
cantly with the calculations of those in Ref. [6]. This is
due to the fact that we are not neglecting zero-
temperature contributions and that we treat the NLO
contribution without resorting to any high-energy
approximation.

We also found that in the linear sigma model the sigma
mass has an upper bound. This bound depends only on the
parameters f� and m�. For a realistic choice of these
parameters, this implies that the sigma mass is smaller
than 433 MeV. This does not necessarily have consequen-
ces for the real sigma meson, since we did not take into
account the full three-flavor physics.
116007
Having solved the O�N� model for the thermodynam-
ics, it is natural to apply it to other quantities such as
spectral functions. The methods developed here should
also be useful for more complicated models incorporating
additional features of low-energy QCD, e.g.,
U�3�A � U�3�V .
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