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Collective modes of an anisotropic quark-gluon plasma: II

Paul Romatschke and Michael Strickland
Institut für Theoretische Physik, Technische Universität Wien, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria

(Received 8 July 2004; published 6 December 2004)
1550-7998=20
We continue our exploration of the collective modes of an anisotropic quark-gluon plasma by
extending our previous analysis to arbitrary Riemann sheets. We demonstrate that in the presence of
momentum-space anisotropies in the parton distribution functions there are new relevant singularities
on the neighboring unphysical sheets. We then show that for sufficiently strong anisotropies that these
singularities move into the region of spacelike momentum and their effect can extend down to the
physical sheet. In order to demonstrate this explicitly we consider the polarization tensor for gluons
propagating parallel to the anisotropy direction. We derive analytic expressions for the gluon structure
functions in this case and then analytically continue them to unphysical Riemann sheets. Using the
resulting analytic continuations we numerically determine the position of the unphysical singularities.
We then show that in the limit of infinite contraction of the distribution function along the anisotropy
direction that the unphysical singularities move onto the physical sheet and result in real spacelike
modes at large momenta for all ‘‘out-of-plane’’ angles of propagation.
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I. INTRODUCTION

The ultrarelativistic heavy ion collision experiments
ongoing at the Brookhaven Relativistic Heavy Ion
Collider (RHIC) and planned at the CERN Large
Hadron Collider study the behavior of nuclear matter
under extreme conditions. Specifically, these experiments
explore the QCD phase diagram at large temperatures and
small quark chemical potentials. Based on the data cur-
rently available from the RHIC collisions it seems that a
thermalized state has been created during the collisions
[1]. Remarkably it seems that the thermalization proceeds
rather rapidly in contradiction to estimates from leading
order equilibrium perturbation theory. However, to truly
understand how the plasma evolves and thermalizes one
has to go beyond the equilibrium description. In this paper
we expand upon our previous studies of the collective
modes of a quark-gluon plasma which is (at least approxi-
mately) homogeneous and stationary but anisotropic in
momentum space.

These types of distribution functions are relevant be-
cause of the approximate longitudinal boost invariance in
the central rapidity region of ultrarelativistic heavy ion
collisions. This implies that the initial distribution func-
tions for the partons are practically delta functions in
longitudinal momentum. Such an anisotropic quark-
gluon plasma appears to be qualitatively different from
the isotropic one since the quasiparticle collective modes
can then be unstable [2–10]. The presence of these insta-
bilities can dramatically influence the system’s evolution
leading, in particular, to its faster equilibration and iso-
tropization. Treating this problem in all of its generality is
a daunting task. In order to make progress we consider the
limit of very high transverse temperatures at which the
nonequilibrium collective behavior is describable in
terms of processes in which all loop momenta are hard.
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In the case of thermal equilibrium hard corresponds to
momenta of order T but in the nonequilibrium case hard
corresponds to an unspecified scale contained in the
distribution function.

In a previous paper [7] we calculated the hard-loop
gluon polarization tensor in the case that the momentum-
space anisotropy is obtained from an isotropic distribu-
tion by the rescaling of one direction in momentum space.
The resulting expression for the gluon polarization tensor
was then decomposed into a four-component tensor basis
and the structure functions associated with this tensor
basis were computed numerically for general anisotropies
and analytically in the limit of small anisotropies. We
demonstrated that a contraction of an isotropic distribu-
tion function along the anisotropy direction, n̂, resulted
in one additional stable quasiparticle mode, two damped
quasiparticle modes in the lower half plane, and two
unstable (antidamped) quasiparticle modes in the upper
half plane. In the case that the isotropic distribution was
stretched along the anisotropy direction we found that
again an additional stable quasiparticle mode was gener-
ated but only one damped and one antidamped quasipar-
ticle mode were found in this case. The unstable modes
found correspond to electric or magnetic type instabilities
with the latter being analogous to theWeibel instability in
QED plasmas [11–15].

In this paper we continue our exploration of the col-
lective modes of an anisotropic quark-gluon plasma by
extending our previous analysis to arbitrary Riemann
sheets. We demonstrate that in the presence of
momentum-space anisotropies in the parton distribution
functions there are new relevant singularities on the
neighboring unphysical sheets. We then show that for
sufficiently strong anisotropies that these singularities
move into the region of spacelike momentum and their
effect can extend down to the physical sheet. In order to
-1  2004 The American Physical Society
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demonstrate this explicitly we consider the polarization
tensor for gluons propagating parallel to the anisotropy
direction. We derive analytic expressions for the gluon
structure functions in this case and then analytically
continue them to unphysical Riemann sheets. Using the
resulting analytic continuations we numerically deter-
mine the position of the unphysical singularities. We
then show that in the limit of infinite contraction of the
distribution function along the anisotropy direction that
the unphysical singularities move onto the physical sheet
and result in real spacelike modes at large momenta for
all ‘‘out-of-plane’’ angles of propagation.

The organization of the paper is as follows: In Sec. II
we first review the necessary integral expressions for the
hard-loop gluon polarization tensor and then in Sec. III
we present analytic expressions for the hard-loop gluon
polarization tensor structure functions in the case that the
gluon is propagating parallel to the anisotropy direction.
In Secs. III A, III B, III C, and III D we extend these
expressions to arbitrary Riemann sheets and solve the
dispersion relations for the singularities existing on the
neighboring unphysical sheets. In Sec. IV we present
analytic expressions for the gluon polarization tensor
structure functions in the large-anisotropy limit and solve
the resulting dispersion relations for arbitrary angle of
propagation. In Sec. V we summarize the results and
speculate about the possible impact of the now relevant
unphysical singularities.
1In Ref. [7] N��� was fixed to be N��� � 1 so the reader
should make sure to adjust for the difference where appropriate.
II. GLUON POLARIZATION TENSOR REVISITED

The hard-loop gluon polarization tensor of an aniso-
tropic system is given by [4,7]

�ij�K� � �2��s
Z d3p

�2��3
vi@lf�p�

�
�jl �

vjkl

K � V � i�

�
;

(1)

where K � �!;k�, V � �1; v�, v � p=jpj, and

f�p� � 2Nf�n�p� � �n�p��� 4Ncng�p�: (2)

Note that in (1) we have specialized to spacelike Lorentz
indices; however, it is possible to derive the polarization
tensor also for arbitrary Lorentz indices.

To simplify the calculation we follow Ref. [7] and
require the distribution function f�p� to be given by

f�p� � f��p� � N���fiso�
������������������������������
p2 � ��p � n̂�2

q
�: (3)

Here fiso is an arbitrary isotropic distribution function, n̂
is the direction of the anisotropy, � >�1 is a parameter
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reflecting the strength of the anisotropy, and N��� is a
normalization constant. To fix N��� we require that the
number density to be the same both for isotropic and
arbitrary anisotropic systems,

Z
p
fiso�p� �

Z
p
f��p� � N���

Z
p
fiso�

������������������������������
p2 � ��p � n̂�2

q
�;

(4)

and can be evaluated to be

N��� �
������������
1 � �

p
: (5)

Using an appropriate tensor basis [7] one can then decom-
pose the self-energy into four structure functions �, �, �,
and � by taking the contractions

ki�ijkj � k2�; ~ni�ijkj � ~n2k2�;

~ni�ij~nj � ~n2��� ��; Tr�ij � 2�� �� �;
(6)

where ~ni � ��ij � kikj=k2�n̂j. The structure functions
then depend on !; k and the angle k̂ � n̂ � cos�n as well
as on the strength of the anisotropy, �. Integral expres-
sions for �, �, �, and � for arbitrary angle of propagation
and anisotropy parameter � can be found in Ref. [7].1
III. SPECIAL CASE I: k k n̂

Let us now consider the case where the momentum k is
in the direction of the anisotropy, n̂, i.e., �n � 0. Using
the changes of variables

~p 2 � p2
1 � ��v � n̂�2�; (7)

allows us to simplify Eq. (1) to

�ij�K� �m2
D

������������
1 � �

p Z d�
4�
vi
vl � ��v:n̂�n̂l


1 � ��v:n̂�2�2

�

�
�jl �

vjkl

K � V � i�

�
; (8)

where

m2
D � �

�s
�

Z 1

0
dpp2 dfiso�p

2�

dp
: (9)

Taking the contractions in Eq. (6) the structure functions
can further be simplified using

k � v � k n̂ � v � k cos�: (10)

While one integration becomes straightforward, the re-
maining integration can be performed after a little bit of
algebra and one obtains for the relevant contractions
-2
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�

m2
D

�

������������
1 � �

p

4
���
�

p
�1 � �z2�2

�
f1 � z2 � �
�1 � �6 � ��z2 � �1 � ��z4�g arctan

���
�

p
�

���
�

p
�z2 � 1�

�

�
1 � �z2 � �1 � ��z ln

z� 1 � i�
z� 1 � i�

��
;

�

m2
D

� �
z2

������������
1 � �

p

2
���
�

p
�1 � �z2�2

�
�1 � ���1 � �z2� arctan

���
�

p
�

���
�

p �
�1 � �z2� � �1 � ��z ln

z� 1 � i�
z� 1 � i�

��
;

�̂

m2
D

�
z

������������
1 � �

p

4
���
�

p
�1 � �z2�3

�
zf�1 � �
3 � 6�� 2�3 � 6�� �2�z2 � ��3 � ��z4�g arctan

���
�

p

�
���
�

p �
z�1 � �z2��1 � 4�� 3�z2� � ���1 � z2���1 � 4z2 � 3�z2� ln

z� 1 � i�
z� 1 � i�

��
;

(11)
where z � !=k and �̂ � �k. Note that for this angle of
propagation the structure function � vanishes.

A. Extension to unphysical sheets

The above structure functions all possess a logarithmic
cut running along the real z axis for z2 < 1. It is, however,
possible to extend their definition beyond this cut, which
then corresponds to an unphysical Riemann sheet of z.
More precisely, there are two such unphysical sheets
which can be accessed by either extending the physical
sheet from above or below the cut. In order to make this
extension we first compute the structure functions on the
physical sheet using the integral representation given in
Eq. (8).We can then deform the integration contour which
runs from cos� � �1 along the real axis to cos� � 1 into
the lower half plane (LHP) and then move the point we
are interested in from the upper to the lower half plane.
Deforming the original contour so that it again runs along
the real axis we see that we pick up an extra contribution
corresponding to the residue at the point in the LHP.

This procedure can be used to analytically continue the
structure functions for all values of �n but in the case that
�n � 0 the residue can be evaluated straightforwardly
and is simply �2�i. The structure functions can likewise
be extended into the upper half plane (UHP) and the
residue is then �2�i. The resulting rule is then the
expected one, namely, that the structure functions can
be extended to unphysical sheets by the usual extension of
the logarithm

ln
�
z� 1

z� 1

�
� ln

�								z� 1

z� 1

								
�
� i

�
arg

�
z� 1

z� 1

�
� 2�n

�
;

(12)
where n specifies the sheet number. Note that n � 1
extends the physical logarithm into the UHP and n �
�1 extends it into the LHP. Higher n correspond to higher
sheets which can be safely ignored as we will discuss
below.
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B. Collective modes

The dispersion relations for the gluonic modes in an
anisotropic quark-gluon plasma are in general given by
the zeros of

��1
A � k2 �!2 � � � 0;

��1
G � �k2 �!2 � �� �����!2� � k2~n2�2 � 0:

(13)

In the case k k n̂, however, � vanishes identically, as does
~n2 � 1 � �k̂ � n̂�2. Therefore, it is sufficient to solve the
equations

k2 �!2 � � � 0; ��!2 � 0; (14)

which will be referred to as � and � modes, respectively.
These modes correspond to poles in the propagator for �
and � modes. We will use this term to describe solutions
on both physical and unphysical Riemann sheets; how-
ever, whenever we are speaking about the unphysical
singularities we will always explicitly label them as un-
physical � and � modes. The reader should be aware that
these unphysical singularities do not correspond to real
degrees of freedom unless the solution associated with
them moves onto the physical Riemann sheet.

Before we present the dispersion relations we would
like to first count the number of modes on the various
sheets in order to be assured that we have indeed found all
solutions. The number of modes can be counted by doing a
so-called Nyquist analysis, based on the special case of
Cauchy’s integral,

N � P �
1

2�i

I
C
dz
f0�z�
f�z�

; (15)

where N and P are the number of zeros and poles of f�z�
times their multiplicity in the region encircled by the
closed path C.

Choosing f�z� � k2�1 � z2� � ��z� and using the ex-
plicit form of the structure function given in Eq. (11), one
finds that f�z� has a logarithmic cut for real z2 < 1, while
being analytic for all other finite z. One can then choose
the contour C depicted in Fig. 1, so that P � 0. We then
-3



FIG. 2. Contour CLHP in the complex z plane used for finite �
Nyquist analysis on the LHP unphysical sheet.

FIG. 1. Contour C in the complex z plane used for finite �
Nyquist analysis.
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evaluate the respective pieces of the contour C, finding

N�;phys �
1

2�i

4�i� 0 � 0 � 4�i��� lim

z!0
f�z���

� 2 � 2��� lim
z!0
f�z��: (16)

The first contribution comes from the large circle at jzj �
1, while the first zero is the contribution from the path
connecting the large circle with the contour around z2 <
1; the second zero is the contribution from the small half-
circles around z � �1. The last contribution comes from
the straight lines running infinitesimally above and below
the cut at z2 < 1. They can be evaluated by using

Z 1�i�

�1�i�
dz
f0�z�
f�z�

� ln
f�1 � i��
f��1 � i��

; (17)

and therefore represent the ‘‘winding number’’ of the
image of f�z� around the origin. Since from Eq. (11) it
is clear that Ref��1 � i��> 0 and for z2 < 1 one has
Imf�z� � 0 only for z � 0, the winding number can either
be zero or 1, depending on the sign of limz!0Ref�z� i��.
For the path with Imz < 0 one proceeds similarly, finding
the result given in Eq. (16).

For the � mode, the same techniques can be applied to
find the result

N�;phys � 2: (18)

These two modes, together with two modes coming from
N�;phys, correspond to the propagating and stable modes
for positive and negative (real) frequencies, while the
modes that depend on the sign of the static limit of f�z�
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correspond to solutions with purely imaginary z which
are the damped and antidamped physical modes already
found in Ref. [7].

We now want to extend the above analysis to the un-
physical sheets that can be accessed by extending the
structure functions through the cut to the LHP and
UHP, as discussed above. Let us first discuss the �
mode in the unphysical LHP by introducing fLHP�z� �
k2�1 � z2� � �LHP�z� and choosing a contour CLHP which
is shown in Fig. 2. One notable difference to the physical
sheet is that now fLHP�z� has a pole of second order at z �
�i=

���
�

p
, so that P�;LHP � 2. Other than that the analysis is

conducted as in the case above, finding

N�;LHP � P�;LHP � ���� lim
z!0
fLHP�z��; (19)

so that N�;LHP � 1 � ��limz!0fLHP�z��.
For the UHP, one uses a similar analysis to find

N�;UHP � 1 � ��lim
z!0
fUHP�z��; (20)

while for the unphysical � mode one has N�;LHP �

N�;UHP � 2. Closer inspection of these modes shows
that the unphysical � modes correspond to solutions
with purely imaginary z, while the unphysical � modes
are solutions with complex z with positive/negative real
and imaginary parts.

A plot of the position of the unphysical � modes for
� � f0:1; 1; 10g is shown in Fig. 3. Since there are two
unphysical � modes we will refer to the ones that depend
on the sign of fLHP as type 1 and those which do not as
type 2. We can observe from this figure that, as � goes to
-4



FIG. 4. Dispersion relations for �n � 0, � � 10: besides two
propagating � and � modes on the physical sheet (dashed and
full lines, respectively) there is also an unphysical � mode
(dotted line) for which we plot only the real part of the pole
position. We also plot the light cone as a light-gray line as a
visual aid.

FIG. 3. Dispersion relations for the unphysical � modes for �n � 0 and (a) � � 0:1, (b) � � 1, and (c) � � 10. Dotted lines
correspond to the modes which depend on the sign of fLHP (type 1). Note that in (a)–(c) the type-1 unphysical � mode exists only for
k > 0:184, k > 0:595, and k > 1:95, respectively. Dashed lines correspond to modes which do not depend on the sign of fLHP

(type 2). Solid line in (a) is the isotropic result. Note that the scale changes in each plot.
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zero, the type-1 mode (dotted line) becomes degenerate
with the isotropic solution [solid line in Fig. 3(a)] and the
type-2 mode (dashed line) moves off to infinity. In the
opposite limit, �� 1, we find that the type-2 mode
moves towards the real axis while the threshold for ex-
istence of the type-1 mode moves to infinity.

Note that even in the isotropic limit there are unphys-
ical � modes on the neighboring Riemann sheets: one in
the UHP and one in the LHP. These unphysical modes are
related to the presence of dynamical screening of the
magnetic interaction. In fact, in the limit of small mo-
mentum it can be shown that these solutions are directly
related to the small z behavior of the isotropic transverse
polarization tensor. This can be seen by taking the small z
and � limits of �UHP

lim
z!0

lim
�!0

�UHP

m2
D

�
iz�
4

�
1 �

3

8
�
�
�

1

3
��O��2; z2�: (21)

The first term in (21) comes directly from the logarith-
mic cut. Taking the isotropic limit, � � 0, inserting this
into the �-mode equation given in Eq. (14), and then
taking the static limit we see that there is a solution at
purely imaginary !

! �
4i
�
k3

m2
D

�O��; z2�: (22)

Note, however, that the second term in Eq. (21) indicates
the presence of unstable modes on the physical sheet for
this angle of propagation and, as a result, the isotropic and
anisotropic dispersion relations for the unphysical �
modes are not trivially connected. This is demonstrated
by the fact that the type-1 mode (dotted lines) in Fig. 3 do
not extend down to k � 0 for finite � but instead termi-
nate at a finite k � k0. Below k0 the type-1 mode in the
LHP moves onto the physical sheet and becomes the
unstable (antidamped) physical � mode already dis-
cussed in Ref. [7]. The type-1 mode in the UHP likewise
moves onto the physical sheet and becomes the damped
physical �-mode solution.
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A plot of the dispersion relations of the physical and
unphysical � modes for � � 10 is shown in Fig. 4 (the
mirror region Rez < 0 is not shown). As one can see, the
unphysical �LHP=UHP mode is lightlike for small momen-
tum and spacelike at large momentum. As we will discuss
below this mode is physically relevant if Rez is approxi-
mately spacelike, �Rez�2 & 1, and the modulus of Imz is
small. In addition, in Fig. 5 we have plotted the position
of the unphysical �-mode pole for momentum k �
fmD=2; mD; 2mDg in the complex plane for various values
of �.

From Fig. 5 we see that, as the anisotropy is decreased
the Imz of the unphysical � mode becomes large at all
momenta and therefore these unphysical modes will have
a negligible impact on the propagator on the physical
Riemann sheet. However, as the anisotropy is increased
with fixed momentum, the modulus of Imz decreases so
that these modes can become relevant for large anisotro-
pies. From Fig. 5 we can also see that for fixed � and
decreasing k that the unphysical � modes move to z � 1
-5



FIG. 6 (color online). Sketch of the complex z plane includ-
ing the extension of the logarithm to the unphysical sheet. Also
shown is how a pole in the unphysical region (mountain) has
effects felt on the physical sheet. The black line indicates where
the two sheets are joined together.

FIG. 5. Parametric plot of the position of the unphysical � mode in the complex z plane for momentum k � fmD=2; mD; 2mDg
showing that for k >�mD the unphysical � mode moves into the spacelike region of the real z axis for large �.
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and so are unimportant based on the criteria stated above.
However, for k * mD the unphysical � modes have
�Rez�2 & 1. Therefore for large anisotropies and k * mD
the effects of the unphysical � modes can have an im-
portant impact on the propagator for spacelike modes on
the physical Riemann sheet. Additionally, we see that for
infinite � the Imz of the unphysical � mode vanishes and
it then moves to the physical sheet as we will discuss
below.

C. Mountains on spirals

As discussed in the previous section we find that, in
addition to modes on the physical sheet found in Ref. [7],
for anisotropic systems there are also unphysical � and �
modes on neighboring Riemann sheets. But why bother
about these modes, given that they do not ‘‘live’’ on the
physical sheet? To see that there can be an effect on
physical quantities, imagine the structure of the complex
z plane spanned by the different sheets of the logarithm
in the form of a spiral staircase: the physical sheet would
correspond to the region covered by the spiral plane from
the ground floor to the first floor, while the unphysical
sheet where the extra quasiparticle mode lives would
correspond to the region first to second floor.

However, since for a range of momenta the unphysical
� mode corresponds to an approximately spacelike pole,
the propagator has a mountainous dent (singularity) in the
spiral plane somewhere from the first to the second floor,
with its peak nearer the first floor the larger � is. But
because the mountain has a finite width, its base can be
felt also below the second floor, especially if its peak is
near the first floor (see Fig. 6 for a sketch). This is
precisely the situation we presented in the previous sec-
116006
tion. There we showed that in the large-� limit that for
k * mD the Imz of the unphysical � modes becomes very
small and �Rez�2 & 1. Therefore, we expect that the un-
physical modes on neighboring Riemann sheets do have
physical consequences for large anisotropies, since then
-6



FIG. 7. Dispersion relations for �n � 0 and � � 104: the �
mode approaches its large-� behavior. Again the physical �,
physical �, and unphysical � modes are indicated by dashed,
solid, and dotted lines, respectively.
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their effect can extend down to the physical sheet. In fact,
as we will discuss below, in the limit of infinite � the pole
moves onto the physical sheet itself. Note that the physi-
cal effect of any singularities existing on higher Riemann
sheets ( j n j >1) would be negligible since the effect of
these singularities would have to extend through the
intermediate sheets prior to getting to the physical sheet,
i.e., the base of the mountain would have to extend all the
way down to the physical sheet through the spacelike
spirals.

D. Towards large �

For very large values of �, the dispersion relations are
shown in Fig. 7. As one can see, the physical � mode now
hits the light cone at the point where the unphysical mode
becomes spacelike. Indeed, when one takes the limit of
�! 1, the � mode simply becomes
116006
1 �
�
4

m2
D

!2 � 0; (23)

which has the simple real and propagating solution !2 �
�m2

D=4. For any finite � the logarithmic singularity of �
in Eq. (11) at the light cone causes the physical � mode to
always be timelike; however, the unphysical solution ex-
ists for both timelike and spacelike momenta.

IV. SPECIAL CASE II: � ! 1

Another special case where one can explicitly calculate
the structure functions is when �! 1. In this case it has
been found in Ref. [9] that the distribution function
becomes

lim
�!1

f��p� ! ��p̂ � n̂�
Z 1

�1
dxfiso�p

��������������
1 � x2

p
�; (24)

which corresponds to the extreme anisotropic case con-
sidered by Arnold, Lenaghan, and Moore [8]. As a con-
sequence, one can make use of this form by partially
integrating Eq. (1) to obtain

�ij�K� � 2��s
Z d3p

�2��3
f��p�
p

�
�ij �

kivj � kjvi

�K � V � i�

�
��!2 � k2�vivj

��K � V � i��2

�
;

(25)

and applying the techniques from Ref. [8] to obtain
analytic expressions for the structure functions in the
large-� limit. Using

lim
�!1

2��s
Z d3p

�2��3
f��p�
p

� m2
D
�
4
; (26)

the structure functions are obtained using the contrac-
tions Eq. (6), giving
� �
m2
D�
4

�
�cot2�n �

z

sin2�n

�
z�

1 � z2��������������������
z� sin�n

p ��������������������
z� sin�n

p

��
; � �

m2
D�
4
z2
�
�1 � z

z2 � cos2�n
�z� sin�n�

3=2�z� sin�n�
3=2

�
;

� �
m2
D�
4

1 � z2

4sin2�n

�
6 � 2 cos2�n � z

3 � 6z2 � 2�1 � z2� cos2�n � cos4�n
�z� sin�n�3=2�z� sin�n�3=2

�
;

�̂ �
m2
D�
4

cos�n
sin2�n

z
�
z�

�1 � 2z2�cos2�n � �1 � z2�2

�z� sin�n�
3=2�z� sin�n�

3=2

�
; (27)
where a positive sign above corresponds to the physical
sheet and a negative sign corresponds to the unphysical
sheet. Note that the light cone singularity at z2 � 1 is not
present in these structure functions any longer. In fact, all
structure functions turn out to be purely real for z2 >
sin2� while there is a singularity located at z2 � sin2�.
Below this light cone-like structure, the imaginary parts
are nonvanishing.
A. Collective modes
The dispersion relations of the collective modes are

once more determined by the zeros of Eq. (13). By
conducting a Nyquist analysis similar to the previous
section, one finds N�;phys � 2 � 2��� limz!0�A�z��
and N�G;phys � 4 � 2��limz!0�G�z�� for the physical
sheet. These modes can be identified as the standard,
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FIG. 8. Dispersion relations for � � 1 for (a) �n �
�
4 and (b) �n �

�
2 . Shown are the physical � mode (short dashed lines) and

the two physical � modes (full and dotted lines) as well as the unphysical � mode (long-dashed lines), respectively. For �n � 0, the
dispersion relations resemble those of Fig. 7 except that the mode which follows the light cone beyond k2 � mD�=4 in Fig. 7 ceases
to exist and the � mode connects continuously across the light cone to the now physical spacelike mode.

PAUL ROMATSCHKE AND MICHAEL STRICKLAND PHYSICAL REVIEW D 70, 116006 (2004)
propagating modes (one for �� and two for �G together
with their negative frequency equivalents) as well as two
imaginary modes (one in the UHP and one in LHP) for
�� and �G, respectively. The latter again depend only on
the sign of the static limit of the propagators, which in the
limit of large � are functions of the momentum k and the
angle �n, respectively.2

By once again extending the structure functions
Eq. (27) to the unphysical sheets in the LHP and UHP
(the terms involving square roots simply pick up an over-
all minus sign) we are also able to count the modes there
by repeating the earlier analysis. One finds N�;LHP �
N�;UHP � ��limz!0�A�z�� corresponding to a purely
imaginary mode, and N�G;LHP � N�G;UHP � 2 �

��limz!0�G�z��. The first two of the latter modes are in
general complex modes but may—in some restricted
region of parameter space —also become purely imagi-
nary solutions; the step function then just encodes the fact
that one of the purely imaginary solutions moves to the
physical sheet. In Fig. 8 we plot the � � 1 dispersion
relations for the physical and unphysical collective modes
for �n � �=4 and �n � �=2.

V. CONCLUSIONS

In this paper we have continued our study of the gluon
polarization tensor in an anisotropic system. We extended
our previous analysis to unphysical Riemann sheets and
showed that for anisotropic distribution functions there
are modes (singularities) in the ‘‘spacelike region’’ of the
unphysical sheet which become physically relevant for
large anisotropies. The chief way that these modes affect
the physics is by altering the behavior of the propagator at
soft spacelike momenta. The behavior of the propagator in
this region determines the rate of energy transfer from
soft to hard modes and the sign of this energy transfer
may change for anisotropic systems so that there is in-
stead a transfer of energy from hard to soft modes [16].
Whether or not the presence of the modes on the unphys-
2See Ref. [9] for a discussion of the static limit of Eq. (27).
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ical Riemann sheets are responsible for this ‘‘anti-
Landau damping’’ is investigated in a separate paper
[17] in which we compute heavy fermion energy loss
in a quark-gluon plasma along the lines of Ref. [18] in
which we calculated the same in an anisotropic QED
plasma.

In addition to these unphysical � modes we found that
for anisotropic distributions the unphysical � modes are
different than in the isotropic case. In the isotropic case,
there are two unphysical � modes with one being in the
upper half plane of the n � 1 unphysical sheet and one in
the lower half plane of the n � �1 unphysical sheet. We
showed that for finite � and small momentum these iso-
tropic unphysical modes move onto the physical sheet and
become the unstable modes already discussed in Ref. [7].
Additionally, for finite anisotropy there are two addi-
tional unphysical � modes, again, with one being in the
upper half plane and one in the lower half plane. These
modes would, in principle, determine the dynamic
screening of the magnetic gluon interaction at small
momentum; however, the instabilities in this region will
dominate the physics so it is not entirely obvious how
important these additional unphysical � modes are.

Note that in this paper we have considered only the
gluon polarization tensor which is itself not an observ-
able. In order to say anything quantitative about the
impact of these types of modes we must compute an
actual observable. In general, any observable which is
sensitive to spacelike momenta will be affected by these
types of unphysical modes; however, the quantitative
impact will vary depending on the observable in question.
In a forthcoming paper [17], we compute one such ob-
servable, the collisional energy loss of a heavy quark
propagating in an anisotropic quark-gluon plasma. In
that paper we show that for �s � 0:3 and a 20 GeV
bottom quark that the deviations from the isotropic result
are on the order of 10% for � � 1 and of the order of 20%
for � � 10. When translated into the difference between
longitudinal and transverse energy loss this results in a
10% difference at � � 1, a 30% difference at � � 10, and
a 50% difference at � � 1. More importantly, however,
-8
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we found that for small velocities the sign of the energy
loss becomes negative representing energy gain instead of
loss whenever � > 0. The origin of this negative energy
loss is explicitly identified as being an unphysical type-1
� mode. In addition the negative energy loss is shown to
vanish in the isotropic limit giving a positive definite
result for this quantity for all velocities.

In closing we would like to point out that although the
finite-� analysis presented here was performed only for
�n � 0 there are generally relevant unphysical � and �
modes for all angles of propagation. The analysis pro-
116006
ceeds exactly as discussed here but the details (number of
modes, etc.) change here and there. Additionally, the
results presented here are also applicable to anisotropic
ultrarelativistic QED plasmas.
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034909 (2003).
[7] P. Romatschke and M. Strickland, Phys. Rev. D 68,

036004 (2003).
[8] P. Arnold, J. Lenaghan, and G. D. Moore, J. High Energy

Phys. 08 (2003) 002.
[9] P. Romatschke, Ph.D. thesis,Vienna Technical University,

hep-ph/0312152.
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