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The phase diagram for staggered fermions is discussed in the context of the staggered chiral
Lagrangian, extending previous work on the subject. When the discretization errors are significant, there
may be an Aoki-like phase for staggered fermions, where the remnant SO�4� taste-symmetry is broken
down to SO�3�. We solve explicitly for the mass spectrum in the 3-flavor degenerate mass case and discuss
qualitatively the 2 � 1-flavor case. From numerical results we find that current simulations are outside the
staggered-Aoki phase. As for near-future simulations with more-improved versions of the staggered
action, it seems unlikely that these will be in the Aoki phase for any realistic value of the quark mass,
although the evidence is not conclusive.
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I. INTRODUCTION

Current simulations with dynamical staggered quarks
have the benefits of both good chiral properties at finite
lattice spacing and being computationally inexpensive [1].
The price for these features is that the quark doubling is not
completely removed, and there are four ‘‘tastes’’ of quarks
for each staggered flavor. Additionally, there are large
O�a2� scaling violations that arise and must be taken into
account. Improved forms of the staggered action (e.g.,
‘‘Asqtad’’ staggered quarks) reduce these scaling viola-
tions but they are still not negligible [2–6].

These scaling violations cause mass differences among
the various tastes of light pseudoscalar mesons that result
from the four quark tastes. In principle, these break the
continuum SU�4� taste-symmetry down to the lattice sub-
group [7], however, at O�a2� there is a remnant SO�4�
taste-symmetry which remains [8]. For each meson flavor,
there are 15 tastes which fall into representations of SO�4�:
pseudoscalar (1), axial (4), tensor (6) and vector (4); there
is also the SU�4� singlet for a total of 16. This approximate
SO�4� symmetry is broken down to the lattice subgroup at
O�a4�. These splittings may give rise to a negative mass-
squared of a meson, since there is no reason to assume the
splittings are positive. This signals an instability of the
vacuum, and thus a meson condensate may form.

The idea that there could be this sort of spontaneous
symmetry breaking in the context of the flavor symmetry
of Wilson fermions was first proposed by Aoki [9]. Lee and
Sharpe showed that this could also occur for one flavor of
staggered fermions as well [8]. In this case, they assumed
one of these splittings to be negative and so the vector-taste
pion condensed. All current formulations of staggered
fermions find that these mass splittings are all positive,
and thus this is not a likely scenario. In the case of multiple
flavors, additional parameters which mix the axial and
vector taste flavor-neutrals are negative in current simula-
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tions, so a possible ‘‘staggered-Aoki’’ phase may be more
likely [10,11] than originally thought. The phase structure
of lattice theories has been studied for a variety of other
lattice formulations recently [12–15].

As we approach the broken phase, the quark mass m
becomes comparable to the discretization errors; in lattice
units, am� a3�3

QCD. It is then that some m2
meson may be

negative and the SO�4� taste symmetry is broken. The
breaking is SO�4� down to SO�3�, giving rise to three
approximate Goldstone bosons. We expect a problem to
arise in simulations if either very small quark masses or
large lattice spacings are used. It seems as though current
simulations are not in this region of the phase diagram, as
we will discuss. Although it is not completely ruled out, it
appears as though further improvements to the staggered
action will also be safely away from the staggered-Aoki
phase.

As pointed out in Ref. [8], we are not breaking an exact
symmetry. The SO�4� symmetry will be broken down to
the lattice subgroup at higher order, so in this way it is
unlike the Aoki phase for Wilson fermions, where the
flavor symmetry is exact. Thus, the three Goldstone bosons
actually have masses of O�a4�. Terms which arise at O�a4�
are subleading, however, and will only give rise to small
corrections to our results here. For small enough lattice
spacing they cannot change drastically the phase structure
here.

The goal of this paper is to study the features of the
particle spectrum in the broken phase as compared to the
unbroken phase. We will do this first for the case where all
three quark masses are degenerate, the 3-flavor case, which
is simple and exactly solvable. We will then look empiri-
cally at the 2 � 1-flavor case, where the up and down
quark masses are degenerate but different than the strange
quark mass. This case is significantly more difficult than
the 3-flavor case—we cannot analytically solve for the
condensate in this case—and we will simply make some
-1  2004 The American Physical Society
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general comments on the critical point and how it relates to
values of the parameters in current and future simulations.
We will find that current simulations are not in the broken
phase, and more improved versions of staggered fermions
are likely not going to be in the broken phase, although we
note that we cannot make exact statements about the more-
improved versions without performing simulations.

The approach we follow in this paper is similar to that of
Refs. [8,12–15], using the chiral Lagrangian. This ap-
proach allows us to determine the mass spectrum of all
the light pseudoscalar mesons rather simply. For the region
we are discussing, m� a2, the chiral expansion is quite
natural, and we can use this to determine the meson masses
with the dependence on all parameters explicit. We are not
performing a complete analysis of the phase diagram,
however. We will see that the phase diagram will turn out
to be more complex than studied in this paper, but,
although this will change certain features such as the
mass spectrum, it will not change some central results of
the analysis.

This paper is structured as follows. In Sec. II we layout
the necessary tools for the analysis: the staggered chiral
Lagrangian including the O�a2� taste-violating potential.
Next, we determine the mass spectrum for the case of three
degenerate flavors of quarks in Sec. III. In Sec. IV we
discuss the 2 � 1-flavor case. Here we will not solve for
the mass spectrum, but make some qualitative statements
regarding this case. We will examine the features of the
critical point with current simulations as a function of the
quark masses in Sec. V. Additionally we will look at how
the point shifts with more-improved staggered fermion
formulations, and will see that indeed the problem be-
comes less severe in these cases. We finish up with some
conclusions in Sec. VI.
II. THE STAGGERED CHIRAL LAGRANGIAN

The starting point of our analysis is the S�PT
Lagrangian for three flavors of quarks [10,11]. The
Lagrangian is written in terms of the field � �
exp�i�=f�, a 12 � 12 matrix, with � given by:

� �

0
@ U 
� K�


� D K0

K� �K0 S

1
A; (1)

where the elements shown are each 4 � 4 matrices, linear
combinations of the Hermitian generators

Ta � f�5; i��5; i���; ��; �Ig: (2)

In other words, U �
P

aUaTa, K0 �
P

aK
0
aTa, etc., In

Euclidean space, the gamma matrices �� are Hermitian,
and we use the notations ��� 
 ���� [�< � in Eq. (2)],
��5 
 ���5 and �I 
 I is the 4 � 4 identity matrix. Under
the chiral SU�12�L � SU�12�R symmetry, � ! L�Ry.
The components of the diagonal (flavor-neutral) elements
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(Ua, Da, Sa) are real; while the other (flavor-charged)
fields are complex (
�

a , K0
a, etc.), such that � is Hermitian.

The Lagrangian is given by

L �
f2

8
Tr�@��@��y� �

1

4
�f2Tr�M� �M�y�

�
2m2

0

3
�UI �DI � SI�

2 � a2V ; (3)

where � is a constant with dimensions of mass, f is the
tree-level pion decay constant, the m2

0 term includes the
three flavor-neutral taste-singlet fields (m0 ! 1 at the end
to decouple the taste-singlet �0

I), and V � U�U0 is the
taste-symmetry breaking potential given by

�U � C1Tr���3�5 ���3�5 �y�

� C3
1

2

X
�

�Tr���3�� ���3�� �� � h:c:�

� C4
1

2

X
�

�Tr���3��5���3�5��� � h:c:�

� C6

X
�<�

Tr���3������3����y�; (4)

�U0 � C2V
1

4

X
�

�Tr���3�� ��Tr���3�� �� � h:c:�

� C2A
1

4

X
�

�Tr���3��5��Tr���3�5��� � h:c:�

� C5V
1

2

X
�

�Tr���3�� ��Tr���3�� �y��

� C5A
1

2

X
�

�Tr���3��5��Tr���3�5��y��: (5)

The ��3�B in V are block-diagonal 12 � 12 matrices

��3�B �

0
@�B 0 0

0 �B 0
0 0 �B

1
A; (6)

with B 2 f5; �5; ����< ��; �; Ig.
The mass matrix, M, is the 12 � 12 matrix

M �

0
@muI 0 0

0 mdI 0
0 0 msI

1
A: (7)

We will in later sections take either all three quark masses
to be degenerate or mu � md � ms.

As noted in Refs. [8,11], this potential, although break-
ing the taste symmetry at O�a2�, has an accidental SO�4�
symmetry. This implies a degeneracy in the masses among
different tastes of a given flavor meson, which is seen in the
tree-level masses of the pseudoscalar mesons. We can
classify these mesons into irreducible representations of
SO�4�. The mass for the meson M (composed of quarks a
-2
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interactions are disconnected at the quark level. See
Refs. [11,19] for details.
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and b) with taste B, is given at tree-level by

m2
MB

� ��ma �mb� � a2�B; (8)

with

���5� 
 �P � 0

����5� 
 �A �
16

f2 �C1 � 3C3 � C4 � 3C6�

������ 
 �T �
16

f2 �2C3 � 2C4 � 4C6�

����� 
 �V �
16

f2 �C1 � C3 � 3C4 � 3C6�

���I� 
 �I �
16

f2 �4C3 � 4C4�: (9)

As in Ref. [11], we do not include the m2
0 terms or the terms

from U0 in these masses. Those terms only affect the
flavor-neutral mesons and allow for mixings in the basis
of Eq. (1), the ‘‘flavor-basis.’’ We can expand U0 to
quadratic order to find these mixings take the same form
as the singlet term in the Lagrangian:

�
a2%0

V

2
�U� �D� � S��

2 taste � vector (10)

�
a2%0

A

2
�U�5 �D�5 � S�5�

2 taste � axial; (11)

where we have defined the parameters

%0
V�A� 


16

f2 �C2V�A� � C5V�A��: (12)

This requires us to resum the flavor-neutral propagators in
the three cases: taste-vector, taste-axial and taste-singlet
[11]. Performing this resummation is equivalent to writing
everything in terms of the ‘‘physical basis’’ of our mesons,
the 
0, � and �0 for each of the three tastes here, which are
the true eigenstates of the mass matrix. These are the
additional parameters discussed in the introduction which
may cause the vector or axial �0 mass-squared to be
negative, thereby introducing a staggered-Aoki phase simi-
lar to that discussed in Ref. [8].

The mass eigenstates of the flavor-neutral mass matrix,
for nondegenerate flavors, are quite complicated, but the
completely general case is not needed. The two cases
relevant to current simulations are the fully degenerate
case (mu � md � ms 
 m), which we refer to as the ‘‘3-
flavor’’ case, and the case where two flavors are degenerate
(mu � md 
 ml � ms ), or the ‘‘2 � 1’’ case. We will
examine the 3-flavor case in Sec. III and discuss the 2 �
1-flavor case in Sec. IV.
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III. MASS SPECTRUM IN THE BROKEN PHASE
FOR THREE DEGENERATE FLAVORS

We first discuss the simplest case, where all three quarks
are degenerate in mass, mu � md � ms 
 m. First we
need the eigenvalues of the full flavor-neutral mass matrix.
The vector, axial and singlet tastes are the only tastes which
mix and therefore require rediagonalizing the mass matrix.
The singlet-taste masses do not involve the new parameters
given in Eq. (12), and so we will not focus on their masses.
Also, for the singlet, we take m0 ! 1 on theoretical
grounds, but there is no similar reasoning to dictate the
values of %0

V or %0
A; they must be determined from fits to

lattice data [16,17].
For the 3-flavor case, the mass eigenvalues for the vector

(axial) tastes are given by

m2

0
V�A�

� m2
�V�A�

� 2�m� a2�V�A�

m2
�0
V�A�

� 2�m� a2��V�A �
3

4
a2%0

V�A�:

(13)

We have taken into account the transition from four to one
tastes per flavor with the additional factor of 1=4 in the
a2%0

V�A� term both in Eq. (13) and below. More discussion
on how to account for this transition can be found in
Refs. [11,18,19].

Lee and Sharpe’s original discussion in the one-flavor
case focused on the possibility that one of the splittings in
Eq. (9) may be negative and cause a meson mass-squared
to go negative for certain values of the quark masses. This
signals a vacuum instability and the formation of a meson
condensate. As noted in Ref. [8], all current simulations
with staggered quarks show that �B > 0 for all B [5,6]. On
the other hand, as is clear from Eq. (13), there is another
possibility for a meson mass-squared to become negative,
when one of the ‘‘hairpin’’ parameters, %0

V�A�, is negative.1

In current fits to MILC simulations, both %0
V and %0

A are
negative [16,17], so we can see it is more probable to
encounter an Aoki-like phase with staggered fermions in
this way. Current simulations are outside the broken phase
[5,6]. However, there is the question of how close current
simulations are to this broken phase and how improving the
action more changes this.

It is straightforward to see that the vector (axial) �0

mass-squared is negative if

a2%0
V�A� < a2%0

V�A�;crit � �
4

3
�2�m� a2�V�A��: (14)

�A < �V in simulations, so Eq. (14) implies that j%0
A;critj<

j%0
V;critj. Thus, %0

A is more likely to be less than %0
A;crit than

for the vector-taste. We will assume for the following
-3
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analysis that this is the case, although the analysis for the
vector mesons would be analogous.

To find the vacuum state of the theory, we must mini-
mize the potential

W � �
1

4
�mf2Tr�� � �y� � a2U� a2U0; (15)

where we have substituted M � diag�mI;mI;mI�.
This calculation is most simply done in the physical

basis, where everything is written in terms of 
0, � and
�0 instead of the flavor-basis mesons U, D and S. In the 3-
flavor case, these two bases are related by


0
B �

1���
2

p �UB �DB�; �B �
1���
6

p �UB �DB � 2SB�;

�0
B �

1���
3

p �UB �DB � SB�;
(16)

with B 2 f5; �5; ��;�; Ig. In the 2 � 1-flavor case, or any
case where some masses are nondegenerate, this relation-
ship does not hold for all tastes.2 For the taste singlets,
Eq. (16) is valid in the m0 ! 1 limit for any quark masses.
For the tensor and pseudoscalar tastes, this also holds.3 For
the vector and axial tastes, however, the relationship is
much more complicated in the nondegenerate case,
although we will not need the explicit relationship in that
case.

Since we are assuming that the axial �0 mass-squared is
going negative, we are going to keep only this meson in �.
This is valid right near the critical point and we assert that
this remains valid so long as no other mass-squared is
2We remark that often in continuum �PT this relationship is
used between the two bases. In that case, when mu � md, there
are additional mass-mixing terms between the 
0 and the �
which are usually neglected.

3We note that we need not write the tensor and pseudoscalar-
taste mesons in the physical basis because they do not mix. Since
this is an orthogonal transformation, the bases are equivalent.
Writing them in the physical basis makes the subsequent dis-
cussion simpler.
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negative in the new phase. If this occurs, then there will
be a more complicated pattern of symmetry breaking. We
will see that this is a possibility, and thus the phase diagram
is richer than discussed here. However, we will only focus
on one region of the phase diagram here.

Keeping only the �0
A, � and � are block-diagonal in

flavor space. We can write the condensate h�i in terms of
the five real numbers A and B�:

h�i � A�112�12� � iB��i�
�3�
�5� (17)

with the condition that A2 � B�B� � 1. We write A �

cos( and substitute this into W to get (dropping constants)

W � �3f2

�
2�m cos(�

1

2

	
a2�A �

3

4
a2%0

A



cos2(

�
(18)

To find the condensate, we wish to minimize this potential.
If %0

A is greater than %0
A;crit 
 %0

c, then the minimum always
lies at ( � 0 if �m> 0 or ( � 
 for �m< 0. In this
phase, the unbroken phase, h�i � sign��m�112�12 and
the mass spectrum is exactly that discussed above (for
�m< 0 make the replacement �m ! j�mj [8]).

The more interesting case is when we take %0
A < %0

c.
Since %0

A is negative in this region, we write %0
A �

�j%0
Aj. Here, we find the potential is minimized when

cos( �
8�m

3a2j%0
Aj � 4a2�A

; (19)

so the condensate has the form
h�i �

0
B@ exp�i(n��i��5�� 0 0

0 exp�i(n��i��5�� 0
0 0 exp�i(n��i��5��

1
CA;
where n� is a unit vector.
The condensate breaks the SO�4� symmetry down to

SO�3�, giving us three Goldstone bosons. As noted in the
introduction, these are not exactly Goldstone bosons, be-
cause we are not breaking an exact symmetry. The SO�4�
symmetry will be broken down to the lattice subgroup by
terms of O�a4�. Thus the masses of these pseudo-
Goldstone Bosons are m2

GB � a4�6
QCD.

Since the condensate is proportional to the identity in
flavor space, the flavor-charged mesons (the 
�, K0, etc.)
have the same form as the 
0 and � in the broken phase.
Thus, below we only list the masses for the 
0 of the
various tastes, but keep in mind that m2


0 � m2

� � m2

� �

m2
K� � m2

K0 for all tastes. Additionally, this form of the
condensate implies that there is no flavor mixing between
the 
0, � and �0 in this case. We pick the 4-direction for
the condensate, so that n� � %4� to get explicit results for
the masses. We also define the quantities

%0
2A �

16

f2 C2A; (20)

%0
5A �

16

f2 C5A; (21)

so %0
A � %0

2A � %0
5A, and similarly for A ! V. We will

organize the masses according to taste, by whether or not
they mix.

A. Tastes which mix

The �4 & �5 tastes mix with each other, as do the �i4 &
�i5 tastes (with i � 1; 2; 3). For the �4 & �5 tastes, we have
-4
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the same mixing for any of the mesons. With * being 
�,

0, K�, K0, �, or �0, we define the new fields

*new
4 � cos(*4 � sin(*5 (22)

*new
5 � sin(*4 � cos(*5: (23)

These new fields are defined so that at cos( � 1, the
critical point, *new

4 is purely *4 and similarly *new
5 �

*5. This means that in the chiral limit, at cos( � 0, this
is reversed: *new

4 is purely *5 and vice versa. In terms of
these new mass eigenstates, we find the masses

m2

0;new

4

� a2�V � a2�A �
3

4
a2j%0

Aj (24)

m2

0;new

5

� m2
�0new

5
� �a2�A �

3

4
a2j%0

Aj (25)

m2
�0new

4
� a2�V � a2�A �

3

4
a2j%0

Aj �
3

4
a2%0

V: (26)

Note the combination �4a2�A � 3a2j%0
Aj, which appears

frequently, is positive, so Eqs. (24)–(26) are all positive in
the broken phase.

As for the �i4 & �i5 tastes, we have the same mixing as
in Eq. (22), with 4 ! i4 and 5 ! i5, again with * referring
to any of the six mesons. These have the masses

m2

0;new
i4

� m2
�0new
i4

� a2�T � a2�A �
3

4
a2j%0

Aj (27)

m2

0;new
i5

�
3

4
a2j%0

Aj (28)

m2
�0new
i5

� 0: (29)

Again, all of these squared masses are non-negative for our
range of parameter values. We see that the �0new

i5 are the
three expected Goldstone bosons.

B. Tastes which do not mix

The rest of the tastes do not mix with each other, and so
we just list the masses for each of these states:

m2

0
I
� a2�V � a2�A �

3

4
a2j%0

Aj

�
64m2�2�a2�I � a2�V�

�4a2�A � 3a2j%0
Aj�

2 (30)

m2

0

45

� �a2�A �
3

4
a2j%0

Aj �
64m2�2a2�A

�4a2�A � 3a2j%0
Aj�

2 (31)

m2
�0

45
� �a2�A �

3

4
a2j%0

Aj �
16m2�2

4a2�A � 3a2j%0
Aj

(32)
114504
m2

0
i
� a2�T � a2�A �

3

4
a2j%0

Aj

�
64m2�2�a2�V � a2�T�

�4a2�A � 3a2j%0
Aj�

2 (33)
m2
�0
i
� a2�T � a2�A �

3

4
a2j%0

Aj

�
16m2�2�4a2�V � 4a2�T � 3a2%0

V�

�4a2�A � 3a2j%0
Aj�

2 (34)
m2

0
ij
�

3

4
a2j%0

Aj �
64m2�2�a2�T � a2�A�

�4a2�A � 3a2j%0
Aj�

2 (35)
m2
�0
ij
�

3

4
a2j%0

Aj �
3

4
a2%0

2V �
3

4
a2%0

5V

�
16m2�2�4a2�T � 4a2�A � 3a2%0

2V � 3a2%0
5V�

�4a2�A � 3a2j%0
Aj�

2 :

(36)

In the chiral limit, when m � 0, we have several degen-
eracies, similar to those found in Ref. [8]. In this limit, the
states which mix are purely one state (e.g., 
0;new

i4 � 
0
i5),

and we denote these by the pure state. When m � 0, the
U�1�A is restored, and we see that m2


0
i5
� m2


0
i
� m2

�0
i
,

m2

0

4
� m2


0
45

� m2
�0

45
and m2


0
5

� m2

0
I
. Additionally, we

have m2

0
i4
� m2


0
ij
, which occurs in the massless case due

to an accidental SO�3� symmetry about the minimum of
the potential when %0

A � 0. This degeneracy recurs at the
critical point for a different reason: due to the restoration of
the SO�4� symmetry. Note that the limits of m ! 0 and
%0
A ! %0

c do not commute. If we take %0
A ! %0

c first, the
masses all become those of the unbroken phase, so taking
m ! 0 gives the massless forms of Eq. (8). However,
taking m ! 0 first while in the broken phase then the %0

A !
%0
c limit results in a much different spectrum which is not

the same as in the unbroken phase.
The appearance of the ‘‘incomplete’’ hairpin parameters

%0
2V and %0

5V in the �0
ij mass shows that the phase structure

is more complicated than just the two phases we have
discussed. Since we do not know the size or the sign of
either of these two parameters, these could cause the mass-
squared of the �0

ij to go negative. If this is the case, the
spectrum we have laid out will not be strictly valid, and we
would have to take into account the possibility of a con-
densate also in the ij-directions.

We can determine the requirements on the parameters to
cause the �0

ij mass-squared to be negative. This happens
when
-5
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a2%0
5V�a2%0

2V

>
3a2j%0

Aj�3a
2j%0

Aj�4a2�A�
2�256�a2�T�a2�A��

2m2

3�3a2j%0
Aj�4a2�A�

2�192�2m2 :

(37)

So in the massless case (where we will see later that we are
most likely to be in the broken phase), this condition
requires a2%0

5V � a2%0
2V > a2j%0

Aj. So the further we go
into the broken phase, j%0

Aj gets larger, meaning that we
have a less chance of finding m2

�0
ij
< 0. Here we are study-

ing the simplest case, where this criterion is not met, and
the spectrum above is valid.

We cannot know the values of these parameters from
first principles; we must calculate them from fits to lattice
data. This can be done by calculating quantities for non-
Goldstone mesons (such as the taste-singlet or taste-vector
charged pions). The specific combination %0

A � %0
2A � %0

5A
(and similarly for A ! V) appears when calculating the
pseudoscalar taste masses and decay constants, but in other
taste mesons, we find that %0

2A � %0
5A also appears. In order

to have a complete determination of the taste-violating
parameters, one must calculate the expressions for the
masses and decay constants for each of the other tastes
and match those expressions to lattice simulation data.

This will not change our results in Sec. V, however, since
those results are focused on studying the location of the
critical point, %0

c. The criterion %0
A > %0

c is required for any
symmetry breaking; if this does not hold we have the mass
spectrum of the unbroken phase. If Eq. (37) holds, this
would change the spectrum of masses and the breaking
pattern as well as the condensate itself. We will discuss the
functional dependence of %0

c on the various parameters, and
examine the possibility of current (and near future) simu-
lations being performed in the broken phase. If we are in
the broken phase, then we would have to determine if
Eq. (37) holds; if not, the spectrum discussed above would
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be correct. If it does, a more complete study should be done
of the resulting mass spectrum. As it is, a very rich phase
structure is possible for staggered fermions.

IV. THE BROKEN PHASE FOR 2� 1 FLAVORS

In the 2 � 1 case, we set mu � md 
 ml � ms, so M �
diag�mlI;mlI; msI�. Here when diagonalizing the flavor-
neutral axial-taste mass matrix, the mass eigenstates for the
axial tastes to be given by [11]

m2

0
A
� 2�ml � a2�A;

m2
�A

�
1

2

�
2��ml �ms� � 2a2�A �

3

4
a2%0

A � Z
�
;

m2
�0
A
�

1

2

�
2��ml �ms� � 2a2�A �

3

4
a2%0

A � Z
�
; (38)

Z 


��������������������������������������������������������������������������������������������������
4�2�ms �ml�

2 � a2%0
A��ms �ml� �

9�a2%0
A�

2

16

s
:

(39)

The vector tastes have the same form (with V ! A), but
again we are only focusing on the axial-taste masses
vanishing.

Our definitions of �A and �0
A are different from that in

Ref. [11]. We define the �A as the field which becomes
degenerate with the 
0

A when ml � ms. Thus the �A from
Ref. [11] is now our �0

A since %0
A < 0 (as determined from

simulations). Using this definition, it is the �0
A mass which

vanishes at the critical value of %0
A, just as in the 3-flavor

case. In the 2 � 1-flavor case, this critical point is given by
the expression

a2%0
c � �

4�2�ml � a2�A��2�ms � a2�A�

2��ml � 2ms� � 3a2�A
: (40)

The condensate has the form
h�i �

0
B@ exp�i(n��i��5�� 0 0

0 exp�i(n��i��5�� 0
0 0 exp�i-(n��i��5��

1
CA; (41)
n� is a unit vector in the � direction and we have defined

- �
8��ms �ml� � a2%0

A � 4Z

2a2%0
A

; (42)

which arises from the relationship between the �0
A and the

flavor-basis

�0
A 
 N �UA �DA � -SA�; (43)

with N a normalization constant. Note that in the limit
that %0

A ! �1, or ms ! ml, - ! 1, giving us the same
definition of the �0

A as in the 3-flavor case.
( in Eq. (41) is the solution which minimizes the poten-
tial, which in this case has the form

W � �f2

�
4�ml cos�(� � 2�ms cos�-(�

�

	
a2�A �

1

2
a2%0

A



cos2�(� �

1

2

	
a2�A �

1

4
a2%0

A




� cos2�-(� �
1

2
a2%0

A sin�(� sin�-(�
�
� const: (44)

We plot this potential in Fig. 1 for the unbroken phase
(so that %0

A > %0
c). In this and subsequent figures, we are

plotting the dimensionless quantity W � a2W =f2 as a
function of (. There are two minima, one of which is the
-6



FIG. 3. The potential in the broken phase, where the global
minimum now is at a nonzero value of (. Note the other (local)
minimum has shifted down and to the left; as %0

A ! �1, the two
minima will both be global minima at different values of (.

FIG. 1. Potential in the unbroken phase; parameters here are
for the coarse MILC lattice, with the light/strange lattice quark
masses 0:005=0:05. The global minimum is clearly at ( � 0.
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global minimum at ( � 0, which defines the vacuum state
as we expect in the unbroken phase. At the critical point,
%0
A � %0

c, shown in Fig. 2, both minima have flattened out;
if we were to expand Eq. (44) about ( � 0, we would see
the (2 term vanish here. Once we have entered the broken
phase, in Fig. 3, the minima have both shifted towards each
other, and the global minimum is at a nonzero value of (.
As %0

A ! �1, we find that the minima correspond to two
equivalent solutions for the ground state here. In terms of
FIG. 2. The potential at the critical point, for the same masses
as in Fig. 1. The region near ( � 0 has become flatter, as
expected near a critical point.
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the potential and the critical point, the %0
A ! �1 limit is

similar to the chiral limit [see Eq. (40)], where the U�1�A
symmetry is restored. In the chiral limit, there are two
minima given by ( � 0 or 
, and they are equivalent.
Shifting ( by 
 merely sends � ! ��, which is a sym-
metry of the Lagrangian in the massless case. In the case of
%0
A ! �1, the minima are not at 0 or 
, but roughly near


=2 and 3
=2, and are equivalent minima in the potential.
We cannot solve for an analytic solution for cos( in this

case as we did in the 3-flavor case, although we can solve
for the masses of the mesons in the broken phase in terms
of (, or more appropriately cos�(� and cos�-(�. As in the 3-
flavor case, there is taste mixing, but now the condensate is
not proportional to the identity in flavor space. This implies
that we should find mixing between the � and �0 mesons.
Since the condensate is still diagonal in flavor space, there
will be no mixing between the charged fields. The up and
down quarks are degenerate, so the 
0, 
� and 
� have
the same general form; there are only mixings among the
tastes but there is no flavor mixing. The expressions are
complicated and not very enlightening, so instead of look-
ing directly at the mass spectrum, we will study this phase
numerically. In the next section, we will look at the critical
point as a function of the various parameters and see the
criteria for entering this staggered-Aoki phase.
V. NUMERICAL RESULTS

With current MILC simulations, we now discuss the
dependence of the critical point on the various parameters
in our theory. We will look at data from the ‘‘coarse’’
-7



FIG. 5. Same as Fig. 4 but for the fine lattice spacing, and for a
lattice strange quark mass of 0:031.

FIG. 4. The dashed line shows %0
c as a function of the light

quark mass (in lattice units) on the coarse lattice, for a lattice
strange quark mass of 0:05. The solid horizontal line is the value
of %0

A, determined from chiral fits to the 2 � 1 MILC data
[16,17].
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(a � 0:125 fm) and ‘‘fine’’ (a � 0:09 fm) MILC lattices
[5,6]. We will look first at the quark mass dependence on
the two different lattices with all other parameters fixed,
and then see what happens at fixed quark mass when we
decrease the size of the splitting, �A. This would corre-
spond to staggered actions that have smaller discretization
errors than the Asqtad action, such as HYP staggered
fermions [20,21].

Figures 4 and 5 show the critical %0
A, Eq. (40), on the

coarse and fine lattices, respectively, as a function of light
quark mass at fixed strange quark mass. In lattice units, the
strange quark mass is 0:05�0:031� on the coarse (fine)
lattice. As noted in Ref. [6], these values are slightly larger
than the physical strange quark mass, but there is no
qualitative difference in the results here when we lower
ams by � 20%. The horizontal line shows the value of %0

A
which was determined in chiral fits to the mass and decay
constant of the pseudoscalar-taste mesons [16,17]. We can
see that we are far outside the broken phase here, for both
the coarse and the fine lattices, even as we take the chiral
limit. The relevant points in the parameter space are when
aml � 0:005�0:0062�, since this is the range of values
simulated currently on the coarse (fine) MILC lattices,
and aml � 0:002�0:001�, the physical value of the average
up and down quark masses on the coarse (fine) MILC
lattices.4
4These values for the physical light quark mass are found
relative to the ‘‘nominal’’ strange quark mass, ams �
0:05�0:031� on the coarse(fine) lattices, using the ratio ms=ml �
27 [22].
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We move closer to the broken phase when all three quark
masses are light: the 3-flavor case in the chiral limit. In this
case, %0

c � �4�A=3, which is surprisingly close to the
value of %0

A currently determined from simulations [11].
Figures 6 and 7 shows %0

c as a function of the strange quark
mass atml � 0 for the coarse and fine lattices, respectively.
The solid line shows the central value of %0

A that has been
determined, while the dotted lines give the statistical error.
FIG. 6. The dashed line is %0
c on the coarse lattice as a function

of the strange quark mass for ml � 0. The solid line is the value
of %0

A, with the statistical errors given by the dotted lines. For
very light ms we see that there is a significant probability that we
will enter the broken phase.
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FIG. 7. Same as Fig. 6 but for the fine lattice spacing. There is
still a significant probability that we could be in the broken phase
for light ms but it is somewhat less likely than on the coarse
latice.

FIG. 8. %0
c versus the fractional improvement of the splitting

�A for the coarse lattice. x � 1 corresponds to the Asqtad action,
while x � 0:5 corresponds to HYP staggered fermions [20,21].
The horizontal solid line is the value of %0

A for the Asqtad action
for reference.
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We can see that there is a better chance to enter the broken
phase for very light strange quark mass, although the error
is large enough that this may not occur. A more precise
determination of the hairpin parameter would allow for a
concrete statement about the broken phase at light quark
masses.

As is apparent from Figs. 6 and 7 as a becomes smaller,
we are somewhat less likely to be in the broken phase. This
seems to imply that as a ! 0, there is little chance we will
be in the broken phase, even close to the chiral limit. This
should be expected, as this phase is a lattice artifact and
thus vanishes in the continuum limit (note that as a ! 0,
%0
c ! �1). This also makes it clear that at larger lattice

spacing, %0
A is more likely to be in this phase. We antici-

pated this, since the broken phase appears when the dis-
cretization errors are comparable to the lattice quark
masses. This implies that we must not simulate at too
coarse a lattice spacing, and the values used here are
sufficiently fine so as to not approach the broken phase.
At these lattice spacings, it is clear that there is only a
problem if all three quarks are very near zero, which is not
a physical point in the parameter space.

One may wonder how this changes with more improved
actions, such as HYP staggered fermions [20]. Let us
define ~�A as the axial-taste splitting for some more im-
proved action, and we define the quantity

x 

~�A

�A
; (45)

with �A the Asqtad splitting. We plot in Fig. 8 for the
114504
coarse lattice spacing a4%0
c as a function of x. We only plot

the coarse lattice here, since we expect this to be the place
where the problem would be more severe. These are plot-
ted with the lightest light quark mass from the MILC
simulations (ml=ms � 0:005=0:05). As x is reduced, we
see for both the coarse and fine lattices that %0

c is also
reduced in magnitude. For reference, HYP fermions lie
roughly at x � 0:5 [21]. Whether or not j%0

Aj is reduced by
the same magnitude as �A is uncertain, and this is some-
thing that must be checked in a dynamical simulation. A
good improvement program should improve all the lattice
artifacts to some degree, so we would expect j%0

Aj to be
reduced as well. As can be see from the figure, as long as
j%0

Aj does not increase by a significant factor after improve-
ment (the central value for %0

A in the Asqtad case is shown
by the solid line), then we will not be in the broken phase.
VI. CONCLUSION

We have discussed the phase structure of a lattice theory
with staggered quarks, which has an approximate [to
O�a2�] SO�4� taste-symmetry, as seen in the chiral theory.
This taste symmetry can be spontaneously broken down to
SO�3� for certain values of the parameters in the theory.
This most likely will not occur for current staggered ac-
tions, even among improved theories, unless all three quark
masses are close to the chiral limit. At that point, there
could be a phase transition with three pseudo-Goldstone
bosons [with masses �O�a4�], and a rather different mass
spectrum than in the unbroken phase.
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The possibility of a flavor-symmetry (or in this case
taste-symmetry) breaking phase is a general feature of
any lattice theory which has additional terms in the squared
meson masses at finite lattice spacing. While originally
discussed in the context of Wilson fermions (Aoki phase),
we see that there are complicated ways for the taste-
symmetry with staggered fermions to be broken as well.
The difference here is mainly that the taste-symmetry is
already broken by the lattice spacing, and it is only the
approximate SO�4� symmetry which is broken. So unlike
the Wilson case, there are significant corrections at higher-
order in the lattice spacing.

This brings up an interesting question about the O�a4�
corrections. We are stating here that when the lattice spac-
ing becomes too large, we are most likely to enter this
broken phase. However, as a increases, higher order scal-
ing violations become more important. It is unclear
whether or not the broken phase will remain at extremely
coarse lattice spacing. Using a chiral Lagrangian that in-
cludes higher order corrections [23], this could be studied
by determining the relative sizes of higher-order
contributions.
114504
An interesting question arises relating to the quenched
approximation of staggered fermions. For Wilson fermi-
ons, there is the possibility of entering the Aoki phase, and
this can cause significant problems with locality when
simulating Wilson, Domain Wall, or Overlap quarks [24].
For the staggered case, however, there is no Aoki phase in
this context. There cannot be an Aoki phase in the context
of the current analysis, since the %0

A splittings do not add to
the mass of the �0

A. So unlike the case of Wilson quarks,
there is no difficulty when simulating staggered quarks in
the quenched approximation.
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