
PHYSICAL REVIEW D 70, 114501 (2004)
Light pseudoscalar decay constants, quark masses, and low energy constants
from three-flavor lattice QCD

(MILC Collaboration)
C. Aubin and C. Bernard
Department of Physics, Washington University, St. Louis, Missouri 63130, USA

C. DeTar and J. Osborn
Physics Department, University of Utah, Salt Lake City, Utah 84112, USA

Steven Gottlieb
Department of Physics, Indiana University, Bloomington, Indiana 47405, USA

E. B. Gregory and D. Toussaint
Department of Physics, University of Arizona, Tucson, Arizona 85721, USA

U. M. Heller
American Physical Society, One Research Road, Box 9000, Ridge, New York 11961-9000, USA

J. E. Hetrick
Physics Department, University of the Pacific, Stockton, California 95211, USA

R. Sugar
Department of Physics, University of California, Santa Barbara, California 93106, USA

(Received 23 August 2004; published 8 December 2004)
1550-7998=20
As part of our program of lattice simulations of three-flavor QCD with improved staggered quarks,
we have calculated pseudoscalar meson masses and decay constants for a range of valence quark masses
and sea-quark masses on lattices with lattice spacings of about 0.125 and 0.09 fm. We fit the lattice data
to forms computed with ‘‘staggered chiral perturbation theory.’’ Our results provide a sensitive test of
the lattice simulations, and especially of the chiral behavior, including the effects of chiral logarithms.
We find: f� � 129:5 � 0:9 � 3:5 MeV, fK � 156:6 � 1:0 � 3:6 MeV, and fK=f� � 1:210�4��13�,
where the errors are statistical and systematic. Following a recent paper by Marciano, our value of
fK=f� implies jVusj � 0:2219�26�. Further, we obtain mu=md � 0:43�0��1��8�, where the errors are
from statistics, simulation systematics, and electromagnetic effects, respectively. The partially
quenched data can also be used to determine several of the constants of the low energy chiral effective
Lagrangian: In particular, we find 2L8 � L5 � �0:2�1��2� � 10�3 at chiral scale m�, where the errors
are statistical and systematic. This provides an alternative (though not independent) way of estimating
mu; the value of 2L8 � L5 is far outside the range that would allow the up quark to be massless. Results
for mMS

s , m̂MS, and ms=m̂ can be obtained from the same lattice data and chiral fits, and have been
presented previously in joint work with the HPQCD and UKQCD collaborations. Using the perturbative
mass renormalization reported in that work, we obtain mMS

u � 1:7�0��1��2��2� MeV and mMS
d �

3:9�0��1��4��2� MeV at scale 2 GeV, with errors from statistics, simulation, perturbation theory, and
electromagnetic effects, respectively.

DOI: 10.1103/PhysRevD.70.114501 PACS numbers: 12.38.Gc, 12.15.Hh, 12.39.Fe
I. INTRODUCTION

Using lattice QCD techniques, the masses and decay
constants of light pseudoscalar mesons can be deter-
mined with high precision at fixed quark mass and lattice
spacing. Assuming that the chiral and continuum extrap-
olations are under control, one can therefore calculate
04=70(11)=114501(34)$22.50 114501
from first principles a number of physically important
quantities, including
(i) P
-1
ion and kaon leptonic decay constants, f� and
fK, and their ratio.
(ii) L
ow energy (‘‘Gasser-Leutwyler’’ [1]) constants
Li, in particular L5, L4, and the combinations
2L8 � L5 and 2L6 � L4.
 2004 The American Physical Society
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(iii) Q
1We n
0 is no
resolutio
for mu h
current
uark mass ratios, such as ms=m̂, where m̂ is the
average of the u and d quark masses, and mu=md.
(iv) A
bsolute quark mass values, if the mass renor-
malization constant is known perturbatively or
nonperturbatively.
The comparison of f� and fK with experiment pro-
vides a sensitive test of lattice methods and algorithms. A
precise determination of fK, or fK=f� may in fact be
turned around to determine the magnitude of the CKM
element Vus, as emphasized recently by Marciano [2]. The
quark masses are fundamental parameters of the
Standard Model, and hence are phenomenologically and
intrinsically interesting. Of special importance here is the
up quark mass: If mu or mu=md can be bounded away
from zero with small enough errors, it can rule out mu �
0 as a solution to the strong CP problem [3,4].1 Finally,
the Gasser-Leutwyler parameters give a concise sum-
mary of the properties of low energy QCD. In particular
the combination 2L8 � L5 provides an alternative
(although not independent) handle on the up quark mass
[6,7].

Extracting these important quantities is predicated on
being able to control the chiral and continuum extrapo-
lations. The improved staggered (Kogut-Susskind, KS)
quarks [8,9] used here have the advantage in this respect
of allowing us to simulate at quite small quark mass: Our
lowest m�=m� value is � 0:3, a pion mass of roughly
250 MeV. On the other hand, these extrapolations are
complicated by the fact that a single staggered-quark field
describes four species of quarks. We call this degree of
freedom ‘‘taste’’ to distinguish it from physical flavor. We
simulate the latter by introducing distinct staggered fields
for each nondegenerate quark flavor; while we handle the
former by taking the fourth root of the staggered quark
determinant.

The fact that taste symmetry is violated at finite lattice
spacing leads to both practical and theoretical complica-
tions. The improvement of the fermion action [8] reduces
the splittings among pseudoscalar mesons of various
tastes to O��2

Sa
2�; yet the splittings are still numerically

large, especially on our coarser lattices. This practical
problem makes it impossible to fit our data with contin-
uum chiral perturbation theory (�PT) expressions (see
Refs. [10,11], as well as discussion in Sec. IX D). Instead,
we must use ‘‘staggered chiral perturbation theory’’
(S�PT) [12–15], which includes discretization effects
within the chiral expansion. Using S�PT, we can take
the chiral and continuum limits at the same time, and
arrive at physical results with rather small systematic
errors.
ote that Creutz [5] has argued that the statement mu �
t physically meaningful and therefore cannot be a
n of the CP problem. Since we find a nonzero value
ere, we are not forced to face this issue directly in the
work.
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Theoretically, it is not obvious that, in the presence of
taste violations, the fourth-root procedure commutes
with the limit of lattice spacing a! 0. Assuming that
perturbation theory for the standard KS theory without
the fourth root correctly reproduces a continuum four-
taste theory, then the fourth-root trick is correct in per-
turbation theory [16], since it just multiplies each virtual
quark loop by 1=4. However, nonperturbatively, the
fourth-root version is almost certainly not ultralocal at
finite lattice spacing, and the possibility remains that it
violates locality (and therefore universality) in the con-
tinuum limit. We believe that existing checks [17–20] of
the formalism against experimental results already make
this possibility unlikely. The current work adds more
evidence that the method gives results that agree well
with experiment and have the proper chiral behavior, up
to controlled taste-violating effects that vanish in the
continuum limit. However the question is not yet settled.
We discuss this further in Sec. IX D 7 and briefly refer to
other recent work that addresses the issue.

This violation of taste symmetry arises because the full
axial symmetry (at mq � 0) is broken to a single U(1)
subgroup on the lattice. This means that only one of the
pseudoscalars, which we call the ‘‘Goldstone meson,’’ has
its mass and decay constant protected from renormaliza-
tion. A study of pion masses and decay constants by the
JLQCD collaboration [21] explored the masses and decay
constants of all of the pseudoscalars in a quenched cal-
culation. We concentrate almost exclusively here on
Goldstone mesons, thus avoiding the necessity for
renormalization.

We have generated a large ‘‘partially quenched’’ data
set of Goldstone meson masses and decay constants using
three flavors of improved KS sea quarks. These quantities
have been computed with a wide range of sea-quark
masses (with mu � md � ms), and on lattices with lattice
spacings of about 0.125 and 0.09 fm.We have eight or nine
different valence quark masses available for each set of
sea-quark masses and lattice spacing. This data may be fit
to chiral-logarithm forms from S�PT, which at present
have been computed for Goldstone mesons only [14,15].
However, since the masses for mesons of other tastes enter
into the one-loop chiral logarithms of the Goldstone
mesons, some control over those masses is also needed.
We have computed most non-Goldstone ‘‘full QCD’’
(valence masses equal to sea masses) pion masses on
most of our lattices. We can fit that data to the tree-level
(LO) S�PT form, and use the results for splitting and
slopes as input to the next-to-leading order (NLO) terms
for the Goldstone mesons. There is, of course, a next-to-
next-to-leading order (NNLO) error in this procedure,
which we estimate in Sec. VI B.

The outline of the rest of this paper is as follows:
Section II explains the methodology used to compute
raw lattice results (at fixed a and fixed quark mass). In
-2
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Sec. III, we describe the details of our simulations. We
present a first look at the raw data in Sec. IV. Taste
violations are discussed in Sec. V, followed in Sec. VI
by a detailed description of our S�PT fitting forms.
Relevant results from weak-coupling perturbation theory
are collected in Sec.VII. At the current level of precision,
electromagnetic and isospin-violating effects cannot be
ignored, and we discuss the necessary corrections and the
attendant systematic errors in Sec. VIII. Section IX then
presents the S�PT fits, including a description of fit
ranges (in quark mass), an inventory of all fit parameters,
the resulting fits, and a discussion of various issues rele-
vant to the extraction of physical results. The discussion
includes details of the continuum extrapolation, the evi-
dence for chiral logarithms, an estimate of the systematic
errors associated with using a (slightly) mass-dependent
renormalization scheme, a critical look at the applicabil-
ity and convergence of the chiral perturbation theory on
our data set, bounds on residual finite-volume effects, and
some comments relevant to the fourth-root trick. In
Sec. X, we present our final results, tabulate the system-
atic errors, and discuss prospects for improving the cur-
rent determinations.

In collaboration with the HPQCD and UKQCD groups,
we have previously reported results for mMS

s , the average
u-d quark mass m̂MS, and ms=m̂ [22]. The data sets and
chiral fits described in detail here are the same ones that
were used in Ref. [22].
2We thank Davies, Lepage, Shigemitsu, and Wingate for help
in getting this normalization correct.
II. METHODOLOGY

For the axial current corresponding to the unbroken
(except by quark mass) axial symmetry, the decay con-
stant fPS can be found from the matrix element of � �5 
between the vacuum and the pseudoscalar meson. In
terms of the one component staggered-fermion field
� �5 corresponds to the operator

O P�t� � ��a� ~x; t���1� ~x
t�a� ~x; t�: (1)

Here a is a summed color index. The relevant matrix
element can be obtained from a pseudoscalar propagator
using OP as both the source and sink operator:

PPP�t� �
1

Vs

X
~y

hOP� ~x; 0�OP� ~y; t�i

� CPPe�mPSt 
 excited state contributions; (2)

where mPS is the mass of the pseudoscalar, and Vs is the
spatial volume.

The decay constant is obtained from CPP by [21,23]

fPS � �mx 
my�

�����
Vs
4

s ���������
CPP
m3
PS

s
; (3)
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where mx and my are the two valence quark masses in the
pseudoscalar meson. Throughout this paper we use the
convention where the experimental value of f� is approxi-
mately 131 MeV. Note that in computing this meson
propagator we must take care to normalize the lattice
Dirac matrix as M � am
D6 . The four in the denomi-
nator arises from the number of tastes natural to the
Kogut-Susskind formulation. [See unnumbered equations
between Eqs. (7.2) and (7.3) in Ref. [23].]2

However, the point operator OP has large overlap with
excited states. For calculating masses it is customary to
use an extended source operator that suppresses these
overlaps, together with a point sink. In our case, this
extended operator is a ‘‘Coulomb wall,’’ i.e., we fix to
the lattice Coulomb gauge and sum over all lattice points
on a time slice:

OW�t� �
X
~x; ~y

��� ~x; t���1� ~x
t�� ~y; t�: (4)

We can calculate propagators with any source or sink
operator we wish. Ignoring excited state contributions,
we have, for example,

hOP� ~x; 0�OW�t�i � CPWe
�m�t: (5)

We will use the shorthand ‘‘PP’’ for point-source point-
sink propagators,‘‘WP’’ for Coulomb-wall-source point-
sink propagators,‘‘PW’’ for point-source Coulomb-wall-
sink propagators, and ‘‘WW’’ for Coulomb-wall source
and sink propagators. In previous calculations of pseudo-
scalar decay constants the relation CPP � C2

WP=CWW has
often been used to get the point-point amplitude.
However, the wall-wall propagator has large statistical
fluctuations and severe problems with excited states, as
was discussed in Ref. [21]. To be able to use the PP
operator to get CPP directly, rather than indirectly by
way of the ratio formula, one needs much better statistics.
We do this by replacing the point source with a ‘‘random-
wall’’ source, which simulates many point sources. We set
the source on each site of a time slice to a three compo-
nent complex unit vector with a random direction in color
space, and use this as the source for a conjugate gradient
inversion to compute the quark propagator, whose mag-
nitude is squared to produce the Goldstone pion propa-
gator. Thus, contributions to a meson propagator where
the quark and antiquark originate on different spatial sites
will average to zero and, after dividing by the spatial
lattice volume, this source can be used instead of OP.

Figures 1 and 2 show masses and amplitudes from pion
propagators with random-wall and Coulomb-wall sources
and sinks. In Fig. 1, we can see that extraction of masses
from theWW propagators is almost hopeless. Including an
excited state helps, but statistical errors become very
-3



FIG. 2 (color online). Same as Fig. 1 but for pion propagator
amplitudes. The lower set of WW points again includes an
excited state in the fit. The PW symbols have been displaced
slightly to the right to separate them from the WP points.

FIG. 3. Ratio of pion propagators. Here PWP is the Coulomb-
wall source and point-sink pion propagator, etc. The point-
source was implemented with a random-wall as discussed in
the text.

FIG. 1 (color online). Pion masses with random-wall and
Coulomb-wall sources and point and Coulomb-wall sinks
from the coarse set with sea-quark lattice masses 0.01,0.05
(see Table I). The (red) crosses are random-wall source and
Coulomb-wall sink, and the gray (green) octagons are
Coulomb-wall source and point sink (summed over spatial sites
to project out the zero momentum states). The (blue) bursts are
from a random-wall source and point sink, and the squares
have a Coulomb-wall source and sink. The lower set of WW
points include an excited state in the fit. The symbol size is
proportional to the confidence level of the fit, with the symbol
size in the labels corresponding to 50%.
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large. In Fig. 2, the WW amplitudes are also slower to
plateau, though not as bad as the masses. As a consistency
check, note that theWP and PWamplitudes are equal, and
the masses extracted from the diagonal PP and WW
propagators approach their value from above (since ex-
cited states must contribute to these propagators with the
same sign as the ground state). As an additional illustra-
tion of the difficulties with using the Coulomb-
wall–Coulomb-wall propagator, Fig. 3 plots the ratio of
the point-point pion propagator (using the random-wall
source) to the alternative PPWPWP=PWW (with a different
mass than in Figs. 1 and 2).While this ratio is approaching
one, it is clear that we would either need very large
minimum time in the fit or a careful removal of excited
states to use the WW propagators.

Given the problems with the WW propagators, we have
opted to use only the Coulomb-wall–point-sink and
random-wall–point-sink propagators. We performed a
simultaneous fit to these two propagators, with an ampli-
tude for each propagator and a common mass. In these fits
the WP propagator dominates the determination of the
mass; while the amplitude of the PP propagator is re-
quired for computing the decay constant. Since the com-
114501-4
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bination CPP=m3
� is needed for determining f� and the

mass and amplitude in a fit to a meson propagator are
strongly correlated, we used this combination as one of
our fitting parameters. That is, we fit the point-point and
wall-point meson correlators to

PPP � m3
�APPe

�m�t; PWP � m3
�AWPe

�m�t (6)

so that APP is the desired combination CPP=m3
�. Since the

correlation between m� and the propagator amplitude is
positive, the statistical error on the quantity CPP=m3

� is
somewhat smaller than a naive combination of the errors
on CPP and m�.

III. SIMULATIONS

These calculations were made on lattices generated
with a one-loop Symanzik and tadpole improved gauge
action [9,24] and an order a2 tadpole improved Kogut-
Susskind quark action [8]. Parameters of most of the
lattices, as well as the light hadron spectrum, are in
Refs. [10,19]. The determination of the static quark po-
tential, used here to set the lattice spacing, is presented in
Refs. [10,19,25]. In addition to the runs tabulated in
Ref. [10], we now have a partially completed run with
am̂0 � 0:005 and am0

s � 0:05. (Here and below, the
primes on masses indicate that they are the dynamical
quark masses used in the simulations, not the physical
masses m̂ and ms.) In addition, we have results from two
runs at a finer lattice spacing, a � 0:09 fm, with quark
masses of am̂0; am0

s � 0:0124; 0:031 and 0:0062; 0:031.
These runs, with m̂0 � 0:4m0

s and 0:2m0
s, are analogous

to the coarse lattice runs with am̂0; am0
s � 0:02; 0:05 and

0:01; 0:05, respectively. All of these lattices have a spatial
size of about 2.5 fm with the exception of the am̂0; am0

s �
0:005; 0:05 run, where the spatial size is about 3.0 fm.
Table I lists the parameters of the runs used here.

We note here that the values for am0
s were approxi-

mately tuned from the vector to pseudoscalar meson mass
ratio in initial runs with fairly heavy quarks. Our best
determinations of the physical strange quark mass at
TABLE I. Parameters of the simulations in units of the lattice sp
am̂0=am0

s, the gauge coupling 10=g2, the lattice dimensions, and
remaining four columns are the ‘‘diagonal’’ pseudoscalar masses an
masses. The masses shown here come from a separate spectrum ca
partially quenched calculations, and using more lattices at am̂0 � 0
constants in units of r1.

am̂0=am0
s 10=g2 Dimensions Lattices

0:03=0:05 6.81 203 � 64 262 0.37
0:02=0:05 6.79 203 � 64 485 0.31
0:01=0:05 6.76 203 � 64 608 0.22
0:007=0:05 6.76 203 � 64 447 0.18
0:005=0:05 6.76 243 � 64 137 0.15

0:0124=0:031 7.11 283 � 96 531 0.20
0:0062=0:031 7.09 283 � 96 583 0.14
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these lattice spacings turned out to be lower by 8% to
22% (coarse) and 6% to 12% (fine) than the nominal
values m0

s, where the range depends on whether or not
taste-violating terms (as determined by S�PT fits) are set
to zero before demanding that m� and mK take their
physical values on a given lattice.

Pseudoscalar propagators were calculated on lattices
separated by six units of simulation time, using two
source time slices per lattice. For the coarse lattices,
nine valence quark masses were used, ranging from
0:1m0

s to m0
s; while for the fine lattices eight masses

ranging from 0:14m0
s to m0

s were used. In all but one of
the runs, the source slices were taken at different points in
successive lattices, which leads to smaller autocorrela-
tions than using the same source time slices on all lattices.
The effects of the remaining correlations among the
sample lattices were estimated in two ways. First, jack-
knife error estimates for the masses and decay constants
were made eliminating one lattice at a time, and again
eliminating four successive lattices. Second, an inte-
grated autocorrelation time was estimated by summing
the autocorrelations of the single elimination jackknife
results over separations from one to five samples (six to
thirty simulation time units) "int �

P5
1 2Ci, where Ci is

the normalized autocorrelation of jackknife results omit-
ting lattices separated by 6i time units. The error estimate
including the effects of autocorrelations is a factor of�����������������

1 
 "int
p

larger than the error from the single elimina-
tion jackknife fit. Table II summarizes the results of these
tests. The numbers in Table II vary a lot, consistent with
the well-known difficulties in measuring autocorrelations
on all but the longest runs. Since we actually expect the
autocorrelations to be smooth functions of the quark
mass, we account for them by increasing all the elements
of the covariance matrix by an approximate average of
these factors squared, �1:10�2, which is equivalent to
increasing error estimates by a factor of 1.10.

Propagators were fit to Eq. (6) using a minimum time
distance of 20a for the coarse lattices and 30a for the fine
acing. The first four columns are the dynamical quark masses
the number of configurations used in these calculations. The
d amplitudes, with valence quark masses equal to the sea-quark
lculation, using more source time slices than were used in the
:03. Equation (7) can be used to express these masses and decay

am� amK af� afK

787(18) 0.436 13(19) 0.114 52(31) 0.120 82(31)
1 25(16) 0.409 84(21) 0.107 03(18) 0.117 00(21)
4 47(17) 0.383 31(24) 0.098 05(14) 0.112 81(17)
8 91(20) 0.372 84(27) 0.093 64(20) 0.11010(28)
9 71(20) 0.365 30(29) 0.090 54(33) 0.106 97(40)

6 35(18) 0.272 17(21) 0.072 18(16) 0.078 55(17)
7 89(18) 0.25318(19) 0.065 75(13) 0.075 14(17)
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TABLE II. Estimates of the effects of autocorrelations.
�m2�4�=�m2�1� is the ratio of error estimates for the squared
pion mass between jackknife estimates with a block size of
four and a block size of one. �f2�4�=�f2�1� is the same thing
for the decay constant. "int;m and "int;f are the integrated
autocorrelation times for the squared pion mass and decay
constant. All of these numbers are averaged over the valence
quark masses.

am̂0=am0
s 10=g2 �m2�4�

�m2�1�
�f�4�
�f�1� "int;m "int;f

0:03=0:05 6.81 1.10 1.16 0.25 0.15
0:02=0:05 6.79 1.07 1.00 0.01 �0:09
0:01=0:05 6.76 1.28 1.12 0.30 0.27
0:007=0:05 6.76 1.05 0.90 �0:02 �0:03

0:005=0:05 6.76 1.06 1.20 �0:04 �0:04
0:001 24=0:031 7.11 1.10 1.13 0.25 0.15
0:000 62=0:031 7.09 1.10 0.95 0.22 �0:01
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lattices. At these distances, the contamination from ex-
cited states is at most comparable to the statistical errors.
For example, Fig. 4 shows results for pion masses and
amplitudes as a function of minimum fitting distance for
one of the fine runs. Since our other systematic errors are
significantly larger than statistical errors (see Sec. X), we
can neglect the systematic effect due to excited states.

For each run, the propagator fitting produced a pion
mass and decay constant for each combination of valence
quark masses. We call the two valence quarks in a par-
FIG. 4 (color online). Pion masses [(red) octagons] and am-
plitudes [(blue) crosses] as a function of the minimum time
distance in the fit, from the fine set with sea-quark lattice
masses 0.0062,0.031 (see Table I). The amplitudes have been
multiplied by 175.
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ticular meson x and y; there are 45 different combinations
of mx,my for the coarse lattices and 36 for the fine,
although, as described in Sec. IX A, the largest valence
quark masses were not used in all of the fits. All of the
masses and decay amplitudes from a single run are corre-
lated. For each run with N samples, a covariance matrix
describing the fluctuations of all of these numbers was
made by doing a single elimination jackknife fit, omitting
one lattice at a time, and rescaling the covariance matrix
of the jackknife fits by �N � 1�2. A single elimination
jackknife, rather than one where larger blocks were
omitted, was used because getting a reliable covariance
matrix requires a number of samples large compared to
the dimension of the matrix. Then, to account for auto-
correlations, this covariance matrix was rescaled by the
factor estimated above. Finally, to allow simultaneous
fitting of the meson decay constants and masses from
all of the runs as a function of valence and sea-quark
masses, the covariance matrices from the individual runs
were combined into a large block-diagonal covariance
matrix. (Runs with different sea-quark masses or gauge
couplings are independent, so correlations between dif-
ferent runs can be set to zero.)

Fitting the pseudoscalar propagators produces masses
and decay constants in units of the lattice spacing a, and
to convert to physical units we must estimate a from a
calculation of some dimensional quantity whose value is
known. This amounts to saying that we are calculating
ratios of these quantities to some other quantity calcu-
lated from these simulations. We express our results in
units of a length obtained from the static quark potential,
r1, where r21F�r1� � 1:0 [25,26]. This has the advantage
that r1 can be accurately determined in units of the lattice
spacing. But r1 is not a directly measurable quantity, and
its physical value must in turn be obtained from some
other quantities. We have calculated the static quark po-
tential in all of these runs, and fit it to determine r1=a. To
smooth out statistical fluctuations in these values, we then
computed a ‘‘smoothed r1’’ by fitting the r1=a values to a
smooth function. A simple form, which gives a good fit
over the range of quark masses and gauge coupling used
here, is [19]

log�r1=a� � C00 
 C10�10=g2 � 7� 
 C01amtot


 C20�10=g2 � 7�2; (7)

where mtot � 2m̂0 
m0
s. The results of the fit are

C00 � 1:258�3�; C10 � 0:937�9�;

C01 � �0:83�3�; C20 � �0:27�2�: (8)

When we need an absolute lattice scale, we start with
the scale from � 2S-1S or 1P-1S splittings, determined by
the HPQCD group [17,27]. This gives a scale a�1 �
1:588�19� GeV on the coarse 0:01=0:05 lattices, and
-6



FIG. 5 (color online). Pseudoscalar masses with a �
0:125 fm. The horizontal axis is the sum of the valence quark
mass (in units of r1). For each set of values of msea, the first
symbol shows ‘‘pion’’ points with mx � my; while the second
shows kaon points with my � m0

s. Bursts are pion points with
valence masses equal to sea-quark masses.
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a�1 � 2:271�28� GeV on the fine 0:0062=0:031 lattices.
For light quark masses & ms=2, the mass dependence of
these quantities and of r1 appears to be slight, and we
neglect it. With our smoothed values of r1=a, we then get
r1 � 0:324�4� fm on the coarse lattices and r1 �
0:320�4� fm on the fine lattices.

To extrapolate r1 to the continuum, we first assume that
the dominant discretization errors go like �Sa2. Using
�V�q

�� [28] (with scale q� � �=a) for �S gives a ratio
��Sa

2�fine=��Sa
2�coarse � 0:427. Extrapolating away the

discretization errors linearly then results in r1 �
0:317�7� fm in the continuum. However, taste-violating
effects, while formally O��2

Sa
2� and hence subleading,

are known to be at least as important as the leading errors
in some case. Therefore, one should check if the result
changes when the errors are assumed to go like �2

Sa
2.

Taking �S � �V�3:33=a� gives a ratio ��2
Sa

2�fine=
��2

Sa
2�coarse � 0:375; while a direct lattice measurement

of the taste splittings gives a ratio of 0:35. Extrapolating
linearly to the continuum then implies r1 � 0:318�7� fm
or r1 � 0:319�6� fm, respectively, in agreement with the
previous result. For our final result, we use an ‘‘average’’
ratio of 0.4 and add the effect of varying this ratio in
quadrature with the statistical error. We obtain r1 �
0:317�7� fm. A systematic error of 0.03 fm in r1 from
our choice of fitting methods is omitted since it is com-
mon to all our runs and cancels out in the final results
here. Using our current value r0=r1 � 1:472�7�, the result
for r1 implies r0 is about 7% smaller than the standard
phenomenological choice r0 � 0:5 fm, although the dif-
ference is within the expected range of error of the
phenomenological estimates [26].
FIG. 6 (color online). Decay constants in units of r1 with a �
0:125 fm. The abscissa and symbols are the same as in Fig. 5.
IV. FIRST LOOK AT RESULTS

Figures 5 and 6 present pseudoscalar masses and decay
constants in units of r1 as functions of the valence quark
masses for several different light quark masses. All of
these points are from the lattices with a � 0:125 fm.
Figure 5 also contains pion masses where the sea-quark
mass varies along with the valence quark masses.

Figures 7 and 8 show the effect of changing the lattice
spacing. For lattice spacings a � 0:125 fm and a �
0:09 fm we show results with m̂0 � 0:4m0

s and m̂0 �
0:2m0

s, again in units of r1. The horizontal axis is again
the sum of the valence quark masses in the meson. These
figures also show a crude extrapolation to a � 0, made by
taking a linear extrapolation in�Sa2 using pairs of points
with the same m̂0=m0

s. In Fig. 7 one pair of extrapolated
points has diagonal lines showing the data points that
were extrapolated to produce this point. In hindsight, m0

s

used in the a � 0:09 fm runs was smaller than that used
in the a � 0:125 fm runs, as indicated by the fact that the
finer lattice points fall slightly to the left of the corre-
sponding coarse lattice points.
114501
V. TASTE SYMMETRY VIOLATIONS

As mentioned above, we use the term taste to denote
the different staggered-fermion species resulting from
doubling. At finite lattice spacing, taste symmetry is
-7



FIG. 7 (color online). Pion masses (mx � my) and kaon
masses (my � m0

s) with sea-quark masses m̂0 � 0:4m0
s and

m̂0 � 0:2m0
s at a � 0:125 fm and a � 0:09 fm. A ‘‘point by

point’’ extrapolation to a � 0 [fancy (magenta) squares: m̂0 �
0:4m0

s, and (cyan) squares: m̂0 � 0:2m0
s] is also included.
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violated. Although the improved staggered action reduces
the taste-violating effects to O��2

Sa
2� from O��Sa

2� with
unimproved staggered fermions, the violations are still
quite significant numerically.

Figure 9 shows the splittings between pions of various
tastes on our coarse lattices. There are 16 such pions, �B,
where B � 5; *5; *+;*; I (+ > *) labels taste matrices
FIG. 8 (color online). Same as Fig. 7 but for decay constants.

114501
in the taste Clifford algebra generated by Euclidean
gamma matrices .*. The �5 is the Goldstone (pseudo-
scalar taste) pion, whose mass is required to vanish in the
chiral limit by the exact (nonsinglet) lattice axial sym-
metry. All the pions in Fig. 9 are flavor charged, i.e., �


mesons. Thus there are no contributions from discon-
nected graphs, even for the taste singlet �


I . The approxi-
mate ‘‘accidental’’ SO�4� identified by Lee and Sharpe
[12] is clearly a good symmetry: There is near degeneracy
between �


05 and �

i5, between �


0i and �

ij , and between

�

0 and �


i . When we assume such degeneracy, we can
think of the index B as running over the multiplets
5; A; T; V; I with degeneracies 1, 4, 6, 4, 1, respectively.

The fit in Fig. 9 is to the tree-level chiral form given in
Refs. [12,14]:

m2
�

B
� 2*treem̂
 a2�B: (9)

The slope, *tree, is the same for all tastes, but there are
constant splittings for each non-Goldstone multiplet
(�5 � 0). Although the fit is poor (chiral logs, including
taste violations, are needed), it does give the pion squared
masses within a few percent: The biggest deviation, 7%,
is for the Goldstone pion at the lowest mass; most other
deviations are �2%.

Table III shows the values of a2�B coming from the fit
on the coarse lattices. On the fine lattices, we have mea-
sured non-Goldstone pion masses only on the set with
quark masses 0:0124, 0:031. So we directly compare the
FIG. 9 (color online). Squared masses of charged pions for
various tastes on the coarse lattices. We use r1 to set the scale.
Tastes that are degenerate by SO�4� symmetry are fit together.
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TABLE III. Mass-squared splittings in units of r1 for the
coarse lattices, and the ratio of fine to coarse splittings.
Results from tastes that are degenerate under the accidental
SO�4� have been combined.

Taste (B) r21�a
2�B�coarse

�a2�B�fine

�a2�B�coarse

A 0.205(2) 0.344(23)
T 0.327(4) 0.353(18)
V 0.439(5) 0.347(22)
I 0.537(15) 0.384(33)

FIG. 10 (color online). Fit of partially quenched data to
continuum form. Data for both f� and m2

�=�mx 
my� with
various mx and my values are included in the fit, but only f�
points with mx � my are shown.

3Throughout this paper, we define the order of a contribution
to be the order of the corresponding term in the chiral
Lagrangian. This is the simplest way to keep the power count-
ing consistent between decay constants and meson masses,
although it does lead to the unnatural statement that the tree-
level f� is ‘‘O�mq�’’ since it comes from the kinetic energy
term in the chiral Lagrangian. What matters ultimately is only
the relative size of contributions: The first correction to the
tree-level value of m2

� or f� is smaller by one power of mq.
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splittings with those of the corresponding coarse lattice
(masses 0:02, 0:05). The fine-lattice splittings are smaller
by a common factor of 0:35, within errors. This is con-
sistent with the expectation that taste violations go like
O��2

Sa
2�. Indeed, if we take�S � �V�q

�� [28] and choose
q� � �=a because taste violations occur at the scale of
the cutoff, we find

��2
V�q

� � �=a�a2�fine

��2
V�q

� � �=a�a2�coarse

� 0:372: (10)

The ratio of taste-violating terms between fine and
coarse lattices is an input to the chiral fits for Goldstone
pions discussed below. The measured splitting ratio of
0:35 is used as a central value. The error can be estimated
by varying q� in Eq. (10): q� � �=�2a� gives a ratio of
0:324; while 2�=a gives 0:398. We take 0.3–0.4 as an
appropriate range for our analysis of systematics.

We warn the reader here that the notation in Eq. (9) can
be slightly misleading. We have shown explicitly the a2

factor in the taste-violating splitting, a2�B, but this does
not mean that �B itself is independent of lattice spacing,
or even that it approaches a nonzero constant in the
continuum limit. Indeed, the argument above implies
that �B is a slowly varying function of a that goes like
�2
V��=a� for small a. A similar comment applies to the

other taste-violating parameters introduced in Sec. VI A:
the a2 dependence is always shown explicitly, but depen-
dence on a through the coupling is hidden.

In physical units, the splittings on the coarse lattices
are quite large. The largest is for the taste-singlet pion:
a2�I � �450 MeV�2; while the smallest, for the taste
axial-vector pion, is a2�A � �280 MeV�2. Given the
size of these splittings, which are discretization errors,
it is not surprising that the lattice data is not well fit by
continuum chiral perturbation theory (�PT) forms.
Figure 10 shows such an attempted fit for the Goldstone
f� to the standard NLO partially quenched continuum
form [29] plus analytic NNLO terms. More details about
this fit will be explained below, when we discuss the
corresponding fits that take into account taste violations.
For the moment, we simply remark that the minuscule
confidence level (C:L: � 10�250; �2=d:o:f: � 8:77 with
114501
204 degrees of freedom) shows how hard it is to ignore
lattice artifacts at the level of chiral logarithms.
VI. STAGGERED CHIRAL
PERTURBATION THEORY

Lee and Sharpe [12] found the chiral Lagrangian that
describes a single staggered field. Their Lagrangian in-
cludes the effects of taste violations at O�a2� as well as
the standard violations of chiral symmetry from mass
terms at O�mq�, where mq is a generic quark mass. They
introduced a power counting that considers mq and a2 to
be of the same order, which is appropriate here: In Fig. 9
the splittings are comparable to the squared meson
masses. Tree-level (LO) is thus O�mq; a

2�; chiral logs
appear at one-loop (NLO) and are O�m2

q; mqa
2; a4�.3

The Lee-Sharpe Lagrangian is not directly appropriate
to the calculations here because it has only one flavor (one
staggered field). Aubin and Bernard [13–15] have gener-
alized Ref. [12] to n staggered flavors and shown how to
accommodate the

��������
Det4

p
trick in loop calculations. This is
-9
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what is meant by ‘‘staggered chiral perturbation theory,’’
S�PT.

Continuum chiral perturbation theory can be thought
of as an expansion in the dimensionless quantity
�q �
2*mq

8�2f2
�
; (11)

where 2*mq is the tree-level mass of a q �q meson. For
physical kaons, we expect the relevant quark mass pa-
rameter to be �ud;s � ��ud 
 �s�=2 � 0:18 (where �ud is
the average value for the u and d quarks); this is reason-
able given the experimental result fK=f� � 1:22.

Staggered chiral perturbation theory is a joint expan-
sion in �q and �a2 , which measures the size of the O�a2�

taste violations:
�a2 �
a2�

8�2f2
�
; (12)
where a2� is a ‘‘typical’’ taste-violating term. Taking for
a2� the average meson splitting [see Eq. (28) below], we
have a2� � �350 MeV�2 and �a2 � 0:09 on the coarse
lattices; a2� � �200 MeV�2 and �a2 � 0:03 on the fine
lattices. If one instead uses the larger of the O�a2� taste-
violating hairpin parameters [14,15], a220A, to estimate �
and �a2 , one gets slightly smaller values.

A. NLO forms

One-loop chiral logs and analytic terms have been
calculated in S�PT for Goldstone meson masses [14]
and decay constants [15]. Partially quenched results are
included, so all forms needed to fit the numerical data are
available.

References [14,15] express the chiral logarithms in
terms of
‘�m2� � m2

�
ln
m2

(2
�

 21�mL�

�
(13)
114501
~‘�m2� � �

�
ln
m2

(2
�

 1

�

 23�mL�; (14)
where (� is the chiral scale, and L is the spatial dimen-
sion. The finite-volume correction terms 21 and 23 are
[13]
21�mL� � 4
X
~r�0

K1�j~rjmL�
mLj ~rj

; (15)
23�mL� � 2
X
~r�0

K0�j~rjmL�; (16)
where K0 and K1 are Bessel functions of imaginary argu-
ment, and ~r, which labels the various periodic images, is a
three-dimensional vector with integer components. We
have assumed here that corrections due to the finite
time extent are negligible; this is true for our lattices,
for which the time dimension is between 2:7 and 3:4 times
greater than the spatial dimension. The function ‘�m2� in
Eq. (13) arises from tadpole diagrams with a single meson
propagator; ~‘�m2� in Eq. (14) comes from double poles,
which are present only in the partially quenched (and
quenched) cases, not in the full QCD limit. In practice, we
compute the sum in Eq. (15) or Eq. (16) with cutoff j~rj �
N, whereN is an integer, and increment N by one until the
sum changes by a fractional amount � 4. To be conser-
vative, we take 4 � 10�9 for central-value fits. However, a
much weaker criterion, 4 � 0:001, is adequate to reduce
the error in the sum well below our statistical errors, and
we often use the weaker criterion for alternative fits in the
systematic error estimates.

In the generic case relevant to our data (mu � md �
m̂ � ms and no degeneracies between valence and sea
quarks), the NLO S�PT expressions for a meson P com-
posed of valence quarks x and y are [14,15]
�mNLO
P


5
�2

�mx 
my�
� *

(
1 


1

16�2f2

"
2

3

X
j

R�3;2�
j �fM�3�

XYI
g�‘�m2

j � � 2a220
V

X
j

R�4;2�
j �fM�4�

XYV
g�‘�m2

j �

� 2a220
A

X
j

R�4;2�
j �fM�4�

XYA
g�‘�m2

j � 
 a2�L00 
 L0�

#



16*tree

f2 �2L8 � L5��mx 
my�



32*tree

f2 �2L6 � L4��2m̂
ms�

)
(17)
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fNLO
P


5
� f

 

1 

1

16�2f2

(
�

1

32

X
Q;B

‘�m2
QB
� 


1

6

"
R�2;2�
XI

�fM�2�
XI
g�~‘�m2

XI
� 
 R�2;2�

YI
�fM�2�

YI
g�~‘�m2

YI
� 


X
j

D�2;2�
j;XI

�fM�2�
XI
g�‘�m2

j �



X
j

D�2;2�
j;YI

�fM�2�
YI
g�‘�m2

j � � 2
X
j

R�3;2�
j �fM�3�

XYI
g�‘�m2

j �

#



1

2
a220V

"
R�3;2�
XV

�fM�3�
XV
g�~‘�m2

XV
� 
 R�3;2�

YV
�fM�3�

YV
g�~‘�m2

YV
�



X
j

D�3;2�
j;XV

�fM�3�
XV
g�‘�m2

j � 

X
j

D�3;2�
j;YV

�fM�3�
YV
g�‘�m2

j � 
 2
X
j

R�4;2�
j �fM�4�

XYV
g�‘�m2

j �

#


 �V ! A� 
 a2�L00 � L0�

)



8*tree

f2 L5�mx 
my� 

16*tree

f2 L4�2m̂
ms�

!

: (18)
Here * and f are the continuum chiral parameters, 20V
and 20

A are LO taste-violating parameters (hairpins), Li
are the NLO Gasser-Leutwyler [1] coefficients, and L0

and L00 are linear combinations of the taste-violating
NLO coefficients. The reason for using the tree-level
*tree parameter from Eq. (9) in the Li terms will be
explained in Sec. VI B. X, and Y, are flavor-neutral
mesons of taste , made of x; �x and y; �y quarks, respec-
tively, and U,, D,, and S, are corresponding flavor-
neutral mesons made from u, d, and s sea quarks, respec-
tively. The index Q runs over the six mesons made from
one valence and one sea quark, and B runs over the 16
meson tastes. The residues R�n;k�

j and D�n;k�
j;i in Eqs. (17)

and (18) are defined in Refs. [14,15]. For completeness, we
quote them here:

R�n;k�
j �fMg; f*g� �

Qk
a�1�*

2
a �m2

j �Q
0n
‘�1�m

2
‘ �m2

j �
: (19)

D�n;k�
j;i �fMg; f*g� � �

d

dm2
i

R�n;k�
j �fMg; f*g�: (20)

Each of these residues is a function of two sets of masses,
the ‘‘denominator’’ set fMg � fm1; m2; . . . ; mng and the
‘‘numerator’’ set f*g � f*1; *2; . . . ; *kg. The indices j
and i, 1 � j; i � n, refer to particular denominator
masses; the prime on the product in the denominator of
Eq. (19) means that ‘ � j is omitted.

In Eqs. (17) and (18), the denominator mass-set argu-
ments are shown explicitly; they are

fM�2�
XI
g � fmXI ; m�I g; fM�2�

YI
g � fmYI ; m�I g;

fM�3�
XYI

g � fmXI ; mYI ; m�I g;

fM�3�
XV
g � fmXV ;m�V ;m�0

V
g;

fM�3�
YV
g � fmYV ;m�V ; m�0

V
g;

fM�4�
XYV

g � fmXV ;mYV ; m�V ;m�0
V
g:

(21)

The index j in Eqs. (17) and (18) is summed over the
denominator masses. Sets for axial-vector taste (A) are
found from the corresponding vector taste (V) sets by
114501
taking V ! A in Eq. (21). The masses m�I , m�V , m�0
V

are
given by [14]

m2
�I �

m2
UI

3



2m2
SI

3
;

m2
�V �

1

2

�
m2
UV


m2
SV



3

4
a220V � Z

�
;

m2
�0
V
�

1

2

�
m2
UV


m2
SV



3

4
a220V 
 Z

�
;

Z �

���������������������������������������������������������������������������������������������������
�m2

SV
�m2

UV
�2 �

a220
V

2
�m2

SV
�m2

UV
� 


9�a220V�
2

16

s
:

(22)

The numerator mass-set arguments of the residues in
Eqs. (17) and (18) are not shown explicitly because they
are always

f*�2�
, g � fmU,

; mS,
g; (23)

where the taste label , is taken equal to the taste of the
denominator set.

Degeneracies among the various masses in Eqs. (17)
and (18) occur quite often in our data set. In particular,
‘‘partially quenched pions’’ have mx � my and hence
mXB � mYB for each taste B. Similarly ‘‘partially
quenched kaons’’ have my � ms and hence mYB � mSB .
Going to full QCD introduces additional degeneracies
mX � mY � mU (for pions) or mX � mU (for kaons).
Further, the accidental degeneracy mYI � m�I appears
in our data when amy � 0:04, am̂0 � 0:02, am0

s � 0:05
(coarse) or amy � 0:0248, am̂0 � 0:0124, am0

s � 0:031
(fine). Formulas for many of these degenerate cases ap-
pear in Refs. [14,15]. For the other cases, one can care-
fully take appropriate limits in Eqs. (17) and (18), or,
more conveniently, return to the original integrands in
Refs. [14,15] and take the limits before performing the
momentum integrations.

Because Eqs. (17) and (18) are quite complicated, it is
useful to write down a simple result that shows more
clearly how taste violations change the continuum chiral
behavior. The pion decay constant in full QCD with two
(degenerate) flavors (mx � my � mu � md � m̂, with the
-11
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strange quark integrated out) is particularly simple. In
that case, the result corresponding to Eq. (18) is

fNLO
�


5
� f

 

1 

1

16�2f2

(
�2

"
1

16

X
B

‘�m2
�B�

#

� 4�‘�m2
�0
V
� � ‘�m2

�V �� � 4�‘�m2
�0
A
� � ‘�m2

�A��


 a2�L00 � L0�

)



8*tree

f2 L5�2m̂� 

16*

f2 L4�2m̂�

!

;

(24)

with B running as usual over the 16 possible tastes, and

m2
�B � m2

UB
� m2

DB
; m2

�0
V
� m2

�V 

1
2a

220
V;

m2
�0
A
� m2

�A 

1
2a

220
A:

(25)

In Eq. (24), the term multiplied by �2 gives the average
of all tastes and becomes the standard SU�2�L � SU�2�R
chiral logarithm in the continuum limit, when all tastes
are degenerate. The terms multiplied by �4 clearly vanish
in the continuum limit because m�V � m�0

V
and m�A �

m�0
A

when a220V � 0 � a220A.
Since m̂0 is significantly less than m0

s for many of our
runs, Eq. (24) is often not a bad approximation to the
chiral behavior of our (full QCD) data. It will be useful in
the discussion of finite-volume effects in Sec. IX D 6.

We note here that Refs. [12,14,15] explicitly include in
the chiral Lagrangian the effects of terms in the O�a2�
staggered-quark Symanzik action that violate the taste
symmetries. There are also ‘‘generic’’ O�a2� terms in the
4Before comparing its values for different lattice spacings,
the parameter * must be renormalized by the inverse of the
mass renormalization constant. See Sec. VII.

114501
Symanzik action that have the same symmetries as the
continuum QCD action and are not included explicitly.
An example is a2 � D2D*��* � I� , where �* and I act
on spin and taste indices, respectively. The effect of such
terms on the chiral Lagrangian is to produce O�a2�
variation in physical parameters such as f, *, and, at
higher order in mq, Li. We build the possibility of such
generic variation in physical parameters into the chiral
fits below.4 Since our staggered action is a2 tadpole im-
proved, we expect such generic variation to be of size
�Sa2(QCD � 2%. When we extrapolate the physical pa-
rameters to the continuum, we will need to know how
�Sa2 changes from the coarse to fine lattice. As in the
case of taste violations, such discretization errors occur at
the scale of the cutoff. Therefore, we use �S � �V�q� �
�=a� for central values, and allow q� to vary between
�=�2a� and 2�=a for the error estimate. We have

��V�q� � �=a�a2�fine

��V�q� � �=a�a2�coarse

� 0:427; (26)

and a range for this ratio of 0.398 to 0.441.
As they stand, Eqs. (17) and (18) are slightly incon-

venient because the renormalization of the O�mqa2� ana-
lytic NLO parameters L0 and L00 under a change in the
chiral scale (� is complicated and involves the physical
Li parameters. This is due to the fact that the meson
masses multiplying the logarithms include O�a2� split-
tings. It is more natural, therefore, to redefine the L0 and
L00 by associating particular O�a2� terms with the Li. We
make the replacements
16*tree

f2 �2L8 � L5��mx 
my� !
16

f2 �2L8 � L5��*tree�mx 
my� 
 a2�I�;

32*tree

f2 �2L6 � L4��2m̂
ms� !
32

f2 �2L6 � L4�

�
*tree�2m̂
ms� 


3

2
a2�I

�
;

8*tree

f2 L5�mx 
my� !
8

f2 L5�*tree�mx 
my� 
 a2�av�;

16*tree

f2 L4�2m̂
ms� !
16

f2 L4

�
*tree�2m̂
ms� 


3

2
a2�av

�
;

(27)
where a2�I is given by Eq. (9), and

a2�av �
a2

16
��5 
 4�A 
 6�T 
 4�V 
 �I� (28)

is the average splitting. After these redefinitions, a change
in (� renormalizes L0 according to
L0�~(�� � L0�(�� 
 2�20A 
 20V� ln�
~(2
�=(2

��; (29)
while L00 is independent of scale. From this we would
expect that L0 is comparable in size to 20

A 
 20V , an
expectation that is borne out by the fits. The Li renormal-
ize by

Li�~(�� � Li�(�� 

Ci

256�2 ln�~(2
�=(

2
��; (30)
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with

C4 � �1; C5 � �3; 2C6 � C4 � �2=9;

2C8 � C5 � 4=3: (31)
B. NNLO terms

As we will see below, the high statistical precision of
our data requires us to go beyond the NLO formulas, even
for subsets of the data that include only the lighter va-
lence quark masses. We include explicitly all NNLO
physical analytic parameters, i.e., all analytic terms of
O�m3

q�. There are five such terms for m2
P
 and an addi-

tional five for fP
 [11]. Expressed in terms of �q defined
in Eq. (11), they are given by

�mNNLO
P


5
�2

�mx 
my�
� *�1 
 NLO 
 =�m�

1 ��x 
 �y�2


 =�m�
2 �2�ud 
 �s�2 
 =�m�

3 ��x 
 �y�

� �2�ud 
 �s� 
 =�m�
4 ��x � �y�

2


 =�m�
5 �2�2

ud 
 �2
s��; (32)

fNNLO
P


5
� f�1 
 NLO 
 =�f�

1 ��x 
 �y�
2


 =�f�
2 �2�ud 
 �s�

2 
 =�f�
3 ��x 
 �y�

� �2�ud 
 �s� 
 =�f�
4 ��x � �y�2


 =�f�
5 �2�2

ud 
 �2
s��; (33)

where ‘‘NLO’’ denotes the lower order contributions [the
corrections to the leading ‘‘1’’ in Eqs. (17) and (18), with
the substitutions in Eq. (27)]. The interchange symme-
tries among valence quarks x$ y and sea quarks u$
d$ s$ u restrict the form of the NNLO corrections.
These terms were obtained independently in Ref. [30].

Possible analytic taste-violating terms at NNLO of
O�m2

qa2� are included implicitly by allowing the Li
[O�m2

q� terms] to vary with lattice spacing.5 However,
such variation can be caused either by taste-violating
terms in the Symanzik Lagrangian or by terms with the
same symmetries as the continuum operators but with
explicit factors of a2 (i.e., by generic discretization errors
on the Li). As explained above, the generic discretization
errors are expected to be � 2%; while the new taste-
violating terms could change the apparent value of Li
5It is not hard to show that allowing the Li to vary with a
generates all possible O�m2

qa
2� contributions to masses and

decay constants of Goldstone pions at rest. However, it is at this
order that Lorentz-violating terms can affect the Goldstone
pions [14], so one would expect to find slight differences at
fixed lattice spacing between masses and decay constants
calculated here and those for pions of nonzero 3-momentum.
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between coarse and fine sets by order �coarse
a2 � �fine

a2 �

6%. For our preferred fits, we use Bayesian priors [31] to
restrict the differences in the Li on coarse and fine sets to
be at most 7:5% (for a 3-> variation); while in alternative
fits used to assess the systematic error, we relax or tighten
this restriction (see Sec. IX B). Note that when we ex-
trapolate the Li to the continuum, we have no a priori way
to distinguish variation as �Sa2 (generic discretization
errors) from variation as �2

Sa
2 (taste violations).

Therefore, we consider both types of variation [i.e.,
Eqs. (10) and (26), as well as the ranges of these ratios]
and include the difference in the systematic error. In
practice, these alternative fits and these assumptions in
how the Li are extrapolated to the continuum contribute
only a small fraction of the total systematic error (see
Table VII).

At NNLO, O�mqa
4� analytic terms may also affect

m2
P


5
and fP


5
. We neglect such terms, which would

make contributions similar to that of L0 and L00 in
Eqs. (17) and (18), but multiplied by a4 instead of a2.
Because �a2 is only 0.09 in the worst case, we would
expect the error thereby induced to be at most �2

a2 � 1%.
In fact, since we consider a generous range for how taste-
violating a2 terms may vary as we go from coarse to fine
lattices [see discussion immediately following Eq. (10)],
the effects of O�mqa

4� analytic terms should already be
included in our systematic error estimates.

The final possible NNLO terms in the Lagrangian are
O�a6�. However, it is easy to see that such terms do not
contribute to m2

P

5

and fP

5

. The Goldstone theorem re-

quires that m2
P


5
be proportional to at least a single power

of quark mass (mx 
my in this case), and terms in the
Lagrangian must have at least two derivatives to make
analytic contributions to fP


5
through Noether’s theorem

or wave-function renormalization.
In addition to analytic terms at NNLO, there are, of

course, NNLO chiral logarithms (from two-loop graphs,
as well as one-loop graphs that involve NLO parameters).
These nonanalytic terms have not been calculated in
S�PT, but in any case are not expected to be important
here: Wherever the quark masses or splittings are large
enough for the analytic NNLO terms to be significant,
the NNLO logarithms should be slowly varying and well
approximated by analytic terms. As discussed in
Sec. IX B, the NNLO terms make a difference primarily
in the interpolation around ms, not in the extrapolation to
m̂. The systematic errors inherent in our treatment of the
NNLO terms are estimated by varying the masses we fit
to and the Bayesian priors governing these terms and
their changes with a, as well as by adding still higher
[next-to-next-to-next-to-leading order (NNNLO)] terms.

There are also NNLO effects induced by the ambiguity
in the parameters one puts into NLO expressions. In
particular, we have at present expressed the ‘‘chiral cou-
-13
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pling,’’ 1=�16�2f2� in Eqs. (17) and (18), in terms of bare
(tree-level) parameter f. Replacing f with the experimen-
tal value of f�, say, would generate a difference at NNLO.
As we discuss below, the difference between f� and f is
significant: � 13%. If we had the full NNLO expression,
including two-loop effects, then the ambiguity would be
resolved up to terms of NNNLO. But in the present case
there is no a priori way to decide this issue.

We argue, however, that putting a physical parameter
in the chiral coupling (f ! f�) is likely to result in a
better convergent �PT. This is similar to the argument for
using a physical, rather than bare, coupling in weak-
coupling perturbation theory [24]. In practice, we con-
sider three versions of the fits:
(i) F
ix coupling as 1=�16�2f2
��.
(ii) L
eave coupling as 1=�16�2f2�.

(iii) W
rite coupling as !=�16�2f2

�� and treat ! as an
additional fit parameter: either allow it to vary
freely or force it to vary around 1 using Bayesian
priors.
Good fits are possible with all three choices. Both because
of the argument above, and because it guarantees that the
NLO chiral logarithms for very light quarks have the
expected weight relative to the tree-level terms, we take
choice (i) for our central values. Choice (iii), with its extra
parameter, results in the highest confidence levels of the
three. When ! is allowed to vary freely, its value de-
creases as higher quark masses are included in the fits,
reaching ! � 0:6 by set II (see Sec. IX A). This is similar
to replacing f ! fK, perhaps not surprising for fits that
must cover a range of valence masses up to a large
fraction of ms. But for the quantities computed here, all
of which are sensitive to the chiral behavior at low quark
mass, we do not include fits with ! free since we expect
1=�16�2f2

��, not 1=�16�2f2
K�, to be the correct weight for

the logarithms in the low mass regime. We still allow fits
with range ! � 1:0 � 0:1 because 10% is roughly the
difference between the physical f2

� and its value in the
chiral limit. As discussed in Sec. X, the main effects of
including fits with arbitrary ! would be to increase the
systematic error in f� by about 1 MeV (with a correspond-
ing effect on fK=f�) and to double the simulation error on
mu=md (which error, however, is small compared to
unknown electromagnetic effects).

Good fits with choice (ii) require f * fK [equivalent to
! � 0:6 in choice (iii)] and quite large NNLO terms. In
addition, the O�a2� NLO parameter a2L00 becomes un-
reasonably large [ � �630 MeV�2 on the coarse lattices].
For these reasons we exclude choice (ii) fits from the
systematic error estimates; including them would in-
crease systematic errors by amounts comparable to those
of arbitrary ! fits.

Similar considerations apply to the parameter*. In the
analytic terms involving the Li in Eqs. (17) and (18) [and
hence in Eqs. (32) and (33)], we argue that it is best to put
114501
in*tree from the linear (tree-level) fits, Eq. (9). The Li are
then multiplied by actual squared meson masses [within
the errors of Eq. (9)]. This corresponds to how such terms
are interpreted in continuum �PT analysis (see, e.g.,
Ref. [1]). An alternative, a posteriori, choice would be
to use the chiral limit of m2

�=�2m̂� coming from the full
NNLO fit. This would replace *tree in Eqs. (17) and (18)
by a number 5% smaller. Since Eq. (9) gives a maximum
of 7% errors, we choose that larger value as the system-
atic effect. It would however be unreasonable to replace
*tree in Eqs. (17) and (18) or [Eqs. (32) and (33)] by the fit
parameter * itself. That is because the effective value of
* is corrected by terms involving ms that do not go away
in the chiral limit for the light quarks. Indeed, one might
expect corrections of at least �ud;s 
 �2

ud;s � 20%. In
practice the fit parameter * from our preferred NNLO
fit on the intermediate valence mass set (subset II,
Sec. IX A) is 29% less than *tree, which means that
*�mx 
my� is significantly less than our measured value
of m2

P

5
� *tree�mx 
my�. This difference improves to

13% in the fit to the lightest masses.
As discussed in the introduction, all meson masses

appearing in the NLO chiral logarithms in Eqs. (17)
and (18) are similarly evaluated using the previously
determined values of the taste splittings, a2�B, and
*tree from the fit of our ‘‘full QCD’’ data for all meson
tastes to Eq. (9). In our results for masses and decay
constants, the NNLO error introduced by this procedure
is negligible. That is because the effect of the small errors
in masses in the chiral logarithms on our extrapolated
values is almost completely canceled by the effect of
variations of the analytic parameters in the fit. We can
check this by replacing *tree in the fit by the (5% differ-
ent) chiral limit value; the effect is about 0:2% on quark
masses and less than 0:1% on the decay constants, in both
cases much less than the total systematic error. For the Li,
changing the value of * in the chiral logarithms does not
completely cancel the effect of changing its value in the
analytic terms, but there is some cancellation. Therefore
the 7% systematic effect in the Li discussed in the pre-
vious paragraph remains a conservative estimate of the
error.

C. NNNLO terms

We sometimes add some NNNLO terms of the follow-
ing form:

�mNNNLO
P


5
�2

�mx 
my�
� *�1 
 NLO 
 NNLO 
 ��m���x 
 �y�

3�;

(34)

fNNLO
P


5
� f�1 
 NLO 
 NNLO 
 ��f���x 
 �y�3�; (35)

where NLO and NNLO represent the contributions from
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Eqs. (17), (18), (32), and (33). Since there are, of course,
many additional NNNLO terms, it is nonsystematic to
include only one each for mP


5
and fP


5
. However, we pick

these terms involving valence masses because there is a
steeper dependence on the valence masses than on the sea-
quark masses. For lower quark masses, where we expect
�PT to work well, we fit to Eqs. (34) and (35) only to
estimate systematic errors due to the truncation of �PT.
When the fits include valence masses equal to or greater
than m0

s, we also use Eqs. (34) and (35) in order to
improve the interpolation around the strange quark
mass. In the former case, we find that the values of
j��f�j and j��m�j coming from the fits are typically less
than 0.1; in both cases they are always less than 0.2
[including when we fit to Eqs. (36) and (37)—see
Table IV].

Another form, used only for interpolations around the
strange quark mass, adds on the square of the NLO term
as a mock-up of the effect of two-loop chiral logarithms:

�mNNNLO0

P

5

�2

�mx 
my�
� *�1 
 NLO 
 NNLO 
 >�m��NLO�2


 ��m���x 
 �y�
3�; (36)

fNNNLO0

P

5

� f�1 
 NLO 
 NNLO 
 >�f��NLO�2


 ��f���x 
 �y�3�; (37)

where again NLO and NNLO represent the contributions
TABLE IV. Continuum-extrapolated fit parameters for Fits
A, B, and C, which are on mass subsets I, II, and III, respec-
tively. No extrapolation errors are included; we show statistical
errors only. See Sec. VI for definitions of the parameters.

Fit A Fit B Fit C

r1* 5:579�515� 4:549�387� 4:462�227�
r1f 0:186�14� 0:185�21� 0:185�15�

�2L6 � L4� � 103 0:244�156� 0:705�157� 0:763�89�
�2L8 � L5� � 103 �0:038�96� �0:330�113� �0:392�76�

L4 � 103 0:178�231� 0:200�340� 0:186�239�
L5 � 103 1:834�247� 1:949�263� 2:054�179�
=�m�

1 �0:566�80� �0:279�43� �0:260�79�
=�m�

2 �0:314�195� �0:994�193� �1:050�124�
=�m�

3 0:208�36� 0:149�33� 0:145�19�
=�m�

4 �0:281�22� �0:150�13� �0:081�9�
=�m�

5 0:554�336� 1:658�367� 1:861�310�
=�f�

1 0:237�62� 0:188�36� 0:257�85�
=�f�

2 0:135�142� 0:131�209� 0:128�141�
=�f�

3 0:189�36� 0:182�33� 0:150�54�
=�f�

4 �0:059�36� �0:058�24� �0:062�15�
=�f�

5 �0:098�286� �0:115�415� �0:109�389�
>�m� � � � � � � �0:130�44�
��m� � � � � � � 0:049�52�
>�f� � � � � � � �0:063�165�
��f� � � � � � � �0:132�69�
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from Eqs. (17), (18), (32), and (33). The absolute values of
the new coefficients >�m� and >�f� in the fits are never
greater than 0.14.

VII. PERTURBATION THEORY

Because the axial current we use to compute decay
constants is partially conserved, there is no need for
current renormalization. Mass renormalization is how-
ever needed to find continuum (MS) quark masses, as
discussed in Ref. [22]. Let Zm be the mass renormaliza-
tion factor that connects the bare lattice mass �am�0 and
the MS mass at scale (:6

mMS�(� � Zm�a(�
�am�0
au0P

: (38)

Here, unlike in Ref. [22], we have shown explicitly the
plaquette tadpole improvement factor u0P, necessary be-
cause the MILC improved staggered action defines the
lattice quark mass in a somewhat unconventional manner.

The renormalization factor Zm enters the analysis in
another way. As mentioned above, we need to renormal-
ize the parameter * if we wish to compare its values at
different lattice spacings. More precisely, we need the
ratio

Rm �
Zm�a

coarse(�

Zm�a
fine(�

ufine
0P

ucoarse
0P

: (39)

Rm is in principle independent of (, although when Zm is
evaluated at any given order in perturbation theory, there
is residual ( dependence from neglected higher order
terms. For definiteness, we take ( � 2 GeV. Zm is given
by [22]

Zm�a(� � �1 
 �V�q
��Z�2�

m �a(� 
O��2��; (40)

where �V is determined from small Wilson loops using
third order perturbation theory [28,32], the optimal scale
q� is estimated using a second order BLM method [33],
and Z�2�

m is [34–36]

Z�2�
m �a(� �

�
b�

4

3�
�

2

�
ln�a(�

�
; (41)

with b � 0:5432, correct to 0.1%. We have neglected the
(tiny) O�a� mass dependence of b, and hence of Zm�a(�.
From Ref. [22], q� � 2:335=a and �V�q�� � 0:252�5� on
the coarse lattices; q� � 1:80=a and �V�q�� � 0:247�4�
on the fine.

To evaluate Rm, we use scale and plaquette values
from the coarse 0:01=0:05 and the fine 0:0062=0:031
lattices, and neglect the small variation among the
coarse or fine sets. As mentioned previously, the �
splittings give [17,27] �acoarse��1 � 1:588 GeV and
6( was called * in [22], a notation we avoid here for obvious
reasons.
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�afine��1 � 2:271 GeV. The tadpole improvement factors
are ucoarse

0P � 0:8677 and ufine
0P � 0:8782. From Eqs. (39)–

(41), we find Rm � 0:958. Then,

*coarse � Rm*fine (42)

with the above value of Rm defines what we mean by
‘‘equality’’ of the parameter * on coarse and fine lattices.
Of course, Eq. (42) may be violated by generic O�a2�
scaling violations ( � 2%), as well as by perturbative
errors. A priori, one expects a two-loop correction to
Rm of order �2

V . This is � 6%. In practice, fits have a
confidence level that is higher than those of our preferred
fits if we take Rm � 0:87 to 0:89, i.e., a 7% to 9% differ-
ence from Rm � 0:958. Although it is not possible to
separate the perturbative errors from the discretization
errors in this difference, here and in Ref. [22] we take the
larger value, 9%, as the conservative estimate of pertur-
bative errors. This is � 1:5�2

V . For quantities that do not
directly involve perturbation theory, such as the decay
constants and the ratio mu=md, we do not quote pertur-
bative errors, per se. But Rm still enters the chiral fits, so
we include fits with Rm � 0:87 among the alternatives.

Another rough estimate of Rm comes from *tree,
Eq. (9). Without the proliferation of parameters at NLO
and NNLO, the tree-level form makes possible well-
controlled fits on coarse and fine lattices separately. We
get Rm � 0:977. But note that Eq. (9) can have up to �7%
errors in describing the data, and there are also discreti-
zation errors in this estimate.
VIII. ELECTROMAGNETIC AND ISOSPIN-
VIOLATING EFFECTS

Given the precision we are aiming at here, it is neces-
sary to take into account electromagnetic (EM) and
isospin-violating effects, at least in an approximate way.
Our simulation is in isospin-symmetric QCD, withmu set
equal to md, and the electromagnetic coupling, e2 �
4��EM, set to 0. This means that when we compare
meson masses to experiment to determine the physical
quark masses m̂ and ms, we must first adjust the experi-
mental numbers to what they would be in a world without
EM effects or isospin violation. This is particularly im-
portant for the pion, since the difference between m2

�


and m2
�0 is almost 7%. Because the adjustment is only

approximate, there are some residual systematic errors on
the quark masses, as discussed in Ref. [22].

The decay constants, as well as the low energy con-
stants Li, are by definition pure QCD quantities, so we do
not have to take EM effects directly into account in our
determination.7 Nevertheless, there are indirect EM ef-
fects on f� and fK, which come in through the quark
7However, the EM corrections must be explicitly evaluated
when the decay constants are compared to experiment [37,38].
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masses when we extrapolate to the physical point. Isospin
violations are irrelevant for the Li, which are defined to
be mass independent. But for the decay constants, there
are both direct and indirect isospin-violating effects,
which we estimate below. The end result is that both the
(indirect) EM and isospin-violating errors on decay con-
stants are very small, as long as we are careful to ex-
trapolate to the appropriate values of the quark mass in
each case. However, the EM error on mu=md is large
unless we are willing to assume that the EM effects on
meson masses are accurately known.

Electromagnetism can be included in �PT in a system-
atic way. Dashen’s theorem [39] summarizes the EM
effects on meson masses at lowest nontrivial order in e2

and the quark masses. It states that m2
�
 and m2

K
 receive
equal O�e2� contributions in the chiral limit; while the�0

and K0 masses are unaffected. However, there can be
large and different EM contributions to m2

�
 and m2
K
 of

order e2�ud;s [40–43]. Following Ref. [44], we let �E

parametrize violations of Dashen’s theorem:

�m2
K
 �m2

K0�EM � �1 
 �E��m
2
�
 �m2

�0�EM: (43)

Then Refs. [40–43] suggest �E � 1. Most of these cor-
rections are probably to the charged meson masses.
Indeed, the violation of Dashen’s theorem for the �0 is
O�e2�ud� [41] and therefore small. The EM contribution
tom2

K0 , on the other hand, is in principle the same order as
the violations of Dashen’s theorem for the charged
masses, e2�ud;s [41]. Nevertheless, a large Nc, extended
Nambu–Jona-Lasinio model calculation [42] finds a tiny
EM correction to the K0 mass at this order. To be con-
servative, though, we allow for EM contributions to m2

K0

of the order of half the violations of Dashen’s theorem,
with unknown sign:

�m2
K0�EM ����E=2��m

2
�
 �m2

�0�EM: (44)

The effects of isospin violation in the pion masses are
quite small. When mu � md, m2

�0 gets a contribution of
order ��u � �d�2. The isospin-violating splitting �m�
 �

m�0�QCD is estimated as 0:17�3� MeV in Ref. [1], and as
0:32�20� MeV in Ref. [45]. In the kaon system, on the
other hand, the effects of isospin violation are clearly
important, as is obvious from the fact that the experi-
mental K
–K0 splitting is of opposite sign to that in
Eq. (43) for any �E >�1. In our calculation, we can
reduce the isospin-violating effects in the kaon masses to
the same order as in the pion system by focusing on the
isospin-averaged quantity �m2

K0 
m2
K
�=2. We then ne-

glect the remaining isospin violations in the meson
masses. We have checked, using the estimates for �m�
 �

m�0�QCD above, that the indirect effect of such isospin
-16



LIGHT PSEUDOSCALAR DECAY CONSTANTS, QUARK . . . PHYSICAL REVIEW D 70, 114501 (2004)
violations on decay constants is extremely small: &

0:03%. These isospin violations were also neglected in
the computation of quark masses in Ref. [22]. We note,
however, that including isospin violations could have
some small effect there, in particular, on the result for
the ratio ms=m̂. If �m�
 �m�0�QCD is at the upper end of
the range in [45], the central value for ms=m̂ in Ref. [22]
could be changed from 27.4 to as low as 27.2.

Based on the above discussion, we may determine the
physical values of m̂ and ms by extrapolating the lattice
squared meson masses to m2

�̂ and m2
K̂

, given by

m2
�̂ � m2

�0 ;

m2
K̂
�

1

2
�m2

K0 
m2
K
 � �1 
 �E��m2

�
 �m2
�0��;

(45)

where experimental values are to be used on the right-
hand side. Allowing for EM corrections to the K0 mass,
Eq. (44), replaces �E � 1 in Eq. (45) with an effective
value in the range 0–2, which is in any case a conserva-
tive range for �E that includes the Dashen theorem result.
Here and in Ref. [22], we take �E � 1 for the central
value, and use 0 � �E � 2 to estimate systematic errors
in m̂, ms, and their ratio.

We can also estimate mu (or equivalently the ratios
mu=md or mu=m̂) from our simulation. Given ms, we
find mu by extrapolating in the light valence mass to the
point where the K
 has the mass �mK
�QCD, where
‘‘QCD’’ indicates that EM effects have been removed.
We take

�m2
K
�QCD � m2

K
 � �1 
 2E��m
2
�
 �m2

�0�; (46)

with 2E � 1 our central value, corresponding to �E � 1
and vanishing EM correction to the K0 mass. If we
attribute the uncertainty in the effective value of �E �
1 to the uncertainty in Eq. (44), then we get a range 0:5 �
2E � 1:5. This produces only a small uncertainty in
mu=md because the variations in �m2

K
�QCD and m2
K̂

are
equal. A more conservative assumption is that �E arises
primarily from EM contributions to the K
 mass. This
implies 2E � �E and thus 0 � 2E � 2, which we take as
the range for estimating EM systematic errors in mu=md.
Under this assumption those errors are quite large,
�20%. On the other hand, if we were, for example, to
take �E � 0:84 � 0:25 from Ref. [42], this error would be
reduced to �5%.

There is an additional error on mu=md because we keep
the light sea quarks with fixed masses mu � md � m̂ as
we extrapolate in the light valence mass to �m2

K
�QCD. The
effect produces a fractional error in mu=md of O��mu �
md�

2�, i.e., of NNLO. This is because terms of O�mu �
md� cancel when expanding mu and md around m̂ �
�mu 
md�=2. We estimate the size of this effect using
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the NNLO analytic terms; from Eq. (32) the only relevant
coefficient is =�m�

5 . This term gives a fractional error
=�m�

5 ��2
u 
 �2

d � 2�2
ud�. Using �ud � m2

�=�8�
2f2

�� �

0:014, our result mu=md � 0:43, and =�m�
5 � 1:86 in the

continuum limit from Fit C (see Sec. IX C and Table IV),
we find a negligible error � 0:01%.

Our simulation directly determines decay constants of
the charged mesons, �
 and K
, in the absence of elec-
tromagnetism and with mu � md. Since m�̂ is (approxi-
mately) the �
 mass in this limit, we must simply
extrapolate f�
 to the point where the mesons have the
masses in Eq. (45), i.e., to our physical values of m̂ and
ms. The situation with the kaons is rather different. It is
fK
 that is measured experimentally, not some isospin-
averaged decay constant of K
 and K0. We therefore
should extract fK
 by extrapolating the light valence
quark to the physical value of mu, not m̂. Despite the
large uncertainty inmu=md from EM effects, the indirect
error induced in fK
 through mu is tiny, �0:07%. This is
due to the fact that the decay constant changes slowly
with mass: It varies only by 20% all the way from theK to
the �.

In principle there are also direct isospin-violating er-
rors in the decay constants. For fK
 , there is an effect we
can estimate from the coefficient =�f�

5 , Eq. (33), similar to
the one in mu=md from =�m�

5 . Since =�f�
5 in our fits is �

�0:1, i.e., much smaller than =�m�
5 , this effect is com-

pletely negligible. For f�
 , errors can also arise from the
coefficient =�f�

4 because we assume mu � md. But this
coefficient is � �0:06, again leading to a negligible
effect.

IX. S�PT FITS

We fit the partially quenched data for m2
P


5
=�mx 
my�

and fP

5

together in all fits; this helps to constrain the
common O�a2� chiral parameters. Similarly, both coarse
and fine data are fit together, helping to constrain the
overall lattice-spacing dependence. Correlations between
and among masses and decay constants within each sea-
quark set are included, with the covariance matrix com-
puted as described in Sec.III.

A. Data subsets and fit ranges

Our lattice data is very precise [0.1% to 0.7% on
m2
P


5
=�mx 
my�, and 0.1% to 0.4% on fP


5
]; while the

�PT expansion parameter for the kaon, �ud;s, is � 0:18.
Since �2

ud;s � 0:03, we cannot expect NLO �PT, which is
missing corrections tom2

P

5
=�mx 
my� or fP


5
of order �2

q,

to work well for meson masses that are even an appre-
ciable fraction ofmK. NNLO �PT, however, may allow us
to fit up to fairly nearmK, because the missing corrections
at the kaon, �3

ud;s � 0:006, are comparable to (but some-
-17



C. AUBIN et al. PHYSICAL REVIEW D 70, 114501 (2004)
what larger than) the statistical accuracy of our data. Of
course, this is only a rough guide. There are at least two
sources of complications: (i) It is an idealization to imag-
ine that the chiral expansion is governed by a single mass
parameter. Many different mesons contribute to chiral
loops. Although we can restrict the valence masses in
the fit, the s sea-quark mass in the simulations is fixed at
m0
s. Thus there will always be some contributions from

fairly heavy mesons. (ii) Taste violations produce addi-
tional contributions to meson masses, or, effectively, add
another expansion parameter, �a2 , Eq. (12).

In practice we consider three different subsets of our
complete (coarse and fine) partially quenched data set.
Compared to the strange sea-quark mass in the simula-
tions, m0

s, we can tolerate somewhat heavier valence
masses on the fine lattices, since on those lattices m0

s
exceeds ms by a smaller amount and contributions to
meson masses from taste splittings are smaller. The sets
are
(i) S
ubset I.—mx 
my � 0:40m0
s (coarse), and mx 


my � 0:54m0
s (fine).

47 valence mass combinations; 94 data points.

(ii) S
ubset II.—mx 
my � 0:70m0

s (coarse), and
mx 
my � 0:80m0

s (fine).
120 valence mass combinations; 240 data points.
(iii) S
ubset III.—mx 
my � 1:10m0
s (coarse), and

mx 
my � 1:14m0
s (fine).

208 valence mass combinations; 416 data points.

There are always twice as many data points as mass
combinations because we are fitting m2

P

5
=�mx 
my� and

fP

5

simultaneously.
On the fine lattices, m0

s is about 10% larger than ms, so
we expect errors of order �0:54 � 1:1 � 0:18�2 � 1:1% at
NLO in subset I, without even considering the effects of
mixed valence-sea mesons or taste violations. Thus we do
not anticipate that the NLO form, Eqs. (17) and (18), can
fit the data, even on subset I. Good fits should require at
least the NNLO forms, Eqs. (32) and (33), on all sets.
Indeed, fitting with Eqs. (17) and (18) on subset I gives
minuscule confidence levels (C:L: < 10�58; �2=d:o:f: �
6:39 with 74 degrees of freedom), and adding in those
NNLO terms that involve sea-quark masses (because m0

s
is not small) still results in C:L: < 10�13 (�2=d:o:f: �
3:00 with 62 degrees of freedom).

We note that it is not practical to use valence masses
below those in subset I because we rapidly run out of data,
and in any case we cease to reduce significantly the
masses of mesons made of a valence quark and a strange
sea quark.

B. Inventory of parameters and alternative fits

Since there are a large number of fit parameters, we
provide an inventory before discussing the final fits in
more detail. Our standard NNLO fits on subsets I and II
have the following number and types of parameters:
114501
(a) L
-18
O.—Two unconstrained parameters: * [Eq. (17)]
and f [Eq. (18)].
(b) N
LO (physical).—Four unconstrained parameters:
2L8 � L5, 2L6 � L4, L5, L4 [Eqs. (17), (19), and
(27)].
(c) N
LO (taste-violating).—Four unconstrained pa-
rameters: a220

V , a220
A, a2L0, a2L00 [Eqs. (17) and

(18)].

(d) N
NLO (physical).—Ten parameters: =�m�

1 ; . . . ; =�m�
5

[Eq. (32)], and =�f�
1 ; . . . ; =�f�

5 [Eq. (33)]. For pre-
ferred fits, these are constrained with Bayesian
priors to have standard deviation of 1 around 0.
But alternative fits used for systematic errors esti-
mates leave these parameters unconstrained. The
difference in C.L. or final results is small.
(e) S
cale.—Four tightly constrained parameters that
determine relative scale of different lattices: C00

C10, C01, C20 [Eq. (7)]. These are allowed to vary
by 1 standard deviation around values in Eq. (8).
The (small) variation in these parameters makes
very little difference in C.L. or central values, but
including the variation in the fit allows us to in-
corporate the statistical errors in relative scale
determination into the statistical errors of our
results.
(f) L
attice-spacing dependence.—Sixteen parameters
(usually tightly constrained) that control the frac-
tional difference in the physical fit parameters [(a),
(b), and (d) above] between coarse and fine lattices.
In our preferred fits we allow the LO parameters
[(a)] to vary by 2% (at the 1 standard deviation
level), and consider alternatives of ‘‘0%’’ (i.e., no
variation in LO parameters between coarse and
fine lattices parameters), 1%, and 4% in estimating
systematics. For the NLO parameters [(b)], the
central choice is 2.5%; alternatives are 0%, 1%,
4%, and 6%. For NNLO parameters [(d)], the
central choice is 2.5%; alternatives are 0%, 1%,
4%. We also consider complete removal of the
constraints for various small subsets of the NLO
and NNLO parameters.
In our standard NNLO fit there are thus a total of 40
parameters, of which 20 are generally tightly constrained.

We remind the reader that the NLO taste-violating
parameters [(c) above] are forced to change by a fixed
ratio (in a given fit) in going from the coarse to fine
lattices. The point is that these parameters start at
O��2

Sa
2�, so we know how they change with a, up to

corrections that are higher order in �S and/or a. A range
for the ratio is considered in assessing the systematic
error [see discussion following Eq. (10)].

The priors restricting the parameters governing lattice-
spacing dependence [(f) above] require further explana-
tion. We note first that it is not possible, at least with the
current data set, to remove these restrictions on all the
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9In this case there are 24 free parameters in the fit.
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physical parameters, allowing them to be arbitrarily dif-
ferent on coarse and fine lattices. If we do that, the fit
becomes unstable because there are directions in parame-
ter space in which the fit function is almost flat. Some of
these directions can easily be seen in Eqs. (17) and (18).
For example, a2L0 
 a2L00 can grow large, compensated
by a decrease in * and corresponding increases in 2L8 �

L5, 2L6 � L4, a220A, a220V , and the =�m�
i in Eq. (32). Only

the first (continuum) log term in Eq. (17) is uncompen-
sated, but we already know that the good fits allow a
fairly large range in its coefficient, the chiral coupling.
(See discussion of the parameter ! in Sec. VI B.) A
similar mode involves a2L00 � a2L0 growing and f de-
creasing in Eq. (18). Even when such modes eventually
converge, the resulting fit is completely unphysical, with
20%–100% variation of results with lattice spacing and
enormous NLO chiral corrections. Once the physical
parameters are required to change by only a small amount
with a, however, they cannot compensate for changes in
taste-violating parameters like a2L0 and a2L00, and the
runaway modes are damped.

Since the taste-violating NLO parameters (a2L0 and
a2L00) are included explicitly, the LO parameters f and *
should have only generic ( � 2%) changes with a, which
is our preferred choice for priors for their variations. Of
course, as mentioned following Eq. (42), differences in*
between coarse and fine lattices can also be due to per-
turbative errors in the ratio Rm.When we use the one-loop
value for Rm, 0.958, the fits prefer an � 8% difference in
the renormalized * value between coarse and fine, which
is one indication of the size of the perturbative error.

For most of the NLO physical parameters [(b)], the
preferred 2.5% prior for lattice-spacing dependence is not
restrictive, with the fits finding a change that is signifi-
cantly smaller ( & 0:5%). The exception is 2L8 � L5, for
which the 2.5% prior results in almost a 6% difference (a
2:3> effect), suggesting that the corresponding NNLO
taste-violating term has a sizable coefficient. If we in-
stead remove any restriction on the a dependence of
2L8 � L5 (while keeping the constraints on the other
physical parameters), 2L8 � L5 varies by � 20% from
coarse to fine, which is sizable, �3��coarse

a2 � �fine
a2 �.

Perhaps generic and taste-violating effects are both con-
tributing significantly in the same direction. Fortunately,
the continuum-extrapolated value of 2L8 � L5 changes
by only 5% when we remove the restriction on its a
dependence. In any case, the systematic errors on 2L8 �
L5 (as well as on the other Li) are dominated by the larger
changes caused by varying the mass range and/or the
details of the chiral fits. Thus, even if we were to take
the full 20% variation from coarse to fine as the ‘‘discre-
tization error’’ on this parameter the final errors quoted in
Sec. X would hardly change at all.

Our preferred 2.5% prior for the NNLO physical pa-
rameters [(d)] is again generally not restrictive, with =�m�

2
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the only exception. We note that allowing the NNLO
terms to vary with a is not systematic,8 because it effec-
tively introduces some, but not all, NNNLO terms.
Therefore we consider an alternative in which NNLO
physical parameters do not vary with a (‘‘0% priors’’),
but all other features of the preferred fit are unchanged.
This fit has a lower confidence level (C:L: � 0:36) than
the preferred fit (C:L: � 0:65), but gives physical results
that are very similar.

The alternative choices of priors for parameters (f) also
give good fits, except in the cases of 1% (C:L: �
5 � 10�3) and ‘‘0%’’ priors9 (C:L: � 10�4). However,
we keep all the choices in the systematic error analysis.
The 0% priors case, where all physical parameters are
fixed as a function of a, gives results that are in no way
extreme among all alternative fits considered in this work.

The preferred NNLO fit with parameters (a)–(f) above
results in good confidence levels on data subsets I and II.
This is all we need to extract the low energy constants Li,
and it is acceptable for determining f� and m̂. But to
determine fK and ms without an extrapolation to heavier
valence masses, we need to fit to the data in subset III. We
can then interpolate to the physical strange mass.
However, the preferred NNLO fit, or variants thereof,
does not give good confidence level when applied to
subset III. Based on the discussion in Sec. IX A, this is
not surprising, especially considering that the simulation
mass m0

s is larger than the physical strange quark mass.
The problem, though, is that it is not possible to move
beyond NNLO in anything approaching a systematic way
without introducing an unwieldy number of new parame-
ters. If instead we fit subset III to our rather ad hoc
NNNLO forms in Sec. IX C, we can obtain acceptable
fits. But the high quark masses involved, as well as the
nonsystematic treatment of the higher order terms, may
introduce significant systematic errors in the low energy
constants and therefore in the extrapolation of m̂ to the
physical point, which is, of course, still needed for finding
ms and fK. Thus such fits are not acceptable for finding
decay constants and quark masses.

Our solution to the above dilemma is to use the results
for all LO and NLO parameters from the fits to subset II
as inputs to the fits on subset III. We then use the form
Eqs. (36) and (37) on subset III, but with the LO and NLO
parameters, and their change with lattice spacing, con-
strained to vary by at most their statistical errors around
their previously determined values. The NNLO and
NNNLO parameters are left unconstrained. Their varia-
tion with lattice spacing, which implicitly introduces
higher order mixed terms in �q and �a2 , either is also
left constrained or is constrained mildly, with 1-> con-
straints of 10% (preferred fit), 15%, or 20%. The total
-19
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number of parameters in this fit is 48, of which 20 (16 LO
and NLO parameters and their a dependence, plus the
usual four scale parameters) are tightly constrained. We
get reasonable fits with all these versions. The advantage
of this approach is that we can interpolate to the physical
strange quark mass and extrapolate to the physical light
quark mass in the same fit. We therefore use the preferred
fit to subset III for our central values for quark masses and
decay constants. The ad hoc nature of the higher order
terms in this fit is not a problem because we have already
satisfied the chiral constraints at low quark mass. All that
is required in the region of ms is a fit that interpolates
from our partially quenched valence masses and nominal
sea-quark mass to the physical ms value. In other words,
we do not need to rely in detail on chiral perturbation
theory for the ms dependence, since we can reach the
physical value of ms in the simulation. Effectively, we are
depending only on two-flavor �PT. Note, however, that
we include the more conventional chiral fits on subsets I
FIG. 11 (color online). Pion decay constants with mx � my vs
quark mass, in units of r1. The relative mass renormalization of
coarse and fine lattices has been included so that data from both
may be presented on the same plot. Lines come from ‘‘Fit B,’’ a
single NNLO fit, Eqs. (32) and (33), to entire data subset II
(decay constants and masses). The gray (cyan) solid line and
(red) dotted line represent the fit function in ‘‘full QCD’’
(valence and sea masses set equal) after extrapolation of
parameters to the continuum. The gray (cyan) solid line keeps
the s quark mass equal tom0

s on the fine lattices; while the (red)
dotted line [just barely visible above the gray (cyan) solid line]
replaces m0

s with the physical mass ms. The gray (cyan) fancy
squares result from extrapolation of full QCD points to the
continuum at fixed quark mass; their agreement with the gray
(cyan) solid line is a consistency check. Points and fit lines have
been corrected for finite-volume effects.

114501
and II among the alternatives when estimating the sys-
tematic errors.

C. Fit results

Figures 11 and 12 show our preferred NNLO fit to data
subset II. We call this fit ‘‘Fit B’’; the corresponding fit on
data subset I is called ‘‘Fit A.’’ Fit B is a single fit to the
data in both Figs. 11 and 12, as well as many more data
points not shown. The fit has a chi-square of 192 with 200
degrees of freedom, giving C:L: � 0:65. This is a stan-
dard C.L., with �2 summed over all data points, and
number of degrees of freedom (d.o.f.) given by number
of data points minus the number of parameters. If we
include the Bayesian priors as effective ‘‘data points,’’
then Fit B has a chi-square of 235 with 230 degrees of
freedom, C:L: � 0:39. The fact that this is also an accept-
able C.L. indicates that S�PT and our assumptions about
the a dependence of fit parameters are reasonably well
behaved in this mass range. Fit A gives very similar
results for decay constants and quark masses, but includes
many fewer points (94 vs 240) and has a lower confidence
level (0.23). As discussed in Sec. IX D 4, however, Fits A
and B produce rather different values for the low energy
constant 2L6 � L4, indicating a large systematic uncer-
tainty in that parameter. For our central values of the Li,
we average the results of Fit A and B, and include the
difference in the error.

Figures 13–15 show � and K decay constants and �
masses from the corresponding preferred NNNLO fit to
FIG. 12 (color online). Same as Fig. 11 (Fit B), but squared
pion masses divided by quark mass are shown. Because taste
splittings are smaller for the fine lattices, the average meson
mass changes more rapidly with quark mass, and there is
greater curvature at small quark mass.
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FIG. 14 (color online). Similar to Fig. 13 (Fit C), but for kaon
decay constants, with my fixed as closely as possible on each set
to mphys

s . The (red) dotted line has parameters extrapolated to
the continuum, the strange valence and sea masses set to the
physical value, and light sea-quark mass equal to light valence
mass mx. The gray (green) dotted extension has the light sea-
quark mass fixed at m̂, and the valence mass mx continuing
down to mu (thus giving fK
 ).

FIG. 13 (color online). Pion decay constants with mx � my in
data subset III. Lines come from Fit C, a single NNNLO fit to
masses and decay constants. The gray (cyan) solid line, (red)
dotted line, and gray (cyan) fancy squares have the same
meaning as in Fig. 11. Points (and fit lines) have been corrected
for finite-volume effects.
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data subset III (‘‘Fit C’’). The LO and NLO parameters
here are fixed, up to their statistical errors, by Fit B. Fit C
has a chi-square of 383 for 368 degrees of freedom
(C:L: � 0:28); including the priors gives a chi-square of
418 for 402 degrees of freedom (C:L: � 0:28). Central
values of fK, f�, fK=f�, ms, m̂, ms=m̂, and mu=md are
taken from this fit; while Fits A and B are included as
alternatives in estimating systematics.

Using the volume dependence from NLO S�PT,
Eqs. (13) and (14), the leading finite-volume effects can
be removed from our data. Such effects are rather small to
begin with (< 0:9% onM2

P

5

and<1:4% on fP

5

, based on

fit B), and this calculated volume dependence is consistent
with simulation results in the one case where two differ-
ent volumes are available [19]. One-loop finite-volume
effects have been removed from the points and lines
shown in Figs. 11–15. Possible residual errors from higher
order finite-volume effects are discussed in Sec. IX D 6.

To extract continuum results for masses or decay con-
stants from Fits A, B, or C, we first set the taste splitting
and the taste-violating parameters to zero. We then ex-
trapolate the remaining, physical parameters to the con-
tinuum linearly in �Sa2. For central values, we assume
that the ratio of this quantity between fine and coarse
lattices is 0.427 [see Eq. (26)]. For the LO parameters we
take the range of the ratio to be 0.398 to 0.441 in estimat-
ing the systematic error, as in the discussion of Eq. (26).
But for all other parameters, we expand the range to 0.30
to 0.441 in recognition of the fact that the fits do not
distinguish generic discretization errors, O��Sa

2�, from
taste-violating errors, O��2

Sa
2�. We thus must include the

range discussed following Eq. (10).
FIG. 15 (color online). Same as Fig. 13 (Fit C), but for
squared pion masses divided by quark mass.
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FIG. 16 (color online). Squared meson masses in subset III,
as a function of mx=m

0
s. The lines are from Fit C. We show

results from two lattices: a coarse lattice with sea-quark masses
am̂0 � 0:01, am0

s � 0:05, and a fine lattice with am̂0 � 0:0062,
am0

s � 0:031. Three sets of kaon points with my �

m0
s; 0:8m

0
s; 0:6m

0
s, are plotted for each lattice. Pion points have

mx � my. The statistical errors in the points are not visible on
this scale. The (red) dashed lines give the continuum-
extrapolated fit (now as a function of mx=ms), and the (ma-
genta) vertical dotted line shows the physical m̂=ms obtained.
The extension [shown in gray (green)] of the (red) dashed kaon
line until it intersects the QCD K
 value then gives mu=ms,
from which we find mu=m̂ or mu=md.
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Table IV shows the central values of the continuum-
extrapolated parameters for Fits A, B, and C. Note that
the statistical errors on most of the parameters are quite
large. This seems to be a consequence of the ‘‘flat direc-
tions’’ in the fitting function, as described in Sec. IX B:
Small fluctuations in the data can produce large variations
in the parameters. However, because of the correlations
among the parameters, the statistical errors of interpo-
lated or extrapolated decay constants and masses are
small, comparable to those of the raw data.

Once the continuum chiral parameters are obtained,
we set valence and sea-quark masses equal and obtain
‘‘full QCD’’ formulas for m2

�=�2m̂0�, m2
K=�m̂

0 
m0
s�, f�,

and fK in terms of arbitrary quark masses m̂0 andm0
s. The

gray (cyan) lines in Figs. 11–15 show these as a function
of m̂0, with m0

s held fixed at the value of the simulation
sea-quark mass on the fine lattices. As a consistency
check, we also show in each case the result from extrapo-
lation of full QCD points to the continuum at fixed quark
mass [gray (cyan) fancy squares]. To generate these
points, we use the chiral fits only to interpolate the coarse
data so that it corresponds to the same physical quark
masses as the fine data. There are just two such points in
each plot because we have just two runs with different
sea-quark masses on the fine lattice. Since discretization
errors come both from taste violations and generic errors,
there is an ambiguity in the extrapolation used to find
these points. We have assumed that taste violations domi-
nate and have extrapolated linearly in �2a2, i.e., with a
ratio of 0.35 in �2a2 between coarse and fine [see dis-
cussion following Eq. (10)]. This agrees both with our
order of magnitude estimates (taste violations � 6%;
generic errors � 2%) and with a detailed analysis below
(Sec. IX D1).

To proceed further we need to know the physical values
of the quark masses. These can be obtained from Fig. 12
or Fig. 15 by finding those values of m̂ andms that give the
� and K their physical QCD masses in the isospin limit,
m�̂ andmK̂ [defined in Eq. (45)]. An iterative procedure is
required because both meson masses depend on both
quark masses, although the dependence of m�̂ on ms is
mild, since s only appears as a sea quark. The nature of
this extrapolation/interpolation is most clearly seen in
Fig. 16,10 which is again Fit C, but now shown for squared
meson masses as a function of light quark mass. For
clarity, we plot data with only one choice of sea-quark
masses for the coarse and fine sets; the variation with
light sea-quark mass is quite small on this scale. The (red)
dashed lines show the fit after extrapolation to the con-
tinuum, going to full QCD, and iteratively adjusting the
strange quark mass to its physical value, so that the pion
10An almost identical plot, but without the extrapolation to
find mu=md, appeared in Ref. [22].
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and kaon reach their physical QCD values at the same
value of m̂.

Note that nonlinearities in the data are quite small on
the scale of Fig. 16. Linear fits to m2

P

5

as a function of

mx 
my would change the physical quark mass values by
only 2% to 7%, depending on the range of quark masses
included and whether or not we fit the decay constants
simultaneously. (The correlation between masses and
decay constants implies that the fits are correlated even
in this case, where they have no free parameters in com-
mon.) However, the tiny statistical errors in our data imply
that even small nonlinearities must be accurately repre-
sented in order to obtain good fits. Indeed, linear fits have
�2=d:o:f:� 20. For an example of the accuracy of a linear
fit, see the lowest fit line (for Goldstone pions) in Fig. 9.

Once the physical s quark mass ms is in hand, we can
adjust the gray (cyan) lines in Figs. 11–15 to put the
strange mass at its physical value. This gives the dotted
(red) lines. Following the dotted (red) lines to the physi-
cal light quark mass m̂ gives our extrapolated results for
f�, plotted as (red) fancy plusses in Figs. 11 and 13. The
errors in the (red) fancy pluses are statistical only; the
-22



FIG. 17 (color online). A magnification of the region around
the K̂ and K


QCD masses in Fig. 16. The dotted vertical lines give
mu=ms and m̂=ms.
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systematic errors are shown separately. We also plot the
‘‘experimental’’ values of the decay constants [37], where
we put experimental in quotation marks to emphasize
that the decay constants are extracted from experiment
using theoretical input and values of CKM matrix ele-
ments, which themselves have uncertainties.11

Figure 16 also shows how mu is extracted: With ms and
m̂ determined, we can continue the full QCD kaon line as
a function of the light valence quark mass (holding the
light sea-quark mass fixed at m̂) until it reaches the value
of �m2

K
�QCD, Eq. (46). The continuation is shown as a
gray (green) dashed line. For clarity, a magnified version
of the relevant region is shown in Fig. 17. There is a slight
change in the slope of the dashed line at m2

K̂
because,

below this mass [gray (green) section], the light sea-
quark mass is no longer changing. Above this point, light
valence and sea masses change together. The ratio of the x
coordinates of the points where the kaon line intersects
the physical �m2

K
�QCD and m2
K̂

values is mu=m̂ � 0:60.
Given mu, we can extract fK, which is really fK
 , not

the decay constant ‘‘fK̂’’ of an isospin-averaged kaon.
After extrapolating the chiral parameters to the contin-
uum, we set valence and sea strange quark masses equal
to the physicalms. We now make a two-step extrapolation
in the light quark mass, as shown in Fig. 14. We first set
the light sea mass equal to the light valence mass mx and
extrapolate in mx down to m̂ [(red) dotted line]. We then
fix the sea-quark mass at m̂ and continue the extrapolation
11See Sec. X for additional discussion about the experimental
value of fK.
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in valence mass mx to mu [short gray (green) dotted line].
It is clear from the size of the systematic errors that this
final short extrapolation does not at present produce a
significant change in fK. However, this distinction be-
tween fK
 and fK̂ will become more important as lattice
computations improve.

D. Discussion

Good fits are not possible without the taste-violating
terms in S�PT. Figure 10 corresponds exactly to Fig. 11
except that in Fig. 10 the taste splittings in meson masses
have been set to zero and the taste-violating chiral pa-
rameters (20

V , 20A, L0, and L00) have been eliminated. Thus
the fit in Fig. 10 is to the ‘‘continuum’’ NNLO �PT
form,12 which has only four fewer parameters than the
S�PT fit in Fig. 11 (i.e., a total of 36).We put continuum in
quotation marks here because generic variations in physi-
cal parameters between coarse and fine lattices are still
allowed. Further, even if we allow these generic varia-
tions to be arbitrarily large, instead of the � 2% variation
permitted in the standard fits, we cannot obtain good fits
without including the taste violations. The fact that con-
tinuum �PT fits are so poor reassures us that the good fit
in Fig. 11 is not simply a trivial consequence of having a
lot of fit parameters—one has to get the physics right.
Other test fits described below, such as fitting without the
nonanalytic terms in the fit function (Sec. IX D 2), give
additional reassurance, since they have equal or compa-
rable numbers of parameters to Fit B but cannot describe
the lattice data.

1. Continuum extrapolation

For the decay constants, our preferred method of con-
tinuum extrapolation is to extrapolate the chiral fit pa-
rameters, as described in Sec. IX C. An alternative
method is to determine decay constants in physical units
at fixed lattice spacing, and then attempt to extrapolate
these quantities. There are two ways to find fixed lattice-
spacing values: (1) simply use the complete chiral fits to
extract the decay constants on the coarse or fine sets, or
(2) first set the taste-violating parameters (20

V , 20A, L0, L00)
and splittings in the fit to zero, and then extract the decay
constants for each set. The advantage of method (2) is
that, once taste violations have been set to zero, remain-
ing discretization errors should be dominantly of the
generic type, so we may extrapolate to the continuum
linearly in �Sa2. In method (1), the decay constants at
fixed a have both generic and taste-violating discretiza-
tion errors, so there is an ambiguity in extrapolating them
to the continuum.

Figure 18 shows the decay constants at fixed a using
both methods, and the various extrapolations to the con-
12As in the S�PT case, NNLO chiral logarithms are not
included.
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FIG. 18 (color online). Dependence of chirally extrapolated
f� and fK on lattice spacing. The (blue) octagons and crosses
show values at fixed lattice spacing [using ‘‘method (1)’’] and
those extrapolated to the continuum linearly in �a2. For the
gray (green) octagons and crosses, the extrapolation is linear in
�2a2. The (magenta) squares and plusses have the taste-
violating effects at fixed lattice spacing removed with S�PT
[‘‘method (2)’’]; the points are then extrapolated to the con-
tinuum linearly in �a2. The (red) diamond and fancy plus are
the results of extrapolating the chiral fit parameters to the
continuum. Extrapolated points at a � 0 have been moved
slightly horizontally for clarity. Fit C is used everywhere.
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tinuum. Once taste violations are removed [method (2)],
the remaining discretization errors are quite small, giving
a 1%–2% change between coarse and fine, as expected.
Further, because this change is small, it would not make a
significant difference in the extrapolated answer if we
were to replace the �Sa2 extrapolation with an �2

Sa
2 one.

With method (1), the change from coarse to fine is 5%–
6%, roughly the same size as the difference in the raw
data between these lattices: See Figs. 11–15.13 There is
also a noticeable difference ( � 1:2%) in the extrapolated
results with method (1), depending on whether O��Sa

2�
or O��2

Sa
2� errors are assumed. This ambiguity would

grow to � 2:2% if we used the full allowed range of
values for the O��Sa2� or O��2

Sa
2�. For f� and fK, we

therefore do not consider method (1) results among the
possible alternatives in assessing the systematic error. We
use the parameter-extrapolated version [(red) diamond
13The difference between coarse and fine raw data appears to
be significantly greater than 6% in Fig. 14, but this is because
the raw points also have different strange valence quark
masses.
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and fancy plus in Fig. 18] for central values, and include
the results of method (2) when estimating systematic
errors. Note that we are rejecting method (1) because of
its inherent ambiguity, not because it disagrees with the
other methods of extrapolation.

On the other hand, for the ratio fK=f� and for quark
masses (mu=md here, and ms, m̂ and ms=m̂ in Ref. [22]),
the results change little with lattice spacing, so the am-
biguity in method (1) is tiny (much less than other sys-
tematic errors). Therefore, in those cases we include all
three methods of extrapolation in our systematic error
estimates.

The nice consistency of Fig. 18 with our understanding
of the sources of discretization errors is comforting.
However, we caution the reader that some aspects of
this picture are dependent on the assumptions that went
into our fits. In particular, we have inserted Bayesian
priors to enforce a (1 standard deviation) constraint that
LO chiral parameters change by at most 2% from coarse
to fine lattices. When we relax this constraint to 4%, the
difference of method (2) results from coarse to fine in-
creases to 3%–4%; while method (1) differences remain
at about 6%. The relaxed version of the chiral fit is
included in the systematic error analysis. With just two
lattice spacings, however, we cannot remove this con-
straint entirely without the fit becoming unstable, as
has been emphasized in Sec. IX B. Instead, the key point
here is that we can obtain good fits of our entire data set
based on the theory of taste violations, plus some smaller
generic errors. This is to be contrasted with our failed
attempts to fit the data without including taste violations,
even when generic errors are allowed to be arbitrarily
large.

2. Evidence for chiral logarithms

From Sec. VI B, we know that the coefficient of the
chiral-logarithm terms, the chiral coupling 1=�16�2f2�,
is not tightly constrained by the fits. If the chiral coupling
is allowed to be a free parameter, fits to higher valence
masses prefer values of f near fK in the coupling; while
fits to lower masses prefer f closer to f�. On the other
hand, acceptable fits can be obtained for all our mass
ranges with the chiral coupling fixed anywhere between
its value for f� and that for fK. Given this freedom, can
we claim that chiral logarithms are observed at all? To
answer this question, we consider a variety of alternative
fits without chiral logarithms.

First of all, since Fig. 16 appears so linear to the eye,
one can ask whether a simple linear fit would work. The
answer is no: Linear fits of m2

P

5

vs mx 
my have chi-

square per degree of freedom �20. The point is that the
statistical errors in the data are so small, and the corre-
lations are well enough determined that the small depar-
tures from linearity must be accurately represented by the
fits. These deviations are seen more clearly in Figs. 12 and
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15, where the valence quark masses are divided out.
Similarly, even though the apparent curvature in the
decay constant data is not large (see Figs. 11 and 13),
linear fits of fP


5
vs mx 
my are also terrible, with chi-

square per degree of freedom �25.
We next check whether the data can be fit by including

all the higher order (nonlinear) analytic terms, but omit-
ting the chiral logarithms. With the chiral-logarithm
functions ‘, Eq. (13), and ~‘, Eq. (14), set to zero, we
attempt a fit directly comparable to our NNLO Fit B on
mass subset II. This fit has 38 free parameters, which is 2
less than Fit B because the taste-violating hairpin pa-
rameters 20A and 20V decouple when ‘ � ~‘ � 0. Despite
the large number of parameters, the fit is very bad, with
�2=d:o:f: � 7:38 for 202 degrees of freedom;
C:L: < 10�194.

Bećirević and Villadoro [46], have pointed out that, for
some current simulations on small volumes, the finite size
effects are much more important than the actual chiral
logarithms. We would not expect that to be the case here
since the lattice volumes are relatively large (L � 2:5 fm)
and finite-volume effects here are small (at most 1.4%;
see Sec. IX C). To check this expectation, we first re-
moved the finite-volume effects from the data using Fit
B, and then fit again to the 38 parameter form with ‘ �
~‘ � 0. This fit is improved over the previous one, but still
quite bad: �2=d:o:f: � 3:08 for 202 degrees of freedom;
C:L: < 10�43. Our conclusion is that the effect of the
staggered chiral logarithms is in fact observed in our
data.

One can ask whether the finite-volume effects are also
directly observed. The answer seems to be yes: A 40-
parameter fit leaving out these effects [setting 21 and 23

to zero in Eqs. (13) and (14)] but otherwise identical to Fit
B has �2=d:o:f: � 1:95 for 200 degrees of freedom;
C:L: � 2 � 10�14.

3. Are the lattice masses light enough for S�PT
to be applicable?

To discuss this question, we first have to say what we
mean by the physical quark masses at fixed a. For current
purposes we define the physical values of the lattice
masses, ams and am̂, by method (2), i.e., as the quark
masses that give the pion and kaon their physical masses
when all taste splittings and taste-violating chiral pa-
rameters are set to zero. This gives ams � 0:0457, am̂ �
0:00166 on the coarse lattices and ams � 0:0289, am̂ �
0:00105 on the fine. We have not made a detailed study of
the errors in these numbers, but systematic errors are
�6%, and statistical errors are 1% or less. We could
alternatively define the physical ms at a given lattice
spacing by method (1), i.e., as the masses that give the
physical mesons masses directly, including all effects of
taste violations in the chiral loops. The latter values of
quark masses were quoted in [19,22] and are about �15%
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smaller on the coarse lattices and �6% smaller on the fine
lattices than the ones quoted above.We choose the method
(2) definition here because we are going to be adding on
the taste splittings to meson masses explicitly. We note
that the difference between the methods becomes small,
1%–2%, once we extrapolate to the continuum, and is
included in the systematic errors quoted in Ref. [22].

We now consider meson masses on the coarse lattice for
subset II. This is the worst case because subset II contains
the highest valence quark masses for which we have
applied a fully chiral description, and the coarse lattices
have the largest additional contributions to meson masses
from taste violations. The valence masses here obey mx 


my � 0:7m0
s � 0:77ms. Since the smallest valence mass is

0:1m0
s, the largest is 0:6m0

s � 0:66ms; while the largest
sea-quark mass in the simulation is m0

s � 1:09ms. For the
following estimates, we assume linear dependence of
squared meson masses on quark masses, and take
486 MeVas the mass a ‘‘kaon’’ would have in the absence
of electromagnetism and if the light quark were massless.
In other words, we use *ms � �486 MeV�2. This comes
from Eq. (45) and the ratio ms=m̂ � 27:4 [22]. Then the
largest valence-valence Goldstone meson mass in coarse
subset II is 425 MeV. Adding on the largest splitting (the
taste-singlet case) gives 623 MeV; while an average taste
splitting [see discussion after Eq. (12)] gives 551 MeV. We
do not think it unreasonable to expect S�PT to work in
this mass range, although it is not surprising—consider-
ing the small statistical errors of the data—that NNLO
terms are needed. Further, the comparison with subset I
results is a good check, because the corresponding masses
there are significantly lower: 321, 557, and 475 MeV,
respectively.

Mesons with one or two sea quarks also appear in
chiral loops. These are generally comparable to the
masses just discussed. But they are significantly larger
when the sea quark is an s, which is exacerbated by the
fact that the simulation value, m0

s, is larger than the
physical mass. On subset II, this largest valence-sea
(Goldstone) mass is 642 MeV. Adding on the biggest
splitting gives 787 MeV. This taste-singlet meson enters
with a factor 1=16 in the sum over tastes; the average
taste version is 731 MeV. On subset I, the masses become
578, 736, and 676 MeV, respectively. Further, there are
sea-sea contributions, which are independent of the va-
lence mass subset. The most relevant here is the taste-
singlet �. Its mass depends (mildly) on the light quark sea
masses, but is �765 MeV including splitting. In addition
there are �0-like particles in the taste axial and vector
channels whose masses are comparable to the taste-
singlet � but have smaller [O�a2�] couplings.

The meson masses involving the s sea quark are admit-
tedly quite high to expect that even NNLO �PT will be
accurate. For example, the largest mass mentioned above,
765 MeV, corresponds to a �q value, Eq. (11), of 0.43. This
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suggests an error from neglected terms of order �0:43�3 �
8%. But, just as for the valence subset III, the issue here
for decay constants and quark masses is only to get a good
interpolation to the physical s quark mass. Indeed, if the s
sea quark in the simulation had been chosen at the a
posteriori determined physical mass, we would not have
needed to use �PT for the s at all, but could use a
SUL�2� � SUR�2� �PT for the light quark extrapolation.
The systematic error on the coarse lattice from adjusting
m0
s � 1:09ms toms may be crudely estimated as �0:43�3 �

��1:09�3 � 1� � 2%. Since m0
s is closer to ms on the fine

lattice, some of this error will be extrapolated away when
we go to the continuum limit. On the other hand, chiral
coefficients (at NLO and NNLO) that involve the sea
quarks are not fit accurately because the ‘‘lever arm’’ is
small: The sum of the sea-quark masses changes by less
than a factor of 2 over our entire range of coarse lattices
and only by 30% for the fine lattices. A more reliable
TABLE V. Central values and error estimates for f�, fK, and
fK=f�. All errors are absolute amounts, not percentages. Decay
constants and their errors are in MeV. Unsigned errors are
taken as symmetric. The chiral/continuum error slices show
variation under reduced sets of possible alternative fits/extrap-
olations; see text.

f� fK fK=f�

Central-value 129:46 156:63 1:2099

Errors

Statistics 0:87 0:98 0:0042
Scale 
2:35 
2:58 
0:0027

�2:36 �2:51 �0:0020
(indirect) EM effects 0:01 0:10 0:0009
Chiral/continuum extrapolation 
2:37 
2:19 
0:0125

�2:58 �2:59 �0:0112

Chiral/continuum error slices

a 
0:79 
0:60 
0:0093
�2:50 �1:84 �0:0075

a1 
0:35 
0:27 
0:0075
�1:05 �0:42 �0:0037

a2 
0:63 
0:02 � � �

�0:56 �1:20 �0:0057
a3 � � � � � � 
0:0024

�1:11 �1:05 � � �

b 
2:19 
2:02 
0:0089
�1:33 �1:89 �0:0095

b1 
0:12 
0:09 
0:0017
�0:52 �0:62 �0:0019

b2 
0:69 
2:00 
0:0089
�0:63 �1:60 �0:0065

b3 
0:39 
0:89 
0:0032
� � � � � � � � �

c 
0:27 
0:26 
0:0015
�2:52 �2:79 �0:0007
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estimate of the error in adjusting the s quark mass comes
from considering the range in results over the full list of
alternative mass subsets, chiral fits, and continuum ex-
trapolations. It can be as large as half the total chiral error
in our results for decay constants and quark masses (see
line a1 in Tables V and VI); the remaining error comes
from extrapolating in the light quark mass.

For the Li, the situation is somewhat different. Missing
higher order terms in the SUL�3� � SUR�3� expansion
mean that there is spurious analytic dependence on the
light quark masses that increases as meson masses get
larger. Here we are missing the NNLO chiral logarithms,
so those terms determine the size of the errors. Letting M
be a generic meson mass, the absent terms are of order
M4 log�M2�=�8�2f2

��
2. Putting in the largest meson

masses discussed above, results in an estimate of the
absolute error in the Li of a few times 10�4. This is indeed
the size of the errors we observe when we consider all the
alternative chiral fits discussed above and/or restrict the
valence masses to subset I instead of subset II (Sec. X).
The low energy constant 2L6 � L4 may be an exception:
Since the errors in it are large on this scale, �4 � 10�4,
TABLE VI. Same as Table V, but for mu=md.

mu=md

Central-value 0:429

Errors

Statistics 0:004
Scale 0:002
EM effects 
0:084

�0:076
Chiral/continuum extrapolation 
0:012

�0:006

Chiral/continuum error slices

a 
0:012
�0:005

a1 
0:002
�0:005

a2 
0:012
�0:004

a3 
0:003
� � �

b 
0:004
�0:002

b1 
0:000
�0:002

b2 
0:000
�0:002

b3 
0:002
� � �

c � � �

�0:002
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FIG. 20 (color online). Convergence of SU�3�L � SU�3�R
�PT for decay constants. Our results on mass set II for f�
and fK at LO [dash-dotted (black) line], NLO [dotted (red and
blue) curves], and NNLO [solid (red and blue) curves] are
shown. The chiral parameters have been extrapolated to the
continuum. Convergence of SU�2�L � SU�2�R �PT can be seen
by comparing the f� results to the chiral limit, obtained [gray
(green) dashed curve] by extrapolating the NNLO f� result to
m̂ � 0. The (magenta and cyan) fancy squares are found by
extrapolating our full QCD data to the continuum limit at fixed
quark mass. All results come from Fit B.

FIG. 19 (color online). Enlargement of a small region of
Fig. 12.
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they may also not be very reliable. Difficulty in extracting
2L6 � L4 is again related to the small lever arm for the
sea-quark dependence. This can be seen in Fig. 19, an
enlargement of a small region of Fig. 12. As the sea-quark
mass is changed, the differences are small—comparable
to statistical errors—and not monotonic. Contrast this
with the monotonic sea-quark dependence seen for f� in
Fig. 11. A coarse simulation now in progress, with all
three sea-quark masses at about 0:66ms, should help to
reduce significantly the error in the sea-quark mass
dependence.

4. Convergence of �PT

Figure 20 shows the convergence of SU�3�L � SU�3�R
�PT for f� and fK. All chiral parameters in this plot have
been extrapolated to the continuum. The NLO terms
contribute 20%. This is true even for f�, because ms
does not vanish in the chiral limit. The convergence of
SU�2�L � SU�2�R �PT for f� can also be extracted from
this plot by starting with the ‘‘chiral limit’’ line instead of
the ‘‘LO’’ line lowest order contribution to f�. Note that
the (magenta and cyan) fancy squares, which are included
as a consistency check, are the only full QCD points that
we can extrapolate to the continuum at fixed mass. We
have lighter valence quarks on the fine lattices, and ligh-
ter valence and sea quarks on the coarse lattices. All such
partially quenched points are included in the fits that
produce the lines in the plot. Figure 20 comes from the
fit to data subset II (Fit B). If instead we restrict the fit to
data subset I (Fit A), the picture is virtually unchanged.

Figures 21 and 22 are the corresponding plots for
meson masses [m2

P
=�mx 
my�]. Figure 21 is generated
from the fit to data subset II (Fit B); while Fig. 22 uses
data subset I (Fit A). Here there is a significant difference
between the two plots, with the latter showing much
smaller higher order corrections in SU�3�L � SU�3�R
�PT than the former. The difference illustrates the poor
control over the low energy constant 2L6 � L4 (see
Sec. IX D 3): We get 2L6 � L4 � 0:70�17� � 10�3 with
Fit B, and 2L6 � L4 � 0:24�16� � 10�3 with Fit A.14

Because this parameter multiplies 2m̂
ms, its effect
does not vanish in the chiral limit of the light quark
mass m̂. Its variation is largely canceled by differences
in the LO parameter * and the NNLO parameters =�m�

2

and =�5�
5 , Eq. (32), so that the full NNLO fit line and the

extrapolated� andK values are quite close in the two fits.
This means that the ambiguity in 2L6 � L4 and the LO
term is largely irrelevant to the extraction of quark
masses (and, indirectly, decay constants); the variation
between the fits is of course included in systematic errors
estimates of these quantities.
14The statistical errors here are slightly larger than those in
Table IV because the statistical errors associated with the
continuum extrapolation are included.
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FIG. 21 (color online). Same as Fig. 20, but for m2
P
=�mx 


my�. This uses Fit B (data subset II).
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The qualitative expectation from �PT is that coeffi-
cients in the expansion should be O�1� when we use the
dimensionless expansion parameters �q, Eq. (11). Both
Fit A and Fit B pass this test (the largest coefficient in
either is =�m�

2 � 1:66 in Fit B—see Table IV), so we must
accept the large systematic effect on 2L6 � L4 as inherent
FIG. 22 (color online). Same as Fig. 21, but for Fit A (data
subset I).
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in the current data set. Indeed, the size of the difference in
the LO term, *, between the two fits is reasonable, given
that the fits prefer a chiral coupling 1=�16�2f2� with f
moving from � f� to � fK as the quark masses rise
toward ms (see comments about the parameter ! in
Sec. VI B). Both fits here fix f � f�, but Fit B is effec-
tively able to reduce the effect of the chiral coupling by
reducing the LO parameter * and compensating by in-
creasing the NLO parameter 2L6 � L4. Since the differ-
ence between f2

� and f2
K is more than 40%, the �20%

difference between the * from the two fits is not unex-
pected. New simulations with lighter strange sea-quark
masses will allow us to take all quark masses deeper into
the chiral regime, as well as greatly increase the lever
arm on thems dependence, and should help to resolve this
issue.

5. Mass dependence of renormalization scheme

Strictly speaking, it is incorrect to use a scale deter-
mined by a quantity like r1 or the �0-� mass difference in
chiral fits to lattice data, since such quantities themselves
have some (small) sea-quark mass dependence not in-
cluded in chiral perturbation theory [47]. We have inves-
tigated this effect by changing to a mass-independent
renormalization scheme: Instead of fixing the (relative)
lattice scale for particular sea-quark mass values from
r1=a at those values, we can use, on each lattice, the value
of r1=a after extrapolation to the physical mass values15

using the fit Eq. (7). This produces the same value of a on
all the coarse (or, separately, fine) lattices, independent of
the sea-quark masses. We include the difference between
the mass-independent scheme and our standard approach
in our assessment of systematic errors.

For decay constants and quark masses, the change in
scheme is a priori unlikely to make much difference
because the physical point is unaffected—all that may
change is the extrapolation to it. Further, any low-order
analytic dependence on sea-quark mass introduced
through r1 would automatically be compensated by
changes in the analytic chiral fit parameters. So the
only problem would be due to nonanalytic quark mass
dependence, which is probably quite small because r1 is a
short-distance quantity, at or near the perturbative region.
We thus consider the variation in scheme simply as an-
other alternative version of the chiral fits. This means that
it would affect the final systematic error only if it pro-
duced the largest difference from the central value over
all the alternatives. In fact it is fairly small, as expected
(see line a3 in Tables V and VI).

The situation is logically quite different for the low
energy constants. Here, analytic sea-quark mass depen-
15Here we consider both the quark mass values determined by
method (1) and those determined by method (2); see
Sec. IX D 3.
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TABLE VII. Central values and error estimates for Li (multiplied by 103) at chiral scale
(� � m�. We show differences from the central values everywhere except for the lines
marked Fit A and Fit B, where we give the results from those fits. See the text for explanations
of the various ‘‘error slices.’’

L5 L4 2L8 � L5 2L6 � L4

Central-value 1:89 0:19 �0:18 0:47

Errors

Statistics 0:28 0:29 0:11 0:16
Scale 
0:01 
0:06 
0:03 
0:03

�0:00 �0:05 �0:03 �0:03
*tree 0:13 0:01 0:01 0:03
Mass-dependent scheme 
0:06 
0:14 
0:03 � � �

� � � � � � � � � �0:01
Chiral/continuum extrapolation 
0:24 
0:21 
0:15 
0:38

�0:15 �0:19 �0:20 �0:31

Chiral/continuum error slices

Fit A 1:83 0:18 �0:04 0:24
Fit B 1:95 0:20 �0:33 0:70
a 
0:21 
0:19 
0:15 
0:33

�0:14 �0:17 �0:18 �0:27
a2 
0:03 
0:11 
0:02 
0:07

�0:07 �0:06 �0:02 �0:04

b 
0:06 
0:10 
0:03 
0:01
�0:04 �0:09 �0:02 �0:04

b1 
0:00 
0:00 
0:00 
0:00
�0:00 �0:00 �0:01 �0:00

b2 
0:06 
0:07 � � � 
0:01
�0:03 �0:09 �0:02 �0:02

b3 
0:00 
0:10 � � � 
0:00
� � � � � � �0:02 � � �
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dence in r1 would directly change the output values of L4

and 2L6 � L4, which multiply sea-quark masses. We
therefore consider the scheme dependence as a systematic
error in its own right, and add any error found in quad-
rature with other systematic errors. In practice, however,
this effect is still smaller than other errors (see TableVII).
6. Residual finite-volume effects

At the precision we are working (especially for fK=f�),
it is important to consider whether finite-volume effects
coming from terms beyond one-loop in S�PT could be
non-negligible. Indeed, Colangelo and Haefeli [48] have
recently investigated such effects in full continuum QCD.
For volumes and masses comparable to those used here,
they find large higher order corrections to the volume
dependence, roughly 30% to 50% of the one-loop results.

In asymptotically large volumes, the finite-volume ef-
fects in S�PT are suppressed relative to those in contin-
uum �PT for the same (Goldstone) masses because most
of the pions entering chiral loops have larger masses. This
114501
can be easily seen in Eq. (24): The lightest (Goldstone)
pion appears with a weight 1=16 as large as in the con-
tinuum. However, at our current volumes, masses, and
lattice spacings, the relation between S�PT and �PT
finite-volume effects is complicated, with the former
just as likely to be larger than the latter as smaller.
Equations (24) and (25), together with our numerical
results for splittings (Table III) and the taste-violating
hairpin parameters [Eq. (47), below], show how the
asymptotic rule can be violated. Since �A is the smallest
splitting, and 20A is non-negligible and negative, m�0

A
may

not be much larger than the Goldstone pion mass. Then,
due to the factors of 4 in Eq. (24), finite-volume correc-
tions coming from the �0

A can be as large or larger than
the continuum corrections. As a! 0, the term ‘�m2

�0
A
�

would be canceled by ‘�m2
�A�, but this cancellation may

not be effective for finite-volume effects at a given value
of a, because the volume effects are sensitive to small
mass differences. Since one-loop finite-volume effects on
our lattices are comparable to those in the continuum, we
have no a priori reason to expect that our results are
-29



C. AUBIN et al. PHYSICAL REVIEW D 70, 114501 (2004)
protected from the higher order effects [48] seen in the
continuum.

Assuming that the higher order finite-volume effects in
S�PT are roughly the same size as those in full contin-
uum QCD when the volumes and the masses of the
mesons in the loops are the same, we can estimate the
resulting systematic errors. For our data, the biggest one-
loop finite-volume effects appear when both the valence
masses and m̂0 are small [giving a light �0

A in the two-
flavor case, Eq. (25), or a light �A in the three-flavor case,
Eq. (22)]. The worst case occurs in the coarse run with
am̂0 � 0:007; the run with m̂0 � 0:005 has smaller finite-
volume effects because L � 3:0 fm there, instead of L �
2:5 fm for other runs. From the calculations in Ref. [48],16

we estimate that the residual higher order finite-volume
effect is at most 0:47% in f�, 0:24% in fK, and 0:23% in
fK=f�. More stringent bounds on the errors can be ob-
tained by removing from the data set those points that
have the largest finite-volume corrections. Eliminating
eight of 240 points from mass subset II (five from coarse
run 0:007=0:05, two from coarse run 0:01=0:05, and one
from fine run 0:0062=0:031), we lower the largest one-
loop finite-volume effect on fP


5
or M2

P

5

from 1:35% to

0:81%. Not surprisingly, since the reduced data set retains
most of the lowest valence mass points and all of the
lowest sea mass points, it produces nearly identical re-
sults (within 0:05%) as the original set. But a repeat of the
analysis using Ref. [48] now bounds the residual finite-
volume error by 0:29% in f�, 0:15% in fK, and 0:14% in
fK=f�. These are negligible compared to our other sys-
tematic errors. In the future, however, as quark masses in
staggered simulations decrease further, it will be neces-
sary either to have a better handle on these higher order
effects in S�PT or to go to significantly larger volumes.

7. Fourth root of the determinant

In order to eliminate the quark doubling that is still
present in the staggered action, the simulations here take
the fourth root of the quark determinant for each flavor in
order to reduce the quark tastes from 4 to 1 per flavor.
There is apparently no ultralocal lattice action that would
correspond to the effective action that results from taking
this fourth root. The possibility thus exists that physical
nonlocalities will remain in the continuum limit, poten-
tially spoiling the description of QCD by the staggered
action. The good agreement of the staggered results with
experiment and with continuum chiral behavior plus
understood discretization effects (both in current and
previous work [17,19,20]) lead us to believe that this is
not a problem, but the question is not settled.
16We are indebted to Gilberto Colangelo for providing us with
the results for higher order effects in f� and fK at the values of
volume and meson mass relevant to our computations.
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The comparison of simulation data with S�PT forms
allows us to make a crude but somewhat more direct test
of the fourth-root trick. Equations (17) and (18), as writ-
ten, take into account the fourth root by dividing each
sea-quark loop contribution by 4, to leave 1 taste per
flavor. It is a simple exercise to generalize Eqs. (17) and
(18) to make the number of tastes remaining a free
parameter. We can then ask what number of tastes per
flavor is preferred by the simulation data. With a fit
otherwise identical to our standard NNLO fit, we find
1:44�15� for the preferred number of tastes per flavor on
data subset II, and 1:28�12� on the lighter masses in subset
I, where the errors are statistical only. If we allow the
chiral coupling to vary also [choice (3) fits, Sec.VI B], we
get 1:35�18� and 1:22�14� on subsets II and I, respectively.
In the latter case, the coefficient ! corresponds to an f in
the chiral coupling that is about halfway between f� and
fK [! � 0:82�11�], which is reasonable. Given that the fits
in any case do not tightly constrain the chiral-logarithm
terms (see Sec. VI B), we consider these results
satisfactory.

We note that there has been recent numerical [49] and
analytic [50] work indicating even more directly that the
fourth-root trick should work as expected. On the other
hand, there have been two other recent papers that purport
to show problems with locality [51]. We do not believe the
latter work is worrisome because it does not take into
account the taste structure of staggered quarks. Instead of
trying to project onto a single taste to find the fourth root
of the determinant, those papers look only at the fourth
root of the Dirac operator itself. That procedure, in our
opinion, is almost guaranteed to find a nonlocal result,
just as it would in trying to reduce eight Wilson fermions
to two, which certainly has an alternative, local solution.

8. Taste-violating hairpins

Before turning to our physical results, we quote the
values of the two taste-violating hairpin parameters com-
ing from the fits. Together with the splittings, Table III,
these parameters appear in S�PT calculations for other
physical quantities, such as heavy-light decay constants
[52]. Averaging values from Fits A and B, we find, on the
coarse lattices:

r21a
220A � �0:28�3��5�; r21a

220
V � �0:11�8��
21

�4 �;

(47)

where the errors are statistical and systematic, respec-
tively. The latter error comes from the variation over all
acceptable chiral fits on mass subsets I and II. The pa-
rameter a220

A is comparable in size to the taste-violating
splittings (Table III); while a220V is consistent with zero
but poorly determined. The values of a220A and a220

V on
the fine lattices are not fit separately but are constrained
to be 0.35 times as large for central-value fits. [See dis-
cussion following Eq. (10).]
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X. FINAL RESULTS AND CONCLUSIONS

The central values and error estimates for f�, fK, and
fK=f� are collected in Table V. Central values come from
Fit C (mass subset III). The scale errors are found by
repeating the analysis after moving our value r1 �
0:317 fm by plus or minus 1 standard deviation ( �
0:007 fm); see Sec. III. The change in decay constants
under this variation in the scale is slightly less than the
nominal 2:2% � 0:007=0:317. This is due to a cancella-
tion coming from the corresponding readjustment of the
quark masses needed to give the mesons their physical
masses.

The (indirect) EM errors just come from changes in our
results for quark masses due to the assumed range of �E
(see Sec.VIII); clearly this effect is very small. Direct EM
effects that pertain to the comparison of decay constants
with experiment are much larger, of the order of several
percent —see Ref. [37]. However, the direct effects are
not relevant here because f� and fK are defined in the
absence of electromagnetism.

The chiral/continuum errors are found by taking the
maximum deviation from the central value over all ver-
sions of the chiral fits described in Secs. IX B and IX D 5,
and all versions of the continuum extrapolations de-
scribed in Secs. IX C and IX D1 [including ranges in
assumptions about how �Sa2 and �2

sa2 change from
coarse to fine lattices—see discussions Eqs. (10) and
(26)], as well as variation in the perturbative parameter
Rm described in Sec. VII. Because the continuum and
chiral extrapolations are connected within S�PT, it is
not meaningful to quote separate errors for each.
However, since a large number of alternatives are consid-
ered here, we believe it will be helpful to the reader to
report the variations in physical results as one moves
along various ‘‘slices’’ through the alternatives. The slices
shown in Table V are defined as follows:

a. A
ll alternative chiral fits on all mass subsets, but only

with the preferred method of continuum extrapola-
tion (extrapolation of chiral parameters), and only
with preferred values of the ratios of �Sa2 and of
�2
Sa

2 [Eqs. (10) and (26)].

a1. S
ame as a, but restricted to mass subset III. This is

mainly an estimate of the errors involved in interpo-
lating around ms.
a2. S
ame as a, but restricted to chiral fits where the chiral
coupling !=�16�2f2

�� is allowed to vary with ! �
1:0 � 0:1 (see Sec. VI B).
a3. S
ame as a, but restricted to fits where the scale is
chosen in a mass-independent manner (see
Sec. IX D 5).
b. A
lternative values of the ratios of �Sa2 and of �2
Sa

2

used in continuum extrapolation and/or alternative
method of extrapolation [method (2)—Sec. IX D1]
and/or alternative value of Rm (Sec. VII). The pre-
ferred chiral fit is kept (Fit C).
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b1. S
-31
ame as b, but restricted to the preferred value (0.35)
of ratio of �2

Sa
2 for all taste-violating quantities.
b2. S
ame as b, but only the ratio of �2
Sa

2 is varied (in the
range 0.3–0.4) and only for taste-violating quantities
that are not directly measured (20A, 20V , L0, and L00; see
Sec. VI A). The preferred continuum extrapolation
(extrapolation of chiral fit parameters) is used.
b3. S
ame as b, but only Rm is varied, and the preferred
continuum extrapolation is used.
c. A
lternative method of extrapolation (1) is used and
ratio of a2 varies over union of ranges of �Sa2 and of
�2
Sa

2; Sec. IX D1.

As discussed in Sec. IX D1, method (1) continuum

extrapolation (slice c) is not included among our system-
atic alternatives because of the large ambiguity in how to
perform the extrapolation. Table V shows, however, that it
produces deviations comparable to the full chiral/contin-
uum extrapolation error.

We add in quadrature the signed errors from the chiral/
continuum extrapolation, the scale determination, and
from direct EM effects, giving a total positive and a total
negative systematic error. We then take the larger of the
two as a final symmetric error. Note that chiral extrapo-
lation errors and scale errors contribute almost equally to
the systematic error on f� and fK; while scale errors are
unimportant for the ratio. The final results for decay
constants are

f� � 129:5 � 0:9 � 3:5 MeV;

fK � 156:6 � 1:0 � 3:6 MeV;

fK=f� � 1:210�4��13�;
(48)

where the first error is statistical and the second is
systematic.

In Sec. VI B we argued that fits that allowed the chiral
coupling to vary by more than 10% [‘‘choice (3)’’ fits with
arbitrary !] should be excluded from the analysis. If we
were to include all choice (3) fits in the systematic error
analysis, the error on f� would increase from 3.5 to
4.3 MeV; that on fK=f� would increase from 0.013 to
0.022; while that on fK would be unchanged.

Our results are in good agreement with the experimen-
tal numbers [37]: f� � 130:7 � 0:4 MeV, fK � 159:8 �
1:5 MeV , fK=f� � 1:223�12�. Note that the experimen-
tal determination of fK has a rather large error. That is
because it depends not only on the precisely measured
leptonic decay width of the kaon, but also on Vus, which
has a significant uncertainty. The errors on our result for
fK=f� are small enough that one may turn the compari-
son around, and use our answer together with the mea-
sured leptonic decay widths to constrain Vus [2]. With
Eq. (16) of Ref. [2], jVudj � 0:9740�5�, and the current
result for fK=f�, we obtain

jVusj � 0:2219�26�:
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The error is completely dominated by current lattice
errors, which we have added in quadrature. Neglecting
jVubj2, the unitarity relation is then

jVudj2 
 jVusj2 � 0:9979�15�: (49)

The 2> violation that comes from using the PDG value
jVusj � 0:2196�26� [37] becomes a 1:4> effect here. We
note also that our result is compatible with the very recent
KTeV determination [53]: jVusj � 0:2252�8��21�.

The values for f� and fK in Eq. (48) should be consid-
ered as updates of those presented in Ref. [17]. The
current results are based on an expanded data set. In
addition, the analysis in Ref. [17] was performed differ-
ently: The data was first extrapolated to the continuum at
fixed quark mass and then fit to continuum �PT forms.
S�PT was used only in estimating the systematic error of
the extrapolation procedure. A correction for finite-
volume effects could not be made with the older approach;
instead a finite-volume error had to be included. The
present results and those in Ref. [17] agree within their
respective systematic errors.

Errors for our direct determination of mu=md are
shown in TableVI. Adding the scale and chiral/continuum
extrapolation errors in quadrature, and symmetrizing as
for the decay constants, we get the total simulation error.
Our final result is

mu=md � 0:43�0��1��8�; (50)

where the errors are from statistics, simulation system-
atics, and direct EM effects, respectively. We have al-
lowed for EM effects in a wide range 0 � �E � 2E � 2
[see Eqs. (45) and (46)]. If instead we were to assume the
result of Ref. [42] (�E � 0:84 � 0:25), we would obtain
mu=md � 0:44�0��1��2�. Including all choice (3) fits in the
systematic error analysis would increase the simulation
systematic error from 0.01 to 0.02.

Even with the generous range of possible EM effects,
Eq. (50) clearly bounds mu away from zero. An alterna-
tive way of expressing this is to determine the value of �E
that would be required in order to allow for mu � 0. We
find that it would take an absurdly large violation of
Dashen’s theorem, �E � 8:4.

Values for quark masses at scale 2 GeV, as well as the
ratio ms=m̂, were reported in Ref. [22]. Since that work
used the same lattice data, chiral fits, and error analysis as
that described above, we repeat the results here for com-
pleteness:

mMS
s � 76�0��3��7��0� MeV;

m̂MS � 2:8�0��1��3��0� MeV;

ms=m̂ � 27:4�1��4��0��1�

(51)

where the errors are from statistics, simulation, perturba-
tion theory, and electromagnetic effects, respectively.
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Combining the current result for mu=md with the per-
turbative mass renormalization calculated in [22] [or,
equivalently, with m̂MS in Eq. (50)], we obtain

mMS
u � 1:7�0��1��2��2� MeV;

mMS
d � 3:9�0��1��4��2� MeV;

(52)
where the errors have the same meaning as in Eq. (51),
and the scale is again 2 GeV. The separate EM errors inmu
and md are highly, and negatively, correlated, and there-
fore consistent with the large EM error in mu=md.

The results for mu=md and ms=m̂ in Eqs. (50) and (51)
appear inconsistent with the relation between ms=md and
mu=md shown in Fig. 1 of Ref. [4]. However, that appears
to be due to NNLO effects not included in [4]. Indeed,
Amoros et al. [45] obtainmu=md � 0:46�9� with a NNLO
phenomenological analysis. Further, our results for the
two ratios are consistent with the NNLO relation shown
in Fig. 3 of Ref. [45].

Since mu is bounded well away from 0, the issue of the
physicality of mu � 0 [5] does not arise directly here.
However, should the existence of nonperturbative, addi-
tive shifts in masses proposed in Ref. [5] be confirmed,
there could be some lattice scheme dependence in the
quark masses and ratios in Eqs. (51) and (52). We would
expect that such nonperturbative effects at the scale of
the cutoff would be small at the mass values found here,
but there is no proof of this. Comparison with three-flavor
results with other lattice regularizations will be important
in resolving this question.

Table VII shows the systematic errors for the Gasser-
Leutwyler low energy constants, Li. Central values are
obtained from averaging the results of Fit A and Fit B (on
mass sets I and II, respectively); those results are repeated
here for convenience from Table IV. The difference be-
tween these fit results and the central value is the largest
contribution to the chiral/continuum extrapolation error
for 2L8 � L5 and 2L6 � L4. As discussed in Secs. VI B
and IX D 5, we include two additional systematic errors
here, to be added in quadrature with the scale and chiral/
continuum extrapolation errors: the NNLO error caused
by taking *! *tree in the NLO terms, and the effect of
using a slightly mass-dependent renormalization scheme.

The chiral/continuum ‘‘error slices’’ in Table VII have
the same meaning as for the decay constants, except that
a1 and c no longer apply. (Slice a1 shows differences with
mass set III, which is not included in this part of the
analysis, and slice c is not relevant since these quantities
are themselves fit parameters.) Further, slice a3, the ef-
fects of the mass-dependent scheme, has now been pro-
moted to a separate error.

After adding the systematic errors in quadrature and
symmetrizing as before, we obtain
-32
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L5 � 1:9�3��3� � 10�3;

L4 � 0:2�3��3� � 10�3;

2L8 � L5 � �0:2�1��2� � 10�3;

2L6 � L4 � 0:5�2��4� � 10�3:

(53)

Systematic errors here are dominated by differences over
acceptable fits. The chiral scale is taken as (� � m�

throughout. Including all choice (3) fits in the systematic
error analysis would not change the errors.

Reference [54] makes the following continuum esti-
mates: L5 � 2:3�2� � 10�3, L4 � L6 � 0; while Ref. [6]
gives L5 � 2:2�5� � 10�3, L4 � 0:0�5� � 10�3 and L6 �
0:0�3� � 10�3 (which they call ‘‘conventional esti-
mates’’). Here we have converted all the Li to (� � m�

scale using Eqs. (30) and (31).
The result for 2L8 � L5 is well outside the range that

would allow for mu � 0 [4,6,7] in the context of �PT:

�3:4 � 10�3 & 2L8 � L5 & �1:8 � 10�3: (54)

We note, however, that the constraint on mu coming from
2L8 � L5 is not independent from the direct determina-
tion above. Knowing 2L8 � L5 would fix mu in NLO up
to EM effects. The range in Eq. (54) comes from unknown
NNLO (and EM) terms. Since our fits give us some
control over NNLO effects, the direct determination
seems preferable, and can become quite precise if one
uses more information on EM effects. This information
may come from phenomenology, e.g., Ref. [42], or from
lattice simulations, perhaps along the lines of Ref. [55] or
[56].

Our approach to computing low energy constants has
much in common with earlier work by Nelson, Fleming,
and Kilcup [7], who also performed a partially quenched
analysis using 3 flavors of dynamical staggered quarks.
The main advances in the current analysis are (1) use of
the improved dynamical staggered action and finer lattice
spacings, putting us closer to continuum physics, and (2)
use of S�PT to control lattice artifacts, which are still
quite large, despite (1). Our result for 2L8 � L5 is mar-
ginally consistent with that by Nelson et al. [7]; convert-
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ing their result to chiral scale m�, we get
2L8 � L5 � �0:57�1��14� � 10�3.

The current work will be improved by additional simu-
lations now in progress, including coarse lattices at lower
strange quark mass (am0

s � 0:03) and fine lattices at lower
light quark mass (am̂0 � 0:1am0

s � :0031). These simu-
lations should enhance our control of the chiral extrapo-
lation, the interpolation around the s quark mass, and the
extraction of low energy constants. In addition, we are
beginning a parallel analysis on a large quenched data set.
If the corresponding S�PT forms can describe that data
well, it will increase our confidence that the interaction of
discretization and chiral effects is understood. Beyond
that, planned simulations at still finer lattice spacings
will provide a better handle on both generic and taste-
violating discretization errors, thereby significantly re-
ducing the final systematic errors.
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