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We investigate a dynamical mass generation mechanism for the off-diagonal gluons and ghosts in
SU�N� Yang-Mills theories, quantized in the maximal Abelian gauge. Such a mass can be seen as evidence
for the Abelian dominance in that gauge. It originates from the condensation of a mixed gluon-ghost
operator of mass dimension two, which lowers the vacuum energy. We construct an effective potential for
this operator by a combined use of the local composite operators technique with the algebraic
renormalization and we discuss the gauge parameter independence of the results. We also show that it
is possible to connect the vacuum energy, due to the mass dimension-two condensate discussed here, with
the nontrivial vacuum energy originating from the condensate hA2

�i, which has attracted much attention in
the Landau gauge.
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I. INTRODUCTION

A widely accepted mechanism to explain color confine-
ment in SU�N� Yang-Mills theories is based on the dual
superconductivity picture [1,2], according to which the low
energy regime of QCD should be described by an effective
Abelian theory in the presence of magnetic monopoles.
These monopoles should condense, giving rise to a string
formation à la Abrikosov-Nielsen-Olesen. As a result,
chromoelectric charges are confined. This mechanism has
received many confirmations from the lattice community
in the so-called Abelian gauges, which are useful in order
to isolate the effective relevant degrees of freedom at low
energy.

According to the concept of Abelian dominance, the low
energy region of QCD can be expressed solely in terms of
Abelian degrees of freedom [3]. Lattice confirmations of
the Abelian dominance can be found in [4,5]. A particu-
larly interesting Abelian gauge is the maximal Abelian
gauge (MAG), introduced in [2,6,7]. Roughly speaking,
the MAG is obtained by minimizing the square of the norm
of the fields corresponding to off-diagonal gluons, i.e., the
gluons associated with the N�N � 1� off-diagonal gener-
ators of SU�N�. Doing so, there is a residual U�1�N�1
Assistant of the Fund for Scientific Research-
gium)
dress: david.dudal@ugent.be
address: jag@amtp.liv.ac.uk
address: vitor@dft.if.uerj.br
address: msarandy@chem.utoronto.ca
address: sobreiro@uerj.br
address: sorella@uerj.br
address: henri.verschelde@ugent.be

04=70(11)=114038(18)$22.50 114038
Abelian gauge freedom corresponding to the Cartan sub-
group of SU�N�. The renormalizability in the continuum of
this gauge was proven in [8,9], at the cost of introducing a
quartic ghost interaction.

To our knowledge, there is no analytic proof of the
Abelian dominance. Nevertheless, an argument that can
be interpreted as evidence of it, is the fact that the off-
diagonal gluons would attain a dynamical mass. At ener-
gies below the scale set by this mass, the off-diagonal
gluons should decouple, and in this way one should end
up with an Abelian theory at low energies. A lattice study
of such an off-diagonal gluon mass reported a value of
approximately 1.2 GeV [10]. More recently, the off-
diagonal gluon propagator was investigated numerically
in [11], reporting a similar result.

There have been several efforts to give an analytic
description of the mechanism responsible for the dynami-
cal generation of the off-diagonal gluon mass. In [12,13], a
certain ghost condensate was used to construct an effective,
off-diagonal mass. However, in [14] it was shown that the
obtained mass was a tachyonic one, a fact confirmed later
in [15]. Another condensation, namely, that of the mixed
gluon-ghost operator �12A

a
�A

�a 	 �caca� [16], that could
be responsible for the off-diagonal mass, was proposed in
[17]. That this operator should condense can be expected
on the basis of a close analogy existing between the MAG
and the renormalizable nonlinear Curci-Ferrari gauge
[18,19]. In fact, it turns out that the mixed gluon-ghost
operator can also be introduced in the Curci-Ferrari gauge.
A detailed analysis of its condensation and of the ensuing
dynamical mass generation can be found in [20,21].

The aim of this paper is to investigate explicitly if the
mass dimension-two operator �12A

a
�A�a 	 �caca� con-
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denses, so that a dynamical off-diagonal mass is generated
in the MAG. The pathway we intend to follow is based on
previous research in this direction in other gauges. In [22],
the local composite operator (LCO) technique was used to
construct a renormalizable effective potential for the op-
erator AA�A�A in the Landau gauge. As a consequence of
hAA�A�Ai � 0, the gauge bosons acquired a mass [22]. The
fact that gluons in the Landau gauge become massive has
received confirmations from lattice simulations; see for
example [23]. Recently, the dynamical mass generation
in the Landau gauge has been investigated within the
Schwinger-Dyson formalism in [24,25]. The condensate
hAA�A�Ai has attracted attention from theoretical [26,27] as
well as from the lattice side [28–30]. It was shown by
means of the algebraic renormalization technique [31] that
the LCO formalism for the condensate hAA�A�Ai is renor-
malizable to all orders of perturbation theory [32]. The
same formalism was successfully employed to study the
condensation of �12A

A
�A

�A 	 �cAcA� in the Curci-Ferrari
gauge [20,21]. We would like to note that the Landau
gauge corresponds to � 
 0. Later on, the condensation
of AA�A�A was confirmed in the linear covariant gauges
[33,34], which also possess the Landau gauge as a special
case. It was proven formally that the vacuum energy does
not depend on the gauge parameter. However, in practice, a
problem occurred due to the mixing of different orders of
perturbation theory, when solving the gap equation for the
condensate. Nevertheless, we have been able to present a
way to overcome this problem [34]. As a result, it turns out
that the nontrivial vacuum energy due to the condensate
hAA�A�Ai in the Landau gauge coincides with the nontrivial
vacuum energy due to the appropriate mass dimension-two
condensate in the linear covariant gauges, hAA�A�Ai, and
the Curci-Ferrari gauge, h12A

A
�A�A 	 �cAcAi, since these

two classes of gauges both have the Landau gauge � 
 0
as a limiting case.

We would also like to underline that the concept of a
gluon mass has already been widely used in a more phe-
nomenological context since long ago; see, e.g., [35]. More
recently, a gluon mass of the order of a few hundred MeV
has been proven to be very useful in describing the radia-
tive decay of heavy quarkonia systems [36] as well as to
derive estimates of the glueball spectrum [37].

To make this paper self-contained, we will explain all
necessary steps in the case of the MAG, and refer to the
previous papers for more details where appropriate. In
Sec. II, we introduce the MAG and discuss its renormaliz-
ability when the operator �12A

a
�A

�a 	 �caca� is introduced
in the theory. We briefly review how the effective potential
is constructed by means of the LCO technique. In Sec. III,
we discuss the independence of the vacuum energy from
the gauge parameter of the MAG. We face the problem of
the mixing of different orders in perturbation theory, and
we provide a solution of it. In Sec. IV, we construct a
generalized renormalizable gauge that interpolates be-
114038
tween the MAG and the Landau gauge. Moreover, we
will also show that there exists a generalized renormaliz-
able mass dimension-two operator that interpolates be-
tween the mass dimension-two operators of the MAG
and of the Landau gauge. This can be used to prove that
the vacuum energy obtained in the MAG is the same as that
of the Landau gauge. In Sec. V, we present explicit results,
obtained in the case of SU(2) and to the one-loop approxi-
mation. We end with conclusions in Sec. VI.
II. SU�N� YANG-MILLS THEORIES IN THE MAG

Let A� be the Lie algebra valued connection for the
gauge group SU�N�, whose generators TA, satisfying
�TA; TB� 
 fABCTC, are chosen to be anti-Hermitian and
to obey the orthonormality condition Tr�TATB� 

�TF�AB, with A;B;C 
 1; . . . ; �N2 � 1�. In the case of
SU�N�, one has TF 
 1

2 . We decompose the gauge field
into its off-diagonal and diagonal parts, namely,

A� 
 AA�TA 
 Aa�Ta 	 Ai�Ti; (1)

where the indices i; j; . . . label the N � 1 generators of the
Cartan subalgebra. The remaining N�N � 1� off-diagonal
generators will be labeled by the indices a; b; . . . . For
further use, we recall the Jacobi identity

fABCfCDE 	 fADCfCEB 	 fAECfCBD 
 0; (2)

from which it can be deduced that

fabifbjc 	 fabjfbci 
 0;

fabcfbdi 	 fabdfbic 	 fabifbcd 
 0:
(3)

The field strength decomposes as

F�� 
 FA��T
A 
 Fa��T

a 	 Fi��T
i; (4)

with the off-diagonal and diagonal parts given, respec-
tively, by

Fa�� 
 Dab
� Ab� �Dab

� Ab� 	 gfabcAb�Ac�;

Fi�� 
 @�Ai� � @�Ai� 	 gfabiAa�Ab�;
(5)

where the covariant derivative Dab
� is defined with respect

to the diagonal components Ai�,

Dab
�  @��ab � gfabiAi�: (6)

For the Yang-Mills action one obtains

SYM 
 �
1

4

Z
d4x�Fa��F��a 	 Fi��F��i�: (7)
-2
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The so-called MAG gauge condition amounts to fixing the
value of the covariant derivative, Dab

� A
�b, of the off-

diagonal components by requiring that the functional

R �A� 
 �VT��1
Z
d4x�Aa�A�a� (8)

attains a minimum with respect to the local gauge trans-
formations. This corresponds to imposing

Dab
� A

�b 
 0: (9)

However, this condition being nonlinear implies that a
quartic ghost self-interaction term is required for renorma-
lizability purposes. The corresponding gauge fixing term
turns out to be [8,9]

SMAG 
 s
Z
d4x

�
ca
�
Dab
� A

b� 	
�
2
ba
�
�
�
2
gfabicacbci

�
�
4
gfabccacbcc

�
; (10)

where � is the MAG gauge parameter and s denotes the
114038
nilpotent Becchi-Rouet-Stora-Tyutin (BRST) operator,
acting as

sAa� 
 ��Dab
� cb 	 gfabcAb�cc 	 gfabiAb�ci�;

sAi� 
 ��@�c
i 	 gfiabAa�c

b�;

sca 
 gfabicbci 	
g
2
fabccbcc; sci 


g
2
fiabcacb;

sca 
 ba; sci 
 bi; sba 
 0; sbi 
 0:

(11)

Here ca; ci are the off-diagonal and the diagonal compo-
nents of the Faddeev-Popov ghost field, while ca; ba are the
off-diagonal antighost and Lagrangian multiplier. We also
observe that the BRST transformations (11) have been
obtained by their standard form upon projection on the
off-diagonal and diagonal components of the fields. We
remark that the MAG (10) can be written in the form

SMAG 
 ss
Z
d4x

�
1

2
Aa�A

�a �
�
2
caca

�
; (12)

with s being the nilpotent anti-BRST transformation, act-
ing as
sAa� 
 ��Dab
� cb 	 gfabcAb�cc 	 gfabiAb�ci�; sAi� 
 ��@�ci 	 gfiabAa�cb�; sca 
 gfabicbci 	

g
2
fabccbcc;

sci 

g
2
fiabcacb; sca 
 �ba 	 gfabccbcc 	 gfabicbci 	 gfabicbci; sci 
 �bi 	 gfibccbcc;

sba 
 �gfabcbbcc � gfabibbci 	 gfabicbbi; sbi 
 �gfibcbbcc:

(13)

It can be checked that s and s anticommute.
Expression (10) is easily worked out and yields

SMAG 

Z
d4x

�
ba
�
Dab
� A�b 	

�
2
ba
�
	 caDab

� D�bccc 	 gcafabi�Dbc
� A�c�ci 	 gcaDab

� �fbcdA�ccd� � �gfabibacbci

� g2fabifcdicacdAb�A�c �
�
2
gfabcbacbcc �

�
4
g2fabifcdicacbcccd �

�
4
g2fabcfadicbcccdci

�
�
8
g2fabcfadecbcccdce

�
: (14)
We note that � 
 0 does in fact correspond to the ‘‘real’’
MAG condition, given by Eq. (9). However, one cannot set
� 
 0 from the beginning since this would lead to a non-
renormalizable gauge. Some of the terms proportional to �
would reappear due to radiative corrections, even if � 
 0.
See, for example, [38]. For our purposes, this means that
we have to keep � general throughout and leave to the end
the analysis of the limit � ! 0, to recover condition (9).

The MAG condition allows for a residual local U�1�N�1

invariance with respect to the diagonal subgroup. In order
to have a complete quantization of the theory, one has to fix
this Abelian gauge freedom by means of a suitable further
gauge condition on the diagonal components Ai� of the
gauge field. A common choice for the Abelian gauge
fixing, also adopted in the lattice papers [10,11], is the
Landau gauge, given by

Sdiag 
 s
Z
d4xci@�A�i



Z
d4x�bi@�A�i 	 ci@��@�ci 	 gfiabAa�cb��;

(15)

where ci; bi are the diagonal antighost and Lagrangian
multiplier.
-3
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A. Ward identities for the MAG

In order to write down a suitable set of Ward identities,
we first introduce external fields ��i, ��a, Li, La coupled
to the BRST nonlinear variations of the fields, namely,

Sext 

Z
d4x

�
���a�Dab

� c
b 	 gfabcAb�c

c 	 gfabiAb�c
i�

���i�@�ci 	 gfiabAa�cb� 	 La
�
gfabicbci

	
g
2
fabccbcc

�
	 Li

g
2
fiabcacb

�
; (16)

with

s��a 
 s��i 
 0; sLa 
 sLi 
 0: (17)

Moreover, in order to discuss the renormalizability of the
gluon-ghost operator

OMAG 

1

2
Aa�A

�a 	 �caca; (18)

we introduce it in the starting action by means of a BRST
doublet of external sources �J;  �

s 
 J; sJ 
 0; (19)

so that

SLCO 
 s
Z
d4x

�
 
�
1

2
Aa�A�a 	 �caca

�
	 !

 J
2

�



Z
d4x

�
J
�
1

2
Aa�A�a 	 �caca

�
	 !

J2

2
� � baca

	  A�a�Dab
� c

b 	 gfabiAb�c
i�

	 � ca
�
gfabicbci 	

g
2
fabccbcc

��
; (20)

where ! is the LCO parameter accounting for the diver-
gences present in the vacuum correlator
hOMAG�x�OMAG�y�i, which are proportional to J2.
Therefore, the complete action

� 
 SYM 	 SMAG 	 Sdiag 	 Sext 	 SLCO; (21)

is BRST invariant,

s� 
 0: (22)

As noticed in [17,39], the gluon-ghost mass operator de-
fined in Eq. (18) is BRST invariant on shell.

In Table I, the dimension and ghost number of all the
fields and sources are listed. We are now ready to write
down the Ward identities needed to discuss the renormaliz-
TABLE I. Dimension and ghost number.

Aa;i� ca;i ca;i ba;i  J �a;i
� La;i

Dimension 1 0 2 2 2 2 3 4
Ghost number 0 1 �1 0 �1 0 �1 �2

114038
ability of the model. It turns out that the complete action �
is constrained by
(i) T
-4
he Slavnov-Taylor identity

S ��� 
 0; (23)

with

S��� 

Z
d4x

�
��
���a

��
�Aa�

	
��
���i

��
�Ai�

	
��
�La

��
�ca

	
��
�Li

��
�ci

	 ba
��
�ca

	 bi
��
�ci

	 J
��
� 

�
: (24)
(ii) T
he diagonal ghost equation [9]

G i� 
 �i
cl; (25)

where

G i 

�
�ci

	 gfabica
��

�bb
; (26)

and

�i
cl 
 �@2ci 	 gfabi��aAb� � @���i

� gfabiLacb: (27)

Notice that expression (27), being linear in the
quantum fields, is a classical breaking.
(iii) T
he diagonal gauge fixing and antighost equations

��
�bi


 @�A
�i;

��

�ci
	 @�

��

���i 
 0: (28)
(iv) T
he integrated  equation

Z
d4x

�
��
� 

	 ca
��
�ba

�

 0; (29)

expressing in a functional form the on-shell BRST
invariance of the gluon-ghost operator OMAG.
(v) T
he diagonal U�1�N�1 Ward identity

W i� 
 �@2bi; (30)

with

W i 
 @�
�

�Ai�
	 gfabi

�
Aa�

�

�Ab�
	 ca

�

�cb

	 ba
�

�bb
	 ca

�

�cb
	��a �

���b

	 La
��

�Lb

�
: (31)

This identity follows from the diagonal ghost equa-
tion (25) and the Slavnov-Taylor identity (23).
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In order to find the foregoing Ward identities, use has been
made of the Jacobi identities (3).

B. Algebraic characterization of the
most general local counterterm

We mention that all the classical Ward identities of the
previous section can be extended to all orders of perturba-
tion theory without encountering anomalies. In principle,
this can be proven by means of the algebraic setup of [31]
and of the general results on the BRST cohomology of
gauge theories [40]. It can be understood in a simple way
114038
by observing that pure Yang-Mills theory in the MAG can
be regularized in a gauge invariant way by employing
dimensional regularization.

In order to characterize the most general invariant coun-
terterm which can be freely added to all orders of pertur-
bation theory, we perturb the classical action � by adding
an arbitrary integrated local polynomial �count in the fields
and external sources of dimension bounded by four and
with zero ghost number, and we require that the perturbed
action ��	 #�count� satisfies the same Ward identities as
� to the first order in the perturbation parameter #, i.e.,
S��	 #�count� 
 0	O�#2�; Gi��	 #�count� 
 �i
cl 	O�#2�;

���	 #�count�

�bi

 @�A

�i 	O�#2�;
�
�
�ci

	 @�
�

���i

�
��	 #�count� 
 0	O�#2�;

Z
d4x

�
�
� 

	 ca
�
�ba

�
��	 #�count� 
 0	O�#2�; W i��	 #�count� 
 �@2bi 	O�#2�:

(32)
This amounts to imposing the following conditions on
�count

B ��
count 
 0; (33)

where B� denotes the nilpotent linearized operator

B �B� 
 0; (34)

B� 

Z
d4x

�
��
���a

�
�Aa�

	
��
�Aa�

�
���a 	

��
���i

�
�Ai�

	
��
�Ai�

�
���i 	

��
�La

�
�ca

	
��
�ca

�
�La

	
��
�Li

�
�ci

	
��
�ci

�
�Li

	 ba
�
�ca

	 bi
�
�ci

	 J
�
� 

�
; (35)

and

Gi�count 
 0;

��count

�bi

 0;�

�
�ci

	 @�
�

���i

�
�count 
 0;

Z
d4x

�
�
� 

	 ca
�
�ba

�
�	 "�count 
 0;

W i�count 
 0:

(36)

From the conditions (33) and (36), it turns out that the most
general invariant counterterm can be written as

�count 

�a0
4

Z
d4x�Fa��F��a 	 Fi��F��i� 	B��

�1;

(37)

where ��1 is an integrated local polynomial with ghost
number �1, given by

��1 

Z
d4x

�
a1L

aca 	 a3�
�aAa�

	 a5c
a�ba � gfabicbci� 	 a6c

aDab
� A

�b

�
a5
2
gfabccacbcc 	 a1 

�
1

2
Aa�A�a 	 �caca

�

	
a6
2
 Aa�A

�a 	 2�a5 c
aca 	

a13!
2

 J
�
: (38)

We see thus that �count contains six free independent
parameters, namely, a0, a1, a3, a5, a6, and a13. These
parameters can be reabsorbed by means of a multiplicative
renormalization of the gauge coupling constant g, of the
gauge and LCO parameters �, ! , and of the fields & 

�A�a; A�i; ca; ca; ci; ci; ba; bi�, and sources $ 

���a;��i; La; Li;  ; J�, according to

��g; �; !;&;$� 	 #�count 
 ��g0; �0; !0; &0;$0�

	O�#2�; (39)

with

g0 
 Zgg; �0 
 Z��; !0 
 Z!!;

A�a0 
 ~Z1=2
A A�a; A�i0 
 Z�1

g A�i; (40)

ca0 
 ~Z1=2
c ca; ca0 
 ~Z1=2

c ca; (41)

ci0 
 Z1=2
c ci; ci0 
 Z�1=2

c ci; (42)

ba0 
 ZgZ
1=2
c ~Z1=2

c ba; bi0 
 Zgb
i; (43)
-5
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��a
0 
 ~Z�1=2

A Z�1
g Z�1=2

c ��a; ��i
0 
 Z�1=2

c ��i;

(44)
La0 
 Z�1
g

~Z�1=2
c Z�1=2

c La; Li0 
 Z�1
g Z�1

c Li; (45)

and

J0 
 Z�2
La

~Z�1
c J 
 Z2

gZcJ;

 0 
 Z�1
La

~Z�1=2
c  
 ZgZ

1=2
c  ;

(46)

with

Zg 
 1� #
a0
2
; Z� 
 1	 #

�
2a5
�

	 a0 � 2a6

�
;

Z! 
 1	 #�a13 	 2a0 � 2a1 � 2a6�;

~Z1=2
A 
 1	 #

�
a0
2
	 a3

�
; ~Z1=2

c 
 1	
#
2
�a6 � a1�;

Z1=2
c 
 1	

#
2
�a6 	 a1�:

(47)

In particular, from Eq. (46) one sees that the renormaliza-
tion of the source J, and thus of the composite operator
OMAG, can be expressed in terms of the renormalization of
the gauge coupling constant and of the diagonal ghost. This
property follows from the diagonal ghost equation (25) and
from the integrated  equation (29). In particular, for the
anomalous dimension of the gluon-ghost operator OMAG,
we obtain [20]

(OMAG
�g2� 
 �

@
@�

log�Z2
gZc� 
 �2

�
)�g2�

2g2
� (ci�g

2�

�
;

(48)

with

)�g2� 
 �
@g2

@�

 �g2�

@
@�

lnZ2
g;

(ci�g
2� 
 �

@
@�

lnZ1=2
c :

(49)
C. The effective potential

We present here the main steps in the construction of the
effective potential for a local composite operator. A more
detailed account of the LCO formalism can be found in
[41,42].

To obtain the effective potential for the condensate
hOMAGi, we set the sources �i

�, �a
�, La, Li, and  to

zero and consider the renormalized generating functional
114038
exp��iW �J��

Z
�D’�expiS�J�;

S�J�
SYM	SMAG	Sdiag	Scount

	
Z
d4x

�
ZJJ

�
1

2
~ZAAa�A�a	Z� ~Zc�caca

�

	�!	�!�
J2

2

�
; (50)

where ’ denotes the relevant fields and Scount is the usual
counterterm contribution, i.e., the part without the com-
posite operator. The quantity �! is the counterterm ac-
counting for the divergences proportional to J2. Using
dimensional regularization throughout with the convention
that d 
 4� ", one has the following identification,

!0J20 
 ��"�! 	 �!�J2: (51)

The functional W �J� obeys the renormalization group
equation (RGE)"

�
@
@�

	 )�g2�
@

@g2
	 �(��g2�

@
@�

�

(OMAG
�g2�

Z
d4xJ

�
�J

	 #�g2; !�
@
@!

#
W �J� 
 0; (52)

where

(��g2� 
 �
@
@�

ln� 
 �
@
@�

lnZ�1
� ;

#�g2; !� 
 �
@
@�

!:
(53)

From Eq. (51), one finds

#�g2; !� 
 2(OMAG
�g2�! 	 ��g2; ��; (54)

with

��g2; �� 

�
"	 2(OMAG

�g2� � )�g2�
@

@g2

� �(��g2�
@
@�

�
�!: (55)

Up to now, the LCO parameter ! is still an arbitrary
coupling. As explained in [41,42], simply setting ! 
 0
would give rise to an inhomogeneous RGE for W �J�,"
�

@
@�

	)�g2�
@

@g2
	�(��g

2�
@
@�

�

(OMAG
�g2�

Z
d4xJ

�
�J

#
W �J� 
 ��g2;��

Z
d4x

J2

2
;

(56)

and a nonlinear RGE for the associated effective action '
for the composite operator OMAG. Furthermore, multipli-
cative renormalizability is lost and by varying the value of
�! , minima of the effective action can change into maxima
-6
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or can get lost. However, ! can be made such a function of
g2 and � so that, if g2 runs according to )�g2� and �
according to (��g2�, !�g2; ��will run according to its RGE
(54). This is accomplished by setting ! equal to the solu-
tion of the differential equation�

)�g2�
@

@g2
	 �(��g

2; ��
@
@�

�
!�g2; ��


 2(OMAG
�g2�!�g2; �� 	 ��g2; ��: (57)

Doing so, W �J� obeys the homogeneous renormalization
group equation"

�
@
@�

	 )�g2�
@

@g2
	 �(��g

2�
@
@�

�

(OMAG
�g2�

Z
d4xJ

�
�J

#
W �J� 
 0: (58)

To lighten the notation, we will drop the renormalization
factors from now on. One will notice that there are terms
quadratic in the source J present in W �J�, obscuring the
usual energy interpretation. This can be cured by removing
the terms proportional to J2 in the action to get a generating
functional that is linear in the source, a goal easily achieved
by inserting the following unity,

1 

1

N

Z
�D+� exp

(
i
Z
d4x

�
�

1

2!

�
+
g
�OMAG � !J

�
2
�)
;

(59)

with N the appropriate normalization factor, in Eq. (50) to
arrive at the Lagrangian

L�A�;+� 
 �
1

4
Fa��F��a �

1

4
Fi��F��i 	LMAG

	Ldiag �
+2

2g2!
	

1

g2!
g+OMAG

�
1

2!
�OMAG�

2; (60)

while

exp��iW �J�� 

Z
�D’� expiS+�J�; (61)

S+�J� 

Z
d4x

�
L�A�;+� 	 J

+
g

�
: (62)
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From Eqs. (50) and (61), one has the following simple
relation,

�W �J�
�J









J
0

 �hOMAGi 
 �

�
+
g

�
; (63)

meaning that the condensate hOMAGi is directly related to
the expectation value of the field +, evaluated with the
action S+ 


R
d4xL�A�;+�. As it is obvious from

Eq. (60), h+i � 0 is sufficient to have a tree-level dynami-
cal mass for the off-diagonal fields. At lowest order (i.e.,
tree level), one finds

moff-diag:
gluon 


�������
g+
!0

s
; moff-diag:

ghost 


�����������
�
g+
!0

s
: (64)

Meanwhile, the diagonal degrees of freedom remain mass-
less. This could have been established already from the
local U�1�N�1 Ward identity (30).
III. GAUGE PARAMETER INDEPENDENCE OF
THE VACUUM ENERGY

We begin this section with a few remarks on the deter-
mination of !�g2; ��. From explicit calculations in pertur-
bation theory, it will become clear (see Sec. V) that the
RGE functions showing up in the differential equation (57)
look like

)�g2� 
 �"g2 � 2�)0g
2 	 )1g

2 	 . . .�;

(OMAG
�g2� 
 (0���g2 	 (1���g4 	 . . . ;

(��g2� 
 a0���g2 	 a1���g4 	 . . . ;

��g2; �� 
 �0��� 	 �1���g2 	 . . . :

(65)

As such, Eq. (57) can be solved by expanding !�g2; �� in a
Laurent series in g2,

!�g2; �� 

!0���

g2
	 !1��� 	 !2���g2 	 . . . : (66)

More precisely, for the first coefficients !0, !1 of the
expression (66), one obtains

2)0!0 	 �a0
@!0
@�


 2(0!0 	 �0;

2)1!0 	 �a0
@!1
@�

	 �a1
@!0
@�


 2(0!1 	 2(1!0 	 �1: (67)

Notice that, in order to construct the n-loop effective
potential, knowledge of the �n	 1�-loop RGE functions
is needed.

The effective potential calculated with the Lagrangian
(60) will explicitly depend on the gauge parameter �. The
question arises concerning the vacuum energy Evac (i.e.,
the effective potential evaluated at its minimum): will it be
-7
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independent of the choice of �? Also, as it can be seen
from Eqs. (67), each !i��� is determined through a first
order differential equation in �. Firstly, one has to solve for
!0���. This will introduce one arbitrary integration con-
stant C0. Using the obtained value for !0���, one can
consequently solve the first order differential equation for
!1���. This will introduce a second integration constantC1,
etc. In principle, it is possible that these arbitrary constants
influence the vacuum energy, which would represent an
unpleasant feature. Notice that the differential equations in
� for the !i are due to the running of � in Eq. (57), encoded
in the renormalization group function (��g2�. Assume that
we would have already shown that Evac does not depend on
the choice of �. If we then set � 
 ��, with �� a fixed
point of the RGE for � at the considered order of pertur-
bation theory, then Eq. (57) determining ! simplifies to

)�g2�
@

@g2
!�g2; ��� 
 2(OMAG

�g2�!�g2; ��� 	 ��g2; ���;

(68)

since

(��g2��j�
�� 
 0: (69)

This will lead to simple algebraic equations for the !i����.
Hence, no integration constants will enter the final result
for the vacuum energy for � 
 ��, and since Evac does not
depend on �, Evac will never depend on the integration
constants, even when calculated for a general �. Hence, we
can put them equal to zero from the beginning for
simplicity.

Summarizing, two questions remain. Firstly, we should
prove that the value of � will not influence the obtained
value for Evac. Secondly, we should show that there exists a
fixed point ��. We postpone the discussion concerning the
second question until the next section, giving a positive
answer to the first one. In order to do so, let us reconsider
the generating functional (61). We have the following
identification, ignoring the overall normalization factors,

exp��iW �J�� 

Z
�D’� expiS+�J�



1

N

Z
�D’D+� expi

�
S�J� 	

Z
d4

� x
�
�

1

2!

�
+
g
�OMAG � !J

�
2
��
; (70)

where S�J� and S+�J� are given, respectively, by Eqs. (50)
and (62). Obviously,

d
d�

1

N

Z
�D+� exp

(
i
Z
d4x

�
�

1

2!

�
+
g
�OMAG � !J

�
2
�)



d
d�

1 
 0; (71)

so that
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dW �J�
d�


 �

*
s
Z
d4xs

�
1

2
caca

�+








J
0

	terms / J;

(72)

which follows directly from

dS�J�
d�


 ss
Z
d4x

�
1

2
caca

�
	 terms / J: (73)

We see that the first term in the right-hand side of (73) is an
exact BRST variation. As such, its vacuum expectation
value vanishes. This is the usual argument to prove the
gauge parameter independence in the BRST framework
[31]. Note that no local operator Ô, with sÔ 
 OMAG,
exists. Furthermore, extending the action of the BRST
transformation on the + field by

s+ 
 gsOMAG


 �A�aDab
� c

b 	 �baca � �gfabicacbci

�
�
2
gfabccacbcc (74)

one can easily check that

s
Z
d4xL�A�;+� 
 0; (75)

so that we have a BRST invariant + action. Thus, when we
consider the vacuum, corresponding to J 
 0, only the
BRST exact term in Eq. (72) survives. The effective action
' is related to W �J� through a Legendre transformation

'
�
+
g

�

 �W �J� �

Z
d4yJ�y�

+�y�
g

: (76)

The effective potential V�+� is then defined as

�V�+�
Z
d4x 
 '

�
+
g

�
: (77)

Let +min be the solution of

dV�+�
d+


 0: (78)

From

�
��+g�

' 
 �J; (79)

it follows that

+ 
 +min ) J 
 0; (80)

and hence, we derive from Eqs. (76) and (77) that

d
d�

V�+�








+
+min

Z
d4x 


d
d�

W �J�








J
0

: (81)

Thus, due to Eq. (72),

d
d�

V�+�








+
+min


 0: (82)
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We conclude that the vacuum energy Evac should be inde-
pendent from the gauge parameter �.

A completely analogous derivation was obtained in the
case of the linear gauge [34]. Nevertheless, in spite of the
previous argument, explicit results in that case showed that
Evac did depend on �. In [34] it was argued that this
apparent disagreement was due to a mixing of different
orders of perturbation theory. Let us explain this with a
simple example. Let us first notice that a key argument in
the previous analysis is that the source J 
 0 vanishes at
the end of the calculations. In practice, J 
 0 is achieved
by solving the gap equation (78). Moreover, in a power
series expansion in the coupling constant, the derivative of
the effective potential with respect to + will look like

�v0 	 v1g2 	O�g4��+; (83)

where we assume that we work up to order g2. The corre-
sponding gap equation reads

v0 	 v1g2 	O�g4� 
 0: (84)

Because of Eqs. (77) and (79), one also has

J 
 g�v0 	 v1g
2 	O�g4��+: (85)

Imposing the gap equation (84) leads to

J 
 g�0	O�g4��+: (86)

However, as it can be immediately checked from expres-
sion (70), there are several terms proportional to J in the
right-hand side of Eq. (72). For instance, one of them is
given by @!

@� J
2. Since

@!
@�



@!0
@�

1

g2
	
@!1
@�

	O�g2�; (87)

we find

@!
@�

J2 

�
@!0
@�

v2
0 	

�
@!0
@�

2v0v1 	
@!1
@�

v2
0

�
g2

	O�g4�
�
+2: (88)

Squaring the gap equation (84),

v2
0 	 2v1v0g2 	O�g4� 
 0; (89)

leads to

@!
@�

J2 

�
@!1
@�

v2
0g

2 	O�g4�
�
+2: (90)

We see that, if one consistently works to the first order,
terms such as @!

@� J
2 do not equal zero, although J 
 0 to

that order. Terms like those on the right-hand side of
Eq. (90) are canceled by terms which are formally of
higher order, requiring thus a mixing of different orders
of perturbation theory. Of course, this problem would not
have occurred if we were able to compute the effective
potential up to infinite order, an evidently hopeless task.
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Nevertheless, in [34] we succeeded in finding a suitable
modification of the LCO formalism in order to circumvent
this problem, and in obtaining a well-defined gauge-
independent vacuum energy Evac, without the need of
working at infinite order. Instead of the action (50), let us
consider the following action,

~S�~J� 
 SYM 	 SMAG 	 Sdiag 	
Z
d4x

�
~JF �g2; ��OMAG

	
!
2
F 2�g2; ��~J2

�
; (91)

where, for the moment, F �g2; �� is an arbitrary function of
� of the form

F �g2; �� 
 1	 f0���g
2 	 f1���g

4 	O�g6�; (92)

and ~J is now the source. The generating functional be-
comes

exp��i ~W �~J�� 

Z
�D&� expi~S�~J�: (93)

Taking the functional derivative of ~W �~J� with respect to ~J,
we obtain

� ~W �~J�

�~J









~J
0

 �F �g2; ��hOMAGi: (94)

Once more, we insert unity via

1 

1

N

Z
�D~+� exp

"
i
Z
d4x

�
�

1

2!

�
~+

gF �g2; ��
�OMAG

� ! ~JF �g2; ��
�
2
�#
; (95)

to arrive at the following Lagrangian,

~L�A�; ~+� 
 �
1

4
Fa��F��a �

1

4
Fi��F��i 	LMAG

	Ldiag �
~+2

2g2F 2�g2; ��!

	
1

g2F �g2; ��!
g~+OMAG �

1

2!
�OMAG�

2:

(96)

From the generating functional

exp��i ~W �~J�� 

Z
�D&� expiS~+�~J�; (97)

S ~+�~J� 

Z
d4x

�
L�A�; ~+� 	 ~J

~+
g

�
; (98)

it follows that

� ~W �~J�

�~J
j~J
0 
 �

�
~+
g

�
) h~+i 
 gF �g2; ��hOMAGi:

(99)
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The renormalizability of the action (62) implies that the
action (98) will be renormalizable too. Notice indeed that
both actions are connected through the transformation

~J 

J

F �g2; ��
: (100)

The tree-level off-diagonal masses are now provided by

moff-diag:
gluon 


�������
g~+
!0

s
; moff-diag:

ghost 


�����������
�
g~+
!0

s
; (101)

while the vacuum configuration is determined by solving
the gap equation

d ~V�~+�
d~+


 0; (102)

with ~V�~+� the effective potential. Minimizing ~V�~+� will
lead to a vacuum energy Evac��� which will depend on �
and the hitherto undetermined functions fi��� [43]. We
will determine those functions fi��� by requiring that
Evac��� is �-independent. More precisely, one has

dEvac

d�

 0

) first order differential equations in � for fi���:

(103)

Of course, in order to be able to determine the fi���, we
need an initial value for the vacuum energy Evac. This
corresponds to initial conditions for the fi���. In the case
of the linear gauges, to fix the initial condition we em-
ployed the Landau gauge [34], a choice which would also
be possible in case of the Curci-Ferrari gauges, since the
Landau gauge belongs to these classes of gauges. This
choice of the Landau gauge can be motivated by observing
that the integrated operator

R
d4xAA�A�A has a gauge in-

variant meaning in the Landau gauge, due to the trans-
versality condition @�A�A 
 0, namely,

�VT��1 min
U/SU�N�

Z
d4x��AA��U�A�A�U�



Z
d4x�AA�A�A� in the Landau gauge; (104)

with the operator on the left-hand side of Eq. (104) being
gauge invariant. Moreover, the Landau gauge is also an all-
order fixed point of the RGE for the gauge parameter in
case of the linear and Curci-Ferrari gauges. At first glance,
it could seem that it is not possible anymore to make use of
the Landau gauge as the initial condition in the case of the
MAG, since the Landau gauge does not belong to the class
of gauges we are currently considering. Fortunately, we
shall be able to prove that we can use the Landau gauge as
the initial condition for the MAG too. This will be the
content of the next section.
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Before turning our attention to this task, it is worth
noticing that, if one would work up to infinite order, the
expressions (91) and (98) can be transformed exactly into
those of (50) and (62), respectively, by means of Eq. (100)
and its associated transformation

~+ 
 F �g2; ��+; (105)

so that the effective potentials ~V�~+� and V�+� are exactly
the same at infinite order, and as such will give rise to the
same, gauge parameter independent, vacuum energy.
IV. INTERPOLATING BETWEEN THE MAG AND
THE LANDAU GAUGE

In this section we shall introduce a generalized renor-
malizable gauge which interpolates between the MAG and
the Landau gauge. This will provide a connection between
these two gauges, allowing us to use the Landau gauge as
the initial condition. An example of such a generalized
gauge, interpolating between the Landau and the Coulomb
gauge was already presented in [44]. Moreover, we must
realize that in the present case, we must also interpolate
between the composite operator 1

2A
A
�A�A of the Landau

gauge and the gluon-ghost operator OMAG of the MAG.
Although this seems to be a highly complicated assign-
ment, there is an elegant way to treat it.

Consider again the SU�N� Yang-Mills action with the
MAG gauge fixing (12). For the residual Abelian gauge
freedom, we impose

S0diag 

Z
d4x�bi@�A�i 	 ci@2ci 	 ci@��gfiabA�acb�

	 1gfiabAa��@�ci�cb 	 1g2fiabficdcacdAb�A�c

� 1gfiabAi�A�a�bb � gfjbccccj�

	 1gfiabA�i�Dac
� cc�cb 	 1g2fabifacdAi�A�ccdcb�;

(106)

where 1 is an additional gauge parameter. The gauge fixing
(106) can be rewritten as a BRST exact expression

S0diag 

Z
d4x

�
�1� 1�s�ci@�A

�i� 	 1ss
�
1

2
Ai�A

�i
��
:

(107)

Next, we will introduce the following generalized mass
dimension-two operator,

O 

1

2
Aa�A

�a 	
1
2
Ai�A

�i 	 �caca; (108)

by means of
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S0LCO 
 s
Z
d4x

�
 O	 !

 J
2

�



Z
d4x

�
JO	 !

J2

2
� � baca 	  A�aDab

� cb

	 � ca
�
gfabicbci 	

g
2
fabccbcc

�
� 1 ci@�A�i

	 1gfiab Aa�A
�icb

�
; (109)

with �J;  � a BRST doublet of external sources,

s 
 J; sJ 
 0: (110)

As in the case of the gluon-ghost operator (18), the gener-
alized operator of Eq. (108) turns out to be BRST invariant
on shell, a property which can again be expressed in a
functional way; see Eq. (121).

Let us take a closer look at the action

�0 
 SYM 	 SMAG 	 S0diag 	 S0LCO 	 Sext: (111)

The external source part of the action, Sext, is the same as
given in Eq. (16).

Also, it can be noticed that, for 1 ! 0, the generalized
local composite operator O of Eq. (108) reduces to the
composite operator OMAG of the MAG, while the diagonal
gauge fixing (107) reduces to the Abelian Landau gauge
(15). Said otherwise, for 1! 0, the action �0 of Eq. (111)
reduces to the one we are actually interested in and which
we have discussed in the previous sections.

Another special case is 1 ! 1, � ! 0. Then the gauge
fixing terms of �0 are

SMAG 	 S0diag 

Z
d4xs��AA�@�cA�



Z
d4x�cA@�DAB

� cB 	 bA@�AA��; (112)

which is nothing else than the Landau gauge. At the same
time, we also have

lim
��;1�!�0;1�

O 

1

2
AA�A�A; (113)

which is the pure gluon mass operator of the Landau gauge
[22,32].

From [32], we already know that the Landau gauge with
the inclusion of the operator AA�A�A is renormalizable to all
orders of perturbation theory. On the other hand, in Sec. II,
we have proven the renormalizability for 1 
 0. Before we
continue our argument, let us first prove the renormaliz-
ability of �0 for general � and 1 � 0. The complete action
�0, as given in Eq. (111), is BRST invariant
114038
s�0 
 0; (114)

and obeys the following identities

(i) T
-11
he Slavnov-Taylor identity, provided by

S��0� 

Z
d4x

�
��0

���a

��0

�Aa�
	

��0

���i

��0

�Ai�

	
��0

�La
��0

�ca
	
��0

�Li
��0

�ci
	 ba

��0

�ca

	 bi
��0

�ci
	 J

��0

� 

�

 0: (115)
(ii) T
he integrated diagonal ghost equation

G i�0 
 �i
cl; (116)

where

G i 

Z
d4x

�
�
�ci

	 gfabica
�

�bb

�
; (117)

and

�i
cl 


Z
d4x�gfabi��aAb� � gfabiLacb

	 1 @�A�i�; (118)

a classical breaking.

(iii) T
he diagonal antighost equation

��0

�ci
	 @�

��0

���i 
 0; (119)

and

��0

�bi

 @�A

�i: (120)
(iv) T
he integrated generalized  equationZ
d4x

�
�
� 

	 ca
�
�ba

	 1ci
�
�bi

�
�0 
 0; (121)

expressing the on-shell BRST invariance of the
operator O of Eq. (108).
Also in this case, these Ward identities extend to the
quantum level. Accordingly, the most general local coun-
terterm �0count must obey the following constraints,

B�0�0count 
 0; Gi�0count 
 0;

�
�bi

�0count 
 0;�
�
�ci

	 @�
�

��i
�

�
�0count 
 0;

Z
d4x

�
�
� 

	 ca
�
�ba

�
�0count 
 0:

(122)

where B�0 denotes the nilpotent, B�0B�0 
 0, linearized
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operator

B�0 

Z
d4x

�
��0

��a�

�
�Aa�

	
��0

�Aa�

�
��a� 	

��0

���i

�
�Ai�

	
��0

�Ai�

�
���i 	

��0

�La
�
�ca

	
��0

�ca
�
�La

	
��0

�Li
�
�ci

	
��0

�ci
�
�Li

	 ba
�
�ca

	 bi
�
�ci

	 J
�
� 

�
: (123)
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From general results on BRST cohomology [40], we know
that the most general, local counterterm can be written as

�0count 
 �
a00
4

Z
d4x�Fa��F��a 	 Fi��F��i� 	B��

�1;

(124)

where ��1 is an integrated local polynomial of ghost
number �1 and dimension four, given by
��1 

Z
d4x

�
a01�

a
�A�a 	 a02�

i
�A�i 	 a03L

aca 	 a04L
ici 	 a05�@�c

a�A�a 	 a005gf
abicaAi�A�b 	 a06�@�c

i�A�i

	 a07gf
aiccacicc 	

a08
2
�gfabicacbci 	

a09
2
�gfabccacbcc 	 �a010b

aca 	 a011b
ici 	

a012
2
 Aa�A�a 	

a013
2
1 Ai�A�i

	 a014� c
aca 	 a015� c

ici 	
a016
2
! J

�
: (125)

The constraints (122) lead to the relations

a07 
 a011 
 a015 
 0; a06 
 a02; a013 
 a04 � a02; a08 
 �2a010; a014 
 2a010 	 a03; a012 
 a03 � a05;

a005 
 a05 	 1�a013 � a03�; a09 
 �a010; a02 
 a04 
 0 and thus a013 
 0: (126)

Summarizing,

��1 

Z
d4x

�
a01�

a
�A

�a 	 a03L
aca � a05c

aDab
� A

�b � 1a03gf
abicaAi�A

�b � a010�gf
abicacbci �

a010
2
�gfabccacbcc

	 �a010b
aca 	 a03 

�
1

2
Aa�A�a 	 �caca

�
�
a05
2
 Aa�A�a 	 2a010� c

aca 	
a016
2
! J

�
: (127)
In comparison with the case of the MAG, we see that
�0count also contains six free independent parameters,
namely, a00, a

0
1, a

0
3, a

0
5, a

0
10, and a013, despite the fact that

the action �0 contains the extra gauge parameter 1. These
parameters can be reabsorbed by a suitable multiplicative
renormalization of the gauge coupling constant g, of the
gauge and LCO parameters �, 1, ! , and of the fields & 

�A�a; A�i; ca; ca; ci; ci; ba; bi� and sources $ 

���a;��i; La; Li;  ; J�, according to

�0�g; �; 1; !; &;$� 	 #�0count


 �0�g0; �0; 10; !0; &0;$0� 	O�#2�; (128)

where

g0 
 Zgg; �0 
 Z��; !0 
 Z!!;

10 
 Z�1
c

~Z�1=2
A Z�1

g 1;

A�a0 
 ~Z1=2
A A�a; A�i0 
 Z�1

g A�i; (129)

ca0 
 ~Z1=2
c ca; ca0 
 ~Z1=2

c ca; (130)
ci0 
 Z1=2
c ci; ci0 
 Z�1=2

c ci; (131)

ba0 
 ZgZ
1=2
c ~Z1=2

c ba; bi0 
 Zgb
i; (132)

��a
0 
 ~Z�1=2

A Z�1
g Z�1=2

c ��a; ��i
0 
 Z�1=2

c �i�;

(133)

La0 
 Z�1
g

~Z�1=2
c Z�1=2

c La; Li0 
 Z�1
g Z�1

c Li; (134)

J0 
 Z2
gZcJ;  0 
 ZgZ

1=2
c  ; (135)

with

Zg 
 1� #
a00
2
; Z� 
 1	 #�2a05 	 a00 � a08�;

Z! 
 1	 #�a016 	 2a00 	 2a05 � 2a03�;

~Z1=2
A 
 1	 #

�
a00
2
	 a01

�
; ~Z1=2

c 
 1�
#
2
�a05 	 a03�;

Z1=2
c 
 1	

#
2
�a03 � a05�:

(136)

We see thus that the additional gauge parameter 1 does not
-12
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renormalize in an independent way. Furthermore, from
Eq. (135), we notice that the relation (48) is generalized
to the operator O, i.e.,

(O�g2� 
 �2
�
)�g2�

2g2
� (ci�g

2�

�
: (137)

Summarizing, we have constructed a renormalizable gauge
that is labeled by a couple of parameters ��; 1�. It allows us
to introduce a generalized composite operator O, given by
Eq. (108), which embodies the local operator AA�A�A of the
Landau gauge as well as the operator OMAG of the MAG.
To construct the effective potential, one sets all sources
equal to zero, except J, and introduces unity to remove the
J2 terms. A completely analogous argument as the one
given in Sec. III allows us to conclude that the minimum
value of V�+�, thus Evac, will be independent of � and 1,
essentially because the derivative with respect to � as well
as with respect to 1 is BRST exact, up to terms in the
source J. This independence of � and 1 is again only
assured at infinite order in perturbation theory, so we can
generalize the construction, proposed in Sec. III, by mak-
ing the function F of Eq. (92) also dependent on 1. The
foregoing analysis is sufficient to make sure that we can
use the Landau gauge result for Evac as the initial condition
for the vacuum energy of the MAG. Moreover, we are now
even in the position to answer the question about the
existence of a fixed point of the RGE for the gauge pa-
rameter �, which was necessary to certify that no arbitrary
constants would enter the results for Evac. We already
mentioned that the Landau gauge, i.e., the case ��; 1� 

�0; 1�, is a renormalizable model [32], i.e., the Landau
gauge is stable against radiative corrections. This can be
reexpressed by saying that ��; 1� 
 �0; 1� is a fixed point of
the RGE for the gauge parameters, and this to all orders of
perturbation theory.
V. NUMERICAL RESULTS FOR SU(2)

After a quite lengthy formal construction of the LCO
formalism in the case of the MAG, we are now ready to
present explicit results. In this paper, we will restrict our-
selves to the evaluation of the one-loop effective potential
in the case of SU(2). As a renormalization scheme, we
adopt the modified minimal subtraction scheme (MS). Let
us give here, for further use, the values of the one-loop
anomalous dimensions of the relevant fields and couplings
in the case of SU(2). In our conventions, one has [45– 47]

(ci�g
2� 
 ��3� ��

g2

1622 	O�g4�; (138)

(��g2� 

�
�2�	

8

3
�

6

�

�
g2

1622 	O�g4�; (139)

while
114038
)�g2� 
 �"g2 � 2
�
22

3

g4

1622

�
	O�g6�; (140)

and exploiting the relation (48)

(OMAG
�g2� 


�
26

3
� 2�

�
g2

1622 	O�g4�; (141)

a result consistent with that of [46].
The reader will notice that we have given only the one-

loop values of the anomalous dimensions, despite the fact
that we have announced that one needs �n	 1�-loop
knowledge of the RGE functions to determine the n-loop
potential. As we shall see soon, the introduction of the
function F �g2; �� and the use of the Landau gauge as the
initial condition allow us to determine the one-loop results
we are interested in, from the one-loop RGE functions
only.

Let us first determine the counterterm �! . For the gen-
erating functional W �J�, we find at one-loop [48]

W �J� 

Z
ddx

�
��! 	 �!�

J2

2

�
	 i lndet��ab�@2 	 �J��

�
i
2
lndet

�
�ab

�
�@2 	 J�g�� �

�
1�

1

�

�
@�@�

��
;

(142)

and employing

lndet
�
�ab

�
�@2 	 J�g�� �

�
1�

1

�

�
@�@�

��

 �aa��d� 1�Tr ln�@2 	 J� 	 Tr ln�@2 	 �J��; (143)

with

�aa 
 N�N � 1� 
 2 for N 
 2; (144)

one can calculate the divergent part of Eq. (142),

W �J� 

Z
d4x

�
��!

J2

2
�

3

1622 J
2 1

"
�

1

1622 �
2J2

1

"

	
1

822 �
2J2

1

"

�
: (145)

Consequently,

�! 

1

822 ��
2 � 3�

1

"
	O�g2�: (146)

Next, we can compute the RGE function ��g2; �� from
Eq. (55), obtaining

��g2; �� 

�2 � 3

822 	O�g2�: (147)
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Having determined this, we are ready to calculate !0. The
differential equation (67) is solved by

!0��� 
 �	 �9� 4�	 3�2�C0; (148)

with C0 an integration constant. As already explained in
the previous sections, we can consistently put C0 
 0.
Here, we have written it explicitly to illustrate that, if �
would coincide with the one-loop fixed point of the RGE
for the gauge parameter, the part proportional to C0 in
Eq. (148) would drop. Indeed, the equations 9� 4�	
3�2 
 0 and �2�	 8

3 �
6
� 
 0, stemming from

Eq. (139), are the same. Moreover, we also notice that
this equation has only complex valued solutions.
Therefore, it is even more important to have made the
connection between the MAG and the Landau gauge by
embedding them in a bigger class of gauges, since then we
have the fixed point, even at all orders. In what follows, it is
understood that !0 
 �.

We now have all the ingredients to construct the one-
loop effective potential ~V1�~+�,

~V1�~+� 

~+2

2!0

�
1�

�
2f0 	

!1
!0

�
g2
�
	 i lndet

�
�ab

�
@2

	 �
g~+
!0

��
�
i
2
lndet

�
�ab

��
@2 	

g~+
!0

�
g��

�

�
1�

1

�

�
@�@�

��
; (149)

or, after renormalization

~V1�~+� 

~+2

2!0

�
1�

�
2f0 	

!1
!0

�
g2
�
	

3

3222

g2 ~+2

!20

�

�
ln
g~+

!0�2 �
5

6

�
�

1

3222

g2�2 ~+2

!20

�
ln
g�~+

!0�2 �
3

2

�
:

(150)

We did not explicitly write the divergences and counter-
terms in Eq. (151), since by construction we know that the
formalism is renormalizable, so they would have canceled
amongst each other. This can be checked explicitly by
using the unity of (59) with counterterms included. It can
also be checked explicitly that ~V1�~+� obeys the renormal-
ization group

�
d
d�

~V1�~+� 
 0	 terms of higher order; (151)

by using the RGE functions (138)–(141) and the fact that
the anomalous dimension of ~+ is given by
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( ~+�g
2� 


)�g2�

2g2
	 (OMAG

�g2� 	�
@ lnF �g2; ��

@�
; (152)

which is immediately verifiable from Eq. (99).
We now search for the vacuum configuration by mini-

mizing ~V1�~+� with respect to ~+. We will put �2 
 g ~+=!0
to exclude possibly large logarithms, and find two solutions
of the gap equation

d ~V1

d+









�2
g ~+=!0


 0

,
~+
!0

�
1�

�
2f0 	

!1
!0

�
g2
�
	

3

1622

g2 ~+

!20

�

�
�

5

6

�
	

3

3222

g2 ~+

!20
�

1

1622

g2�2 ~+

!20

�

�
ln��

3

2

�
�

1

3222

g2�2 ~+

!20

 0;

(153)

namely,

~+ 
 0; (154)

y 
g2N

1622









N
2



2!0
1622�2f0!0 	 !1� 	 �2 ln�� �2 	 1

:

(155)

The quantity y is the relevant expansion parameter, and
should be sufficiently small to have a sensible expansion.
The value for h~+i corresponding to Eq. (155) can be
extracted from the one-loop coupling constant

g2��� 

1

)0 ln��
2=02

MS
�
: (156)

The first solution (154) corresponds to the usual, perturba-
tive vacuum (Evac 
 0), while Eq. (155) gives rise to a
dynamically favored vacuum with energy

Evac 
 �
1

6422 �3� �2��moff-diag
gluon �4; (157)

moff-diag
gluon 
 e�3=22y�0MS: (158)

Equation (157) is obtained upon substitution of Eq. (153)
into Eq. (150). From Eq. (157), we notice that at the one-
loop approximation, �2 � 3 must be fulfilled in order to
-14
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have Evac � 0. In principle, the unknown function f0���
can be determined by solving the differential equation

dEvac

d�

 0

, 2��moff-diag
gluon �4 	 4��2 � 3��moff-diag

gluon �3
dmoff-diag

gluon

d�

 0

, �	
3� �2

y2

�
@y
@�

	
@y
@!0

@!0
@�

	
@y
@!1

@!1
@�

	
@y
@f0

@f0
@�

�

 0 (159)

with the initial condition Evac��� 
 ELandau
vac . However, to

solve Eq. (159) knowledge of !1 is needed. Since we are
not interested in f0��� itself, but rather in the value of the
vacuum energy Evac, the off-diagonal mass moff-diag

gluon , and
the expansion parameter y, there is a more direct way to
proceed, without having to solve Eq. (159). Let us first give
the Landau gauge value for Evac in the case N 
 2, which
can be easily obtained from [22,49],

ELandau
vac 
 �

9

12822 e
17=604

MS
: (160)

Since the construction is such that Evac��� 
 ELandau
vac , we

can equally well solve

�
9

12822 e
17=604

MS

 �

1

6422 �3� �2��moff-diag
gluon �4;

(161)

which gives the lowest order mass
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8

m
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s

a

FIG. 1. The off-diagonal gluon (fat line) and ghost mass (thin
line) as a function of �. Masses are in units of 0MS.
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moff-diag
gluon 


�
9

2

e17=6

3� �2

�
1=4

0MS; (162)

and hence

moff-diag
ghost 


����
�

p
�
9

2

e17=6

3� �2

�
1=4

0MS: (163)

The result (162) can be used to determine y. From
Eq. (158) one easily finds

y 

36

187	 66 ln 9
2�3��2�

: (164)

We see thus that, for the information we are currently
interested in, we do not need explicit knowledge of !1
and f0. We want to remark that, if !1 were known, the
value for y obtained in Eq. (164) can be used to determine
f0 from Eq. (155). This is a nice feature, since the possibly
difficult differential equation (159) never needs to be
solved in this fashion. In Fig. 1, we have plotted the off-
diagonal gluon mass (162) and ghost mass (163) for 0 �

� �
���
3

p
. We notice that the masses grow to 1 for increas-

ing �, while the expansion parameter y drops to zero, as it
is clear from Fig. 2. The relative smallness of y means that
our perturbative analysis should give qualitatively mean-
ingful results. Before we come to the conclusions, let us
consider the limit � ! 0, corresponding to the real MAG
Dab
� A�b 
 0. One finds

moff-diag
gluon 


�
3

2
e17=6

�
1=4

0MS � 2:250MS;

y 

36

187	 66 ln32
� 0:168:

(165)
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a

FIG. 2. The expansion parameter y as a function of �.
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VI. DISCUSSION AND CONCLUSION

The aim of this paper was to give analytic evidence, as
expressed by Eq. (165), of the dynamical mass generation
for off-diagonal gluons in Yang-Mills theory quantized in
the maximal Abelian gauge. This mass can be seen as
support for the Abelian dominance [3–5] in that gauge.
This result is in qualitative agreement with the lattice
version of the MAG, where such a mass was also reported
[10,11]. The off-diagonal lattice gluon propagator could be
fitted by 1=�p2 	m2�, which is in correspondence with the
tree-level propagator we find. We have been able to prove
the existence of the off-diagonal mass by investigating the
condensation of a mass dimension-two operator, namely,
�12A

a
�A�a 	 �caca�. It was shown how a meaningful, re-

normalizable effective potential for this local composite
operator can be constructed. By evaluating this potential
explicitly at one-loop order in the case of SU(2), the
formation of the condensate is favored since it lowers the
vacuum energy. The latter does not depend on the choice of
the gauge parameter �, at least if one would work to
infinite order in perturbation theory. We have explained
in short the problem at finite order and discussed a way to
overcome it. Moreover, we have been able to interpolate
between the Landau gauge and the MAG by unifying them
in a larger class of renormalizable gauges. This observation
was used to prove that the vacuum energy of Yang-Mills
theory in the MAG due to its mass dimension-two conden-
sate should be the same as the vacuum energy of Yang-
Mills theory in the Landau gauge with the much explored
condensate hAA�A

�Ai. It is worth noticing that all the
gauges, where a dimension-two condensate provides a
dynamical gluon mass parameter, such as the Landau
gauge [22], the Curci-Ferrari gauges [21], the linear gauges
[34], and the MAG, can be connected to each other, either
directly (e.g., Landau-MAG) or via the Landau gauge (e.g.,
MAG and linear gauges). This also implies that, if
hAA�A

�Ai � 0 in the Landau gauge, the analogous conden-
sates in the other gauges cannot vanish either. Then the
question arises if this correspondence between different
gauges could be stretched further to, for instance, the
Coulomb gauge, where the possibility of a condensate
hAAi A

iAi was already advocated some time ago in [50].
However, it is worth remarking that this might be a more
complicated task, since the Coulomb gauge is not a cova-
riant gauge fixing, and as such its analysis within the
algebraic renormalization framework [31] is not
straightforward.

Needless to say, the present work is far from being
complete. First of all, an explicit calculation at two-loop
order and for general gauge group SU�N� would be inter-
esting. We also limited our computations to the tree-level
order. In principle, one should evaluate the off-diagonal
gluon polarization in order to get further information on the
structure of the propagator. A first step in this direction was
taken in the case of the Landau gauge in [51]. It is unknown
114038
what will happen at higher orders in the MAG, but it is
likely that the external momentum Q2 will enter through
loop corrections and influence the possible position of a
pole in the propagator. The ghost condensation, which was
first investigated in [12,13] as a possible mechanism be-
hind the off-diagonal mass, and later on was shown to be
tachyonic [14,15], could enter this polarization too. This
would require a more complete treatment of the ghost
condensation in the MAG, along the lines of [52], where
these condensates were considered in more detail in the
case of the Curci-Ferrari and Landau gauge. Another issue
which deserves attention is the behavior of the diagonal
gluon. In [11], it was found that the diagonal gluon propa-
gator also contains a mass parameter, with mdiag

gluon �
1
2m

off-diag
gluon , while in [10] the diagonal gluon was reported

to behave like a light or massless particle. For complete-
ness, we remind the reader that these lattice simulations
were both performed in the case of SU(2). We want to
remark that a condensation of the composite diagonal
operator Ai�A�i cannot occur within our approach, since
this is forbidden by the diagonal local U�1�N�1 Ward
identity (30). In principle, one could add an extra source
term like 1

25A
i
�A

�i, but it does not seem possible to prove
the renormalizability of this operator in the MAG. This
might be consistent with the result of [11], since the
diagonal gluon propagator could not be fitted with a
Yukawa propagator 1=�p2 	m2�, in contrast with the off-
diagonal gluon propagator which could be fitted with
1=�p2 	m2�. This could mean that the diagonal mass
parameter is of a different nature compared to the off-
diagonal one. A possible speculation is that it might have
to do with Gribov copies, since a fit p2=�p4 	m4� did
work for the diagonal propagator [11].

Our analysis of the MAG condensate was also restricted
to the purely perturbative level. One could imagine calcu-
lating in a certain nontrivial background. The vacuum
energy calculated in one gauge should still be the same
as the one calculated in the other gauge. In this context, and
keeping in mind that monopole condensation is an essen-
tial ingredient of the dual superconductor picture, it might
be worth noticing that the role of hAA�A

�Ai as an order
parameter for monopole condensation was investigated in
the Landau gauge by the authors of [27], based on a similar
observation in compact QED [26]. We note that an off-
diagonal gluon mass can serve as a starting point to derive
low energy (dual) Abelian models for Yang-Mills theories;
see, for example, [53–55].

Let us conclude with a few considerations on the issues
of the degrees of freedom and of the unitarity when the
gluons attain a dynamical mass, as a consequence of a
nonvanishing dimension-two condensate hOMAGi 


h12A
a
�A

�a 	 �cacai. One possible way to look at the de-
grees of freedom associated with a given field is through its
propagator. From the pole of the propagator one gets
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information about the mass of the field, while from its
residue one learns about polarization states. However, the
propagation of the field has to occur in some vacuum. In
other words, the kind of vacuum in which the field prop-
agates has to be supplemented. In our case, this task is
achieved by the LCO Lagrangian, Eq. (60), i.e.

L�A�;+� 
 �
1

4
Fa��F��a �

1

4
Fi��F��i 	LMAG

	Ldiag �
+2

2g2!
	

1

g2!
g+OMAG

�
1

2!
�OMAG�

2; (166)

which allows one to take into account the effects related to
having a nontrivial vacuum corresponding to the nonvan-
ishing dimension-two condensate hOMAGi, as expressed by
the identity

h+i 
 ghOMAGi: (167)

That this is the preferred vacuum follows from the obser-
vation that the vacuum energy is lowered by the condensate
hOMAGi. Expanding thus around h+i � 0, a dynamical
tree-level mass moff-diag:

gluon for the off-diagonal gluons is
generated in the gauge-fixed Lagrangian (166), namely,

moff-diag:
gluon 


����������
gh+i
!0

s
: (168)

Therefore, in the condensed vacuum h+i � 0, the
Lagrangian (166) accounts for off-diagonal massive glu-
ons. However, we emphasize that this dynamical mass
parameter occurs as the result of a particular condensate.
It is not a free parameter of the gauge-fixed theory, its value
being determined by a gap equation. Concerning now the
unitarity of the resulting theory, it should be remarked that,
due to confinement, gluons and quarks are only to be called
physical at a very high energy scale Q2, where they behave
almost freely and asymptotic states can be related to them,
thanks to asymptotic freedom. At very high energies, our
dynamically massive action might be unitary: a renormal-
ization group improvement could induce quantum correc-
tions such that the mass parameter runs to zero for
Q2 ! 1. Otherwise said, the corrections induced by this
dynamical mass on the scattering amplitudes are expected
to become less and less important as the energy of the
process increases, so that the amplitudes of the massless
114038
case are in fact recovered. Such a scenario would be
analogous to the behavior of the dynamical mass parameter
discussed by Cornwall in [56]. For very high Q2, one does
indeed expect that perturbative Yang-Mills theory with
massless gluons, having two physical degrees of freedom,
describes the physical spectrum and that nonperturbative
corrections are absent.

To decide if our resulting theory is unitary at smaller Q2,
one should know how to take into account the effects of
confinement, which now cannot be neglected. This would
amount to knowing how to construct out of our Lagrangian
(166) the low energy spectrum of the theory, which is
believed to be given by colorless bound states of gluons
and quarks as, for instance, mesons, baryons, and glue-
balls. This task is far beyond our capabilities. At inter-
mediate Q2, what we can state is that this dynamical mass
parametrizes the behavior of the Greens function of the
gluon. As a result of quantum effects, i.e., the condensation
of the mass dimension-two operator, a pole appears in the
off-diagonal gluon propagator at the tree level. Including
higher order effects will alter the propagator’s behavior as
well as the location of the pole at physical Q2 (i.e., Q2 <
0). In the case of the Landau gauge, higher order calcu-
lations show that the condensate remains stable, and hence
a nonzero mass parameter will remain; see [22,49]. This
mass parameter will describe the behavior of the Greens
function at Euclidean Q2. The presence of a mass parame-
ter does not, however, necessarily entail the presence of a
pole in the propagator at physical Q2. Using lattice simu-
lations of the Euclidean propagator, a mass parameter is
found also by fitting at Euclidean Q2 > 0, but no pole or
related massive particle is implied. Analogously, one
should not conclude from our calculations that the gluon
is a massive, physical particle and that unitarity is violated.
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