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Neutrino emission from ungapped quark matter
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We study neutrino emission from a normal, ungapped, quark phase in the core of a compact star.
Neutrino emission from noninteracting quark matter leads to an emissivity that scales as € ~ 77. We show
that the emissivity is enhanced by a combination of Fermi liquid and non-Fermi liquid effects. Fermi
liquid effects lead to an emissivity that scales as € ~ a,T®, as originally shown by Iwamoto. We
demonstrate that non-Fermi liquid effects further enhance the rate, leading to € ~ a3T®log(m/T)?, where
m is the electric screening scale and m >> T under the conditions found in compact stars. We show,
however, that combined with non-Fermi liquid effects in the specific heat the enhancement in the
emissivity only leads to a modest reduction in the temperature of the star at late times. Our results
confirm existing bounds on the presence of ungapped quark matter in compact stars. We also discuss

neutrino emission from superconducting phases with ungapped fermionic excitations.
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L. INTRODUCTION

Compact stars provide a unique opportunity to study
cold and dense strongly interacting matter and its rich
phase structure. An important source of information about
the structure of compact stars is their cooling behavior [1-
5]. For the first ~10° years after the star is born neutrino
emission from the bulk is the most efficient energy loss
mechanism. Since the matter in the interior of the star is
almost degenerate the exact nature of the cooling mecha-
nism is very sensitive to the structure of the low energy
excitations. As a result the cooling behavior places impor-
tant constraints on the phase diagram of dense matter.

Cooling mechanisms are generally grouped into fast
processes with an emissivity € ~ 7% and slow processes
with € ~ T®. Slow processes include the modified Urca
process [6] and neutrino bremsstrahlung. Examples for fast
mechanisms are the direct Urca process [7], neutrino emis-
sion from pion or kaon condensates [8,9], and neutrino
emission from an ungapped quark phase [10]. In a fully
gapped phase of nuclear or quark matter the emissivity is
exponentially small. Near the critical temperature for
superconductivity the emissivity is dominated by pair
breaking and recombination with a temperature behavior
that is intermediate between fast and slow mechanisms
[11,12].

In this paper we wish to focus on the emissivity of
a possible quark matter phase. At asymptotically
high baryon density quark matter is in the color-
superconducting CFL phase [13]. In this phase all quark
excitations are gapped and the emissivity is dominated by
exponentially small processes involving massive pseudo-
Goldstone modes [14—16]. At densities that are relevant to
compact stars distortions of the CFL due to the nonzero
strange quark mass cannot be neglected and the phase
structure is much more complicated. Most of the phases
that have been proposed in the literature involve quarks

1550-7998/2004 /70(11)/114037(7)$22.50

114037-1

PACS numbers: 12.38.Mh, 12.38.Cy, 97.60.Jd

with vanishing or very small gaps. Examples are the 2SC
phase [17-19] in which one of the colors remains un-
gapped, single flavor spin-one superconductors that have
very small gaps [20,21], and gapless CFL or 2SC phases
[22,23].

In the following we will concentrate on the neutrino
emissivity of ungapped quark matter. This problem is
important both in connection with the (almost) gapless
phases mentioned above and as a benchmark in order to
exclude the presence of ungapped quark matter in compact
stars. The emissivity of a normal quark phase was first
studied by Iwamoto [10], see also [24-26]. Iwamoto
showed that the direct Urca process is strongly suppressed
in noninteracting quark matter, but that Fermi liquid cor-
rections in interacting matter lead to a fast rate € ~ a,T®,
where «; is the strong coupling constant.

It also is known, however, that unscreened color mag-
netic interactions lead to a breakdown of the Fermi liquid
description at temperatures T, 7 ~ mexp( — 97/(4ay)),
where m?> = Npa,u’/m is the electric screening scale
[27,28]. This scale is very small compared to ordinary
QCD scales, but it is large compared to the temperature
of neutron stars after the first minute or so. For u =
500 MeV we have T, ¢ ~ 500 keV. It was recently shown
that non-Fermi liquid effects lead to large corrections of
the specific heat of degenerate quark matter for 7 < 7,1
[29]. In the present work we compute non-Fermi liquid
corrections to the emissivity and study the cooling behav-
ior of degenerate ungapped quark matter.

II. QUARK DISPERSION RELATION

In a Fermi gas of free quarks the direct Urca process is
strongly suppressed. As a consequence, the rate is very
sensitive to modifications of the quark dispersion relation.
Iwamoto noticed that Fermi liquid corrections to the rela-
tion between the Fermi energy and the Fermi momentum
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lead to a significant enhancement of the neutrino emissiv-
ity [10]. Non-Fermi liquid effects due to unscreened trans-
verse gauge boson interactions dramatically alter the
dispersion relation in the vicinity of the Fermi surface
[28—34] and thereby could have a similar effect. In this
section we wish to study the interplay of Fermi liquid and
non-Fermi liquid effects in dense quark matter and derive
the quark dispersion relation.

We are interested in the propagation of quarks in the
vicinity of the Fermi surface. Since the momentum p ~
vu is large, typical soft scatterings cannot change the
momentum by very much and the velocity is approxi-
mately conserved. An effective field theory for particles
and holes moving with velocity v = (1, ¥p) is given by
[33,35]

: 1
L=ylliv-D+dp), = 761Gl + Liny

+ S TR - )T ) @ Tg) + .0 (D)
v,

Here, D M is the covariant derivative and 6w is a counter-
term for the chemical potential. The effective theory con-
tains two types of four fermion operators, corresponding to
forward scattering v + v/ — v + v/ and the BCS process
v+ (—v) — v/ + (—v’') [33]. Since we are interested in
the normal phase only the forward scattering operators are
included in Eq. (1). The matrix I' determines the spin,
color, and flavor structure of the operator and R'(v - v')
is a set of orthogonal polynomials. Equation (1) also con-
tains the hard dense loop (HDL) effective action

m? veuP
LypL = _TZ:GWWG“B’ 2

which accounts for damping and screening caused by
particle-hole pairs on the entire Fermi surface.

The parameters in the effective Lagrangian are deter-
mined by matching QCD Green functions near the Fermi
surface. In order to determine the dispersion relation we
have to match forward scattering amplitudes, see Fig. 1. To
leading order in the coupling constant the forward scatter-
ing amplitude is the sum of a direct and an exchange term.
In the effective field theory the direct term is reproduced by
the collinear interaction while the exchange term has to be
matched against a contact term [33,36]. The spin-color-
flavor symmetric part is given by

— £5(yT t s — Cr 82
L= fO(l/fUl/fv)(wv/wv/)’ fo - AN Nf D ,
[ F

3)
with Cp = (N? — 1)/(2N,) and all other f§ = 0. The pa-
rameters vy and 6u are determined by computing the
contribution to the fermion dispersion relation from states
far away from the Fermi surface. This can be done most
easily using the hard dense loop approximation. We find
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FIG. 1 (color online). Feynman diagrams that appear in the
matching procedure for the forward scattering amplitude to
leading order in the coupling constant. The upper panel shows
the direct and exchange terms in QCD. The lower panel shows
the collinear and contact terms in the effective theory.
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These relations can also be derived using the Landau
theory of Fermi liquids. Landau showed that Galilei
invariance implies a relation between the effective interac-
tion on the Fermi surface, encoded in the Landau parame-
ters f7, and the parameters vy and 6 u. These arguments
were generalized to the relativistic case by Baym and Chin

[37]. They show that
N S N S
_be _NIT pF=u<1—%), (©)

‘UF—M 3

where N = N.N,;u?/m? is the density of states on the
Fermi surface. Using Eq. (3) and (6) gives Eq. (5).

Finally, we can study loop corrections in the effective
theory, see Fig. 2. The collinear loop gives

CFas

A
e log(;) )

where w = py — . We recently showed that this result
does not receive large logarithmic corrections of the form

S(w) =

FIG. 2 (color online). Leading order contributions to the fer-
mion self energy in the effective theory. The triangle denotes a
gluon self energy insertion and the square is the four fermion
operator defined in Fig. 1.
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g”"og"(w) as @ — 0 [34]. The tadpole diagram is linearly
divergent in the effective field theory. A naive estimate can
be obtained by cutting the divergence off at A ~ w. This
gives 2 ~ fIN u which agrees with the result for  u given
above. We can now summarize the results obtained in this
section. The dispersion relation is

o+ 2(w) = vpl + Su, 8)

where [ is the longitudinal momentum, %(w) is given in
Eq. (7), and vy, 6 u given in Eq. (5).

III. NEUTRINO EMISSIVITY

The dominant contribution to the emission of neutrinos
is given by the quark analogs of 8 decay (8) and electron
capture (ec)

d—u+e + 7, )

ute —d+uv, (10)

It is straightforward to introduce weak interactions into the
effective theory. The charged current interaction is given
by

L Z%cosﬁcglﬁTiv-W:gb, (11)

where cosf.. is the Cabbibo angle and g, is related to the
Fermi coupling by G/~/2 = g3/(8M3,). The dependence
on the Cabbibo angle suppresses the processes involving
the strange quark [10]. Therefore we will neglect the
neutrino emission of strange quarks. We have seen in the
previous section that almost collinear gluon exchanges can
generate large logarithmic corrections to the fermion self
energy. This raises the question whether gluon corrections
to the weak interaction vertex have to be taken into ac-
count. The problem of vertex corrections was studied in
[31,33]. It was shown that the vertex receives large loga-
rithmic corrections in the timelike regime but not in the
spacelike regime. The coefficient of the logarithm in the
timelike regime is exactly equal to the logarithmic term in
the fermion self energy. In the fermion self energy problem
the vertex is spacelike and does not have to be renormal-
ized. However, since the wave function renormalization is
logarithmically divergent the effective coupling constant
goes to zero near the Fermi surface. In the neutrino emis-
sion problem the vertex is timelike and receives logarith-
mic corrections. However, since the vertex correction is
equal to the field renormalization the effective coupling
constant does not change.

The neutrino emissivity is given by the total energy loss
due to neutrino emission averaged over the initial quark
helicities and summed over the final state phase space and
helicities
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The weak matrix element for the 8 and ec processes is
given by

1
5 Z |M,8/ec|2 = 64G%C08260p%(v : pe)(v . pv)»

04;,04,0,

(13)

where p,, p, are the momenta of the electron and the
neutrino. Weak processes establish 8 equilibrium in the
star. In three flavor quark matter with a massive strange
quark the resulting electron chemical potential is small.
In the following we shall assume that (T ~ E,) < (u, ~
E,) < pp. This assumption is appropriate in all cases
except during the first few seconds of the proto-neutron
star evolution.

In this case we can neglect the neutrino momentum
when applying the energy-momentum conservation rela-
tion to the matrix element. As a consequence we find (v -
p.) = E, after averaging over the direction of the outgoing
neutrino. The matrix element is mainly determined by
the factor (v - p,). To leading order in the effective theory
the weak decay is exactly collinear and (v - p,) = (E, —
vpl,) = 0 up to terms of order O(T/uw,), see Fig. 3. If
corrections to the dispersion relation are taken into account
we get

I Cray
(U : pe) = (1 - UF)le + L~ 5Md - 5/‘"’” = I;T Mes

21,
(14)

where [, is the transverse momentum of the electron. This
result agrees with Iwamoto’s result. Non-Fermi liquid
corrections only appear in the phase space integral. To
leading order in the 7/ the sum of the rates for electron
capture and S decay is given by

6G2 20 00 ) 00
€ =%T6 f, dxy f, dxuﬁ dx,x3n(x,)

X n(_xu)n(xu - X4 + xv)

% ap(Ed) ap(Eu) CFas
9E, OE,

ueEuEd} . (15)

E—pi+Tx;
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FIG. 3 (color online). Kinematics for the quark direct Urca
process in the limit 7 ~ E, < wu,. In a free quark gas (upper
panel) energy-momentum conservation forces the quark and
electron momenta to be collinear. If Fermi liquid corrections
are taken into account (lower panel) the outgoing quark has a
nonzero transverse momentum [ ~ a,u2. The dashed disper-
sion relations give the HDL result whereas the solid lines show
the change when non-Fermi liquid corrections are included.
These lead to a flattening of the dispersion relation in the vicinity
of the Fermi surface.

The expression in the square brackets is determined by the
quark dispersion relation given in Eq. (8). Terms of
Ola,(a,log(T))"] with n=0,1,2 are independent of
log(x;) and involve the integral

foo dxd [oo d-xu foo dxv-x?/n(xd)n(_xu)n(xu - X4 + xv)
—00 —00 0

457 7®
5040 °

(16)

At leading order in 7/ u the neutrino emissivity from the
quark direct Urca process is given by

457 CFaS A. 2
€~ mG%coszﬂcasuéueﬂ[l + 5. log(Tﬂ .

a7

The first term is the standard result by Iwamoto [10], and
the logarithmic terms are non-Fermi liquid corrections. We
note that these terms have to be included because at very
low temperature «, log(T) becomes large compared to one.
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We also note that if the scale inside the logarithm is on the
order of the screening scale, A ~ gu, then a,(u) X
log(A/T) stays finite in the limit g — oo at fixed 7.

IV. COMPACT STAR COOLING

In this section we wish to study the impact of non-Fermi
liquid effects on the cooling history of an isolated quark
phase. Our aim is not to provide a thorough analysis of the
cooling behavior of an actual quark or hybrid star but to
give a numerical estimate of the size of the non-Fermi
liquid corrections. The thermal evolution of the star is
governed by the neutrino emissivity, the specific heat,
and the thermal conductivity. Non-Fermi liquid corrections
to the specific heat were initially considered by Holstein et
al. [27] in the case of QED. The calculation was recently
refined and extended to QCD by Ipp et al. [29]. They find

NNy Cra, A
= - =
Cy 3 ,un[l e log(T>:|, (18)

where the first term is the free gas result and the second
term is the non-Fermi liquid correction. Ipp et al. also
determined the scale inside the logarithm as well as frac-
tional powers of T. From the complete O(«;) result we find
A = 0.28m where m* = Nya,u?*/ is the screening mass.

The thermal conductivity of degenerate quark matter
was studied by Heiselberg and Pethick [38]. Their result
suggests that equilibration is fast and that the quark phase
is isothermal. In this case the cooling behavior is governed
by

ou du oT aT
ou _om9l _ = 1), 19
o ot o DG = D (19

where u is the internal energy, ¢ is time, and we have
assumed that there is no surface emission. Without non-
Fermi liquid effects we have € ~ T° and c, ~ 7. In this
case the temperature scales as T o 1/¢'/4. With logarith-
mic corrections included there is no simple analytic solu-
tion, and we have studied Eq. (19) numerically.

We take the quark chemical potential to be w, =
500 MeV corresponding to densities pg = 6p, where p,
is nuclear matter saturation density. We note that both c,,
and € are proportional to u? and the main dependence of
the cooling behavior on u cancels. We evaluate the strong
coupling constant using the one loop renormalization
group solution at a scale . We take the scale parameter
to be Apcp =250 MeV which gives a, =1 at u =
500 MeV. It is clear that the naive use of perturbation
theory is in doubt if the coupling is this large. In practice
we estimate the uncertainty by varying «, between 1 and
0.4 which is the value used by Iwamoto [10]. We take the
scale of non-Fermi liquid effects to be A = 0.28m as
explained above and assess the uncertainty by varying A
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within a factor of 2. Finally, we took the initial temperature
to be Ty = 15 MeV.

The electron chemical potential is determined by the
requirements of charge neutrality and 8 equilibrium. In a
noninteracting quark gas we find u, =~ m2/(4pp). With a
strange quark mass my; = 150 MeV this relation gives
M. = 11 MeV. This result, however, is very sensitive to
interactions. To first order in « the chemical potential for a
massive strange quark is [39,40]

2a 3m? Prs + EV.
+ == = L log[=—=——=5) |, (20
we e g o) | e

ps = Ep

where EY. = \/p%, + m?. The important point is that the

O(a,m?) term is negative and enhanced by a large loga-
rithm log(pr/m;). The sign is related to the fact that the
correlation energy changes sign in going from the relativ-
istic to the nonrelativistic limit.

Equation (20) implies that the strange quark chemical
potential can become equal to or even smaller than the up
quark chemical potential. To leading order in m?2/p?% the
electron chemical potential is given by

2 4 2
h, = 4"“ [1 — 1% 1og<ﬁ>} 1)
Pr 7 m,

For the values of the parameters given above this equa-
tion gives a negative electron chemical potential u, =
—16 MeV. In this case the quark phase contains a Fermi
sea of positrons and the quark direct Urca process is

u—d+et +v, d+et - u+ v (22)

The neutrino emissivity is again governed by Eq. (17)
where w, has to be replaced by —u,. We observe that
despite the large correction to w, the emissivity is not
strongly affected. The large variation in u, when pertur-
bative corrections are included implies, however, that the
electron chemical potential is very uncertain. In particular,
there is a possibility that wu, is much smaller than
m2/(4pg). If a,u, < T then the neutrino emissivity is no
longer proportional to a,u,T% but to 77 [25].

In the following we shall use the value @, = 16 MeV
corresponding to interacting quarks. In Fig. 4 we show the
temperature dependence of both the neutrino emissivity
and the specific heat (solid) compared to the Fermi liquid
result (dashed). The gray band shows an estimate of the
uncertainties which are dominated by the uncertainty in the
value of the strong coupling. For both ¢,, and € the anoma-
lous logarithmic terms (dotted) dominate in the relevant
temperature range and exceed the Fermi liquid result con-
siderably. The cooling behavior is controlled by the ratio
€/c,. Since € ~ log?(T) and c,, ~ log(T) this ratio is log-
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FIG. 4. Neutrino emissivity € and specific heat ¢, of quark
matter. The dashed lines show the Fermi liquid results and the
dotted lines show the anomalous corrections. The solid lines give
the sum of the two contributions and the gray band shows an
estimate of the uncertainties.

arithmically enhanced. However, because the temperature
at late times scales roughly as the fourth root of the
numerical coefficient in €/c, this logarithmic enhance-
ment only translates into a modest reduction of the tem-
perature. This can be seen in more detail in Fig. 5. We
observe that compared to the Fermi liquid result (dashed)
the non-Fermi liquid effects (solid) lead to a reduction of
the temperature at late times which is nearly independent
of time. The magnitude of the effect is on the order of 20%.
For comparison, we also show the cooling behavior of
normal nuclear matter via the modified Urca process n +

1 10 100 1000 10000
tlyl

100000.

FIG. 5. Cooling behavior of ungapped quark matter. We show
the temperature T, in units of 10° K as a function of the age of
the star in years. The dashed line shows the Fermi liquid result
whereas the solid line gives the result including non-Fermi liquid
effects with the estimated uncertainty range. Although the non-
Fermi liquid corrections to both the specific heat and the neu-
trino emissivity are significant, there is only a modest reduction
in the temperature at late times. However, for both cases the
cooling of quark matter is considerably faster than the cooling of
neutron matter via the modified Urca process given by the dotted
line.
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n—n+ p+ e  + v[6]. We have chosen the same den-
sity and initial temperature and the effective baryon masses
given in [5]. We clearly see the difference between the fast
~T% quark direct Urca process and the slow ~78 modified
Urca process.

V. SUMMARY AND DISCUSSION

In this work, we have discussed the influence of non-
Fermi liquid effects on the cooling behavior of compact
stars containing quark matter in the normal phase. Non-
Fermi liquid effects lead to a logarithmic enhancement in
both the neutrino emissivity and the specific heat. The net
result of these two effects is a mild logarithmic enhance-
ment in the cooling rate. As our rate is even larger than the
Iwamoto rate we confirm and sharpen earlier bounds on the
existence of ungapped quark matter in neutron stars [41-
44]. More quantitative statements will require detailed
studies of realistic models in which the quark core is in
contact with a hadronic phase or an atmosphere. This is
beyond the scope of our investigation.

Let us now discuss the importance of non-Fermi liquid
effects in partially gapped color-superconducting phases,
see Table 1. The simplest case is the 2SC phase. The 2SC
phase can arise when the difference between the Fermi
momenta of the strange quark and the up and down quarks
is too large for strange-nonstrange pairing to occur [46,47].
There also are regions in the phase diagram where us
(dSC) or ds (uSC) pairing might occur [48—-50]. The
2SC phase is characterized by a partial Higgs mechanism.
Color SU(3) is broken according to SU(3) — SU(2) and
five out of eight gluons acquire a mass. The gapless fer-
mions of the third color interact via screened gauge bosons.
As a consequence, there are no non-Fermi liquid correc-

TABLE I. Dominant cooling rates in different phases of quark
matter. This table is a summary of the discussion in Sec. V. In the
entry [1SC]® we have assumed that ungapped modes exist and
the Urca process is allowed. This is not true in the color spin
locking phase. In the gCFL phase we have used the estimate of
Kouvaris et al. and in the gCFLK phase we have assumed that
only slow processes such as neutrino bremsstrahlung are al-
lowed. In the g2SC phase we have assumed that the Fermi liquid
direct Urca rate can be used, but this is not consistent with the
calculation of the gluon polarization in [45].

phase emissivity specific heat
normal phase € ~ a3T%log*(T) ¢y ~ a,u*Tlog(T)
CFL € ~ T3 exp(—mg/T) c, ~ T3

28C €~ a,T® cy, ~ w'T
2SC + 1SC €~ a,T° ¢y ~ u2T
[1SCP €~ a,T® cy ~ w'T
¢CFL €~ a,T>3 c, ~ pAVAT
gCFLK €~ a,T? cy ~ w2T
22SC €~ a,T® cy ~ w2T
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tions in either the specific heat or the neutrino emissivity
and the standard result of Iwamoto applies [10].

If the 2SC phase occurs in quark matter with three
flavors then the unpaired quark flavor can form a spin-
one condensate. Spin-one condensates are interesting from
the point of view of cooling because the typical gaps are
much smaller than the spin zero gap. In particular, we
can have T, =T,; and non-Fermi liquid effects in the
specific heat are important. Whether or not gapless modes
occur below T depends on the exact nature of the spin-one
condensate [20,21]. In a phase with color spin locked
pairing in both LL and LR chirality channels the order
parameter is isotropic and no gapless modes exist. In all
other phases not all fermions are gapped and the or-
der parameter has nodes on Fermi surface. If spin-one
pairing takes place in all flavor sectors (referred to as
[1SC]? in Table I) these modes will dominate the cooling
behavior.

The cooling behavior of the recently proposed gapless
CFL [22] and 2SC [23] phases is a more difficult question.
In the gCFL phase there are gapless charged and neutral
modes and the direct Urca process is possible. Alford et al.
[51] have argued that the (almost) quadratic dispersion
relation of one of the gapless modes leads to an enhance-
ment of the cooling rate by a factor /7. A similar enhance-
ment occurs in the specific heat [22]. Kryjevski and
Schifer studied quark modes in a kaon condensed CFL
phase (CFLK) [52]. They find at most one gapless mode.
As a consequence, the dominant cooling mechanism is
expected to be a slow process such as neutrino bremsstrah-
lung. However, there are several light modes that will
contribute to neutrino transport at MeV temperatures. In
the g2SC phase there are gapless up and down quark
excitations and the direct Urca process is possible. We
should stress that our discussion of neutrino emission
from the g2SC and gCFL phase ignores potential instabil-
ities related to a negative current-current correlation func-
tion [53-55]. Wu and Yip as well as Giannakis and
Ren [53,56] have argued that these instabilities indicate
that the correct ground state is an inhomogeneous super-
conductor of the type discussed by Larkin, Ovchninkov,
Fulde, and Ferrell [57-59]. The LOFF phase also contains
gapless fermions and the calculation of the neutrino emis-
sivity from this phase is an important problem for future
studies.
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