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Scattering of shock waves in QCD
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The cross section of heavy-ion collisions is represented as a double functional integral with the saddle
point being the classical solution of the Yang-Mills equations with boundary conditions/sources in the
form of two shock waves corresponding to the two colliding ions. I develop the expansion of this classical
solution in powers of the commutator of the Wilson lines describing the colliding particles and calculate
the first two terms of the expansion.
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I. INTRODUCTION

Viewed from the center of mass frame, a typical high-
energy hadron-hadron scattering looks like a collision of
two shock waves (see Fig. 1). Indeed, due to the Lorentz
contraction the two hadrons shrink into thin ‘‘pancakes’’
which collide producing the final state particles. The main
question is the field/particles produced by the collision of
two shock waves. On the theoretical side, this question is
related to the problem of high-energy effective action and
to the ultimate problem of the small—x physics—unitar-
ization of the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
pomeron and the Froissart bound in QCD (see [1,2]). On
more practical terms, the immediate result of the scattering
of the two shock waves gives the initial conditions for the
formation of a quark-gluon plasma studied in the heavy-ion
collisions at RHIC (see, e.g., the review [3]).

The collision of QCD shock waves can be treated using
semiclassical methods. The basic idea is that at high energy
the density of partons in the transverse plane becomes
sufficiently large to give the hard scale necessary for the
application of perturbation theory [4,5]. The arguments in
favor of this are based on the idea of parton saturation at
high energies [6–8]. Consider a single shock wave-hadron,
moving at a high speed (in the c.m. frame). The energetic
hadron emits more and more gluons and the gluon parton
density increases rapidly with energy. This cannot go
forever—at some point the recombination of partons bal-
ances the emission and partons reach the state of saturation
with the charactristic transverse momenta (the ‘‘saturation
scale’’) being Qs � ec� where � is the rapidity [9–12].
Such an energetic shock wave with large density of color
charge is called the color glass condensate [4,13].

Within the semiclassical approach, the problem of sca-
tering of two shock waves can be reduced to the solution of
classical Yang-Mills equations (YM) with sources being
the shock waves [5] (see also [14]). At present, these
equations have not been solved. There are two approaches
discussed in current literature: numerical simulations [15]
address: balitsky@jlab.org
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and expansion in the strength of one of the shock waves
[16–18].

Note that the collision of a weak and a strong shock
waves corresponds to the deep inelastic scattering from a
nucleus (while the scattering of two strong shock waves
describes a nucleus-nucleus collision). In the present paper
I formulate the problem of scattering of shock waves, find
the boundary conditions for the double functional integral
for the cross section and describe the expansion in the
commutators of two shock waves equivalent to the expan-
sion in strength of one of the waves. The main technical
result is the calculation of the second term of this expan-
sion (the first term can be restored from the current
literature).

The paper is organized as follows. Sec. II is a more
formal introduction: I outline the idea of the factorization
of the hadron-hadron cross section into the formation of
two shock waves and their scattering. In Sec. III I discuss
the rapidity factorization and define what is a scattering of
QCD shock waves. In Sec. IV I find the Lipatov vertex of
the gluon emission and in Sec. V reproduce the
kT-factorization valid in the first order in the commutator
expansion (for the pA scattering). In Sec. VI I obtain the
first-order effective action and reproduce the nonlinear
equation for the small-x evolution of Wilson lines.
Sec. VII outlines the calculation of the second-order clas-
sical field in the while the details of the calculation are
given in the Appendices A, B, and C. The explicit form of
FIG. 1 (color online). High-energy scattering as a collision of
two shock waves.

-1  2004 The American Physical Society



IAN BALITSKY PHYSICAL REVIEW D 70, 114030 (2004)
the vertex of gluon emission by two Wilson lines in the
shock-wave background is presented in the Appendix D.
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FIG. 2 (color online). Integration over the central-rapidity
gluons in a semiclassical approximation.
II. BASIC IDEA: TWO-STEP INTEGRATION
OVER RAPIDITY

In this section I outline how the hadron-hadron collision
at high energy is related to the scattering of shock waves.
The basic idea of the approach is the two-step integration
over rapidity in the double functional integral for the cross
section. At first, let us define this integral.

A. Double functional integral for the cross section

A total cross section is a product of an amplitude and a
complex conjugate amplitude so the functional intergral
for the cross section has double set of fields: to the right of
the cut and to the left of the cut. A typical functional
integral has the formZ

DADAJ �pA�J �pB�e�iS�A�J��pA�J��pB�eiS�A�; (1)

where the currents J�pA� and J�pB� describe the two
colliding particles (say, photons). Throughout the paper,
fields to the left of the cut will be represented by the
calligraphic letters while those to the right of the cut by
usual letters. The boundary conditions are such that the
fields A and A coincide at t! 1, reflecting the summa-
tion over the final states implied in the definition of a total
cross section. The propagators for such functional integral
reproduce the Cutkovsky rules (cf. Ref. [19]):

hAa��x�A
b
��y�i	g���

ab
Z d4k

16�4e
�ik�x�y� �i

k2
 i�
;

hAa
��x�Ab

��y�i	g���ab
Z d4k

16�4e
�ik�x�y� i

k2� i�
;

hAa
��x�A

b
��y�i	�g���

ab
Z d4k

16�4e
�ik�x�y�2���k2���k0�;

(2)

We are interested in the number of gluons produced per
unit rapidity which is given by the average of the creation
operator over the final state ha�k?; ��ay�k?; ��i (see the
discussion in Ref. [20]). In terms of functional integrals
this can be rewritten as

ng�k?; �� 	 lim
k2!0

Z
DADAJ �pA�J �pB�

 e�iS�A�k2Aa
i �k�k

2Aai ��k�

 eiS�A�J��pA�J��pB�: (3)

Throughout the paper, the sum over the Latin indices i; j:::
runs over the two transverse components (while the sum
over Greek indices runs over the four components as
usual). As we shall see below, the Lipatov vertex of gluon
emission R��k� 	 limk2!0A��k� is transverse: k�R��k� 	
0 so we can replace AiAi in Eq. (4) by the sum over all
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four indices

ng�k?; �� 	 � lim
k2!0

Z
DADAJ �pA�J �pB�

 e�iS�A�k2Aa
��k�k2A���k�

 eiS�A�J��pA�J��pB�: (4)
B. Two-step integration

The integration over the gluon fields in the functional
integral (4) will be done in two steps according to the
rapidity of the gluons. Let us introduce two rapidities �1

and �2 such that �A > �1 >�2 >�B. Consider a typical
Feynman diagram for the gluon production (4) shown in
Fig. 2. At first, we integrate over the fields in the central
range of rapidity �1 >�> �2 and leave the fields with
�> �1 and�< �2 in the form of external shock waves. In
the semiclassical approximation there is only one gluon
emission described by the Lipatov vertex-Fourier trans-
form of the classical field at the mass shell. The result of
the integration is the product of two Lipatov vertices which
depend on that ‘‘external’’ fields. It is easy to see that
Lipatov vertices depend on these gluon fields through
Wilson lines— infinite gauge links ordered along the
straight lines collinear to �1 and �2. Indeed, in the target
frame gluons with rapidities �1 >�> �2 are very fast so
their propagators in the background of ‘‘target’’ gluons
reduce to the gauge factor ordered along the straght line
classical trajectory.

Thus, in the semiclassical approximation we get (see
Fig. 2)

ng�k?;�� 	
Z
DADADBDBJAJAe�iS�A�
iS�A�

 JBJBe
�iS�B�
iS�B�R�k;V;U;V ;U�

 ei
R
d2z�ViUi�V iU

i�; (5)

where R�k;V;U;V ;U� is a product of two Lipatov verti-
ces

R�k;V;U;V ;U� 	 �R��k;V;U�R
���k;V ;U�: (6)

The Lipatov vertex R��k;V;U� 	 limk2!0k
2A��k;U;V� is

an amplitude of the emission of a gluon with momentum k
-2



SCATTERING OF SHOCK WAVES IN QCD PHYSICAL REVIEW D 70, 114030 (2004)
by the two Wilson lines U and V. It depends on the gauge,
but the product of two Lipatov vertices (6) is gauge-
invariant due to the property k�R��k� 	 0. Here A; A
are fields with rapidities �> �1 and B; B with rapidities
�< �2. The Wilson lines V and U are made from A and B
fields, respectively:

V�x?� 	 �1n1 
 x?;�1n1 
 x?�;

U 	 �1n2 
 x?;�1n2 
 x?�;
(7)

where n1 and n2 are the unit vectors corresponding to
rapidities �1 and �2 while �x; y� is a shorthand notation
for the straightline ordered gauge linkconnecting points x
and y:

�x; y� � Peig
R

1

0
du�x�y��A��ux
�1�u�y�: (8)

It may seem that the result (5) depends on the artificial
‘‘rapidity divides’’ �1 and �2. This dependence should be
canceled by the gluon ladder on the top of the Lipatov
vertices which is outside the semiclassical approximation.
The common belief is that the all the evolution can be
attributed to either upper or lower sector: to calculate
ng�k?; ��, we choose �1 and �2 such that both )s��1 �

��; )s��� �2� � 1 so the part of the evolution between
�1 and �2 can be neglected and we can use the semiclas-
sical approximation for the functional integral (5) over the
region of rapidity �1 >�>�2 (see, e.g., the review [3]).
Eventually, after solving the classical Yang-Mills equa-
tions for this functional integral, we can put �1 	 � in V
and �2 	 � in U. The independent evolution in the upper
(or lower) sectors leads to the parton saturation so the
shock waves U and V have a form of color glass conden-
sate [13].

To find the Lipatov vertices one needs to solve the
classical YM equation with the sources proportional to
shock waves U and V. As we mentioned, these equations
have not been solved yet and there are two approaches
discussed in the literature: numerical simulations and ex-
pansion in the strength of one of the shock waves. In this
paper I develop the second approach in a ‘‘symmetric’’
way as an expansion in commutators �U;V�, and calculate
the second term of the expansion (the first one can be
restored from the literature).

III. RAPIDITY FACTORIZATION AND
SCATTERING OF THE SHOCK WAVES

A. Rapidity factorization

In this section we define the scattering of the shock
waves using the rapidity factorization developed in
[14,21]. Consider a functional integral for the cross section
(1) and take some ‘‘rapidity divide’’ �1 such that
�A > �1 >�B.

Throughout the paper, we use Sudakov variables

k 	 )p1 
 *p2 
 k?; (9)
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and the notations

x� 	 p�1 x� 	

���
s
2

r
x�; x� 	

1���
2

p �x0 � x3�;

x� 	 p�2 x� 	

���
s
2

r
x
; x
 	

1���
2

p �x0 
 x3�:

(10)

Here p1 and p2 are the lightlike vectors close to pA and pB:

pA 	 p1 

p2
A
s p2, pB 	 p2 


p2
B
s p1.

Let us integrate first over the fields with the rapidity �>
�1. From the viewpont of such particles, the gluons with
�< �1 shrink to a shock wave so the result of the inte-
gration is presented by Feynman diagrams in the shock-
wave background. In the covariant gauge, the shock wave
has the only nonvanishing component A� which is concen-
trated near x� 	 0. A typical Green function G�x; y� at
x�; y� < 0 in the background-Feynman gauge has the
form [22]

hA�x�A�y�i	
Z
dz�

�
2

s
z�

��
x
�������� �1

p2� i�

��������z
�



�
2)g��UzUz


4i
s
�@��UzUz�p2�

��$���
4p2�p2�

)s2
@2
?�UU�z

	



�
z
�������� 1

p2
 i�

��������y
�
; (11)

where Uz 	 �1p1 
 z?;�1p1 
 z?� is made form the
left fields A while Uz 	 �1p1 
 z?;�1p1 
 z?� is
made from A’s.

Similarly to the case of the usual functional integral for
the amplitude, in order to write down factorization we need
to rewrite the shock wave in the temporal gauge A0 	 0. In
such gauge the shock-wave background has the form

Ai 	 Ui���x��; A� 	 A� 	 0;

Ai 	 Ui���x��; A� 	 A� 	 0;
(12)

where

U i � U
i
g
@iU

y; Ui � U
i
g
@iU

y; (13)

are the pure-gauge fields (filling the half space x� < 0).
Note that the choice (12) is different from the choice Ai 	
Ui��x�� adopted in [14,22]. The reason is the following:
when we calculate the amplitude, it is natural to use the
redundant gauge rotation to get rid of the field at t 	 �1
(although the choice t 	 1 is equally possible). On the
contrary, for a double functional integral of the form (1),
we have two independent integrations at t 	 �1 and it is
impossible to eliminate both of them. We can however
gauge away fields at t 	 1 because of the boundary con-
dition A 	 Ajt	1. [Strictly speaking, we cannot gauge
away all the fields; what we can do is to forbid a pure-
-3
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gauge fields t 	 1 which is enough for our purposes since
it puts forward the choice (12) over the choice Ui��x��].

The Green functions in the background (12) differ from
those of (11) by a simple gauge rotation. Their explicit
form is presented in the Appendix A.
114030
The generating functional for the Green functions in the
Eq. (12) background is obtained by the generalization of
the generating functional of [22] to the case of a double
functional integral:
Z
DADAJ �pA�J��pA�e

�iS�A�
i
R
d2z?�1;F �i;1�azU

ai
z eiS�A��i

R
d2z?�1;F�i;1�azUai

z ; (14)

where the Wilson-line operator

�1;F �i;1�a � 2tr ta
Z 1

�1
du�1p2; up2�zF �i�up2 
 z?��up2;�1p2�z; (15)

is made from the ‘‘left’’ fields A� and the operator

�1; F�i;1�a � 2tr ta
Z 1

�1
du�1p2; up2�zF�i�up2 
 z?��up2;�1p2�z

from the ‘‘right’’ fields A�.
It is easy to see that the functional integral (14) generates Green functions in the Eq. (12) background. Indeed, let us

choose the gauge A� 	 A� 	 0 for simplicity. In this gauge �1;F �i;1�a 	 Ai�1p2 
 z?� �Ai��1p2 
 z?� and
�1; F�i;1�a 	 Ai�1p2 
 z?� � Ai��1p2 
 z?�. so the functional integral (14) takes the formZ

DADAJ �pA�J��pA�  e�iS�A�
i
R
d2z?�Ai�1p2
z?��Ai��1p2
z?��aUai

 eiS�A��i
R
d2z?�Ai�1p2
z?��Ai��1p2
z?��aUai

:

(16)

Let us now shift the fields Ai ! Ai 
 Ai and Ai ! Ai 

Ai, where Ai 	 Ui���x�� and Ai 	 Ui���x��. The only

nonzero components of the classical field strength in our case are F�i 	 �Ui��
2
s x�� so we get (for the right sector)

S�A
 A� 	
2

s

Z
d4zDi Fi�A

� �
2

s

Z
d2z?dz�A

i F�ij
x�	1
x�	�1 


1

2
A�� D2g�� � 2i F ���A

� 
 . . . : (17)

In the A� 	 0 gauge the first term in the right-hand side of Eq. (17) vanishes while the second term cancels with the
corresponding contribution �� �Ai�1p2 
 z?� � Ai��1p2 
 z?��

aUai coming from the source in Eq. (14). Similar
cancellation occurs in the left-sector so we get

Z
DADAJ �pA�J��pA�  e�iS�A�
i

R
d2z?�Ai�1p2
z?��Ai��1p2
z?��aUai

z  eiS�A��i
R
d2z?�Ai�1p2
z?��Ai��1p2
z?��aUai

z

	
Z
DADAJ �pA�J��pA�  e�

i
2

R
d2zA�� D2g���2i F���A

�

e
i
2

R
d2zA�� D2g���2i F���A�; (18)

which gives the Green functions in the Eq. (12) background.
To complete the factorization formula one needs to integrate over the remaining fields with rapidities �< �1:Z

DADAJ �pA�J �pB�e�iS�A�eiS�A�J��pA�J��pB� 	
Z
DADAJ �pA�J��pA�

Z
DBDBJ �pB�J��pB�

 e�iS�A��iS�B�
i
R
d2z?�1;F�i;1�az �1;G�i;1�az e

�
1 e

�
1

 eiS�A�
iS�B��i
R
d2z?�1;F�i;1�az �1;G�i;1�az e

�
1 e

�
1 : (19)

As discussed in [14,21–23], the slope of Wilson lines is determined by the ‘‘rapidity divide’’ vector e�1
	 p1 
 e��1p2.

(From the viewpoint of A fields, the slope e1 can be replaced by p2 with power accuracy so we recover the generating
functional (14) with Ui 	 �1; G�i;1�, Ui 	 �1;G�i;1�).

Applying the factorization formula (19) 2 times one gets
-4
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� lim
k2!0

Z
DADAJ �pA�J �pB�  e�iS�A�k2Aa��k�k2Aa���k�e

iS�A�J��pA�J��pB�

�
Z
DADAJ �pA�J��pA�e

�iS�A�
iS�A�
Z
DBDBJ �pB�J��pB�e

�iS�B�
iS�B�


Z
DCDC lim

k2!0
k2Ca��k�k2Ca���k� exp��iS�C� 
 iS�C� 


Z
d2z?fe

�
1 e

�
1��1;A�i;1�az �1;C�i;1�az

 �1; A�i;1�az �1; C�i;1�az � 
 e�2 e
�
2��1;C�i;1�az �1;B�i;1�az � �1; C�i;1�az �1; B�i;1�az �g�; (20)
where the slope is e1 	 p1 
 e��1p2 for the �. . .� Wilson
lines and e2 	 p1 
 e��2p2 for the �. . .� ones.

The functional integral over the central range of rapidity
�1 >�>�2 is determined by scattering of shock two
shock waves:

�
Z
DCDC lim

k2!0
k2Ca��k�k2Ca���k� exp�iS�C� � iS�C�


Z
d2z?fe

�
1 �V

ai
z �1;C�i;1�az � Vaiz �1; C�i;1�az �


 �Uai
z �1;C�i;1�az �Uai

z �1; C�i;1�az �e
�
2 g�; (21)

where V i 	 e�1 �1;A�i;1�, Vi 	 e�1 �1; A�i;1�, Ui 	

e�2 �1;B�i;1�, and Ui 	 e�2 �1; B�i;1� are the pure-
gauge external fields (to be integrated over later). With a
power accuracy O�m2=s�, we can replace e1 by p1 and e2
by p2:

�
Z
DCDC lim

k2!0
k2Ca��k�k2Ca���k� expfiS�C� � iS�C�


 i
Z
d2z?�V

ai
z �1;C�i;1�az 
 �1;C�i;1�azU

ai
z

� Vaiz �1; C�i;1�az � �1; C�i;1�azUai
z �g: (22)

The saddle point of the functional integral (22) is deter-
mined by the classical equations
114030
�
�Ca�

�
S�C� � i

Z
d2z?

�
Vaiz �1; C�i;1�az


�1; C�i;1�azU
ai
z

�	
	 0;

�
�Ca

�

�
S�C� � i

Z
d2z?

�
V ai

z �1;C�i;1�az


�1;C�i;1�azU
ai
z

�
	 0:

(23)

At present it is not known how to solve this equations (for
the numerical solution see [15]). In the next section we will
develop a ‘‘perturbation theory’’ in powers of the parame-
ter �U;V� � g2�Ui; Vj� � g2�Ui;V j�. Note that the con-
ventional perturbation theory corresponds to the case when
Ui; Vi � 1 while the semiclassical QCD is relevant when
the fields are large (Ui and/or Vi �

1
g ).

B. Expansion in commutators of Wilson lines

The particle production due to scattering of the two
shock waves in QCD (see Fig. 3) is determined by the
functional integral (22) (hereafter we switch back to the
usual notation A� for the integration variable and F�� for
the field strength)
R�k;U;V;U;V � 	 � lim
k2!0

Z
DADAk2Aa��k�  k2Aa���k� expf�iS�A� 
 i

Z
d2z?�V

ai
z �1;F �i;1�az


 �1;F �i;1�azU
ai
z � 
 iS�A� � i

Z
d2z?�Vaiz �1; F�i;1�az 
 �1; F�i;1�azUai

z �g: (24)
k

*

x x

x
*

tt

x

FIG. 3 (color online). Particle production due to the scattering
of the two shock waves.
Taken separately, the source Ui creates a shock wave
Ui���x�� and Vi creates Vi���x�� [to the left of the cut,
Ui generates the classical field Ui���x�� and V i gener-
ates V i���x��]. In QED, the two sourcesUi and Vi do not
interact so the sum of the two shock waves

A�0�
i 	 Ui���x�� 
V i���x��; A�0�

� 	 A�0�
� 	 0;

A�0�
i 	 Ui���x�� 
 Vi���x��; A�0�

� 	 A�0�
� 	 0 (25)

is a classical solution to the set of Eqs. (23). In QCD, the
interaction between these two sources is described by the
commutator g�Ui; Vk� (the coupling constant g corre-
sponds to the three-gluon vertex). It is natural to take the
-5
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trial configuration in the form of a sum of the two shock
waves and expand the ‘‘deviation’’ of the full QCD solu-
tion from the QED-type ansatz (25) in powers of commu-
tators �U;V�. To carry this out, one shifts A! A
 A�0�

i ,
A ! A
 A�0�

i in the functional integral (24) and ob-
tains

R�k;U;V;U;V � 	 �
Z
DADA lim

k2!0
k2Aa��k�

 k2Aa���k�

 exp
�
i
Z
d4z

�
�

1

2
A� D��A

�



1

2
A� D��A� �T �A� 
 T�A�

�	
;

(26)

Here D�� 	 D2� A�g�� � 2i F�� (D�� 	 D2� A�g�� �
2i F ��) is the inverse propagator in the background-
Feynman gauge1 and T��T �� is the linear term for the
trial configuration (25)

T� 	�DkF�k���z�����z��
 ig�Ui;V
i��p1���z����z��

�p2���z����z���;

T � 	�DkF �k���z�����z��
 ig�Ui;V
i�

 �p1���z����z���p2���z����z���;

(27)

where Fik 	 �ig�Ui; Vk� � i$ k (and F ik 	
�ig�Ui;V k� � i$ k).

Expanding in powers of T�T � in the functional integral
(26) one gets the set of Feynman diagrams in the external
fields (25) with the sources (27). The parameter of the
expansion is g2�Ui; Vj� [ � �U;V�, see Eq. (13)].
IV. CLASSICAL FIELDS AND LIPATOV VERTEX IN
THE FIRST ORDER IN �U;V�

The general formulas for the classical solution in the first
order in �U;V� (�U;V �) have the form

A �1�a
� �x� 	 i

Z
d4z�hAa��x�Ab��z�i A; AT

b
��z�

� hAa��x�A
b��z�i A; AT b

��z��;

A�1�a
� �x� 	 i

Z
d4z�hAa

��x�A
b��z�i A; AT

b
��z�

� hAa
��x�Ab��z�i A; AT b

��z��:

(28)

The Green functions in the background of the Eq. (25) field
can be approximated by cluster expansion
1Strictly speaking, one should add to the operator D�� the
second variational derivative of the source (A9) which contrib-
utes to the @2

?U
yU term in the Green function, see Ref. [24].

114030
hA��x�A
��z�i A; A 	 hA��x�A

��z�iU;U 
 hA��x�A
��z�iV;V

� hA��x�A��z�i0 
O��U;V�; �U;V ��

(29)

(and similarly for other sectors), where hA��x�A
��z�i0 are

the perturbative propagators (2) and the propagators in the
background of one shock wave are given in the
Appendix A 1. As a first step we shall discuss the behavior
of classical fields at the t 	 �1 boundary.

A. Pure gauge fields at t 	 �1

Note that while each of the field Ui and Vi satisfies the
boundary condition Ai�t! �1� 	 pure gauge, their sum
(25) does not. I will demonstrate now that the correction
(28) restores this property so A�0� 
 A�1� is a pure gauge (up
to �U;V�2 terms).

We need to prove that D�
A�1�
� ��$ � cancels Fik 	

�ig��Ui; Vk� � i$ k� as t! �1 . First, note that the
contribution from terms �Ui; Vi� in T (and �Ui;V

i� in
T ) vanishes at t! �1 since these sources are located
at t � 0. Also, it is easy to see that the Green functions
hA��x�A

��y�i interpolating between sectors also vanish at
this limit (see the explicit expressions in the Appendix A).
The only nonzero contribution to A�1�

� at t 	 �1 has the
form

A�1�
i �x� 	 g

Z
d)d*d2z?

e�i)x��i*x�

�)� i���*� i��
�UxU

y
z


 VxV
y
z � 1�ab

�
x?

�������� pk

)*s� p2
? 
 i�

��������0; z?

�
 ��Ui; Vk�z � i$ k�

	 g
�
x?

��������U pk

p2
?

Uy 
 V
pk

p2
?

Vy

�
pk

p2
?

���������Ui; Vk� � i$ k
�
: (30)

Throughout the paper, we use the notations

�x?j . . . jf� �
Z
d2z?�x?j . . . jz?�f�z?�;

�xj . . . j0; f� �
Z
d2z?�xj . . . j0; z?�f�z?�:

(31)

From Eq. (30) we obtain

DiA
a�1�
j � i$ j 	 g

�
x?

��������Upip
k

p2
?

Uy 
 V
pipk

p2
?

Vy

�
pipk

p2
?

��������ab
Fbjk

�
� i$ j: (32)

Because Fjk � �ik in two dimensions pipk Fjk � i$ j 	
p2
?

Fij and therefore
-6
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DiA
�1�
j � i$ j 	 g Fij; (33)

so the sum A0 
 A1 is a pure gauge (up to �U;V�2 terms).
It can be demonstrated that if we use background-

Feynman gauge for calculations in further orders in
�U;V� parameter we obtain a pure gauge field Wi 	 Ui 

Vi 
 gEi, where �i@i 
 g�Ui 
 Vi; �Ei 	 0. Similarly, in
the left-sector the pure-gauge field at t 	 �1 will be
W i 	 Ui 
V i 
 gEi with E satisfying the equation
�i@i 
 g�Ui 
V i; �E

i 	 0.
In the lowest order in �U;V� we get (cf. Ref. [14,22])

Ei 	
�
x?

��������U pk

p2
?

Uy 
 V
pk

p2
?

Vy

�
pk

p2
?

���������Ui; Vk� � i$ k
�
;

Ei 	

�
x?

��������U pk

p2
?

Uy 
V
pk

p2
?

V y

�
pk

p2
?

���������Ui;V k� � i$ k
�
:

(34)

The explicit expression for the correction Ei in the second
order in �U;V� is obtained in the Appendix B.

B. Gluon fields in the first order

To find the amplitude of particle production due to the
scattering of the two shock waves we should study the

SCATTERING OF SHOCK WAVES IN QCD
(a) (b)

(d) (e)

FIG. 4 (color online). Classical field in the first orde
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behavior of gluon fields at t! 1. The general expression
for the gluon fields up to the first order in �U;V� is given in
Eq. (28) and the corresponding diagrams are shown in
Fig. 4.

Let us find the gauge field A�1�
� in the x�; x� > 0 sector of

the space (we use the background-Feynman gauge). This
field is a sum two terms: due to �Ui; Vi� and due to
�Ui; Vk� � i$ k. The �Ui; Vi� term comes from the dia-
grams shown in Fig. 4(c) and 4(d). Since the Green func-
tions in the shock-wave background in the forward cone
x�; x�; y�; y� � 0 are just the bare propagators (2), we
obtain

A��x� 	 g
�
x
���������)
 i���1

p2 
 i�

��������0; �Ui; Vi�
�


 ig


x
�����������)�)

2���p2�

��������0; �Ui;V
i�

�
; (35)
where the first term in the right-hand side of this equation
comes from the diagram in Fig. 4(c) and the second one
from Fig. 4(d). The factor 1=) in the denominators comes
from the integration over the final point z� from 0 to 1 in
the expression for the �Ui; V

i� part of the linear term (27).
The term ��Ui; Vk� is obtained by integration of the

Green functions A1–A3 in the diagrams in Fig. 4(d) and
4(e) over the final points z�; z? < 0:
A��x� 	 g
s2

2

Z d)d*d*0

8�3

e�i)x��i*x�

�)� i���*0 � i��

��
x?

�������� 1

)*s� p2
? 
 i�

@iU
pk

)*0s� p2
? 
 i�

Uy

��������ab
0; �Ui; Vk� � i$ k

�




�
x?j���)�2���)*s� p2

?�@iU
pk

)*0s� p2
? � i�

Uy

��������ab
0; �Ui;V k� � i$ k

�

	 g
�
x
���������)� i���1

p2 
 i�

��������0; �Ui; Ei�
�

 g

�
x
�����������)�)

2���p2�

��������0; �Ui; Ei�
�
; (36)

where we have used the notations (34) for brevity. The field A�1�
� is the sum of Eqs. (35) and (36). The field A�1�

� is obtained
from A�1�

� by the replacements x� $ x� and U $ V.
Finally, let us calculate the field A�1�

i coming from the diagrams in Figs. 4(b) and 4(e). Using the cluster expansion (29)
for the Green functions 1

P2 Pk and the set of the propagators from Appendix A 1, we obtain
(f)

(c)

r. The shaded area represents the linear term (27).
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Ai�x� 	 g
Z d)d*

4�2 e�i)x��i*x�
��
x?

�������� 1

)*s� p2
? 
 i�



is
Z d*0

2��*0 � i��
U

pk

)*0s� p2
? 
 i�

Uy


 is
Z d)0

2��)0 � i��
V

pk

)0*s� p2
? 
 i�

Vy �
1

�)� i���*� i��
pk

)*s� p2
? 
 i�

�
ab
��������0; �Ui; Vk� � i$ k

�


 i�x?j���)�2���)*s� p2
?�



is
Z d*0

2��*0 � i��
U

pk

)*0s� p2
? 
 i�

Uy


 is
Z d)0

2��)0 � i��
V

pk

)0*s� p2
? 
 i�

V y �
1

�)� i���*� i��
pk

)*s� p2
? 
 i�

�
ab
��������0; �Ui;V k� � i$ k

�	

	 2g
�
x
�������� 1

p2 
 i�

��������0; Ei

�

 2ig�xj���p0���p

2�j0; Ei�: (37)

The left-sector fields A� are obtained by trivial replacements.
Let us present the final set of gauge fields (at x�; x� > 0)

A�1�
� 	 g

�
x
���������)
 i���1

p2 
 i�

��������0; �Ui;V
i�

�

 2g

�
x
���������)� i���1

p2 
 i�

��������0; �Ui;E
i�

�

 ig

�
x
�����������)�)

2���p2�

��������0; �Ui;V i
 2Ei�
�

A�1�
� 	�g

�
x
���������*
 i���1

p2 
 i�

��������0; �Ui;Vi�
�

 2g

�
x
���������*� i���1

p2 
 i�

��������0; �Vi;Ei�
�

 ig

�
x
�����������*�*

2���p2�

��������0; �V i;Ui
 2Ei�
�

A�1�
i 	 2g

�
x
�������� 1

p2 
 i�

��������0;Ei

�

 2ig�xj���p0�2���p2�j0;Ei�

A�1�
� 	 g

�
x
���������)
 i���1

p2 � i�

��������0; �Ui;V
i�

�

 2g

�
x
���������)� i���1

p2 � i�

��������0; �Ui;E
i�

�
� ig

�
x
����������)�)

2���p2�

��������0; �Ui;Vi
 2Ei�
�

A�1�
� 	�g

�
x
���������*
 i���1

p2 � i�

��������0; �Ui;V
i�

�

 2g

�
x
���������*� i���1

p2 � i�

��������0; �V i;E
i�

�
� ig

�
x
����������*�*

2���p2�

��������0; �Vi;Ui
 2Ei�
�

A�1�
i 	 2g

�
x
�������� 1

p2 � i�

��������0;Ei

�
� 2ig�xj��p0�2���p

2�j0;Ei�; (38)

where E and E are given by expressions (34). It is easy to see that the fields (38) satisfy the boundary conditions A�x� 

x� ! 1� 	 A�x� 
 x� ! 1�. The fields A� for the right sector only (with Ui 	 V i 	 0) coincide with Refs. [14,22]

C. Particle production and Lipatov vertex

The particle production is determined by the behavior of the fields at t 	 1 described by the Lipatov vertex

R��k?; �� 	 lim
k2!0

k2A��k� 	 2gE� 

2p2�

)s
g�Ui; Vi 
 2Ei� 


2p1�

*s
g�Vi; Ui 
 2Ei�;

R��k?; �� 	 lim
k2!0

k2A��k� 	 2gE� 

2p2�

)s
g�Ui;V

i 
 2Ei� 

2p1�

*s
g�V i;Ui 
 2Ei�:

(39)

The vertex (39) is transverse: k�R��k� 	 kiE
i 
 �Ui 
 Vi; E

i� 	 0 due to our choice ofEi such that�i@i 
 �Ui 
 Vi; �E
i 	

0. Similarly, k�R��k� 	 0.
It is worth noting that in the case of two weak sources Ui � �k� k0�i and Vi � k0i the vertex (39) reduces to

R��k; k
0� �

2

s
�k0; k� k0�?

�
p1

*
�
p2

)

�
�

 2k0?� � 2k?�

�k; k0�?
k2?

	 �2k0 � k�?� 


�
)�

2�k� k0�2?
*s

�
p1�

�

�
*�

2k02?
)s

�
p2� 


�k� k0�2? � k02?
k2?

k�;

where the first three terms form a standard Feynman-gauge Lipatov vertex and the last term is a longitudinal contribution
which drops from the particle production amplitudes.

We get

R�k;U;V;U;V � 	 �Ra
��k�R

�a��k�ei
R
d2z?��Uai

z V
ai
z 
Uai

z Vaiz �: (40)

It is convenient to rewrite this product in terms of the transverse part of the Lipatov vertex in the axial p�2 A� 	 0 gauge:
114030-8
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R ax
� �k�	

�
�4��

2p�p
4
2

)s

�
R4�k��L�?�k?��p2�L�k?�:

(41)

It is easy to see that R�R
� 	 LiL

i so the Eq. (40) reduces
to

R�k;U;V;U;V �	La
i �k?�L

a
i ��k?�e

i
R
d2z?��Uai

z V
ai
z 
Uai

z Vaiz �:

(42)

The explicit form of the axial-gauge Lipatov vertex is

Li�U;V� 	 2gEi � 2ig
@i
@2
?

�Uj 
 2Ej; V
j�;

Li�U;V � 	 2gEi � 2ig
@i
@2
?

�Uj 
 2Ej;V
j�:

(43)

The apparent asymmertry between U and V in the expres-
sion (43) for Li does not affect the results - alternatively,
114030
one can use the expressions (43) with U $ V, U $ V ,
and the product (42) will remain the same.

The longitudial part L can be easily obtained from (39)
but we will not need it. Note that the dependence on � is
governed by the slope of Wilson lines.

V. kT FACTORIZATION FOR THE DEEP
INELASTIC SCATTERING FROM THE NUCLEUS

In this section we will reproduce the standard
k?-factorized result [25–28] for the number of produced
particles (4) for the case when the JA is small (e.g., virtual
photon) and JB corresponds to nucleus.

A weak source JA produces only one gluon and JA
absorbs this gluon so the upper part of the diagram is
attached to the lower by two-gluon exchange only. For
the two-gluon exchange, factorization formula (19) sim-
plifies to
Z

DADAJ �pA�J �pB�e�iS�A�
iS�A�ei
R
d2z?V

a
i �z?�U

ai�z?��i
R
d2z?Vai �z?�U

ai�z?�

	
1

N2
c�1

Z
DADAJ �pA�J �pB�e�iS�A�
iS�A� 

1

g4

Z
d2z?d2z0?trf�Vy

z Vz0 �1��V y
z0V z�1�g


@2

@z2?

@2

@z02?
trf�UzU

y
z0 �1��Uz0U

y
z �1�g; (44)
where Vz 	 �1n1 
 z?;�1n1 
 z?� cf. Equation (19).
This formula is easily seen from Fig. 5. Indeed, in the
leading order in perturbation theory the left-hand side of
Eq. (44) is represented by the diagram in Fig. 5(a) where
the quark line in the external field Ui; Ui is given by

h7�x�  �y�i 	
Z
dz��z��Ux

�
x
��������1

p6

��������z
�
p2U

y
z Uz



�
z
��������1

p6

��������y
�
Uy
y (45)

at x�; y� < 0 [cf. Equation (11)]. On the other hand, the
right-hand side of Eq. (44) is represented by the diagram in
Fig. 5(b). It is easy to see that the factor @2

? cancels the
propagator 1

p2 	
1
p2
?

so the diagram in Fig. 5(b) reduces to
5(a).

If we neglect the evolution, the slope of the Wilson lines
U can be replaced by p1 and the slope of V ’s by p2 (see the
discussion in Sec. II B). The number of particles produced
in a collision of weak and strong shock waves (24) is given
by the square of the Lipatov vertex (39). Technically it is
convenient to introduce a source 9i�x?� for the Lipatov
vertex Li [and :�x?� for L] so
R�k;U;V;U;V � 	
Z
d2x?d

2y?e
i�k;x�y�?

�2

�9aix�:
ia
y
 ei

R
d2z?�Ua

iV
ai
:ia�z?�La

i �z?��U
ai
z Vaiz �9ia�z?�Lai �z?��:

For a weak source Vi � @iV we get gEi ’ ��U�gik 

pipk
p2
?

�Uy�abVbk so Li�x?� ’ 2�x?j�
pi
p2
?

; U�pkUyjabVbk � and the above
equation can be rewritten as

R�k;U;V;U;V � 	
Z
d2x?d2y?ei�k;x�y�?

�2

�9ai �x?��:
ia�y?�

ei
R
d2z?� ~U

a
i �z?�V

ai�z?�� ~Ua
i �z?�V

ai�z?��; (46)
=

(a)

U U

(b)
VV

U
z

z’
U

FIG. 5 (color online). Factorization for the two-gluon ex-
change.
where

~U 	 e
2
@i
@2
?

9
Ue

�2 @i

@2
?

�Uy9U�
; ~U 	 e

2
@i
@2
?

:
Ue

�2 @i

@2
?

�Uy:U�

(47)

(This expansion is similar to the functional-integral repre-
sentation of the nonlinear evolution as ei;1Ue�i;2 devel-
oped in Ref. [29]). We need here only the first two terms of
the expansion in powers of 9 and :.

Using the simplified factorization formula (44) we get
-9
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R�k;U;V;U;V �	
1

g4

Z
d2x?d2y?d2z?d2z0?

ei�k;x�y�?

N2
c�1

�2

�9aix�:
ia
y
 trf ~Uy

z
~Uz

~Uy
z0

~Uz0 g@2
?z@

2
?z0 trf�V

y
z Vz0 �1��V y

z0V z�1�g

	
4g�2

�N2
c�1�

Z
d2x?d

2y?d
2z?d

2z0? trf��yj
pi
p2
?

jz��Uz0U
y
z ta�Uz0U

y
y taUyU

y
z0 ���yj

pi
p2
?

jz0�

�taUz0U
y
z �Uz0U

y
y taUyU

y
z ����xj

pi

p2
?

jz��taUzU
y
z0 �UzU

y
x taUxU

y
z0 �

��xj
pi

p2
?

jz0��UzU
y
z0t
a�UzU

y
x taUxU

y
z0 ��ge

i�k;x�y�?@2
?z@

2
?z0 trf�V

y
z Vz0 �1��V y

z0V z�1�g: (48)

Without evolution, U � U and V � V so the square of the Lipatov vertex (48) reduces to

R�k?;U;V� 	
2g�2

N2
c � 1

Z
d2z?d

2z0?trf@2
?Vz@

2
?V

y
z0 
 z$ z0g  Tr

�
�
k?

��������


pi
p2
?

; U
���������z?

�

�


�
k?

��������


pi
p2
?

; U
���������z0?

��



�
z?

��������


pi

p2
?

; Uy

���������k?
�
�

�
z0?

��������


pi

p2
?

; Uy

���������k?
��	

: (49)
It is easy to see that in the momentum representation we get

R�k?;U;V� 	
2g�2

N2
c � 1

Z
d2k?1 d

2k?2 K
emi
BFKL�k1; k2; k�

 trfV�k?1 �V
y��k?2 �g

 trfU�k? � k?1 �U
y�k?2 � k?�g; (50)

where

Kemi
BFKL�k1;k2;k�	�2

�
ki

k2?
k21?�ki1

��
ki
k2?
k22?�k2i

�

	
k21?�k�k2�

2
?

k2?


k22?�k�k1�

2
?

k2?
��k1�k2�2?

(51)
is the gluon emission part of the BFKL kernel [30].

Substituting the result of the integration over central-
rapidity gluons (49) into the factorization formula (5) we
obtain the standard kT-factorization formula

ng�k?;�� 	
2g�2

N2
c � 1

Z
d2k1d

2k2K
emi
BFKL�k1; k2; k?�

 hAjTrfV�k1�V
y��k2�jAi

 hBjTrfU�k? � k1�Uy�k? � k2�jBi; (52)
114030
where the rapidity dependence comes from the slope of the
Wilson lines in the right-hand side. This formula was
obtained in the approximation when we neglect the evolu-
tion of the shock waves, but it can be proved without this
assumption [25–28]. It should be emphasized that Eq. (52)
is valid only in the first order in the �U;V� expansion (that
is, for the pA scattering). As we shall see below, it is not
valid beyond the first order.
VI. EFFECTIVE ACTION

In this section we get the first-order effective action for
the double functional integral (1) and check that the
Lipatov vertex (43) serves as a ‘‘splitting function’’ for
the nonlinear evolution equation [24,31]

@
@�

TrfUxU
y
y g 	 �

)s
4�

Z
d2z?

�x� y�2?
�x� z�2?�y� z�2?

 �TrfUxU
y
z gTrfUzU

y
y g � NcTrfUxU

y
y g�:

(53)

The effective action is defined by the functional integral
(24) without A��p�A���p� insertion:
eiSeff �U;V;U;V � 	
Z
DADA exp

�
�iS�A� 
 i

Z
d2z

�
V ai

z �1;F �i;1�az 
 �1;F �i;1�azU
ai
z

�

 iS�A�

� i
Z
d2z

�
Vaiz �1; F�i;1�az 
 �1; F�i;1�azU

ai
z

�	
: (54)

Performing the shift A! A
 A�0�
i , A ! A
 A�0�

i we get (cf. Equation (26)

eiSeff �U;V;U;V � 	
Z
DADA exp

�
i
Z
d4z

�
1

2
A� D��A

� �
1

2
A� D��A� �T �A� 
 T�A�

�	
: (55)

The effective action in the first nontrivial order is given by the integration of linear terms with the appropriate Green
functions
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iSeff�U;V;U;V � 	
1

2

Z
d4zd4z0f�Ta��z�

 hA�a�z�A�b�z0�iTb��z
0� 
 2Ta��z�

 hA�a�z�A�b�z0�iT b
��z0� �T a

��z�

 hA�a�z�A�b�z0�iT b
��z0�g:

The first term here can be taken from [14,22]:

iS�1�eff�U;V� 	 )s��
Z
d2z

�
Eai E

ai 
 �Ui; V
i 
 2Ei�


1

@2
?

�Vi; Ui 
 2Ei�
�
; (56)

where �� 	 �1 � �2 is the difference of rapidities of the
slopes ofU and V Wilson lines. The third term S�1�eff�U;V �
in Eq. (55) is obtained from Eq. (56) by the usual replace-
ments U $ U, V $ V .

SCATTERING OF SHOCK WAVES IN QCD
114030
Let us calculate the second term beginning with the
contribution ��Ui; V

i� . . . �Ui;V i�. The Green function
in the x�; x� > 0 sector is simply the perturbative propa-
gator (2) so one obtains

�g2
Z d)d*

2�2)*
�0;�Ui;V i�

aj2���)*s�p2
?�

��)�j0;�Ui;Vi�
a�

	�g2

�
�Ui;Vi�a

�������� 1

p2
?

�Ui;Vi�a
�Z 1

0

d)
�)

: (57)
The integral (57) is formally divegrent at both small and
large ). This divergence occurs because we have put the
slopes of Wilson lines e1 and e2 [see Eq. (21)] to be p1 and
p2. If we keep the slopes off the light cone, we get (see
Ref. [22]):
�g2
Z d)d*

2�2

1

�)
 e��1*��*
 e�2)�
�0; �Ui;V i�

aj2���)*s� p2
?���)�j0; �U

i; Vi�
a�

	 �2)s��
�
�Ui;V i�

aj
1

p2
?

�Ui; Vi�
a
�
: (58)

The contributions of �Ui; Vk� � i$ k terms can be calculated in a similar manner by integration of these terms with
appropriate Green functions in Eq. (56). After some algebra, one obtains

�2)s��

(Z
d2z?EiEi�z?� 


�
�Ui �V i; Ei�a

�������� 1

p2
?

���������Ui; Vi�a
�



�
�Ui;V i�

a

�������� 1

p2
?

���������Ui � Vi; Ei�a
�)
: (59)
The sum of Eqs. (58) and (59) give the second term in the
effective action

iS�2�eff�U;V;U;V � 	 �)s��
Z
d2z

�
2EaiEai


 �Ui;V
i 
 2Ei�

1

@2
?

�Vi;U
i 
 2Ei�


 �V i;Ui 
 Ei�
1

@2
?

�Ui; Vi 
 Ei�
�
:

(60)

It is easy to see that the total effective action
Seff�U;V;U;V � 	 S�1�eff�U;V� 
 S�2�eff�U;V;U;V � 

S�3�eff�U;V � can be represented as

iSeff�U;V;U;V � 	 �iUiV
i 
 iUiVi 


)s
4

��


Z
d2z�Lai L

ai � 2LaiLai 
LaiLa
i �;

(61)

where Li and Li are given by Eq. (43). Note that the
effective action is a square of Lipatov vertex (39): R�R� 	
LiLi, R�R� 	 LiLi, R�R

� 	 LiL
i.

For the future applications we will rewrite the effective
action (61) as a Gaussian integration over the auxiliary
field 9 coupled to Lipatov vertex (43):

eiSeff �U;V;U;V � 	ei
R
d2z?��UiV

i
UiVi�


Z
D9exp

(Z
d2z?



�
9ai 9

ai

)s��


�Lai �Lai�9ai

�)
: (62)

A single field 9i for both Li and Li reflects the fact that
gauge fields A� and A� coincide at t 	 1.

Let us prove now that the effective action (62) agrees
with the nonlinear evolution equation. To find the evolution
of the dipole UxU

y
y , we need to consider the effective

action for the weak source V. As we mentioned above, at
small Vi � @iV one has gEi ’ ��U�gik 


pipk
p2
?

�Uy�abVbk so

Li�x?� ’ 2�x?j�
pi
p2
?

; U�pkUyjabVbk � and Eq. (62) can be

rewritten as
-11
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Z
DADA exp

�
�iS�A� 
 iS�A� � i

Z
d2z?V

ai
z �1;F �i;1�az � i

Z
d2z?�1;F �i;1�azU

ai
z 


i
Z
d2z?Vaiz �1; F�i;1�az 
 i

Z
d2z?�1; F�i;1�azUai

z

	
	

Z
D9 exp

�Z
d2z?

�
�
9ai 9

ai

)s��
� iV i

~Ui 
 iVi ~U
i
�	
; (63)
where

~U	e
2
@i
@2
?

9
Ue

�2 @i

@2
?

�Uy9U�
; ~U	e

2
@i
@2
?

9
Ue

�2 @i

@2
?

�Uy9U�

:

(64)

Again, we need here only the terms up to the second order
in 9.2

To find the evolution of the dipole UxU
y
y we should

expand Eq. (63) in powers of Vi�V i� and use the formula

�UxU
y
y ��2 	 Peig

R
y

x
dzi�1;F�i;1�z . We get

�UxU
y
yUyU

y
x ��1 	

Z
D9e�

1
)s��

R
d2z?9ai 9

ai ~Ux
~Uy
y
~Uy

~Uy
y :

(65)

Performing the Gaussian integration over 9 one obtains
after some algebra

tr�UxU
y
yUyU

y
x ��1 	 trfUxU

y
yUyU

y
x g�2 


)s��

4�2


Z
d2z?

�x� y�2?
�x� z�2?�z� y�2?

 �trfUy
xUxU

y
zUzgtrfU

y
z UzU

y
yUyg

� NctrfU
y
xUxU

y
yUyg�

�2 ; (66)

which is the nonlinear evolution equation for the double
functional integral for the cross section [22,32].
VII. CLASSICAL FIELDS AND LIPATOV VERTEX
IN THE SECOND-ORDER

If we neglect the evolution, the classical sources Ui and
Ui coincide (and similarly Vi 	 V i) so the corresponding
fields in the right and left sectors coincide and are deter-
mined by the integrals of the retarded Green functions with
the T 	 T sources.

A. First-order gluon field in the x
�
k
A� 	 0 gauge

In the first order in �U;V�, the classical fields (38) (in the
background gauge) reduce to
2Strictly speaking, to get the effective action (62) we need only
the first term of the expansion of the exponents in Eq. (64) in
powers of 9. However, in order to reproduce the full nonlinear
Eq. (53) we need the gluon-reggeization terms coming from the
second order in expansion in 9. Formally the gluon-reggeization
exceeds the accuracy of the semiclassical calculation of the
effective action; however, when Vi is not large the gluon-
reggeization is of the same order as (62).
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A�1�
i 	Wi�x?����x�����x��
Ui�x?����x����x��


Vi�x?���x�����x��
2g
�
x
�������� 1

p2
 i�p0

��������0;Ei

�
;

A�1�
� 	g

�
x
���������)
 i���1

p2
 i�p0

��������0;�Ui;Vi�
�


g
�
x
���������)� i���1

p2
 i�p0

��������0;�Ui;E
i�

�
;

A�1�
� 	�g

�
x
���������*
 i���1

p2
 i�p0

��������0;�Ui;V
i�

�


g
�
x
���������*� i���1

p2
 i�p0

��������0;�Vi;E
i�

�
;

A�1�
i 	2g

�
x
�������� 1

p2
 i�p0

��������0;Ei

�
:

(67)

We see that the fields outside the forward cone are piece-
wise pure gauge:

A�1�
i 	 Wi�x?����x�����x�� 
Ui�x?����x����x��


 Vi�x?���x�����x��;

A�1�
� 	 �ig��x�����x��

�
x?

�������� 1

p2
?

���������Ui; Ei�
�
;

A�1�
� 	 �ig��x�����x��

�
x?

�������� 1

p2
?

���������Vi; Ei�
�
;

(68)

while the field in the forward sector x�; x� > 0 is deter-
mined by the Lipatov vertex (39).

A �1�
� 	

�
x
�������� 1

p2 
 i�p0

��������R�
�
: (69)

Summarizing, the classical field (67) can be represented as

A �1�
� 	 ~A?� 


�
x
�������� 1

p2 
 i�p0

��������R�1�
�

�
; (70)

where

~A i 	 ���x����x��Ui�x?� 
 ��x�����x��Vi�x?�


 ���x�����x��Wi�x?� (71)

is a trivial part corresponding to a piecewise pure-gauge
field and

R�1�
� 	2gE?

�
g
2p2�

s

�
1

)
 i�
�Ui;Vi�


2

)� i�
�Ui;Ei�

�


g
2p1�

s

�
1

*
 i�
�Vi;Ui�


2

*
 i�
�Vi;Ei�

�
(72)

describes the nontrivial part related to the gluon emission.
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The axial-gauge Lipatov vertex is given by first line in
Eq. (43):

Li�U;V� 	 2gEi � 2ig
@i
@2
?

�Uj 
 2Ej; V
j�: (73)

Following Ref. [5], it is instructive to represent the fields
(67) in the gauge xk�A� 	 x�A� 
 x�A� 	 0. In this gauge
one obtains at x�; x� > 0

Ak
��xk; x?� 	 �

Z 1

1
udux=

k
F=��uxk; x?�;

A?
� �xk; x?� 	 �

Z 1

1
dux=

k
F=��uxk; x?�;

(74)
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where xk �
2
s x�p1 


2
s x�p2 (so that x 	 xk 
 x?). The

limit of integration 1 in the above expressions was chosen
to satisfy our boundary condition (no pure-gauge fields at
t 	 13.

The fields outside the forward cone (68) trivially satisfy
the xk�A� 	 0 gauge condition. The fields in the forward
cone x�; x� > 0 are obtained by integrating F��’s corre-
sponding to the fields in the bF-gauge (67). From the
Eq. (74) we get
A��x� 	 i
gs

8�x�

Z
d2z?���x

2
k

 �x� z�2?��2�Ui; V

i� 
 �Ui � Vi; E
i��;

AMV
� �x� 	 �i

gs
8�x�

Z
d2z?���x

2
k

 �x� z�2?��2�Ui; V

i� 
 �Ui � Vi; E
i��;

Ai�x� 	 �
g
�

Z
d2z?��x2k � �x� z�2?�Ei 
 g

Z
d2z?���x2k 
 �x� z�2?�

�
x?

��������pip2
?

��������z?
�
�Uj 
 Vj; Ej�:

(75)
Similarly to Ref. [5], the fields x�A
�1�
� , x�A

�1�
� , and A�1�

i are
boost invariant. However, as we mentioned in the footnote,
the fields (75) differ from those in Ref. [5] due to a different
boundary condition.

B. gluon field and Lipatov vertex in the
second order in �U;V�

In the next order the classical field A�2� is given by
diagrams in Fig. 7 calculated in the Appendix C. The result
of the calculation is given by the sum of the piecewise
pure-gauge field and the field of the gluon emission de-
scribed by the second-order Lipatov vertex represented by
two terms coming from the diagrams in Fig. 6 and Fig. 7
Ai	���x�����x��Wi�x?�
���x����x��Ui�x?�


��x�����x��Vi�x?�

�
x
�������� 1

p2
 i�p0

��������R�1�
� 
R�2�

�

�

O��U;V�3�: (76)

The first part of the Lipatov vertex coming from the dia-
grams in Fig. 6 and Fig. 7(a) has the form

R�1�
� �k� 	 R�1�

?��k?� 

2p1�

s

�
R�1�

1
�k?�
*
 i�



R�1�

1��k?�
*� i�

�



2p2�

s

�
R�1�

2
�k?�
)
 i�



R�1�

2��k?�
)� i�

�
; (77)

where the notations are
�R�1�
?��

a 	 2gE?� 
 4ig


�@?�U�

1

p2
?

Uy

�
ab
�Vi; E

i�b 
 4ig


�@?�V�

1

p2
?

Vy

�
ab
�Ui; E

i�b;

�R�1�
1
�

a 	 �g�Ui; Vi�a � 2g


�@2

?V�
1

p2
?

Vy

�
ab
�Ui; Ei�b; �R�1�

1��
a 	 2gp2

?

�
U

1

p2
?

Uy

�
ab
�Vi; Ei�b;

�R�1�
2
�

a 	 g�Ui; V
i�a � 2g



�@2

?U�
1

p2
?

Uy

�
ab
�Vi; E

i�b; �R�1�
2��

a 	 2gp2
?

�
V

1

p2
?

Vy

�
ab
�Ui; E

i�b;

(78)

The second-order term coming from the diagrams in Fig. 7(c)–7(f) is given by

R�2�a
� �k� 	 fabc

Z d2k0?
32�2

�
�

1����
G

p �K�g�� � 2�k4g�� � k�g�4�� ~R
b4�k?� ~R

c
4�k? � k0?� 
 8i

�
p2

)s
�
p1

*s

�
�


�k0; k� k0�? 
 k2

2 � i
����
G

p
k02?�k� k0�2?

Rb1�k
0
?�R

c
2�k? � k0?� 
 32i

k4��� � k��4�
k02?

�
p14

*s
Rb1��k

0
?� 


p24

)s
Rb2��k

0
?�

�

 gE?c
� �k? � k0?�

	
; (79)

3The requirement of absence of pure-gauge fields at t 	 1
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FIG. 7 (color online). Classical field in the second order in
�U;V�.

(a) (c)(b)

FIG. 6 (color online). Retarded classical field in the first order.
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where we use the notations

K � �k� 2k0�? 

kk

)*s
�k; k� 2k0�?; (80)

G 	k02?�k�k
0�2?�

�
k2
 i�k0

2

�k0;k�k0�?�

�
2
; (81)

~R4�k0?� 	 2E?4�k0?� 

�k; k0�? 
 k2

2 � i
����
G

p
k02?





2p1

*s
R1�k0?� 


2p2

)s
R2�k0?�

�
4
; (82)

and R�1�
1 � R�1�

1
 
 R�1�
1�, R�1�

2 � R�1�
2
 
 R�1�

2�. With

�U;V�2 accuracy R�1�
1 and R�1�

2 in Eq. (79) can be
simplified to
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�R�1�
1 �a	�g�Ui;V

i�a
2gp2
?

�
U

1

p2
?

Uy

�
ab
�Vi;E

i�b;

�R�1�
2 �a	g�Ui;Vi�a
2gp2

?

�
V

1

p2
?

Vy

�
ab
�Ui;Ei�b;

(83)

The second-order Lipatov vertex is the the sum of Eqs. (77)
and (79) at the mass shell k2 	 0. At the first sight, it looks
like the expression (79) is divergent at k0? k k? since G 	
k2?k

02�1� cos2��. This collinear divergence is however
purely longitudinal and therefore can be eliminated by
proper gauge transformation. To see that, let us write the
Lipatov vertex in the axial lightlike gauge p�2 A� 	 0 (41).
As we mentioned above, only the first transverse term in
the right-hand side of Eq. (41) is essential since p2 term
does not contribute to the square of the Lipatov vertex. For
this transverse part we obtain

Li�k?� 	 L�1�
i �k?� 
 L�2�

i �k?�; (84)
L�1�
i �k?� 	 R�1�

i �k?� 

2ki
k2?

�R�1�
1
�k?� 
 R�1�

1��k?��;

L�2�a
i �k?� 	 fabc

Z d2k0?
4�2

1���������������������������������
k2?k

02
? � �k; k0�2?

q �
1

8

�
gij 


kikj
k2?

�
�2k0 � k�jL�1�b

l �k0?�L
�1�cl�k? � k0?� 


1

2

�
kj �

�k; k0�?
k02?

k0j

�

 L�1�bj�k0?�L
�1�c
i �k? � k0?�

	

 ifabc

Z d2k0?
4�2k02?



2�Uj 
 Vj; E

j�b�k0?�E
c
i �k? � k0?� 
 2

kikj

k2?
�Ul � 2El; V

l�b

 �k0?�E
c
j�k? � k0?� �

�
k0i

�k� k0�2?


ki
k2?

�
�R�1�

1 �b�k0?��R
�1�
2 �c�k? � k0?�

�

� 4
ki
k2?

�
k?

���������Ui; Vi�ab
1

p2
?

���������Uj 
 Vj; Ej�b
�
: (85)
Note that since the square bracket in the right-hand side of
the above equation vanishes at k0? k k?, the collinear di-
vergence is absent. The second-order Lipatov vertex (84) is
the main technical result of this paper.
VIII. CONCLUSIONS AND OUTLOOK

Let us summarize the progress towards the solution of
the main problem— the particles/fields produced in the
collision of two shock waves. The Yang-Mills equations
with sources U and V describe the two shock waves
corresponding to the colliding hadrons. The expansion of
the classical fields in commutators �U;V� has the advan-
tage of being symmetric in contrast to the usual expansion
in powers of the strength of one of the sources. We have
calculated the second nontrivial term of the expansion.
This term is relevant for the description of dA scattering,
similar to the first term ��U;V� describing the pA
collisions.

Note that while the first-order field given by Eq. (70) [or
Eq. (75)] is real, the second-order field has an imaginary
part given by the second term in braces in Eq. (79). The real
-14
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FIG. 8 (color online). Classical field for U � U, V � V.
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part of the second-order term is given by Eq. (77) plus the
first expression in braces in Eq. (79) represented by the
product of first-order Lipatov vertices. I think that this
univeral structure will survive to the higher orders of the
commutator expansion. Unfortunately, the explicit form of
the imaginary part of the field (second term in the right-
hand side of the Eq. (85)) does not suggest any idea how
this expression may look in higher orders in �U;V� expan-
sion. Technically, the relative simplicity of the real part is a
consequence of its relation to the leading log approxima-
tion (LLA). If we consider the general case U � U, V �

V, the second-order classical field would contain �� just
like the effective action (61). Indeed, if we calculate the
field A� in the right sector, the typical expression

Z du
�u
 i��Z�u�

�U;V��k0��U;V��k� k0�

[see Eq. (C16)] would be replaced byZ 1

0

du
�u
 i��Z�u�

�U;V��k0��U;V��k� k0�



Z 0

�1

du
�u
 i��Z�u�

�U;V ��k0��U;V��k� k0�



Z 1

1

du
�u
 i��Z�u�

�U;V��k0��U;V ��k� k0�; (86)

where the three terms correspond to the contributions of
diagram in Fig. 8(a)–8(c) respectively. The integration
over u is regularized by the width of the shock wave
(cf.[22,33]) and only the real part is survives— the imagi-
nary part exceeds the accuracy of the LLA.

If we consider the amplitude rather than the cross sec-
tion, we take only one set of fields (to the right of the cut)
and impose the usual Feynman boundary conditions. In
this case the classical field A� is the sum of logarithms of
the type �)s lns�

n�U;V�n (cf. [14]). The imaginary part
calculated above may be related to an old idea due to
Lipatov that one can unitarize the BFKL pomeron if one
finds the proper i� or �i� to each lns in the LLA approxi-
mation. Indeed, both these imaginary parts come from one
source—causality: the i�’s in the amplitude come from
the dispersion relations based on causality, while i�’s in
the classical field (79) come from retarded propagators.
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APPENDIX A: GREEN FUNCTIONS IN A
SHOCK-WAVE BACKGROUND

1. Feynman rules for cross sections in a shock-wave
background

Let us present the set of the bF-gauge propagators in the
background of a shock-wave field Ui���x��; Ui���x��
[32].

At x�; y� > 0 all propagators are bare, see Eq. (2).
At x� > 0; y� < 0 we get
hA��x�A��y�i	


x
�������� 1

p2
 i�
O���U�

1

p2
 i�

��������y
�
Uy
y ;

hA��x�A��y�i	


x
�������� 1

p2� i�
O���U�

1

p2� i�

��������y
�
Uy

y ;

hA��x�A��y�i	�i


x
��������2���p2���p0�O���U�

1

p2
 i�

��������y
�
Uy
y ;

hA��x�A��y�i	 i


x
��������2���p2����p0�O���U�

1

p2� i�

��������y
�
Uy

y ;

(A1)
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while at x�; y� < 0 the propagators are

hA��x�A��y�i 	 Ux

�
x
�������� �i

p2 
 i�

��������y
�
Uy
y ;

hA��x�A��y�i 	 Ux

�
x
�������� i

p2 � i�

��������y
�
Uy

y ;

hA��x�A��y�i 	 �Ux



x
�������� 1

p2 � i�
O���U

yU�


1

p2 
 i�

��������y
�
Uy
y ;

(A2)

where

O���U� 	
Z
dz�

�
2

s
z�

���������z
��

2)g��U

4i
s
�p2�@�U


�$ �� �
4p2�p2�

)s2
@2
?U

	
�zj: (A3)
2. Retarded propagators

First, let us present the retarded propagator in the back-
ground of the shock wave ��x��"i�x?� 
 ���x��#i�x?�
where "i 	 "i@i"y and #i 	 #i@i#y are the pure-
gauge fields. This propagator can be obtained from
Eqs. (A1) and (A2) by setting U 	 U 	 "y#, taking
appropriate combinations, and rotating by the matrix "

hA�x�A�y�iret 	 ��x����y��"x

�
x
�������� 1

p2 
 i�p0

��������y
�
"y
y


 ���x�����y��#x

�
x
�������� 1

p2 
 i�p0

��������y
�
#y
y


 ��x�����y��"x



x
�������� 1

p2 
 i�p0

O��

 �"y#�
1

p2 
 i�p0

��������y
�
#y
y : (A4)
x+

−x

Wi
Ui

Vi

FIG. 9 (color online). Piece-wise pure-gauge field ~Ai.
a. Cluster expansion

The background field in our calculations is the trial
configuration Ai 	 ���x��Ui 
 ���x��Vi. Since we are
expanding in powers of commutators �U;V�, the adequate
procedure for the propagator in the Ai background is the
cluster expansion (29):�

1

P2 
 i�p0

�
U
V

	

�
1

P2 
 i�p0

�
U



�
1

P2 
 i�p0

�
V

�
1

p2 
 i�p0


 . . . ; (A5)

where dots stand for the second and higher terms of cluster
expansion. Most often, the first term (A5) is sufficient. In
several cases when we need the second term, the following
trick helps.

Let us add and subtract Ei to our trial configuration so it
takes the form Ai 	 ~Ai � Ei���x�����x�� where ~Ai is the
114030
piecewise pure-gauge field given by Eq. (71), see Fig. 9.
With �U;V�2 accuracy, the propagator in the Ai back-
ground takes the form
1

P2 
 i�p0
	

1
~P2 
 i�p0



1

P2 
 i�p0

fpi; Eig


1

P2 
 i�p0

; (A6)
where we can replace �P2 
 i�p0�
�1 in the second term in

right-hand side by the first term in cluster expansion (A5).
The remaining first term in the right-hand side of Eq. (A6)
is calculated below.

The retarded propagator hA��x�A��y�iret in the back-
ground of the piecewise pure-gauge configuration shown
in Fig. 9 can be obtained by ‘‘squaring’’ of the propagator
in the background of one shock wave (A4). In the region
x� > 0; x� < 0 and y�; y� < 0 it is given by Eq. (A4) with
appropriate substitutions:
hA��x�A��y�iret 	 Vx



x
�������� 1

p2 
 i�p0

O���VyW�


1

p2 
 i�p0

��������y
�
Wy
y ; (A7)
where
O���U� 	
Z
dz�

�
2

s
z�

�
jz�

�
2)g��V

yW 

4i
s

 �p2�@��VyW� 
�$ �� �
4p2�p2�

)s2

 �@2
?�V

yW� 
 i�Ui; Vi�W�g�zj: (A8)
Here the last term ��Ui; Vi� [additional in comparison to
Eq. (A3)] is due to the source contribution to the second
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variational derivative of the action

�2S

�Aa��x��Ab��y�
	



D2g�� 
 2iF�� �

4p2�p2�

s2



�
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�
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�
�@i 
 i�Vi�U

i



1

*
�
�
2

s
x�

�
�@i 
 i�Ui�Vi

	�
ab

 ��x� y�: (A9)

The propagator in the region x� < 0; x� > 0 and
y�; y� < 0 is similar to Eq. (A7)

hA��x�A��y�iret 	 Ux



x
�������� 1

p2 
 i�p0

~O���U
yW�


1

p2 
 i�p0

��������y
�
Wy
y ; (A10)

where

~O���U
yW� 	

Z
dz�

�
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s
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�
2*g��U

yW 

4i
s

 �p2�@��U
yW� 
�$ �� �

4p2�p2�

*s2

 �@2
?�U

yW� 
 i�Vi; Ui�W�g�zj: (A11)

Finally, the propagator at x�; x� > 0 and y�; y� < 0 has
the form

hA��x�A��y�iret	 i
�
x
�������� 1

p2
 i�p0

�
O�4�U�

1

p2
 i�p0

 ~O4
��UyW�
 i ~O�4�V�

1

p2
 i�p0

O4
��VyW�

	
1

p2
 i�p0

��������y
�
Wy
y : (A12)
APPENDIX B: PURE-GAUGE FIELD E IN THE
SECOND-ORDER

From F���Ui 
 Vi 
 Ei� 	 0 we get

�@i � i�Wi; �Ej � i$ j 	 i��Ui; Vj� � i$ j� �Ei; Ej��:

(B1)

If we choose the �@i � i�Wi; �Ei 	 0 condition the above
equation reduces to the recursion formula

Eai 	 �g
�
x?

��������W pk

p2
?

Wy

��������ab
�Ui; Vk�b

� i$ k� g�Ei; Ek�
b
�
: (B2)

It is convenient to introduce complex coordinates in the 2-
dimensional plane: z 	 z1 
 iz2; z 	 z1 � iz2 and Q 	
Q1 
 iQ2; Q 	 Q1 � iQ2 for arbitrary vector Q. In these
notations the recursion formula (B2) simplifies to
114030
Ea 	 �g
�
x?

��������W i
p
Wy

��������ab
K12 � E12

�
; (B3)

where K12 � �U1; V2� � �U2; V1� and E12 � �E1; E2�. In
the leading order W 1

pW
y can be approximated by cluster

expansion: W 1
pW

y ’ �1P��1� where � 1
P�1�
� � U 1

pU
y 


V 1
p V

y � 1
p and therefore we get Eq. (34). In the second

order we need one more term of the cluster expansion:

W
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p
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1
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�
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�
1
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�
;

so the second-order expression for E is

Ea�2� 	 �ig
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��������
�
1

P

�
�1�

��������ab
�E1

1; E
1
2�
b
�

� ig
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��������
�
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1
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1

p

�
p
�
V

1
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Vy �

1

p

�


U $ V
��������ab

Kb
12

�
: (B4)

Similarly, for the E component we get

Ea�2� 	 ig


x?

��������
�

1
P�1�

���������ab
�E1

1; E
1
2�
b
�


 ig


x?

��������
�
U

1

p
Uy �

1

p

�
p
�
V

1

p
Vy �

1

p

�


U $ V
��������ab

Kb
12

�
: (B5)

The corresponding formula for the pure-gauge field E in
the left-sector is obtained by the trivial replacements U !
U and V ! V .
APPENDIX C: CLASSICAL FIELDS IN THE
SECOND-ORDER

1. The fields at x�; x� < 0

Since all the Green functions in our expansion are
retarded, the only second-order contribution order the clas-
sical field A�2� is comes from the DkFik part of the linear
term shown in Fig. 10. At x�; x� < 0 the gluons in Fig. 10
propagate in the external field Ui 
 Vi. It is convenient to
add (and subtract later) the external field Ei. The contri-
bution of the diagram in Fig. 10 gives then
-17



FIG. 10 (color online). Classical field in the backwards cone.

(a)

= 0

(b)

FIG. 11 (color online). Classical field at x� > 0; x� < 0.
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i
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��������ab
�Lik; E

k�b
�
:

Since each of the two legs in the diagram in Fig. 7(a)
represents Ei with our accuracy, the Fig. 7(a) contribution
can be reduced to�

x?

��������W 1

p2
?

Wy

��������ab
i�DiEk � i$ k; Ek�b

�

�

�
x?

��������W pk

p2
?

Wy

��������ab
�Ei; Ek�

b
�
:

Combining these two terms we get (at x�; x�; 0)

Aai �x� 	 �

�
x?

��������W pk

p2
?

Wy

��������ab
Lbik

�




�
x?

��������W pk

p2
?

Wy

��������ab
�Ei; Ek�b

�
	 Eai �x?�; (C1)

up to the terms ��U;V�3, see Eq. (B4). Also, it is easy to
see that the longitudinal components A� and A� vanish at
x�; x� < 0.

2. The fields at x� > 0; x� < 0

First, we note that there are two types of diagrams shown
in Fig. 11: with the three-gluon vertex in the z� > 0; z� < 0
quadrant and in the z�; z� < 0 quadrant. The contribution
of the first type [see Fig. 11(a)] vanishes because the only
nonzero component of the first-order field A�1�

� in this case
is A�1�

� such that D�
A�1�
� 	 0, see the Eq. (68).

Next we calculate the diagram in Fig. 11(b). As in the
previous case, the gluon legs are attached only to theDkFik
114030
part of the linear term (27). The gluons in Fig. 11(b)
propagate in the external field Ui���x�� 
 Vi���x��.
The propagator in this background is given by the cluster
expansion (A5) or, if one needs the �U;V�2 accuracy, by
Eq. (A6) and formulas (A7)–(A12).

Let us start with the transverse component of the field Ai.
If the three-gluon vertex is integrated over only the z�; z� <
0 quadrant one can demonstrate that similarly to the
x�; x� < 0 case, the contribution of the diagram in
Fig. 11(b) reduces to

Aai �x� 	
Z
d4z���z�����z��

�
x
�������� 1

~P2
~Pk
��������z

�
ab
�Lbik�z?�

� �Ei; Ek�b�z?��; (C2)

where Pi 	 i@i 
 g ~Ai, ~Ai 	 Ui���x�� 
 Vi���x�� 

Ei���x�����x��. Using the Green function in the two-
shock-wave background (A10), we see that the right-hand
side of Eq. (C2) vanish so A�1�

i 	 A�2�
i 	 0.

It is easy to see that A� 	 0 at x� > 0; x� < 0 so we are
left with A� only. Again, since the only contribution from
the three-gluon vertex comes from the z�; z� < 0 cone, it
can be demonstrated that

Aa��x� 	 �2i
Z
d4z���z�����z��



�
x
�������� 1

~P2
F�i

1
~P2

~Pk
��������z

�
ab
�Lik�z?�

� �Ei; Ek��z?��b: (C3)

Substituting the explicit form of the Green function (A1)
and (A2) one obtains

�2i
Z
d4z���z�����z��

�
x
��������V 1

p2 V
y F�iW

pk

p2W
y

��������z
�
ab
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p2 V
y 1
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0; �Ui; Ei�b

�
�
�
2

s
x�

�
:

Thus, the only nonvanishing component of the classical
filed in the x� � 0; x� < 0 region is

Aa��x� 	 �2i�
�
2

s
x�

��
x?

��������V 1

p2
?

Vy
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�Ui; Ei�b

�
: (C4)
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Similarly, at x� < 0; x� � 0

Aa��x� 	 �2i�
�
2

s
x�

��
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��������U 1

p2
?

Uy
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�Vi; Ei�b

�
: (C5)
3. The Fields in the Forward Cone x�; x� > 0

a. The three-gluon vertex in the backward cone

At first, we consider the contribution from Fig. 7(a)
where the three-gluon vertex integrated over z�; z� < 0
quadrant. This contribution is similar to the one we con-
sidered in the previous section so we can start with the
expressions (C2) and (C3). Using the Green functions in
the ~A background given by Eq. (A6) and formulas (A7)–
(A12), one obtains
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��������ab
0; �Ui; E

i�b
�
: (C6)
b. First part of the lipatov vertex

The sum of all the contributions calculated up to now
(which includes everything but the terms with three-gluon
vertex outside the backward cone) can be rewitten in the
form of Eq. (76)

A1st
i 	���x�����x��Wi�x?�
���x����x��Ui�x?�


��x�����x��Vi�x?�




�
x
�������� 1

p2
 i�p0

��������R�1�
� 
�R�2�

�

�
;

where R�1�
� �p� is given by Eq. (77)
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?��p?� 
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s
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1
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*
 i�
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2
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 i�
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2��p?�
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�
; (C7)

and the last term

�R�2�
� �k� 	

4p1�

s�*
 i��

�
�Ui; Vi�V

1

p2
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VyUj
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ab
Ejb

�
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�Ui; Vi�U

1
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?

UyVj

�
ab
Ejb (C8)
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is actually a part of the second-order contribution coming
from the �Ui; V

i� term in the Green function [see Eq. (A8)].
The remaining part of the Lipatov vertex (coming from

the diagram Fig. 2(b) with z outside the backward cone)
will have the same structure (77) with different R?; R1, and
R2. Note that our first part of Lipatov vertex (77) satisfies
the condition

p�R�1�
� �p� 	 piR�1�

i 
 R�1�
1
 
 R�1�

1� 
 R�1�
2
 
 R�1�

2� 	 0

(C9)

[recall that �i@i 
 g�Ui 
 Vi; �Ei 	 0�].

c. The three-gluon vertex outside the backward cone

Here we must calculate the diagram in Fig. 2(b) with
three-gluon vertex outside the backward cone x�; x� < 0.
With our accuracy, each of the two legs in Fig. 2(b) can be
represented by the field

A 1
� 	

�
x
�������� 1

p2 
 i�p0

��������R�1�
�

�
; (C10)

so we get

A�2�
� 	 i

Z
d4z�xj�P2g�) 
 2iF�) 
 i�p0�

�1jz�ab

 � A�1�*;D)
A�1�
* � 2D*

A�1�
) �b�z�; (C11)

where we have used the gauge condition D� A�1�
� 	 0 .

It is easy to see that the term �G�) in the above
equation can be dropped. Indeed, since the point z lies
outside the backward cone, the only nonvanishing contri-
bution proportional to, say, F�i can come from the quad-
rant z� � 0; z� � 0 where the only surviving component of
the field is A�1�

� 	 �i��x���x?j
1
p2
?

j�Vi; E
i��. [see Eq. (68)].

In addition, D�
A�1�
� 	 0 and therefore all possible terms

�G�) in the right-hand side of Eq. (C11) vanish and
therefore

A�2�
� �x� 	 i

Z
d4z

�
x
�������� 1

P2 
 i�p0

��������z
�
ab

 � A�1��; D�
A�1�
� � 2D�

Q�1�
� �b�z�: (C12)

For the same reason, the Green function 1
P2
i�p0

in the right-

hand side of Eq. (C12) can be replaced by bare propagator
1

p2
i�p0
. Indeed, these expressions differ only outside the

forward cone which means either z� < 0, z� � 0 or z� � 0,
z� < 0 quadrants (recall that we exclude the backward
cone z�, z� < 0). Consider the contribution to the right-
hand side (C12) coming from z� < 0; z� � 0 quadrant. The
only nonzero component of the field A� in this quadrant is
A� (see above) and since D�A� 	 0 the right-hand side of
Eq. (C12) vanishes.
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We get

A�2�
� �x� 	 i

Z
d4z
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x
�������� 1
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 i�p0

��������z
�
ab

 � A�1��; @� A�1�
� � 2@� A�1�

� �b�z�: (C13)

The Lipatov vertex is represented by the two terms in
square brackets. We will calculate them in turn.
114030
The contribution to Lipatov vertex from the first term is

R�2�
��1��k� 	 i

Z
d4zeikz� A�1��; @� A�1�

� ��z�: (C14)

First, let us calculate the part of this integral coming from
the product of two R�1�

? terms. We have
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: (C15)

Note that k�R�2�
��11��k� 	 0.

The second part of R�2�
��1� is easily calculated using formulas from Appendix D with the result
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where Z�u� 	 �k0 � ku�2? � �k2 
 i�k0� uu and R�1�
1 � R�1�

1
 
 R�1�
1�, R�1�

2 � R�1�
2
 
 R�1�

2�.
The remaining third part of the second-order term is
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Combining Eqs. (C15)–(C17) we get the total second-order term
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(C18)

The integral over u yields Eq. (79).

APPENDIX D: GLUON EMISSION BY TWO WILSON LINES IN THE SHOCK-WAVE BACKGROUND

1. Classical field induced by a single Wilson line in the shock-wave background

In the applications it is sometimes convenient to have the result for the classical field and the Lipatov vertex in a
‘‘nonsymmetric’’ form explicitly expanded over the strength of the weak source �Trf=�x?�U�x?�g. This expansion
corresponds to the diagrams with a gluon production by Wilson lines k p1 in the background of the shock wave. In this case
-20
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FIG. 12 (color online). Emission of a gluon by a Wilson line in
the shock-wave background.
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it more convenient to present the results for the covariant
gauge shock field A� � ��x��. [The rotation to the pure-
gauge field Ui���x�� is trivial].

In the first order the classical field is given by the two
diagrams in Fig. 12. As in Sec. VII we consider here the
case of the causal classical field corresponding to U 	 U
which is the case when we neglect the evolution. Note it is
not difficult to restore the result for U � U similarly to
Eq. (38)—roughly speaking, one should replace �p2 

i�p0�

�1U by �p2 
 i���1U
 2�i��p2���p0�U.
The expression for the classical field produced by one

Wilson-line source can be read from the (retarded) propa-
gator in a shock-wave background (A4). At x� > 0 one gets
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(D1)

The emission of gluon by the c.c. Wilson line Vy 	
��1p1;1p1�z differs from Eq. (D1) by sign and the
replacement tbU $ Uytb:
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The (transverse) Lipatov vertices in the lightlike gauge
are obtained from Eq. (41):
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ab
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(D3)

Note that the fields in this section are presented in the bF-
gauge in the background of one shock wave U which
differs from the bF-gauge for the background field Ui 

Vi used in the bulk of the paper. However, the final result
(D3) for the Lipatov vertex Li corresponds to the p�2 A� 	

0 gauge and therefore agrees with Eq. (73). Indeed, in
Sec. VI it was shown that at small Vi Eq. (73) reduces to

L�1�
i �k� 	 2

�
k
��������


pi
p2
?

; U
�
pkUy

��������ab
0; Vbk

�
; (D4)

which agrees with Eq. (D3) if one uses the formula
VxV

y
y 	 P expig

R
y
x dx

iVi for V�z?� 	 �1p1 

z?;�1p1 
 z?� as in Sec. VI.

2. Classical field and the Lipatov vertex due
to the two Wilson lines

In the second order, the field due to two Wilson lines is
given by the diagrams shown in Fig. 13. These diagrams
are calculated using the retarded Green function (A4)
integrated with the three-gluon vertex. The calculation is
similar to that of Appendix C and the result has the form
(the details of the calculation will be published elsewhere):
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(D5)
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FIG. 13 (color online). Gluon emission by two Wilson lines.
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where K� is given by Eq. (80), and
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The corresponding quantities RVy and rVy are obtained
by substitution Uztb ! tbUy

z :
114030
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and
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Note that Uta and tbUy carry the independent indices of
the Wilson lines �1p1;�1p1� and ��1p1;1p1� We do
not display the color indices of Uztb and tbUy

z - they are
always assumed, like �. . .��Uzt

b�ij�. . .��t
bUy

z �kl . Also, the
formula (D5) will hold true for Wilson lines in the funda-
mental representation provided one replaces �Utb�ij by
�TbU�mn and �tbUy

z �kl by �TbU�ymn.
There is a subtle point in the calculation of diagrams in

Fig. 13 related to the existence of a term with gluon vertex
inside the shock wave. Consider, for example, the first
diagram in Fig. 13. Similarly to Sec. C 3 c, we calculate
the integral over *0 (the p2 component of vector k0) by
taking residues. However, the integral over *0 becomes
divergent if one takes the term �*0 in the three-gluon
vertex. To deal with such divergence, we must retrace
one step back and write down the classical field A�2� in
the form (C11)

A �2�
� 	 i

2p2�

s

Z
dy
�
k
�������� 1

P2 
 i�p0

��������y
�
ab

 � A�1�*;D�
A�1�
* � 2D*

A�1�
� �b�z�: (D10)

By the equations of motion, one can replace D�
A�1�
* in the

right-hand side of this equation

P�
A�1�
* !

p2
?

2)0s
A�1�
* 


2i
)0s

G�*
A�1�
� : (D11)

The first term in the right-hand side of this equation does
not produce any divergency in *0 and can be calculated by
taking residues. The second term is a contribution with the
point y (position of the three-gluon vertex) inside the shock
wave as shown on the last diagram in Fig. 13. Such terms
with the three-gluon vertex inside the shock wave are
calculated using the formulas for the propagator with the
initial (or final) points in the shock wave:
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Summarizing, *0 in the three-gluon vertex must be re-

placed by
k02
?

)0s , *� *0 by
�k�k0�2

?

�)�)0s� , and t the difference
must be taken into account as the term with the gluon
vertex inside the shock wave. It is worth noting that the
contribution of the last diagram in Fig. 13 (with the gluon
114030
vertex inside the shock wave) is essential for the gauge
invariance of the Lipatov vertex (cf. Ref. [34]).

The classical field due to the two Wilson
lines �1p1;�1p1�z�1p1;�1p1�z0 is proportional
to R�2�

VV�k?;z?;z
0
?� obtained from (D5) by change of

sign and the replacement RVy�k� k0�c !
RVy�k? � k0?�

c, rVy�k? � k0?�
c ! rVy�k? � k0?�

c.

Similarly, R�2�
VyVy�k?;z?;z0?� for the classical field due to

��1p1;1p1�z��1p1;1p1�z0 is obtained from (D5) by
change of sign and the replacement RbV�k

0
?� ! Rb

Vy�k0?�,
rbV�k

0
?� ! rb

Vy�k0?�. The Lipatov vertex in the p�2 A� 	 0

gauge takes the form:
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Again, the Lipatov vertex L�2�
VVi�k?; z?; z0?� of the gluon emission by two Wilson lines �1p1;�1p1�z�1p1;�1p1�z0 is

obtained from (D13) by change of sign and replacement of Lc
Vy�k? � k0?�, R

c
Vy�k? � k0?�, and rc

Vy�k? � k0?� by LcV�k? �
k0?� R

c
V�k? � k0?�

c, and rcV�k? � k0?�
c, respectively. The vertex L�2�

VyVyi
�k?;z?;z

0
?� of the gluon emission by two lines

��1p1;1p1�z��1p1;1p1�z0 is obtained from (D13) by change of sign and replacement of LbV�k
0
?�, R
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V�k

0
?� and rbV�k
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by the corresponding vertices Lb
Vy�k0?� R
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Vy�k0?� and rb

Vy�k? � k0?�.
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