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General effective action for high-density quark matter
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We derive a general effective action for quark matter at nonzero temperature and/or nonzero density.
For this purpose, we distinguish irrelevant from relevant quark modes, as well as hard from soft gluon
modes by introducing two separate cutoffs in momentum space, one for quarks, �q, and one for gluons,
�g. We exactly integrate out irrelevant quark modes and hard gluon modes in the functional integral
representation of the QCD partition function. Depending on the specific choice for �q and �g, the
resulting effective action contains well-known effective actions for hot and/or dense quark matter, for
instance the ‘‘Hard Thermal Loop’’ or the ‘‘Hard Dense Loop’’ action, as well as the high-density
effective theory proposed by Hong and others. We then apply our effective action to review the
calculation of the color-superconducting gap parameter to subleading order in weak coupling, where
the strong coupling constant g� 1. In this situation, relevant quark modes are those within a layer of
thickness 2�q around the Fermi surface. The nonperturbative nature of the gap equation invalidates
naive attempts to estimate the importance of the various contributions via power counting on the level
of the effective action. Nevertheless, once the gap equation has been derived within a particular many-
body approximation scheme, the cutoffs �q;�g provide the means to rigorously power count different
contributions to the gap equation. We recover the previous result for the QCD gap parameter for the
choice �q & g�� �g & �, where� is the quark chemical potential.We also point out how to improve
this result beyond subleading order in weak coupling.

DOI: 10.1103/PhysRevD.70.114029 PACS numbers: 12.38.Mh, 24.85.+p
I. INTRODUCTION

Quark matter at small temperature T and large quark
chemical potential � is a color superconductor [1,2].
While this discovery goes back to the late 1970s [3],
wider interest in the phenomenon of color superconduc-
tivity has only recently been generated by the observation
that, within a simple Nambu-Jona-Lasinio (NJL)-type
model [4] for the quark interaction, the color-
superconducting gap parameter assumes values of the
order of 100 MeV [5]. Gap parameters of this magnitude
would have important phenomenological consequences
for the physics of compact stellar objects, and possibly
even for heavy-ion collisions at laboratory energies of the
order of �10 AGeV. It is therefore of paramount impor-
tance to put the estimates from NJL-type models on solid
ground and obtain a more reliable result for the magni-
tude of the gap parameter based on first principles. To this
end, the color-superconducting gap parameter was also
computed in quantum chromodynamics (QCD) [6–10].

At zero temperature, T � 0, in weak coupling, g� 1,
and in the mean-field approximation, the gap equation for
the color-superconducting gap parameter � assumes the
schematic form
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�
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The solution is

� � 2b� exp
�
�
c
g

�
�1�O�g�	: (2)

The first term in Eq. (1) is of leading order since, accord-
ing to Eq. (2), g2ln2��=�� � 1. It originates from the
exchange of almost static, long-range, Landau-damped
magnetic gluons. One factor ln��=�� is the standard BCS
logarithm which arises when integrating over quasipar-
ticle modes from the bottom to the surface of the Fermi
sea,

R
dq=�q � ln��=��, where

�q 

�������������������������������
�q���2 ��2

q
(3)

is the quasiparticle energy in a superconductor. The sec-
ond factor ln��=�� comes from a collinear enhancement
� ln��=�q� in the exchange of almost static magnetic
gluons. The coefficient � determines the constant c in
the exponent in Eq. (2). As was first shown by Son [6],

c 

3�2���
2

p : (4)

The second term in Eq. (1) is of subleading order,
g2 ln��=�� � g� 1. It originates from two sources.
The first is the exchange of electric and nonstatic mag-
netic gluons [7–10]. In this case, the single factor ln��=��
is the standard BCS logarithm. The second source is the
quark wave-function renormalization factor in dense
quark matter [11,12]. Here, the BCS logarithm does not
arise, but the wave-function renormalization contains an
-1  2004 The American Physical Society
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additional ln��=�q� which generates a ln��=��. The co-
efficient � determines the prefactor b of the exponent in
Eq. (2). For a two-flavor color superconductor,

b 
 256�4

�
2

Nfg2

�
5=2

exp
�
�
�2 � 4

8

�
; (5)

where Nf is the number of (massless) quark flavors par-
ticipating in screening the gluon exchange interaction.
The third term in Eq. (1) is of sub-subleading order,
�g2. The coefficient 	 determines the O�g� correction
to the prefactor of the color-superconducting gap parame-
ter in Eq. (2). Since 	 has not yet been determined, the
gap parameter can be reliably computed only in weak
coupling, i.e., when the O�g� corrections to the prefactor
are small.

Because of asymptotic freedom the QCD coupling
constant becomes small only at large momentum transfer.
The typical momentum scale in dense quark matter is

given by the quark Fermi momentum, kF 

�������������������
�2 �m2

p
,

where m is the quark mass. The Fermi momentum is
equal to � up to terms of order O�m2=��. Thus, g� 1
only for asymptotically large �� �QCD, where �QCD is
the QCD scale parameter. The range of � values of
phenomenological importance is, however, & 1 GeV.
Although the quark density n is already quite large at
such values of �, n� 10 times the nuclear matter ground
state density, the coupling constant is still not very small,
g� 1. It is therefore of interest to determine the coeffi-
cient of g in the O�g� corrections to the prefactor in
Eq. (2). If it turns out to be small, one gains more con-
fidence in the extrapolation of the weak-coupling result
(2) to chemical potentials of order �1 GeV.

Let us mention that an extrapolation of the weak-
coupling result (2) for a two-flavor color superconductor,
neglecting sub-subleading terms altogether and assuming
the standard running of g with the chemical potential �,
yields values of � of the order of �10 MeV at chemical
potentials of order �1 GeV, cf. Ref. [2]. This is within 1
order of magnitude of the predictions based on NJL-type
models and thus might lead one to conjecture that the true
value of � will lie somewhere in the range
�10–100 MeV. However, in order to confirm this and
to obtain a more reliable estimate of � at values of � of
relevance in nature, one ultimately has to compute all
terms contributing to sub-subleading order.

Although possible in principle, this task is prohibi-
tively difficult within the standard solution of the QCD
gap equation in weak coupling. So far, in the course of
this solution terms contributing at leading and subleading
order have been identified. However, up to date it re-
mained unclear which terms one would have to keep at
sub-subleading order. Moreover, additional contributions
could in principle arise at any order from diagrams ne-
glected in the mean-field approximation [11,13].
Therefore, it would be ideal to have a computational
114029
scheme which allows one to determine a priori, i.e., at
the outset of the calculation, which terms contribute to
the gap equation at a given order.

As a first step towards this goal, note that there are
several scales in the problem. Besides the chemical po-
tential �, there is the inverse gluon screening length
which is of the order of the gluon mass parameter mg.
At zero temperature and for Nf massless quark flavors,

m2
g � Nf

g2�2

6�2 ; (6)

i.e., mg � g�. Finally, there is the color-superconducting
gap parameter �, cf. Eq. (2). In weak coupling, g� 1,
these three scales are naturally ordered, �� g�� �.
This ordering of scales implies that the modes near the
Fermi surface, which participate in the formation of
Cooper pairs and are therefore of primary relevance in
the gap equation, can be considered to be independent of
the detailed dynamics of the modes deep within the
Fermi sea. This suggests that the most efficient way to
compute properties such as the color-superconducting gap
parameter is via an effective theory for quark modes near
the Fermi surface. Such an effective theory has been
originally proposed by Hong [14,15] and was subse-
quently refined by others [16–19].

At this point it is worth reviewing the standard ap-
proach to derive an effective theory [20,21]. In the most
simple case, one has a single scalar field, �, and a single
momentum scale, �, which separates relevant modes, ’,
from irrelevant modes,  , � � ’�  . The relevant
modes live on spatial scales L� 1=�, while the irrele-
vant modes live on scales l & 1=�� L. In the derivation
of the effective action, one is supposed to integrate out the
microscopic, irrelevant modes. Usually, however, this is
not done explicitly. Instead, one constructs all possible
operators Oi composed of powers of the field ’ and its
derivatives, which are consistent with the symmetries of
the underlying theory, and writes the effective action as

Seff�’	 �
Z
X

X
i

giOi�’�: (7)

The coefficients, or vertices, gi, determine the interac-
tions of the relevant modes ’. A priori, they are unknown
functions of the single scale �, gi � gi���. All informa-
tion about the microscopic scale l is contained in these
vertices. Since the microscopic scale l� L, the operators
Oi are assumed to be local on the scale L.

The effective action (7) contains infinitely many terms.
In order to calculate physical observables within the
effective theory, one has to truncate the expansion after
a finite number of terms. One can determine the order of
magnitude of various terms in the expansion (7) via a
dimensional scaling analysis which allows to classify the
operators as relevant (they become increasingly more
important as the scale L increases), marginal (they do
-2
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not change under scale transformations), and irrelevant
(they become increasingly less important as the scale L
increases). To this end, one determines the naive scaling
dimension of the fields, dim�’� 
 �, from the free term
in the effective action. Then, if the operator Oi consists of
M fields ’ and N derivatives, its scaling dimension is
dim�Oi� 
 �i � M�� N. The operator Oi is then of
order �L��i . For dimensional reasons the constant coef-
ficients gi must then be of order ��d��i , where d denotes
the dimensionality of spacetime. Including the integra-
tion over spacetime, the terms in the expansion (7) are
then of order ��L��d��i . Consequently, relevant opera-
tors must have �i < d, marginal operators �i � d, and
irrelevant operators �i > d. At a given scale L, one has to
take into account only relevant, or relevant and marginal,
or all three types of operators, depending on the desired
accuracy of the calculation. The final result still depends
on � through the coefficients gi���. This dependence is
eliminated by computing a physical observable in the
effective theory and in the underlying microscopic theory,
and matching the result at the scale �.

There are, however, cases where this naive dimensional
scaling analysis fails to identify the correct order of
magnitude, and thus the relevance, of terms contributing
to the effective action. Let us mention three examples. For
the first example, consider effective theories where, in
contrast to the above assumption, the vertices gi are in
fact nonlocal functions. Such theories are, for instance,
given by the ‘‘Hard Thermal Loop’’ (HTL) or ‘‘Hard
Dense Loop’’ (HDL) effective actions [22,23]. In these
effective theories, valid at length scales L� 1=�gT� or
�1=�g��, respectively, there are terms gnAn in the effec-
tive action, which are constructed from a quark or gluon
(or ghost) loop with n external gluon legs; A is the
external gluon field with � � 1. The coefficients gn are
nonlocal and do not only depend on the scale � & T, or
& �, but also on the relevant momentum scale 1=L� gT,
or�g�. Naively, one would expect gn to belong to a local
n-gluon operator and to scale like �4�n. Instead, it scales
like Ln�4 [22]. For arbitrary n, the corresponding term
gnAn in the effective action then scales like L4, indepen-
dent of the number n of external gluon legs.

The second example pertains to the situation when
there is more than one single momentum scale �. As
explained above, for a single scale � and a given length
scale L, the naive dimensional scaling analysis unambig-
uously determines the order of magnitude of the terms in
the expansion (7). Now suppose that there are two scales,
�1 and �2. Then, the vertices gi may no longer be
functions of a single scale, say �1, but could also depend
on the ratio of �2=�1. Two scenarios are possible: (a) two
terms in the expansion (7), say gnOn and gmOm, with the
same scaling behavior may still be of a different order of
magnitude, or (b) the two terms can have a different
scaling behavior, but may still be of the same order of
114029
magnitude. In case (a), all that is required is that the
operators On and Om scale in the same manner, say
L�k, and that gn ��d�k

2 , but gm ��d�k
1 . If �1 � �2,

gm � gn, and thus the two terms are of different order of
magnitude. In case (b), let us assume 1=L� �1 � �2,
with �1=�2 � 1=��1L� � �� 1 and let us take the fields
’ to have naive scaling dimension � � 1. Then, at a given
length scale L, a term gn’

n, with a coefficient gn of order
�d�n

2 , can be of the same order of magnitude as a term
gm’

m, m � n, if the coefficient gm ��d�m
1 ��2=�1�

k

with k � d�m� 2n. Although the scaling behavior
of the two terms is quite different as L increases, they
can be of the same order of magnitude, if the interesting
scale L happens to be ��2=�

2
1. In both cases (a) and (b)

the naive dimensional scaling analysis fails to correctly
sort the operators Oi with respect to their order of
magnitude.

The third example where the naive dimensional scaling
analysis fails concerns quantities which have to be calcu-
lated self-consistently. Such a quantity is, for instance,
the color-superconducting gap parameter which is com-
puted from a Dyson-Schwinger equation within a given
many-body approximation scheme. In this case, the self-
consistent solution scheme leads to large logarithms, like
the BCS logarithm in Eq. (1). These logarithms cannot be
identified a priori on the level of the effective action, but
only emerge in the course of the calculation [8].

In order to avoid these failures of the standard ap-
proach, in this paper we pursue a different venue to
construct an effective theory. We introduce cutoffs in
momentum space for quarks, �q, and gluons, �g. These
cutoffs separate relevant from irrelevant quark modes and
soft from hard gluon modes. We then explicitly integrate
out irrelevant quark and hard gluon modes and derive a
general effective action for hot and/or dense quark-gluon
matter. One advantage of this approach is that we do not
have to guess the form of the possible operators Oi con-
sistent with the symmetries of the underlying theory.
Instead, they are exactly derived from first principles.
Simultaneously, the vertices gi are no longer unknown,
but are completely determined. Moreover, in this way we
construct all possible operators and thus do not run into
the danger of missing a potentially important one.

We shall show that the standard HTL and HDL effec-
tive actions are contained in our general effective action
for a certain choice of the quark and gluon cutoffs �q;�g.
Therefore, our approach naturally generates nonlocal
terms in the effective action, including their correct
scaling behavior which, as mentioned above, does not
follow the rules of the naive dimensional scaling analysis.
We also show that the action of the high-density effective
theory derived by Hong and others [14–19] is a special
case of our general effective action. In this case, relevant
quark modes are located within a layer of width 2�q

around the Fermi surface.
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The two cutoffs, �q and �g, introduced in our ap-
proach are in principle different, �q � �g. The situation
is then as in the second example mentioned above, where
the naive dimensional scaling analysis fails to unambig-
uously estimate the order of magnitude of the various
terms in the effective action. Within the present approach,
this problem does not occur, since all terms, which may
occur in the effective action, are automatically generated
and can be explicitly kept in the further consideration. We
shall show that in order to produce the correct result for
the color-superconducting gap parameter to subleading
order in weak coupling, we have to demand �q & g��

�g & �, so that �q=�g � g� 1. Only in this case, the
dominant contribution to the QCD gap equation arises
from almost static magnetic gluon exchange, while sub-
leading contributions are due to electric and nonstatic
magnetic gluon exchange. The fact that �q � �g is not
entirely unexpected: at asymptotically large densities,
where the scale hierarchy is �� g��mg � �, the
dominant contribution in the QCD gap equation arises
from gluons with momenta of order ��m2

g��
1=3 [6–8],

while typical quark momenta lie in a shell of thickness
�2�� �m2

g��1=3 around the Fermi surface.
The color-superconducting gap parameter is computed

from a Dyson-Schwinger equation for the quark propa-
gator. In general, this equation corresponds to a self-
consistent resummation of all one-particle irreducible
(1PI) diagrams for the quark self-energy. A particularly
convenient way to derive Dyson-Schwinger equations is
via the Cornwall-Jackiw-Tomboulis (CJT) formalism
[24]. In this formalism, one constructs the set of all
two-particle irreducible (2PI) vacuum diagrams from
the vertices of a given tree-level action. The functional
derivative of this set with respect to the full propagator
then defines the 1PI self-energy entering the Dyson-
Schwinger equation. Since it is technically not feasible
to include all possible diagrams, and thus to solve the
Dyson-Schwinger equation exactly, one has to resort to a
many-body approximation scheme, which takes into ac-
count only particular classes of diagrams. The advantage
of the CJT formalism is that such an approximation
scheme is simply defined by a truncation of the set of
2PI diagrams. However, in principle there is no parameter
which controls the accuracy of this truncation procedure.

The standard QCD gap equation in mean-field approxi-
mation studied in Refs. [7–9] follows from this approach
by including just the sunset-type diagram which is con-
structed from two quark-gluon vertices of the QCD tree-
level action (see, for instance, Fig. 18 below). We also
employ the CJT formalism to derive the gap equation for
the color-superconducting gap parameter. However, we
construct all diagrams of sunset topology from the ver-
tices of the general effective action derived in this work.
The resulting gap equation is equivalent to the gap equa-
tion in QCD, and the result for the gap parameter to
114029
subleading order in weak coupling is identical to that in
QCD, provided �q & g�� �g & �. The advantage of
using the effective theory is that the appearance of the
two scales �q and �g considerably facilitates the power
counting of various contributions to the gap equation as
compared to full QCD. We explicitly demonstrate this in
the course of the calculation and suggest that, within this
approach, it should be possible to identify the terms
which contribute beyond subleading order to the gap
equation. Of course, for a complete sub-subleading order
result one cannot restrict oneself to the sunset diagram,
but would have to investigate other 2PI diagrams as well.
This again shows that an a priori estimate of the rele-
vance of different contributions on the level of the effec-
tive action does not appear to be feasible for quantities
which have to be computed self-consistently.

This paper is organized as follows. In Sec. II we derive
the general effective action by explicitly integrating out
irrelevant quark and hard gluon modes. In Sec. III we
show that the well-known HTL/HDL effective action, as
well as the high-density effective theory proposed by
Hong and others, are special cases of this general effec-
tive action for particular choices of the quark and gluon
cutoffs �q and �g, respectively. Section IV contains the
application of the general effective action to the compu-
tation of the color-superconducting gap parameter. In
Sec. V we conclude this work with a summary of the
results and an outlook.

Our units are �h � c � kB � 1. 4-vectors are denoted
by capital letters, K� � �k0;k�, with k being a 3-vector
of modulus jkj 
 k and direction k̂ 
 k=k. For the
summation over Lorentz indices, we use a notation
familiar from Minkowski space, with metric g�' �
diag��;�;�;��, although we exclusively work in com-
pact Euclidean spacetime with volume V=T, where V is
the 3-volume and T the temperature of the system.
Spacetime integrals are denoted as

R1=T
0 d)

R
V d

3x 
R
X . Since spacetime is compact, energy-momentum

space is discretized, with sums �T=V�
P
K 


T
P
n�1=V�

P
k. For a large 3-volume V, the sum over 3-

momenta can be approximated by an integral, �1=V�
P

k ’R
d3k=�2��3. For bosons, the sum over n runs over the

bosonic Matsubara frequencies !b
n � 2n�T, while for

fermions, it runs over the fermionic Matsubara frequen-
cies !f

n � �2n� 1��T. In our Minkowski-like notation
for 4-vectors, x0 
 t 
 �i), k0 
 �i!b=f

n . The four-
dimensional delta function is conveniently defined as
��4��X� 
 ��)���3��x� � �i��x0���3��x�.
II. DERIVING THE EFFECTIVE ACTION

In this section, we derive a general effective action for
hot and/or dense quark matter. We start from the QCD
partition function in the functional integral representa-
tion (Sec. II A). We first integrate out irrelevant fermion
-4
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degrees of freedom (Sec. II B) and then hard gluon de-
grees of freedom (Sec. II C). The final result is Eq. (53) in
Sec. II D. We remark that the same result could have been
obtained by first integrating out hard gluon modes, and
then irrelevant fermion modes, but the intermediate steps
leading to the final result are less transparent.

A. Setting the stage

The partition function for QCD in the absence of
external sources reads

Z �
Z

DA expfSA�A	gZq�A	: (8)

Here the (gauge-fixed) gluon action is

SA�A	 �
Z
X

�
�
1

4
F�'a �X�Fa�'�X�

�
� Sgf�A	 � Sghost�A	;

(9)

where Fa�' � @�Aa' � @'Aa� � gfabcAb�Ac' is the gluon
field strength tensor, Sgf is the gauge-fixing part, and
Sghost the ghost part of the action.

The partition function for quarks in the presence of
gluon fields is

Z q�A	 �
Z

D � D expfSq�A; � ; 	g; (10)

where the quark action is

Sq�A; � ; 	 �
Z
X

� �X��iD6 X ��00 �m� �X�; (11)

with the covariant derivative D�
X � @�X � igA�a �X�Ta; Ta

are the generators of the SU�Nc�c gauge group. In fermi-
onic systems at nonzero density, it is advantageous to
additionally introduce charge-conjugate fermionic de-
grees of freedom,

 C�X� 
 C � T�X�; � C�X� 
  T�X�C;

 �X� 
 C � TC�X�; � �X� 
  TC�X�C;
(12)

where C 
 i0200 is the charge-conjugation matrix,
C�1 � Cy � CT � �C, C�10T�C � �0�; a superscript
T denotes transposition. We may then rewrite the quark
action in the form

Sq�A; �&;&	 �
1

2

Z
X;Y

�&�X�G�1
0 �X; Y�&�Y�

�
g
2

Z
X

�&�X�'̂�a A
a
��X�&�X�; (13)

where we defined the Nambu-Gor’kov quark spinors

& 


�
 
 C

�
; �& 
 � � ; � C�; (14)

and the free inverse quark propagator in the Nambu-
Gor’kov basis
114029
G �1
0 �X; Y� 


�G�0 	
�1�X; Y� 0
0 �G�0 	

�1�X; Y�

� �
; (15)

with the free inverse propagator for quarks and charge-
conjugate quarks

�G�0 	
�1�X; Y� 
 �i@6 X ��00 �m���4��X� Y�: (16)

The quark-gluon vertex in the Nambu-Gor’kov basis is
defined as

'̂
�
a 


0�Ta 0
0 �0�TTa

� �
: (17)

As we shall derive the effective action in momentum
space, we Fourier-transform all fields, as well as the
free inverse quark propagator,

&�X� �
1����
V

p
X
K

e�iK�X&�K�; (18a)

�&�X� �
1����
V

p
X
K

eiK�X �&�K�; (18b)

G�1
0 �X; Y� �

T2

V

X
K;Q

e�iK�XeiQ�YG�1
0 �K;Q�; (18c)

A�a �X� �
1�������
TV

p
X
P

e�iP�XA�a �P�: (18d)

The normalization factors are chosen such that the
Fourier-transformed fields are dimensionless quantities.
The Fourier-transformed free inverse quark propagator is
diagonal in momentum space, too,

G �1
0 �K;Q� �

1

T
�G�0 	

�1�K� 0
0 �G�0 	

�1�K�

� �
��4�K;Q; (19)

where �G�0 	
�1�K� 
 K6 ��00 �m.

Because of the relations (12), the Fourier-transformed
charge-conjugate quark fields are related to the original
fields via  C�K� � C � T��K�, � C�K� �  T��K�C. The
measure of the functional integration over quark fields
can then be rewritten in the form

D � D 

Y
K

d � �K�d �K�

�N
Y

�K;�K�

d � �K�d �K�d � ��K�d ��K�

�N 0
Y

�K;�K�

d � �K�d �K�d � C�K�d C�K�

�N 00
Y

�K;�K�

d �&�K�d&�K� 
D �&D&; (20)

with the constant normalization factors N , N 0, N 00.
The last identity has to be considered as a definition for
the expression on the right-hand side.

Inserting Eqs. (18)–(20) into Eq. (10), the partition
function for quarks becomes
-5
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Z q�A	 �
Z

D �&D&exp
�
1

2
�&�G�1

0 � gA�&
�
: (21)

Here, we employ a compact matrix notation,

�&�G�1
0 � gA�& 


X
K;Q

�&�K��G�1
0 �K;Q�

� gA�K;Q�	&�Q�; (22)

with the definition

A �K;Q� 

1���������
VT3

p '̂�a Aa��K �Q�: (23)

The next step is to integrate out irrelevant quark modes.

B. Integrating out irrelevant quark modes

Since we work in a finite volume V, the 3-momentum k
is discretized. Let us for the moment also assume that
there is an ultraviolet cutoff (such as in a lattice regulari-
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zation) on the 3-momentum, i.e., the space of modes
labeled by 3-momentum has dimensionD<1. We define
projection operators P 1, P 2 for relevant and irrelevant
quark modes, respectively,

&1 
 P 1&; &2 
 P 2&;
�&1 
 �&00P 100; �&2 
 �&00P 200:

(24)

The subspace of relevant quark modes has dimension N1

in the space of 3-momentum modes, the one for irrelevant
modes dimension N2, with N1 � N2 � D.

At this point, it is instructive to give an explicit ex-
ample for the projectors P 1;2. In the effective theory for
cold, dense quark matter, which contains the high-
density effective theory [14–19] discussed in Sec. III B
as special case and which we shall apply in Sec. IV to the
computation of the gap parameter, the projectors are
chosen as
P 1�K;Q� 

��

k 0

0 ��
k

 !
(��q � jk� kFj��

�4�
K;Q; (25a)

P 2�K;Q� 

��

k ���
k(�jk� kFj ��q� 0

0 ��
k ���

k(�jk� kFj ��q�

 !
��4�K;Q: (25b)
Here,

�e
k 


1

2Ek
�Ek � e00�0 � k�m�	; (26)

are projection operators onto states with positive (e � �)
or negative (e � �) energy, where Ek �

������������������
k2 �m2

p
is the

relativistic single-particle energy. The momentum cutoff
�q controls how many quark modes (with positive en-
ergy) are integrated out. Thus, all quark modes within a
layer of width 2�q around the Fermi surface are consid-
ered as relevant, while all antiquark modes and quark
modes outside this layer are considered as irrelevant. Note
that, for the Nambu-Gor’kov components corresponding
to charge-conjugate particles, the role of the projectors
onto positive and negative energy states is reversed with
respect to the Nambu-Gor’kov components correspond-
ing to particles. The reason is that, loosely speaking, a
particle is actually a charge-conjugate antiparticle. For a
more rigorous proof compute, for instance,  C;1�K� 

C � T1 ��K� using � 1��K� � � ��K�00�

�
�k00 (for jk�

kFj � �q) and 00C���
�k	

TC�100 � ��
k . In Sec. III we

shall discuss other choices for the projectors P 1;2, per-
taining to other effective theories of hot and/or dense
quark matter. The following discussion in this section,
however, will be completely general and is not restricted
to any particular choice for these projectors.

Employing Eq. (24), the partition function (21) be-
comes
Z q�A	 �
Z Y

n�1;2

D �&nD&n exp
�
1

2

X
n;m�1;2

�&nG
�1
nm&m

�
:

(27)

From now on, �&1;2, &1;2 are considered as vectors
restricted to the N1;2-dimensional subspace of relevant/
irrelevant 3-momentum modes. The matrices G�1

nn ; n �
1; 2; are defined as

G �1
nn �K;Q� � G�1

0;nn�K;Q� � gAnn�K;Q�; (28)

where the indices indicate that, for a given pair of quark
energies k0, q0, the 3-momenta k, q belong to the sub-
space of relevant (n � 1) or irrelevant (n � 2) quark
modes, i.e., G�1

nn is an (Nn � Nn)-dimensional matrix in
3-momentum space. The matrices G�1

nm, n � m, reduce to

G �1
nm�K;Q� � gAnm�K;Q�; (29)

since G�1
0 is diagonal in 3-momentum space, i.e., G�1

0;nm 


0 for n � m. For a given pair of quark energies k0, q0, G�1
nm

is a (Nn � Nm)-dimensional matrix in 3-momentum
space.

The Grassmann integration over the irrelevant quark
fields �&2, &2 can be done exactly, if one redefines them
such that the mixed terms �G�1

nm, n � m, are eliminated.
To this end, substitute

) 
 &2 �G22G
�1
21 &1; �) 
 �&2 � �&1G

�1
12 G22;

(30)
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FIG. 2. The diagrammatic symbol for the factor �1�
gAG0;22�

�1.
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where G22 is the inverse of G�1
22 , defined on the subspace of

irrelevant quark modes. The result is

Zq�A	 �
Z

D �&1D&1 exp
�
1

2
�&1�G

�1
11

� G�1
12 G22G

�1
21 �&1 �

1

2
Trq lnG

�1
22

�
: (31)

The trace in the last term runs over all irrelevant quark
momenta K, and not only over pairs �K;�K�, as pre-
scribed by the integration measure, Eq. (20). This re-
quires an additional factor 1=2 in front of the trace. A
more intuitive way of saying this is that this factor ac-
counts for the doubling of the quark degrees of freedom
in the Nambu-Gor’kov basis. Of course, the trace runs not
only over 4-momenta, but also over other quark indices,
such as Nambu-Gor’kov, fundamental color, flavor, and
Dirac indices. We indicated this by the subscript ‘‘q.’’

For a diagrammatic interpretation, it is advantageous to
rewrite

G �1
11 � G�1

12 G22G
�1
21 
 G�1

0;11 � gB; (32)

where

gB 
 gA11 � gA12G22gA21: (33)

The propagator for irrelevant quark modes, G22, has an
expansion in powers of g times the gluon field,

G 22 � G0;22

X1
n�0

��1�ngn�A22G0;22	
n: (34)

This expansion is graphically depicted in Fig. 1.
Using this expansion, and suppressing the indices on

A, Eq. (33) can be symbolically written as

gB � �1� gAG0;22�
�1gA; (35)

which suggests the interpretation of the field B as a
‘‘modified’’ (nonlocal) gluon field. In the diagrams to
be discussed below, the factor �1� gAG0;22�

�1 will be
denoted by the diagrammatical symbol shown in Fig. 2.
With this symbol, the expression �&1gB&1 can be graphi-
cally depicted as shown in Fig. 3.

Since

lnG�1
22 � lnG�1

0;22 �
X1
n�1

��1�n

n
gn�G0;22A22	

n; (36)

the last term in the exponent in Eq. (31) also has a graph-
ical interpretation, shown in Fig. 4.
= +++

FIG. 1. The full propagator for irrelevant quarks. The right-
hand side symbolizes the expansion (34). The free irrelevant
quark propagators G0;22 are denoted by double lines, the gluon
fields A22 by curly lines.
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This concludes the integration over irrelevant quark
modes. Note that our treatment is (i) exact in the
sense that no approximations have been made and
(ii) completely general, since it is independent of the
specific choice (25) for the projection operators. The
next step is to integrate out hard gluon modes.

C. Integrating out hard gluon modes

Combining Eqs. (8), (31), and (33), the partition func-
tion of QCD for relevant quark modes and gluons reads

Z �
Z

D �&1D&1DA expfS�A; �&1;&1	g

(37a)

S�A; �&1;&1	 
 SA�A	 �
1

2
�&1fG

�1
0;11 � gB�A	g&1

�
1

2
Trq lnG

�1
22 �A	; (37b)

where DA 

Q
PdA�P�. For the sake of clarity, we re-

stored the functional dependence of the modified gluon
field B and the inverse irrelevant quark propagator G�1

22
on the gluon field A.

The gluon action in momentum space is

SA�A	 � �
1

2

X
P1;P2

Aa��P1��,
�1
0 	

�'
ab �P1; P2�Ab'�P2�

�
1

3!

g���������
VT3

p
X

P1;P2;P3

��4�P1�P2�P3;0
V abc

	�0�P1; P2; P3�

� A	a �P1�A
�
b �P2�A

0
c �P3� �

1

4!

�
g���������
VT3

p

�
2

�
X

P1;���;P4

��4�P1�P2�P3�P4;0
V abcd

	�0�A
	
a �P1�A

�
b �P2�

� A0c �P3�A�d�P4� � Trgh lnW
�1: (38)

Here, ,�1
0 �P1; P2� is the gauge-fixed inverse free gluon

propagator. To be specific, in general Coulomb gauge it
reads
=+= + +

FIG. 3. The term �&1gB&1. A relevant quark field is denoted
by a single solid line.
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FIG. 4. The graphical representation of the term Trq lnG
�1
22 in

Eq. (31).

= + + +

FIG. 5. The term A2JB. The hard gluon field is denoted by a
dashed line, the soft gluon fields by wavy lines.
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�,�1
0 	

�'
ab �P1; P2� 


1

T2 �,
�1
0 	

�'
ab �P1��

�4�
P1;�P2

; (39a)

�,�1
0 	

�'
ab �P� � �ab

�
P2g�' � P�P' �

1

8C
~P� ~P'

�
;

(39b)

where 8C is the Coulomb gauge parameter and ~P� 

�0;p�. The vertex functions are

V abc
	�0�P1; P2; P3� 


i
T
fabc��P1 � P2�0g	�

� �P2 � P3�	g�0 � �P3 � P1��g	0	;

(40a)

V abcd
	�0� 
 fabefecd�g	0g�� � g	�g�0�

� facefebd�g	�g0� � g	�g�0�

� fadefebc�g	�g0� � g	0g���:

(40b)

The last term in Eq. (38) is the trace of the logarithm of
the Faddeev-Popov determinant, with the full inverse
ghost propagator W�1. The trace runs over ghost 4-
momenta and adjoint color indices.

Similar to the treatment of fermions in Sec. II B we
now define projectors Q1, Q2 for soft and hard gluon
modes, respectively,

A1 
Q1A; A2 
Q2A; (41)

where

Q1�P1; P2� 
 (��g � p1��
�4�
P1;P2

; (42a)

Q2�P1; P2� 
 (�p1 ��g��
�4�
P1;P2

: (42b)

The gluon cutoff momentum �g defines which gluons are
considered to be soft or hard, respectively.

We now insert A 
 A1 � A2 into Eq. (37). The integra-
tion measure simply factorizes, DA 
DA1DA2. The
action S�A; �&1;&1	 can be sorted with respect to powers
of the hard gluon field,

S�A; �&1;&1	 � S�A1; �&1;&1	 � A2J �A1; �&1;&1	

�
1

2
A2,

�1
22 �A1; �&1;&1	A2

� SI�A1; A2; �&1;&1	: (43)

The first term in this expansion, containing no hard gluon
fields at all, is simply the action (37b), with A replaced by
114029
the relevant gluon field A1. The second term, A2J , con-
tains a single power of the hard gluon field, where

J �A1; �&1;&1	 

�S�A; �&1;&1	

�A2

��������A2�0


 JB�A1; �&1;&1	 � J loop�A1	

� JV �A1	: (44)

The first contribution,

J B�A1; �&1;&1	 �
1

2
�&1

�
g
�B
�A2

�
A2�0

&1; (45)

arises from the coupling of the relevant fermions to the
modified gluon field B, i.e., from the second term in
Eq. (37b). With the notation of Fig. 2, all diagrams cor-
responding to A2JB can be summarized into a single
one, cf. Fig. 5. It contains precisely two relevant fermion
fields, �&1 and &1. The second contribution, J loop, arises
from the terms Trq lnG�1

22 and Trgh lnW
�1 in Eqs. (37b)

and (38). The loop consisting of irrelevant quark modes
as internal lines, coupled to a single hard and arbitrarily
many soft gluons, is shown in Fig. 6. Finally, the third
contribution, JV , arises from the non-Abelian vertices,
cf. Fig. 7.

The third term in Eq. (43) is quadratic in A2, where

,�1
22 �A1; �&1;&1	 
 �

�2S�A; �&1;&1	

�A2�A2

��������A2�0


 ,�1
0;22 �/22�A1; �&1;&1	: (46)

Here, ,�1
0;22 is the free inverse propagator for hard gluons.

Similar to the ‘‘current’’ J , cf. Eq. (44), the ‘‘self-
energy’’ /22 of hard gluons consists of three different
contributions,

/22�A1; �&1;&1	 � /B�A1; �&1;&1	 �/loop�A1	

�/V �A1	; (47)

which has a diagrammatic representation as shown in
Fig. 8. The first two contributions on the right-hand side
of Eq. (47) can be expanded as shown in Figs. 9 and 10.
Figure 11 depicts the three- and four-gluon vertices con-
tained in the last term in Eq. (47). For further use, we
explicitly give the first term,

/B�A1; �&1;&1	 � �
1

2
�&1

�
g

�2B
�A2�A2

�
A2�0

&1: (48)
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FIG. 8. The term A2/22A2 according to Eq. (47). The first
diagram on the right-hand side corresponds to the term
A2/BA2. The second diagram is the fermion-loop contribution
to A2/loopA2; there is an analogous one from a ghost loop. The
last two diagrams correspond to A2/VA2.

+ +=

FIG. 6. The fermionic contribution to the term A2J loop. There
is an additional contribution from ghosts with similar topology.
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Finally, we collect all terms with more than two hard
gluon fields A2 in Eq. (43) in the ‘‘interaction action’’
for hard gluons, SI�A1; A2; �&1;&1	. We then perform the
functional integration over the hard gluon fields A2. Since
functional integrals must be of Gaussian type in order to
be exactly solvable, we resort to a method well known
from perturbation theory. We add the source term A2J2 to
the action (37b) and may then replace the fields A2 in SI
by functional differentiation with respect to J2, at J2 � 0.
We then move the factor expfSI�A1; �=�J2; �&1;&1	g in
front of the functional A2 integral. Then, this functional
integral is Gaussian and can be readily performed (after a
suitable shift of A2), with the result

Z �
Z

D �&1D&1DA1 exp
�
S�A1; �&1;&1	 �

1

2
Trg ln,

�1
22

�

� exp
�
SI

�
A1;

�
�J2

; �&1;&1

��

� exp
�
1

2
�J � J2�,22�J � J2�

���������J2�0
: (49)

The trace over ln,�1
22 runs over gluon 4-momenta, as well

as adjoint color and Lorentz indices.We indicate this with
a subscript ‘‘g.’’ Note that this result is still exact and
completely general, since so far our manipulations of the
partition function were independent of the specific choice
(42) for the projection operators Q1;2. The next step is to
derive the tree-level action for the effective theory of
relevant quark modes and soft gluons.

D. Tree-level effective action

In order to derive the tree-level effective action, we
shall employ two approximations. The first is based on the
principle assumption in the construction of any effective
theory, namely, that soft and hard modes are well sepa-
rated in momentum space. Consequently, momentum
conservation does not allow a hard gluon to couple to
any (finite) number of soft gluons. Under this assumption,
the diagrams generated by A2�J loop � JV �, cf. Figs. 6
and 7, will not occur in the effective theory. In the
following, we shall therefore omit these terms, so that
+

FIG. 7. The term A2JV .
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J 
 JB. Note that similar arguments cannot be applied
to the diagrams generated by A2�/loop �/V �A2, cf.
Figs. 10 and 11, since now there are two hard gluon legs
which take care of momentum conservation.

Our second approximation is that in the ‘‘perturbative’’
expansion of the partition function (49) with respect to
powers of the interaction action SI, we only take the first
term, i.e., we approximate eSI ’ 1. At this point, this is
simply a matter of convenience, since we do not need the
higher-order terms in the expansion of eSI for the effec-
tive theories to be discussed in Sec. III or for the calcu-
lation of the gap parameter in Sec. IV. However, one can
easily reinstall them if required by the particular problem
at hand.We note in passing that the approximation eSI ’ 1
becomes exact in the derivation of the exact renormaliza-
tion group [25], where one only integrates out modes in a
shell of infinitesimal thickness.

Diagrams generated by the higher-order terms in the
expansion of eSI are those with more than one resummed
hard gluon line. Even with the approximation eSI ’ 1,
Eq. (49) still contains diagrams with arbitrarily many
bare hard gluon lines, arising from the expansion of

ln,�1
22 � ln,�1

0;22 �
X1
n�1

��1�n

n
�,0;22/22�

n; (50)

and from the termJB,22JB in Eq. (49), when expanding

,22 � ,0;22

X1
n�0

��1�n�/22,0;22�
n: (51)

With these approximations, the partition function reads

Z �
Z

D �&1D&1DA1 expfSeff�A1; �&1;&1	g; (52)

where the effective action is defined as
+= + + +

FIG. 9. The term A2/BA2.
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FIG. 10. The fermionic contribution to the term A2/loopA2.

+

FIG. 12. The three- and four-gluon vertices in SA�A1	, de-
scribing the self-interaction of soft gluons in Eq. (53).
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Seff�A1; �&1;&1	 
 SA�A1	 �
1

2
�&1fG

�1
0;11 � gB�A1	g&1

�
1

2
Trq lnG

�1
22 �A1	

�
1

2
Trg ln,

�1
22 �A1; �&1;&1	

�
1

2
JB�A1; �&1;&1	,22�A1; �&1;&1	

� JB�A1; �&1;&1	: (53)

This is the desired action for the effective theory describ-
ing the interaction of relevant quark modes, �&1, &1, and
soft gluons, A1. The functional dependence of the various
terms on the right-hand side on the fields A1, �&1, &1 has
been restored in order to facilitate the following discus-
sion of all possible interaction vertices occurring in this
effective theory.

The diagrams corresponding to these vertices are
shown in Figs. 12–16. The three- and four-gluon vertices
contained in SA�A1	 are displayed in Fig. 12. In addition,
SA�A1	 contains ghost loops with an arbitrary number of
attached soft gluon legs. The topology is equivalent to
that of the quark loops in Fig. 14 and is therefore not
shown explicitly. The interaction between two relevant
quarks and the modified soft gluon field, corresponding
to �&1gB�A1	&1, is depicted in Fig. 13. This is similar to
Fig. 3, except that now all gluon legs are soft. Diagrams
where an arbitrary number of soft gluon legs is attached
to an irrelevant quark loop are generated by Trq lnG

�1
22 , cf.

Fig. 14. This is similar to Fig. 4, but now only soft gluon
legs are attached to the fermion loop. The diagrams
generated by the loop of a full hard gluon propagator,
Trg ln,

�1
22 , are shown in Fig. 15. The first line in this

figure features the generic expansion of this term accord-
ing to Eq. (50), where the hard gluon ‘‘self-energy’’ in-
sertion /22, cf. Eq. (47), is shown in Fig. 8. The second
line shows examples of diagrams generated by explicitly
inserting /22 in the generic expansion. Besides an arbi-
trary number of soft gluon legs, these diagrams also
feature an arbitrary number of relevant quark legs. If
there are only two relevant quark legs, but no soft gluon
+

FIG. 11. The term A2/VA2.
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leg, one obtains the one-loop self-energy for relevant
quarks, cf. the second diagram in the second line of
Fig. 15. The next two diagrams are obtained by adding
a soft gluon leg, resulting in vertex corrections for the
bare vertex between relevant quarks and soft gluons. The
first of these two diagrams arises from the n � 1 term in
Eq. (50), while the second originates from the n � 2 term.
Four relevant quark legs and no soft gluon leg give rise to
the scattering of two relevant quarks via exchange of two
hard gluons, contained in the n � 2 term in Eq. (50), cf.
the last diagram in Fig. 15. This diagram was also dis-
cussed in the context of the effective theory presented in
Refs. [14,15], cf. discussion in Sec. III B. Finally, the
‘‘current-current’’ interaction mediated by a full hard
gluon propagator, JB,22JB, Fig. 16, contains also a
multitude of quark-gluon vertices. The simplest one is
the first on the right-hand side in Fig. 16, corresponding
to scattering of two relevant fermions via exchange of a
single hard gluon.

An important question is whether the introduction of
the momentum cutoffs �q, �g could possibly spoil the
gauge invariance of the effective action (53). This is not
the case, since gauge invariance is already explicitly
broken from the very beginning by the choice of gauge
in the gauge-fixed gluon action (9).We do not perceive this
to be a disadvantage of our approach, since the computa-
tion of a physical quantity requires to fix the gauge any-
way. The final result should, of course, neither depend on
the choice of gauge, nor on �q and �g. Note that, up to
this point, we were not required to specify the gauge in
the effective action (53).

The effective action (53) is formally of the form (7).
The difference is that Eq. (53) contains more than one
relevant field: besides relevant quarks there are also soft
gluons. It is obvious that in this case there are many more
possibilities to construct operators Oi which occur in the
expansion (7). As pointed out in the introduction, it is
therefore advantageous to derive the effective action (53)
by explicitly integrating out irrelevant quark and hard
gluon modes, and not by simply guessing the form of the
operators Oi, since then one is certain that one has con-
structed all possible operators occurring in the expansion
(7).
== + + +

FIG. 13. The term �&1gB�A1	&1 in the effective action (53).
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FIG. 14. The term Trq lnG
�1
22 �A1	 in the effective action (53).

+= + + + +

FIG. 16. The term JB,22JB in the effective action (53). The
thick dashed line is a full hard gluon propagator, i.e., it has the
expansion (50). The first diagram on the right-hand side of this
figure results from the n � 0 term of this expansion, while the
next three diagrams originate from the n � 1 term. Even a
single insertion of a hard gluon ‘‘self-energy’’ /22 gives rise to
a variety of diagrams. Here, we only show the contributions
corresponding to the first diagrams in Figs. 9 and 10, and the
three-gluon vertex. The last diagram arises from the second
term of the expansion shown in Fig. 2.

GENERAL EFFECTIVE ACTION FOR HIGH-DENSITY. . . PHYSICAL REVIEW D 70, 114029 (2004)
As mentioned in the introduction, the standard ap-
proach to derive an effective theory, namely, guessing
the form of the operators Oi and performing a naive
dimensional scaling analysis to estimate their order of
magnitude, fails precisely when (a) there are nonlocal
operators, or when (b) there is more than one momentum
scale. Both (a) and (b) apply here. As we shall show below,
the HTL/HDL effective action is one limiting case of
Eq. (53), and it is well known that this action is nonlocal.
Moreover, as is obvious from the above derivation, there
are indeed several momentum scales occurring in
Eq. (53). Let us focus on the case of zero temperature,
T � 0, and, for the sake of simplicity, assume massless
quarks, m � 0, � � kF. To be explicit, we employ the
choice (25) for the projectors P 1;2. In this case, the first
momentum scale is defined by the Fermi energy �.
The propagator of antiquarks is �1=�k0 ��� k�.
If �q;�g & �, the exchange of an antiquark can be
approximated by a contact interaction with strength
�1=�, on the scale of the relevant quarks, Lq � 1=�q *

1=�, or of the soft gluons, Lg � 1=�g * 1=�.
The second momentum scale is defined by the quark

cutoff momentum �q. The propagator of irrelevant quark
modes is �1=�k0 ��� k�. On the scale Lq of the rele-
vant quarks, not only the exchange of an antiquark, but
also that of an irrelevant quark with momentum k sat-
isfying jk��j � �q is local, with strength �1=�q.
However, suppose that the quark cutoff scale happens to
be much smaller than the chemical potential, �q � �. In
this case, antiquark exchange is ‘‘much more localized’’
than the exchange of an irrelevant quark, 1=�� 1=�q.

The third momentum scale is defined by the gluon
cutoff momentum �g. The propagator of a hard gluon is
+ + +

+

=

=

+ + + +

+

+

++
Π22 Π22

Π22Π22Π22

Π22

FIG. 15. The term Trg ln,
�1
22 �A1; �&1;&1	 in the effective ac-

tion (53). The first line corresponds to the generic expansion
(50), with ‘‘self-energy’’ insertions /22, as shown in Fig. 8.
The second line contains some examples for diagrams gener-
ated when explicitly inserting the expression for /22.

114029
�1=P2. On the scale Lg of a soft gluon, the exchange of a
hard gluon with momentum p � �g can be considered
local, with strength �1=�2

g. As we shall show below, in
order to derive the value of the QCD gap parameter in
weak coupling and to subleading order, the ordering of the
scales turns out to be �q & g�� �g & �. Thus, anti-
quark exchange happens on a length scale of the same
order as hard gluon exchange, which in turn happens on a
much smaller length scale than the exchange of an irrele-
vant quark, 1=� & 1=�g � 1=�q.

III. EXAMPLES OF EFFECTIVE THEORIES

In this section we show that, for particular choices of
the projectors P 1;2 in Eq. (24), several well-known, at
first sight unrelated effective theories for hot and/or dense
quark matter, are in fact nothing but special cases of the
general effective theory defined by the action (53). These
are the HTL/HDL effective action for quarks and gluons,
and the high-density effective theory for cold, dense
quark matter.

A. HTL/HDL effective action

Let us first focus on the HTL/HDL effective action.
This action defines an effective theory for massless
quarks and gluons with small momenta in a system at
high temperature T (HTL), or large chemical potential �
(HDL). Consequently, the projectors P 1;2 for quarks are
given by

P 1�K;Q� � (��q � k���4�K;Q; (54a)

P 2�K;Q� � (�k��q��
�4�
K;Q; (54b)

while the projectors for gluons are given by Eq. (42). (We
note that, strictly speaking, the quarks and gluons of the
HTL/HDL effective action should also have small ener-
gies in real time. Since our effective action is defined in
imaginary time, one should constrain the energy only at
the end of a calculation, after analytically continuing the
result to Minkowski space.)
-11
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The essential assumption to derive the HTL/HDL ef-
fective action is that there is a single momentum scale,
�q � �g 
 �, which separates hard modes with mo-
menta �T, or ��, from soft modes with momenta
�gT, or �g�. In the presence of an additional energy
scale T, or �, naive perturbation theory in terms of
powers of the coupling constant fails. It was shown by
Braaten and Pisarski [22] that, for the n-gluon scattering
amplitude the one-loop term, where n soft gluon legs are
attached to a quark or gluon loop, is as important as the
tree-level diagram. The same holds for the scattering of
n� 2 gluons and two quarks. At high T and small �, the
momenta of the quarks and gluons in the loop are of the
order of the hard scale, �T. This gives rise to the name
‘‘Hard Thermal Loop’’ effective action, and allows to
simplify the calculation of the respective diagrams. At
large� and small T, i.e., for the HDL effective action, the
situation is somewhat more involved. As gluons do not
have a Fermi surface, the only physical scale which
determines the order of magnitude of a loop consisting
exclusively of gluon propagators is the temperature.
Therefore, at small T and large �, such pure gluon loops
are negligible. On the other hand, the momenta of quarks
in the loop are ��. Thus, only loops with at least one
quark line need to be considered in the HDL effective
action.

In order to show that the HTL/HDL effective action is
contained in the effective action (53), we first note that a
soft particle cannot become hard by interacting with
another soft particle. This has the consequence that a
soft quark cannot turn into a hard one by soft gluon
scattering. Therefore,

gB�A1	 
 gA11: (55)

Another consequence is that the last term in Eq. (53),
JB,22JB, vanishes since JB is identical to a vertex
between a soft quark and a hard gluon, which is kine-
matically forbidden. The resulting action then reads

SlargeT=��A1; �&1;&1	 
 SA�A1	 �
1

2
�&1�G

�1
0;11 � gA11�&1

�
1

2
Trq lnG

�1
22 �A1	

�
1

2
Trg ln,

�1
22 �A1; �&1;&1	: (56)

Using the expansion (36) we realize that the term
Trq lnG

�1
22 generates all one-loop diagrams, where n soft

gluon legs are attached to a hard quark loop. This is
precisely the quark-loop contribution to the HTL/HDL
effective action.

For hard gluons with momentum �T or ��, the free
inverse gluon propagator is ,�1

0;22 � T2 or ��2, while the
contribution /loop to the hard gluon ‘‘self-energy’’ (47) is
at most of the order �g2T2 or �g2�2. Consequently,
/loop can be neglected and /22 only contains tree-level
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diagrams, /22 
 /B �/V . Using the expansion (50)
of Trg ln,�1

22 , the terms which contain only insertions of
/V correspond to one-loop diagrams where n soft gluon
legs are attached to a hard gluon loop. As was shown in
Ref. [22], with the exception of the two-gluon amplitude,
the loops with four-gluon vertices are suppressed.
Neglecting these, we are precisely left with the pure gluon
loop contribution to the HTL effective action. As dis-
cussed above, for the HDL effective action, this contri-
bution is negligible.

The ‘‘self-energy’’ /B contains only two soft quark
legs attached to a hard quark propagator (via emission
and absorption of hard gluons). Consequently, in the
expansion (50) of Trg ln,

�1
22 , the terms which contain

insertions of /V and /B correspond to one-loop dia-
grams where an arbitrary number of soft quark and gluon
legs is attached to the loop. It was shown in Ref. [22] that
of these diagrams, only the ones with two soft quark legs
and no four-gluon vertices are kinematically important
and thus contribute to the HTL/HDL effective action. We
have thus shown that this effective action, SHTL=HDL, is
contained in the effective action (56), and constitutes its
leading contribution,

SlargeT=� � SHTL=HDL � higher orders: (57)

For the sake of completeness, let us briefly comment on
possible ghost contributions. Ghost loops arise from the
term Trgh lnW

�1 in SA�A1	. Their topology and conse-
quently their properties are completely analogous to
those of the pure gluon loops discussed above.

We conclude with a remark regarding the HDL effec-
tive action. According to Eq. (54), at zero temperature and
large chemical potential, a soft quark or antiquark has a
momentum k� g�, i.e., it lies at the bottom of the Fermi
sea, or at the top of the Dirac sea, respectively. These
modes are, however, not that important in degenerate
Fermi systems, because it requires a large amount of
energy k0 �� to excite them. The truly relevant modes
are quark modes with large momenta, k��, close to the
Fermi surface, because it costs little energy to excite
them. A physically reasonable effective theory for cold,
dense quark matter should therefore feature no antiquark
modes at all, and only quark modes near the Fermi
surface. Such a theory will be discussed in the following.

B. High-density effective theory

An effective theory for high-density quark matter was
first proposed by Hong [14] and was further refined by
Schäfer and others [16–19]. In the construction of this
effective theory, one first proceeds similarly to our dis-
cussion in Sec. II and integrates out antiquark modes.
(From a technical point of view, this is not done as in
Sec. II by functional integration, but by employing the
equations of motion for antiquarks. The result is equiva-
lent.) On the other hand, at first all quark modes in the
-12
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FIG. 17. A particular patch covering the Fermi surface. The
tangential dimension, �?, is given by the maximum momen-
tum transferred via a soft gluon, �g, while the radial dimen-
sion, �k, is defined by the maximum distance of relevant quark
modes from the Fermi surface, �q. Also shown is a typical
momentum transfer l via a soft gluon.
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Fermi sea are considered as relevant. Consequently, in the
notation of Sec. II, the choice for the projectors P 1;2

would be

P 1�K;Q� �
��

k 0

0 ��
k

 !
��4�K;Q; (58a)

P 2�K;Q� �
��

k 0

0 ��
k

 !
��4�K;Q: (58b)

Also, at first gluons are not separated into soft and hard
modes either. After this step, the partition function of the
theory assumes the form (8) with Zq given by Eq. (31).

In the next step, one departs from the rigorous approach
of integrating out modes, as done in Sec. II, and follows
the standard way of constructing an effective theory, as
explained in the introduction. One focuses exclusively on
quark modes close to the Fermi surface as well as on soft
gluons. However, since quark modes far from the Fermi
surface and hard gluons are not explicitly integrated out,
the effective action does not automatically contain the
terms which reflect the influence of these modes on the
relevant quark and soft gluon degrees of freedom. Instead,
the corresponding terms have to be written down ‘‘by
hand’’ and the effective vertices have to be determined via
matching to the underlying microscopic theory, i.e., QCD.

In order to further organize the terms occurring in the
effective action, one covers the Fermi surface with
‘‘patches.’’ Each patch is labeled according to the local
Fermi velocity, vF 
 k̂kF=� at its center. A patch is
supposed to have a typical size �k in radial (k̂) direction,
and a size �? tangential to the Fermi surface. The mo-
mentum of quark modes inside a patch is decomposed
into a large component in the direction of vF, the par-
ticular Fermi velocity labeling the patch under considera-
tion, and a small residual component, l, residing
exclusively inside the patch,

k � �vF � l: (59)

The residual component is further decomposed into a
component pointing in radial direction, lk 
 vF�vF � l�,
and the orthogonal one, tangential to the Fermi surface,
l? 
 l� lk. The actual covering of the Fermi surface
with such patches is not unique. One should, however,
make sure that neighboring patches do not overlap, in
order to avoid double counting of modes near the Fermi
surface. In this case, the total number of patches on the
Fermi surface is ��2=�2

?.
In the following, we shall show that the action of the

high-density effective theory as discussed in Refs. [14–
19] is contained in our effective action (53). To this end,
however, we shall employ the choice (25) and (42) for the
projectors for quark and gluon modes, and not Eq. (58) for
the quark projectors. As in Refs. [14–19], the quark mass
will be set to zero,m � 0.We also have to clarify how the
patches covering the Fermi surfaces introduced in
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Refs. [14–19] arise within our effective theory. It is
obvious that the radial dimension �k of a patch is related
to the quark cutoff �q. We simply choose �k 
 �q.
Similarly, since soft gluon exchange is not supposed to
move a fermion from a particular patch to another, the
dimension �? tangential to the Fermi surface must be
related to the gluon cutoff �g. Again, we adhere to the
most simple choice �? 
 �g. Since �g & �, this is
consistent with the matching procedure discussed in
Ref. [16], where the matching scale is chosen as �? ����
2

p
� (which is only slightly larger than �). The different

scales �q, �g, and � are illustrated in Fig. 17. The
modulus of the residual momentum l in Eq. (59) is con-
strained to l � max��q;�g�.

In Nambu-Gor’kov space, the leading, kinetic term in
the Lagrangian of the high-density effective theory reads
L kin �
1

2

X
vF

�&1�X; vF�00
iV �D 0

0 i �V �DC

� �
&1�X; vF�;

(60)
cf., for instance, Eq. (1) of Ref. [17]. Here, we have
introduced the 4-vectors
V� 
 �1; vF�; �V� 
 �1;�vF�: (61)
The covariant derivative for charge-conjugate fields is
defined as D�

C 
 @� � igA�a TTa . The contribution (60)
arises from the term �&1�G

�1
0;11 � gA11�&1 in Eq. (53).

In order to see this, use P 2
1 
 P 1 to write
-13
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1

2
�&1G

�1
0;11&1 �

1

2
�&100P 100G

�1
0;11P 1&1 �

1

2

X
K;Q

�&1�K�00

�
1

T

k0 ��� k 0

0 k0 ��� k

 !

� ��4�K;Q&1�Q�

’
1

2

X
vF;L

�&1�L; vF�00
1

T

V � L 0

0 �V � L

 !

�&1�L; vF�: (62)

In the last step, we have approximated k ’ �� vF � l,
which holds up to terms of order O�l2=��, cf. Eq. (59).
This is a good approximation if the modulus of a typical
residual quark momentum in the effective theory is l�
max��q;�g� & �. We have also introduced the 4-vector
L� 
 �k0; l� and, applying the decomposition (59), we
have written the sum over k as a double sum over vF
and l. The latter sum runs over all residual momenta l
inside a given patch, while the former runs over all
patches. With this decomposition, the spinors �&1, &1

are defined locally on a given patch (labeled by the
Fermi velocity vF), and depend on the 4-momentum L.
Note that a Fourier transformation to coordinate space
converts V � L! iV � @.

Now consider the term �&1gA11&1. Since A11 is not
diagonal in momentum space, cf. Eq. (23), in principle

PHILIPP T. REUTER, QUN WANG, AND DIRK H. RISCHK
114029
the two-quark spinors �&1, &1 can belong to different
patches. However, we have chosen the tangential dimen-
sion of a patch such that a (typical) soft gluon can
by definition never move a fermion across the border
of a particular patch, jk� qj � �g. Therefore, both
spinors reside in the same patch and, to leading order,
k̂ ’ q̂ ’ vF. With these assumptions we may write
��

kA6 a�K �Q���
q ’ V � Aa�K �Q�00�

�
k , ��

kA6 a�K �
Q���

q ’ �V � Aa�K �Q�00�
�
k . Then, introducing the re-

sidual momentum l0 corresponding to the quark 3-
momentum q and defining L0� 
 �q0; l

0�, the respective
term in the effective action becomes

1

2
�&1gA11&1

’
1

2

g���������
VT3

p
X

vF;L;L0

�&1�L; vF�00

�
V � Aa�L� L0�Ta 0

0 � �V � Aa�L� L0�TTa

 !

�&1�L0; vF�: (63)

In coordinate space, the sum of Eqs. (62) and (63) be-
comes Eq. (60).

Subleading terms of order O�1=�� in the high-density
effective theory are of the form
LO�1=�� � �
1

2

X
vF

�&1�X; vF�00
1

2�

D2
? �

g
2<

�'Fa?�'Ta 0

0 �D2
C? �

g
2<

�'Fa?�'T
T
a

 !
&1�X; vF�; (64)
cf. Eq. (2) of Ref. [17]. Here, D�
? 
 f0; �1� vFvF� � Dg,

and similarly for D�
C?. The commutator of two gamma

matrices is defined as usual, <�' 
 �i=2��0�; 0'	, and
Fa?�'Ta 
 �i=g��D?�;D?'	. As we shall see in the fol-
lowing, this contribution arises from the term
�g2 �&1A12G22A21&1 in Eq. (53).

First, note that, with the projectors (25), the irrelevant
quark propagator G22 contains quark as well as antiquark
modes. In order to derive Eq. (64), however, we have to
discard the quark and keep only the antiquark modes. In
essence, this is a consequence of the simpler choice (58)
for the projectors P 1;2 in the high-density effective theory
of Refs. [14–19]. In this case, the propagator G22 may be
simplified. A calculation quite similar to that of Eqs. (62)
and (63) now leads (in coordinate space) to

G �1
22 
 G�1

0;22 � gA22

’ 00)3
2�� i �V �D 0

0 2�� iV �DC

 !
; (65)

where )3 acts in Nambu-Gor’kov space. This result may
be readily inverted to yield

G 22 ’ 00)3
1

2�

X1
n�0

1

�2��n
�i �V �D 0

0 iV �DC

� �n
: (66)

Utilizing the projectors (58), one may also derive a sim-
pler form for gA12 and gA21. Consider, for instance, the
term �&1gA12&2. We follow the same steps that led to
Eqs. (62), i.e., we assume that the spinors �&1 and &2

reside in the same patch, such that k̂ ’ q̂ ’ vF. This
allows to derive the identity ��

kA6
a�K �Q���

q ’

��
kA6

a
?�K �Q�, where A�a? 
 f0; �1� vFvF� �Aag. Now

introduce the 4-vectors L�, L0�, as in Eq. (63), which
leads to
1

2
�&1gA12&2 ’

1

2

g���������
VT3

p
X

vF;L;L0

�&1�L; vF�

�
A6 a?�L� L0�Ta 0

0 �A6 a?�L� L0�TTa

 !

�&2�L
0; vF�: (67)
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We may add a term L6 ? to the diagonal Nambu-Gor’kov
components, which trivially vanishes between spinors �&1

and &2. This has the advantage that, in coordinate space,

gA12 ’
iD6 ? 0
0 iD6 C?

� �
; (68)

i.e., this term transforms covariantly under gauge trans-
formations, and no longer as a gauge field. A similar
calculation for gA21 gives the result gA21 

gA12. Combining Eqs. (66) and (68), the term
�g2 �&1A12G22A21&1 corresponds to the following con-
tribution in the Lagrangian,

�
1

2

X
vF

�&1�X; vF�00

D6 ? 0

0 �D6 C?

 !
1

2�

X1
n�0

1

�2��n

�
�i �V �D 0

0 iV �DC

 !
n D6 ? 0

0 D6 C?

 !
&1�X; vF�:

(69)

Taking only the n � 0 term, and utilizing 0�0' 
 g�' �
i<�', one arrives at Eq. (64). Note that our definition for
transverse quantities, e.g., A�? 
 f0; �1� vFvF� �Ag,
slightly differs from that of Refs. [14,15], where A�? 

A� � V�V � A. However, both definitions agree when
sandwiched between spinors �&1;2 and &2;1.

At order O�1=�2�, besides the n � 1 term in Eq. (69),
there are also four-fermion interaction terms, cf. Eqs. (3–
5) of Ref. [17]. In the effective action (53), these contri-
butions arise from the term JB,22JB which originates
from integrating out hard gluons. (Since this is not done
explicitly in the construction of the high-density effective
theory in Refs. [14–19], this term is not automatically
generated, but has to be added ‘‘by hand.’’) To leading
order, this term corresponds to the exchange of a hard
gluon between two quarks, cf. the first diagram on the
right-hand side of Fig. 16. If the quarks are close to the
Fermi surface, the energy in the hard gluon propagator
can be neglected, and ,0;22 & 1=�2

g. Since 1=�2
g * 1=�2,

the contribution from hard gluon exchange is of order
O�1=�2�. Four-fermion interactions also receive correc-
tions at one-loop order, cf. Fig. 5 of Ref. [15]. In Eq. (53),
they are contained in the term Tr ln,�1

22 , see the last
diagram in Fig. 15.

Besides the quark terms in the Lagrangian of the high-
density effective theory [14–19], there are also contribu-
tions from gluons. The first is the standard Yang-Mills
Lagrangian ��1=4�Fa�'F

�'
a , cf. Eq. (1) of Ref. [17]. This

part is contained in the term SA�A1	 in Eq. (53), cf.
Eq. (9). The second contribution is a mass term for
magnetic gluons,

L mg
� �

m2
g

2
Aa �Aa; (70)

cf. Eq. (19) of Ref. [26], Eq. (18) of Ref. [15], or Eq. (27) of
114029
Ref. [16], where mg is the gluon mass parameter (6). This
term has to be added ‘‘by hand’’ in order to obtain the
correct value for the HDL gluon polarization tensor
within the high-density effective theory. In Eq. (53)
this contribution arises from the n � 2 term of the ex-
pansion (36) of Tr lnG�1

22 . The gluon polarization tensor
has contributions from particle-hole and particle-
antiparticle excitations. The latter give rise to Lmg

.
While this term arises naturally within our derivation
of the effective theory, it does not in the high-density
effective theory of Refs. [14–19], because only anti-
quarks, but not irrelevant quark modes, are explic-
itly integrated out. Irrelevant quark modes can then
only be taken into account by adding the appropriate
counterterms.

Sometimes, the full HDL action is added to the
Lagrangian of the high-density effective theory, cf.
Eq. (8) of Ref. [17]. This procedure requires a word
of caution. For instance, an important contribution
to the HDL polarization tensor arises from particle-hole
excitations around the Fermi surface. Such excitations
are still relevant degrees of freedom in the effective
theory. However, in order for them to appear in the gluon
polarization tensor they would first have to be inte-
grated out. Therefore, strictly speaking such contribu-
tions cannot occur in the tree-level effective action.
Of course, in an effective theory one is free to add
whatever contributions one deems necessary. However,
one has to be careful to avoid double counting. As will
be shown in Sec. IV, the full HDL polarization tensor
will appear quite naturally in an approximate solution
to the Dyson-Schwinger equation for the gluon prop-
agator, however, not at tree- but only at (one-)loop
level.

It was claimed in Refs. [15–17] that a consistent power-
counting scheme within the high-density effective theory
requires �? � �k. In contrast, we shall show in Sec. IV
that a computation of the gap parameter to subleading
order requires �q 
 �k � �? 
 �g. This means that
irrelevant quark modes become local on a scale lq �
1=�q, while antiquark modes become local already on
a much smaller scale, l �q � 1=�, cf. discussion at the
end of Sec. II. As mentioned in the introduction, for
two different scales power counting of terms in the
effective action becomes a nontrivial problem. While
the high-density effective theory of Refs. [14–19] con-
tains effects from integrating out antiquarks, i.e.,
from the scale 1=�, the effective action (53) in addition
keeps track of the influence of irrelevant quark modes,
i.e., from physics on the scale 1=�q � 1=�. Since all
terms in the effective action (53) are kept, one can be
certain not to miss any important contribution just be-
cause the naive dimensional power-counting scheme is
invalidated by the occurrence of two vastly different
length scales.
-15
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IV. CALCULATION OF THE QCD GAP
PARAMETER

In this section, we demonstrate how the effective the-
ory derived in Sec. II can be applied to compute the gap
parameter of color-superconducting quark matter in
mean-field approximation and to subleading order in the
strong coupling constant g. For the sake of definiteness,
we shall consider a spin-zero, two-flavor color supercon-
ductor. Our calculation will be based on the assumption
�q & g�� �g & �, which is motivated by the fact that
the typical gluon momenta are ��m2

g��
1=3 and thus para-

metrically larger than the typical quark momenta ��,
see Introduction.

A. CJT formalism for the effective theory

The gap parameter in superconducting systems is not
accessible by means of perturbation theory; one has to
apply nonperturbative, self-consistent, many-body re-
summation techniques to calculate it. For this purpose,
it is convenient to employ the CJT formalism [24]. The
first step is to add source terms to the effective action (53),

Seff�A1; �&1;&1	 ���! Seff�A1; �&1;&1	 � J1A1 �
1

2
A1K1A1

�
1

2
� �&1H1 � �H1&1 � �&1K1&1�;

(71)

where we employed the compact matrix notation defined
in Eq. (22). J1, �H1, and H1 are local source terms for the
soft gluon and relevant quark fields, respectively, while
K1 and K1 are bilocal source terms. The bilocal source
K1 for quarks is also a matrix in Nambu-Gor’kov space.
Its diagonal components are source terms which couple
quarks to antiquarks, while its off-diagonal components
couple quarks to quarks. The latter have to be introduced
for systems which can become superconducting, i.e.,
where the ground state has a nonvanishing diquark ex-
pectation value, h 1 1i � 0.

One then performs a Legendre transformation with
respect to all sources and arrives at the CJT effective
action [24,27]

'�A; �&;&;,;G	 � Seff�A; �&;&	 �
1

2
Trg ln,

�1

�
1

2
Trg�D�1,� 1� �

1

2
Trq lnG

�1

�
1

2
Trq�G�1G � 1�

� '2�A; �&;&;,;G	: (72)

Here, Seff�A; �&;&	 is the tree-level action defined in
Eq. (53), which now depends on the expectation values
A 
 hA1i, �& 
 h �&1i, and & 
 h&1i for the one-point
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functions of soft gluon and relevant quark fields. In a
slight abuse of notation, we use the same symbols for
the expectation values as for the original fields, prior to
integrating out modes. This should not lead to confusion,
as the original fields no longer occur in any of the follow-
ing expressions.

The quantities D�1 and G�1 in Eq. (72) are the inverse
tree-level propagators for soft gluons and relevant quarks,
respectively, which are determined from the effective
action Seff , see below. The quantities , and G are the
expectation values for the two-point functions, i.e., the
full propagators, of soft gluons and relevant quarks. The
functional '2 is the sum of all two-particle irreducible
(2PI) diagrams. These diagrams are vacuum diagrams,
i.e., they have no external legs. They are constructed from
the vertices defined by the interaction part of Seff , linked
by full propagators ,, G. The expectation values for the
one- and two-point functions of the theory are deter-
mined from the stationarity conditions

0 �
�'
�A

�
�'

� �&
�
�'
�&

�
�'
�,

�
�'
�G

: (73)

The first condition yields the Yang-Mills equation for the
expectation value A of the soft gluon field. The second and
third condition correspond to the Dirac equation for &
and �&, respectively. The effective action (53) contains a
multitude of terms which depend on A, �&, &, and thus the
Yang-Mills and Dirac equations are rather complex,
wherefore we refrain from explicitly presenting them
here. Nevertheless, for the Dirac equation the solution is
trivial, since �&1, &1 are Grassmann-valued fields, and
their expectation values must vanish identically, �& �

h �&1i � & � h&1i 
 0. On the other hand, for the Yang-
Mills equation, the solution A is in general nonzero but, at
least for the two-flavor color superconductor considered
here, it was shown [28,29] to be parametrically small,
A��2=�g2��, where � is the color-superconducting gap
parameter. Therefore, to subleading order in the gap
equation it can be neglected.

The fourth and fifth condition (73) are Dyson-
Schwinger equations for the soft gluon and relevant quark
propagator, respectively,

,�1 � D�1 �/; (74a)

G�1 � G�1 �3; (74b)

where

/ 
 �2
�'2

�,T ; (75a)

3 
 2
�'2

�GT (75b)

are the gluon and quark self-energies, respectively. The
Dyson-Schwinger equation for the relevant quark propa-
gator is a 2� 2 matrix equation in Nambu-Gor’kov
-16



GENERAL EFFECTIVE ACTION FOR HIGH-DENSITY. . . PHYSICAL REVIEW D 70, 114029 (2004)
space,

G �1 �
�G�	�1 0

0 �G�	�1

� �
�

3� 4�

4� 3�

� �
; (76)

where 3� is the regular self-energy for quarks and 3�

the corresponding one for charge-conjugate quarks.
The off-diagonal self-energies 4�, the so-called gap
matrices, connect regular with charge-conjugate quark
degrees of freedom. A nonzero 4� corresponds to
the condensation of quark Cooper pairs. Only two of
the four components of this matrix equation are indepen-
dent, say �G�	�1 � 3� and 4�, the other two can be
obtained via �G�	�1 �3� � Cf�G�	�1 � 3�gTC�1,
4� 
 00�4

�	y00. Equation (76) can be formally solved
for G [30],

G 

G� 5�

5� G�

� �
; (77)

where

G � 
 f�G�	�1 �3� �4���G�	�1 � 3���14�g�1

(78)

is the propagator describing normal propagation of qua-
siparticles and their charge-conjugate counterpart, while

5� 
 ���G�	�1 � 3���14�G� (79)

describes anomalous propagation of quasiparticles, which
is possible if the ground state is a color-superconducting
quark-quark condensate, for details, see Ref. [2].

The tree-level gluon propagator is defined as

D�1 
 �
�2Seff�A; �&;&	

�A�A
: (80)

Since we ultimately evaluate the tree-level propagator at
the stationary point of ', Eq. (73), where �& � & � 0, we
may omit all terms in Seff , Eq. (53), which are propor-
tional to the quark fields. The only terms which contribute
to the tree-level gluon propagator are therefore

D�1 
 �
�2

�A�A

�
SA �

1

2
Trq lnG

�1
22 �

1

2
Trg ln,

�1
22

�
:

(81)

Using the expansions (34), (36), (50), and (51), and ex-
ploiting the cyclic property of the trace, one finds

D�1 � �
�2SA
�A�A

�
g
2
Trq

�
�G22

�A
�A22

�A

�

�
1

2
Trg

�
�,22

�A
�/22

�A
� ,22

�2/22

�A�A

�
: (82)

In order to proceed, note that the Dyson-Schwinger
Eqs. (74) are evaluated at the stationary point of the
effective action, where �& � & � 0, A ’ 0. For A � 0,
the first term yields the free inverse propagator for soft
114029
gluons, ,�1
0;11, cf. Eq. (38), plus a contribution from the

Faddeev-Popov determinant, ��2Trgh lnW
�1=�A�A�A�0.

The contributions from the three- and four-gluon vertex
vanish for A � 0. Furthermore, according to Eq. (23),

�A22�K;Q�
�A�P�

�
1���������
VT3

p '̂��4�K;Q�P 

~'�K;Q;P�: (83)

This is a matrix in fundamental color, flavor, and Nambu-
Gor’kov space, as well as in the space of quark 4-
momenta K, Q. It is a vector in Minkowski and adjoint
color space ('̂ carries a Lorentz vector and a gluon color
index), as well as in the space of gluon 4-momenta P. We
evaluate ��G22=�A�A�0 using the expansion (34). Only
the term for n � 1 survives when taking A � 0. For �& �
& � 0, we have /B � 0, cf. Fig. 9, and we only need to
consider /22 � /loop �/V . Then, the term V �3� 


��/V =�A�A�0 corresponds to a triple-gluon vertex, cf.
Fig. 11, where two hard gluons couple to one soft gluon.
The term ��/loop=�A�A�0 is a correction to this vertex: it
couples two hard gluons to a soft one through an (irrele-
vant) quark loop, cf. Fig. 10. According to arguments well
known from the HTL/HDL effective theory, this vertex
correction can never be of the same order as the tree-level
vertex V �3�, since the two incoming gluons are hard. We
therefore neglect ��/loop=�A�A�0 in the following.
Similarly, V �4� 
 ��2/V =�A�A�A�0 is a four-gluon ver-
tex, cf. Fig. 11, where two hard gluons couple to two soft
ones, and ��2/loop=�A�A�A�0 is the one-(quark-)loop
correction to this vertex, cf. Fig. 10. Applying the same
arguments as above, we only keep V �4�. Arguments from
the HTL/HDL effective theory also tell us that to leading
order we may approximate ,22 ’ ,0;22. Finally, utiliz-
ing the same arguments we approximate �,22=�A ’
�,0;22V

�3�,0;22. Then, the inverse tree-level gluon
propagator of Eq. (82) becomes

D�1 � ,�1
0;11 �

g2

2
Trq�G0;22

~'G0;22
~'�

�
1

2
Trg�,0;22V

�3�,0;22V
�3�� �

1

2
Trg�,0;22V

�4��

�
�2Trgh lnW

�1

�A�A

��������A�0
: (84)

The second term represents an (irrelevant) quark loop,
while the third term is a hard gluon loop. The fourth term
is a hard gluon tadpole. Finally, the last term in Eq. (84)
corresponds to a ghost loop necessary to cancel loop
contributions from unphysical gluon degrees of freedom.
Note that, in the effective theory, loop contributions
involving irrelevant quarks and hard gluons occur al-
ready in the tree-level action (53). Therefore, such loops
also arise in the inverse tree-level propagator (84) for the
soft gluons of the effective theory. For the projection
operators (42) and (54) the inverse tree-level propagator
-17
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FIG. 18. Diagrammatic representation of '2, Eq. (90).
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(84) is precisely the HTL/HDL-resummed inverse gluon
propagator. For small temperatures, T � �, the contri-
bution from the gluon and ghost loops is negligible as
compared to that from the quark loop,

D�1 ’ ,�1
0;11 �

g2

2
Trq�G0;22

~'G0;22
~'�: (85)

The inverse tree-level quark propagator is defined as

G�1 
 �2
�2Seff�A; �&;&	

� �&�&
: (86)

For �& � & � 0, the last term in Eq. (53) does not con-
tribute to G�1, because it has at least four external quark
legs, and the two functional derivatives �=� �&, �=�&
amputate only two of them. The first and the third term
in Eq. (53) do not depend on �&, & at all, therefore

G�1 � G�1
0;11 � gB�A	 �

�2Trg ln,
�1
22

� �&�&
: (87)

Using the expansion formulas (50) and (51) and the fact
that /22 depends on �&, & only through /B, we obtain

�2Trg ln,
�1
22

� �&�&
� Trg

�
,22

�2/B

� �&�&

�
: (88)

We have exploited the fact that this expression is eval-
uated at �& � & � 0, i.e., terms with external quark legs
will eventually vanish. The trace runs only over adjoint
colors, Lorentz indices, and (hard) gluon 4-momenta.
Since ,22 is a hard gluon propagator, the contribution
from /22 to ,22 may be neglected to the order we are
computing, and we may set ,22 ’ ,0;22. Furthermore,
��2/B=� �&�&�A�0 
 �g2~'G0;22

~', cf. Fig. 9. At �& �
& � 0, A ’ 0 we are left with

G�1 � G�1
0;11 � g2Trg�,0;22

~'G0;22
~'�: (89)

As was the case for the tree-level gluon propagator, also
the tree-level quark propagator receives a loop contribu-
tion; here it arises from a loop involving an irrelevant
quark and a hard gluon line. The term ~'G0;22

~' under the
gluon trace remains a matrix in the quark indices, i.e.,
fundamental color, flavor, Dirac, and quark 4-momenta.

We now proceed to solve the Dyson-Schwinger
Eqs. (74) for the soft gluon and relevant quark propagator.
To this end, we have to determine '2. Of course, it is not
feasible to consider all possible 2PI diagrams. The ad-
vantage of the CJT formalism is that any truncation of '2

defines a meaningful, self-consistent many-body approxi-
mation for which one can solve the Dyson-Schwinger
Eqs. (74). In our truncation of '2 we only take into
account two-loop diagrams which are 2PI with respect
to the soft gluon and relevant quark propagators ,, G,
114029
'2 � �
g2

4
Trq;g�G~'G~',� �

g2

2
Trq;g�G~'G0;22

~',�

�
g2

4
Trq;g�G~'G~',0;22�: (90)

The traces now run over quark as well as over gluon
indices. Consider, for instance, the term G~'G~'. It is a
matrix in the space of fundamental color, flavor, Dirac
and quark 4-momenta, of which the trace is taken through
Trq. In addition, due to the two factors ~' it carries two
Lorentz-vector, adjoint-color, and gluon-4-momenta in-
dices. The trace Trg contracts these indices with the
corresponding ones from the gluon propagator ,.

The diagrams corresponding to Eq. (90) are shown in
Fig. 18. The first two terms are constructed from the
quark-gluon coupling � �&gB&. Using Eq. (33), one
may either obtain an ordinary quark-gluon vertex
�g �&A&, involving one soft gluon and two relevant
quark legs, or a vertex �g2 �&AG22A&, with (at least)
two soft gluon legs and two relevant quark legs. To lowest
order, we approximate G22 ’ G0;22, which neglects verti-
ces with more than two soft gluon legs. Taking two
ordinary quark-gluon vertices and tying them together
to obtain a 2PI two-loop diagram, we arrive at the first
term in Eq. (90), or the first diagram in Fig. 18. Taking
one of the two-gluon-two-quark vertices and tying the
legs together, one obtains the second term in Eq. (90), or
the second diagram in Fig. 18, respectively. Finally, the
third term/diagram arises from the last term in Eq. (53).
To lowest order, this corresponds to a four-quark vertex
�g2 �& ~'&,0;22

�& ~'&. Tying the quark legs together to
form a 2PI diagram, one obtains the corresponding term/
diagram in Eq. (90)/Fig. 18.

The combinatorial factors in front of the various terms
in Eq. (90) are explained as follows. In the first diagram,
there are two ordinary quark-gluon vertices. According to
Eq. (53), each comes with a factor 1=2. Moreover, since
there are two vertices, the diagram is, in the perturbative
sense, a diagram of second order, which causes an addi-
tional factor 1=2 [31]. Finally, there are two possibilities
to connect the quark lines between the two vertices. In
total, we then have a prefactor ��1=2�2 � 1=2� 2 �
�1=4, where the minus sign arises from the fermion
loop. The second diagram arises from the two-quark-
two-gluon vertex, which already comes with a prefactor
�1=2 in Eq. (53). It is perturbatively of first order, and
there is only one possibility to tie the quark and gluon
lines together, so there is no additional combinatorial
-18
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factor (and no additional minus sign) for this diagram.
Finally, the third diagram arises from the four-quark
vertex, �1=2�JB,0;22JB, in Eq. (53). This vertex comes
with a factor 1=2 and is perturbatively of first order.
However, there are two additional factors 1=2 residing
in JB, since JB � �1=2� �& '̂&, cf. Eq. (45). Again, there
are two possibilities to tie the quark lines together, so
that, in total, we have a prefactor �1=2� �1=2�2 � 2 �
�1=4, where the minus sign again stands for the quark
loop.

At this point, it is instructive to compare '2, Eq. (90),
in the effective theory with 'QCD

2 which one would have
written down in QCD at the same loop level. 'QCD

2 would
be equivalent to the first diagram of Fig. 18, but now the
quark and gluon lines represent the full propagators for all
momentum modes, relevant and irrelevant as well as soft
and hard. In order to compare with '2 of the effective
theory, we decompose the quark propagators into relevant
and irrelevant modes, and the gluon propagator into soft
and hard modes. One obtains the six diagrams shown in
Fig. 19. The first three are precisely the same that occur in
'2 of the effective theory, including the combinatorial
prefactors. The last three diagrams do not occur in '2 of
the effective theory, because they are not 2PI with respect
to the relevant quark propagator G and the soft gluon
propagator ,. Nevertheless, they are still included in the
CJT effective action of the effective theory, Eq. (72):
opening the relevant quark line of the fourth diagram,
we recognize the loop contribution to the tree-level quark
propagator G�1, cf. Eq. (89). Now consider the fifth term
in Eq. (72): here, this loop contribution to G�1 is multi-
plied with G and traced over, which yields the fourth
diagram in 'QCD

2 . Similarly, opening the soft gluon line
of the fifth diagram, we identify this diagram as the
irrelevant quark-loop contribution to the tree-level gluon
propagator D�1, cf. Eq. (85). The third term in Eq. (72),
where this contribution is multiplied by , and traced over,
then yields the fifth diagram of 'QCD

2 . Finally, the sixth
diagram resides in the term �Trg ln,

�1
22 of the tree-level

effective action Seff , cf. Fig. 15. Therefore, in principle,
the CJT effective action (72) for the effective theory
contains the same information as the corresponding one
for QCD. However, while in QCD self-consistency is
Γ2

QCD

+

+ +

= + 2

+ 2

FIG. 19. Diagrammatic representation of 'QCD
2 , after decom-

posing quark lines into relevant and irrelevant, as well as gluon
propagators into soft and hard contributions.
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maintained for all momentum modes via the solution of
the stationarity condition (73), in the effective theory
self-consistency is only required for the relevant quark
and soft gluon modes. These are the only dynamical
degrees of freedom in the CJT effective action; the irrele-
vant fermion and hard gluon modes, which were inte-
grated out, only appear in the vertices of the tree-level
action (53). In this sense, the effective theory provides a
simplification of the full problem.

B. Dyson-Schwinger equations for relevant quarks
and soft gluons

After having specified '2 in Eq. (90), we are now in the
position to write down the Dyson-Schwinger Eqs. (74)
explicitly. For the full inverse propagator of soft gluons
we obtain with Eqs. (74a), (75a), (85), and (90)

,�1 � ,�1
0;11 �

g2

2
�Trq�G0;22

~'G0;22
~'� � 2Trq�G~'G0;22

~'�

� Trq�G~'G~'�	: (91)

The first term in square brackets takes into account the
effect of quark-antiquark excitations as well as quark-
hole excitations far from the Fermi surface. The second
term is the contribution from excitations where one quark
is close to the Fermi surface (a relevant quark) while the
second is far from the Fermi surface or an antiquark (an
irrelevant quark). The relevant quark propagator G can
have diagonal elements in Nambu-Gor’kov space, corre-
sponding to normal propagation of quasiparticles, as well
as off-diagonal elements, corresponding to anomalous
propagation of quasiparticles, cf. Eq. (77). However, in
the second term in square brackets the latter contribution
is absent, because G0;22 is purely diagonal in Nambu-
Gor’kov space, cf. Eq. (19). This is different for the last
term in square brackets, which corresponds to quark-hole
excitations close to the Fermi surface. Both quark propa-
gators have to be determined self-consistently and may
have off-diagonal elements in Nambu-Gor’kov space.
Consequently, the trace over Nambu-Gor’kov space gives
two contributions, a loop where both quarks propagate
normally, and another one where they propagate anom-
alously. Diagrams of this type have been evaluated in
Ref. [32] and lead to the Meissner effect for gluons in a
color superconductor.

For the full inverse propagator of relevant quarks we
obtain with Eqs. (74b), (75b), (89), and (90)

G�1 � G�1
0;11 � g2�Trg�,0;22

~'G0;22
~'� � Trg�,~'G0;22

~'�

� Trg�,0;22
~'G~'� � Trg�,~'G~'�	: (92)

The first two terms in square brackets do not have off-
diagonal components in Nambu-Gor’kov space. They
contribute only to the regular quark self-energy. The
other two terms in square brackets have both diagonal
and off-diagonal components in Nambu-Gor’kov space.
-19
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The diagonal components contribute to the regular quark
self-energy, in particular, the fourth term leads to the
quark wave-function renormalization factor computed
first in Ref. [33]. It gives rise to non-Fermi liquid behavior
[11]. The off-diagonal components enter the gap equation
for the color-superconducting gap parameter.

The system of Eqs. (91) and (92) has to be solved self-
consistently for the full propagators of quarks and gluons.
However, as was shown in Ref. [34], in order to extract the
color-superconducting gap parameter to subleading order
it is sufficient to consider the gluon propagator in HDL
approximation; corrections arising from the color-
superconducting gap in the quasiparticle spectrum are
of sub-subleading order in the gap equation. For our
purpose this means that it is not necessary to self-
consistently solve Eq. (91) together with Eq. (92); we
may approximate G on the right-hand side of Eq. (91)
by G0;11. In essence, this is equivalent to considering only
the first term on the right-hand side of Eq. (92) when
solving Eq. (91). Of course, under this approximation the
effect of the regular quark self-energy (leading to wave-
function renormalization) and of the anomalous quark
self-energy (which accounts for the gap in the quasipar-
ticle excitation spectrum) are neglected.
114029
With this approximation, and using G0 
 G0;11  
G0;22, we may combine the terms in Eq. (91) to give

,�1 ’ ,�1
0;11 �

g2

2
Trq�G0

~'G0
~'�: (93)

Taking the gluon cutoff scale �g to fulfill g�� �g & �,
soft gluons are defined to have momenta of order g�. We
compute the fermion loop in Eq. (93) under this assump-
tion (taking the soft gluon energy to be of the same order
of magnitude as the gluon momentum). We then realize
that the soft gluon propagator determined by Eq. (93) is
just the gluon propagator in HDL approximation. We
indicate this fact in the following by a subscript, , 

,HDL. Armed with this (approximate) solution of the
Dyson-Schwinger Eq. (91) we now proceed to solve
Eq. (92). We consider the two independent components
�G�	�1 �3� and 4� in Nambu-Gor’kov space sepa-
rately. Because of translational invariance, it is conve-
nient to define �G�	�1�K;Q� 
 �1=T��G�	�1�K���4�K;Q,

3��K;Q� 
 �1=T�3��K���4�K;Q, and using Eqs. (17), (19),
(39), and (83), we obtain the Dyson-Schwinger equation
for �G�	�1 �3�,
�G�	�1�K� �3��K� � �G�0;11	
�1�K� � g2

T
V

X
Q

f�,0;22	
�'
ab �K �Q� � �,HDL	

�'
ab �K �Q�g0�TaG0;22�Q�0'Tb

� g2
T
V

X
Q

f�,0;22	
�'
ab �K �Q� � �,HDL	

�'
ab �K �Q�g0�TaG��Q�0'Tb: (94)
Note that the first sum over Q runs over irrelevant quark
momenta, 0 � q < ���q and ���q < q <1, while
the second sum runs over relevant quark momenta, ��
�q � q � ���q. There is no double counting of gluon
exchange contributions, since the hard gluon propagator
,0;22 has support only for gluon momenta jk� qj>�g,
while the HDL propagator is restricted to gluon momenta
jk� qj � �g. To subleading order in the gap equation,
we do not have to solve this Dyson-Schwinger equation
self-consistently. It is sufficient to use the approximation
G� ’ G�0;11 on the right-hand side of Eq. (94) and to keep
only the last term which, as discussed above, is respon-
sible for non-Fermi liquid behavior in cold, dense quark
matter. The net result is then simply a wave-function
renormalization for the free quark propagator G�0;11 [33],

�G�	�1�K� �3��K� ’ �G�0;11	
�1�K� � �g2k000 ln

M2

k20


 �Z�1�k0�k0 ��	00 � 0 � k; (95)

where �g 
 g=�3
���
2

p
�� and M2 � �3�=4�m2

g, with the
gluon mass parameter mg defined in Eq. (6). Neglecting
effects from the finite lifetime of quasiparticles [30],
which are of sub-subleading order in the gap equation,
the wave-function renormalization factor is

Z�k0� �
�
1� �g2 ln

M2

k20

�
�1
: (96)

Because of translational invariance, it is convenient to
define 4��K;Q� 
 �1=T�4��K���4�K;Q and 5��K;Q� 

T5��K���4�K;Q, and the Dyson-Schwinger equation for
4��K� becomes

4��K� � g2
T
V

X
Q

f�,0;22	
�'
ab �K �Q� � �,HDL	

�'
ab �K �Q�g

� 0��T
a�T5��Q�0'T

b: (97)

Here, the sum runs only over relevant quark momenta,
���q � q � ���q. This is the gap equation for the
color-superconducting gap parameter within our effective
theory. There is no contribution from irrelevant fermions,
since their propagator is diagonal in Nambu-Gor’kov
space.

While the gluon cutoff was taken to be �g & �, so that
soft gluons have typical momenta of order g�, so far we
-20
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have not specified the magnitude of �q. In weak coupling,
the color-superconducting gap function is strongly
peaked around the Fermi surface [6–8]. For a
subleading-order calculation of the gap parameter, it is
therefore sufficient to consider as relevant quark modes
those within a thin layer of width 2�q around the Fermi
surface. As mentioned previously, for the following our
principal assumption is �q & g�� �g & �. As we
shall see below, this assumption is crucial to identify
sub-subleading corrections to the gap Eq. (97), which
arise, for instance, from the pole of the gluon propagator.
Note that this assumption is different from that of
Refs. [15,17], where it is assumed that �q ’ �g.

For a two-flavor color superconductor, the color-flavor-
spin structure of the gap matrix is [2]

4��K� � J3)205�
�
k(��q � jk��j���K�; (98)

where �J3�ij 
 �i�ij3 and �)2�fg 
 �i�fg represent the
fact that quark pairs condense in the color-antitriplet,
flavor-singlet channel. The Dirac matrix 05 restricts
quark pairing to the even-parity channel [which is the
preferred one due to the U�1�A anomaly of QCD]. In the
effective action (53), antiquark and irrelevant quark de-
grees of freedom are integrated out. The condensation of
antiquark or irrelevant quark pairs, while in principle
possible, is thus not taken into account; the bilocal source
terms in Eq. (71) only allow for the condensation of
relevant quark degrees of freedom. The condensation of
antiquarks or irrelevant quarks could also be accounted
for, if one introduces bilocal source terms already in
Eq. (13), i.e., prior to integrating out any of the quark
degrees of freedom.While there is in principle no obstacle
in following this course of action, it is, however, not
really necessary if one is interested in a calculation of
the color-superconducting gap parameter to subleading
order in weak coupling: antiquarks contribute to the gap
equation beyond subleading order [35], and the gap func-
tion for quarks falls off rapidly away from the Fermi
surface, i.e., in the region of irrelevant quark modes,
and thus also contributes at most to sub-subleading order
to the gap equation. Consequently, the Dirac structure of
the gap matrix (97) contains only the projector ��

k onto
positive energy states. The theta function accounts for the
fact that the gap function ��K� pertains only to relevant
quark modes.

Inserting Eq. (95) and the corresponding one for
�G�	�1 �3�, as well as Eq. (98), into the definition
(79) for the anomalous quark propagator, one obtains

5��Q� � J3)205�
�
q (��q � jq��j�

��Q�

�q0=Z�q0�	2 � �2q
:

(99)

One now plugs this expression into the gap Eq. (97),
multiplies both sides with J3)205�

�
k , and traces over
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color, flavor, and Dirac degrees of freedom. These traces
simplify considerably since both hard and HDL gluon
propagators are diagonal in adjoint color space,
�,0;22	

�'
ab 
 �ab,

�'
0;22, �,HDL	

�'
ab 
 �ab,

�'
HDL. The result

is an integral equation for the gap function ��K�,

��K� �
g2

3

T
V

X
Q

�,�'
0;22�K �Q� �,�'

HDL�K �Q�	

� Trs��
�
k0��

�
q 0'�

��Q�

�q0=Z�q0�	2 � �2q
: (100)

The sum over Q runs only over relevant quark momenta,
jq��j � �q. Also, the 3-momentum k is relevant,
jk��j � �q.

C. Solution of the gap equation

We now turn towards the explicit solution of the gap
Eq. (100). We shall see that our assumption �q � �g

provides a very efficient tool to power count the various
contributions to this equation.

In pure Coulomb gauge, both the hard gluon and the
HDL propagators have the form

,00�P� � ,‘�P�; ,0i�P� � 0;

,ij�P� � ��ij � p̂ip̂j�,t�P�; (101)

where ,‘;t are the propagators for longitudinal and trans-
verse gluon degrees of freedom. For hard gluons

,‘
0;22�P� � �

1

p2 ; (102a)

,t
0;22�P� � �

1

P2 ; (102b)

while for soft, HDL-resummed gluons

,‘
HDL�P� � �

1

p2 �/‘
HDL�P�

; (103a)

,t
HDL�P� � �

1

P2 �/t
HDL�P�

; (103b)

with the HDL self-energies [23]

/‘
HDL�p0; p� � �3m2

g

�
1�

p0

2p
ln
�
p0 � p
p0 � p

��
; (104a)

/t
HDL�p0; p� �

3

2
m2
g

�
p2
0

p2 �

�
1�

p2
0

p2

�
p0

2p
ln
�
p0 � p
p0 � p

��
:

(104b)

The HDL propagators (103) have quasiparticle poles at
p0 � �!‘;t�p�, and a cut between p0 � �p and p0 � p
[23]. The gluon energy on the quasiparticle mass shell is
always larger than the gluon mass parameter, !‘;t�p� �
mg, where the equality holds for zero momentum, p � 0.
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FIG. 21. Same as in Fig. 20, but for magnetic hard gluon
exchange. Now also the gluon propagator has poles at k0 � p in
the complex q0 plane. These are further away from the imagi-
nary axis than the poles ~�q of the quark propagator, because for
our choice of quark and gluon cutoffs, �q � �g, we have ~�q &

�q � �g � p.
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We first perform the Matsubara sum, using the method
of contour integration in the complex q0 plane [23,31],

T
X
n

f�q0� 

1

2�i

I
C
dq0

1

2
tanh

�
q0
2T

�
f�q0� (105)

where the contour C consists of circles running around
the poles !f

n � �2n� 1��T of tanh�q0=�2T�	 on the
imaginary q0 axis, cf. Fig. 20(a). Inserting the propaga-
tors (102) and (103) into Eq. (100), we have to compute
four distinct terms. The first one arises from the exchange
of static electric hard gluons. Since ,‘

0;22�P� does not
depend on p0 � k0 � q0, only the quark propagator gives
rise to a pole of f�q0�, cf. Fig. 20(b). After deforming the
contour and closing it at infinity as shown in Fig. 20(b),
one employs the residue theorem to pick up the poles of
the quark propagator,

T
X
n

,‘
0;22�P�

��Q�

�q0=Z�q0�	
2 � �2q

�
1

p2 tanh
�
~�q
2T

�Z2�~�q�

4~�q
���~�q;q� ����~�q;q�	;

(106)

with ~�q 
 �qZ�~�q�. Here, we have used the fact that the
quark wave-function renormalization factor is an even
function of its argument, Z�q0� 
 Z��q0�, cf. Eq. (96).
An essential assumption in order to derive Eq. (106) is
that the gap function ��Q� is analytic in the complex q0
plane. This assumption will also be made in all subse-
quent considerations.

By the same method one computes the second term in
Eq. (100), corresponding to magnetic hard gluon ex-
change. This is slightly more complicated, since not
only the quark propagator but also ,t

0;22�P� has poles in
the complex q0 plane. The latter are located at p0 � �p,
i.e., q0 � k0 � p, cf. Fig. 21. The external quark energy k0
is fixed and, prior to analytic continuation k0 ! ~�k � iB
to the quasiparticle mass shell, is equal to one particular
fermionic Matsubara frequency, cf. Fig. 21. The residue
theorem now yields four contributions, two from the
q 0

ε q
~

ε q
~ε q

~
ε q
~

C C

(a) (b)

(2n+1)ω =f
n π T

FIG. 20. (a) The contour C in Eq. (105) encloses the poles of
tanh�q0=�2T�	 on the imaginary q0 axis. (b) Deforming the
contour C and adding semicircles at infinity to enclose the
poles of the quark propagator on the real q0 axis.
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quark and two from the gluon poles. Using tanh��k0 �
p�=�2T�	 
 � coth�p=2T� and analytically continuing
k0 ! ~�k � iB we find

T
X
n

,t
0;22�P�

��Q�

�q0=Z�q0�	
2 � �2q

� tanh
�
~�q
2T

�Z2�~�q�

4~�q

� ��~�q;q�
�~�k � ~�q � iB�2 � p2

�
���~�q;q�

�~�k � ~�q � iB�2 � p2

�
� coth

�
p
2T

�

�
1

4p

�
Z2�p� ~�k���p� ~�k;q�

�p� ~�k � iB�2 � �2qZ
2�p� ~�k�

�
Z2�p� ~�k���~�k � p;q�

�p� ~�k � iB�2 � �2qZ2�p� ~�k�

�
: (107)

Since the gluon momentum is hard, p � �g, and thus
much larger than the quasiparticle energies ~�k, ~�q which
are at most of the order of the quark cutoff �q � �g,
to order O��q=�g� we may neglect the terms �~�k � ~�q �
iB�2 in the energy denominators of the first term.
Furthermore, in the second term we may approxi
mate Z�p� ~�k� ’ Z�p� � 1�O�g2� and ��p� ~�k;q� ’
��p;q�. Note that the gap function is far off-shell for p �
�g � �q � j�� qj. Then, to order O��q=�g�, we may
also neglect ~�k, ~�q in the energy denominators of the
second term. We obtain

T
X
n

,t
0;22�P�

��Q�

�q0=Z�q0�	2 � �2q

� �
1

p2 tanh
�
~�q
2T

�Z2�~�q�

4~�q
���~�q;q� ����~�q;q�	

�

�
1�O

�
�2
q

�2
g

��
� coth

�
p
2T

�
��p;q�
2p3

�
1�O

�
�2
q

�2
g

��
:

(108)
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Let us estimate to which order the two remaining terms
contribute to the gap Eq. (100). At T � 0, we may set the
hyperbolic functions to one. We shall also ignore the
difference between the on-shell and off-shell gap func-
tions, and take ��p;q� ’ ���~�q;q� 
 � � const: For
the purpose of power counting, we may restrict ourselves
to the leading contribution of the Dirac traces in
Eq. (100), which is of order one, cf. Eqs. (122) below. In
order to obtain the leading contribution of the first term in
Eq. (108), we may also set Z2�~�q� ’ 1. The integral over
the absolute magnitude of the quark momentum isR
dqq2, while the angular integration is

R
d cosD 
R

dpp=�kq�. Then, the first term in Eq. (108) leads to
the following contribution in the gap equation

g2
�
k

Z ���q

���q

dq
q
�q

Z k�q

�g

dp
p
’ g2� ln

�
2�q

�

�
ln
�
2�
�g

�

� g2�
1

g
� g�; (109)

where we approximated k ’ q ’ � and employed the
weak-coupling solution (2) to estimate ln�2�q=�� �
1=g. Furthermore, for �g & �, the angular logarithm
is ln�2�=�g� �O�1�. According to the discussion pre-
sented in the introduction, the contribution from hard
magnetic gluon exchange is thus of subleading order in
the gap equation. Note that the term arising from hard
electric gluon exchange, Eq. (106), is of the same order as
the first term in Eq. (108), and thus also contributes to
subleading order. The way we estimated the first term on
the right-hand side of Eq. (108) is equivalent to just
taking the hard magnetic gluon propagator in the static
limit, ,t

0;22�P� ’ 1=p2, which is correct up to terms of
order O��2

q=�
2
g�. To this order, the propagator for hard

magnetic gluons is thus (up to a sign) identical to the one
for hard electric gluons. Since the ratio �q=�g ’

g�=� 
 g, this approximation introduces corrections at
order O�g3�� in the gap equation, which is beyond sub-
subleading order, O�g2��.

Similarly, we estimate the contribution of the second
term in Eq. (108) to the gap Eq. (100),

g2
�
k

Z ���q

���q

dqq
Z k�q

�g

dp

p2 � g2�
�q

�g
� g3�; (110)

i.e., for our choice �q=�g � g, this term contributes
beyond sub-subleading order. Note that this estimate is
conservative, as we assumed the off-shell gap function to
be of the same order as the gap at the Fermi surface,
��p;q� ��. However, we know [8] that, for energies far
from the Fermi surface, ~�q ��q & g�, even the on-shell
gap function is suppressed by one power of g compared to
the value of the gap at the Fermi surface, ���q;q� � g�.
The off-shell gap function at q0 � p * �g � �q may be
114029
even smaller. In order to decide this issue, one would have
to perform a computation of the gap function for arbitrary
values of the energy q0, and not just on the quasiparticle
mass shell, q0 
 ~�q. We note that for the choice �q ’ �g

for the cutoffs [15,17], the ratio �q=�g is of order one and
cannot be used as a parameter to sort the various con-
tributions according to their order of magnitude. The
expansion of the denominators in powers of �q=�g as
seen on the right-hand side of Eq. (108) is then
inapplicable.

The third and fourth terms in the gap Eq. (100) arise
from soft, HDL-resummed electric and magnetic gluon
exchange. Evaluating the Matsubara sum via contour
integration in the complex q0 plane is considerably
more difficult than in the previous cases, because the
HDL gluon propagators ,‘;t

HDL do not only have poles but
also cuts. The analytic structure is shown in Fig. 22(a).
Besides the poles of the quark propagator at q0 � �~�q,
there are also those from the gluon propagator at q0 �
k0 �!‘;t�p�. The cut of the gluon propagator between
�p � p0 � p translates into a cut between k0 � p �
q0 � k0 � p. Prior to analytic continuation, the gluon
poles and the cut are shifted away from the real axis
and located at the (imaginary) external Matsubara fre-
quency k0.

The Matsubara sum over q0 is evaluated in the standard
way, cf. Eq. (105), with the caveat that the contribution at
q0 � k0, where the cut of the gluon propagator is located,
has to be omitted. This is similar to the zero-temperature
case where the Matsubara sum becomes a continuous
integral along the imaginary q0 axis and where one has
to avoid integrating over the cut. Alternatively, the term
q0 � k0 can be included in the Matsubara sum if one
shifts the cut by some small amount �i� along the
imaginary q0 axis. The final result will be the same, as
one still has to circumvent the cut by a proper choice of
the integration contour.

We now deform the contour as shown in Fig. 22(b), and
add and subtract a contour integral running around the
cut, Fig. 22(c). The integral over the contour C� Ccut can
be closed at infinity, yielding the contour C1 shown in
Fig. 22(d). One obtains

T
X
n

,‘;t
HDL�P�

��Q�

�q0=Z�q0�	2 � �2q

�
1

2�i

�I
C1

�
I
Ccut

�
dq0

1

2
tanh

�
q0
2T

�

� ,‘;t
HDL�P�

��Q�

�q0=Z�q0�	2 � �2q
: (111)

Evaluating the integral over C1 is rather similar to the
case of hard gluon exchange: one just picks up the poles of
the quark and gluon propagators inside the contour C1.
After analytic continuation k0 ! ~�k � iB one obtains
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FIG. 22. Evaluating the Matsubara sum for HDL-resummed
gluon propagators. (a) The original contour C in Eq. (105).
There is no circle around the point k0 � q0, where the corre-
sponding term in the Matsubara sum has a cut arising from the
HDL gluon propagator. (b) Deforming the contour C. (c) The
contour Ccut running around the cut. (d) The contour C1 �
C� Ccut which is closed at infinity.
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1

2�i

I
C1

dq0
1

2
tanh

�
q0
2T

�
,‘;t

HDL�P�
��Q�

�q0=Z�q0�	
2 � �2q

’ � tanh
�
~�q
2T

�Z2�~�q�

4~�q
�,‘;t

HDL�~�k � ~�q � iB;p���~�q;q�

�,‘;t
HDL�~�k � ~�q � iB;p����~�q;q�	 � coth

�
!‘;t

2T

�

�
1

2!2
‘;t

���!‘;t � ~�k;q�Z‘;t��!‘;t; p�

���~�k �!‘;t;q�Z‘;t�!‘;t; p�	
�
1�O

� �2q
!2
‘;t

��
: (112)

Here, we approximated the quark wave-function renor-
malization factor Z�!‘;t � ~�k� ’ 1�O�g2�. We also ex-
panded the denominators of the quark propagator
�~�k �!‘;t � iB�2 � �2q ’ !2

‘;t�1�O��2q=!2
‘;t�	. For our

choice of the cutoff �q & g��mg, we may estimate
!‘;t � mg * �q � �q, i.e., the corrections of order
O��2q=!

2
‘;t� are small everywhere except for a small re-

gion of phase space where p ’ 0 and �q ’ �q. (In princi-
ple, in the expansion of the denominators there are also
linear terms,�� ~�k=!‘;t, but these are very small every-
where for external momenta close to the Fermi surface,
k ’ �.) Note that the gap function is again off-shell at the
gluon pole, although not as far as in the case of hard
gluon exchange, cf. Eq. (108). The residues of the HDL
gluon propagators at the respective poles are [23]
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Z‘�!‘; p� � �
!‘�!2

‘ � p2�

p2�p2 � 3m2
g �!2

‘�
; (113a)

Zt�!t; p� � �
!t�!

2
t � p2�

3m2
g!2

t � �!2
t � p2�2

: (113b)
To very good approximation, one finds that Zt�!t; p� ’
�1=�2!t� for all momenta p. In the longitudinal case, the
residue is very well approximated by Zl�!l; p� ’
�!l=�2p2� for small momenta p & mg, while for large
momenta,mg � p, Zl�!l; p� � exp��2p2=�3m2

g�	=p, i.e.,
it is exponentially suppressed [36].

These approximate forms allow for a simple power
counting of the gluon-pole contribution in Eq. (112) to
the gap Eq. (100). To this end, we approximate the gap
function by its value at the Fermi surface, ���!‘;t �
~�k;q� ’ �, and consider the limiting case T � 0 where
coth�!‘;t=�2T�	 � 1. Then, the contribution from the lon-
gitudinal gluon pole is

g2
�
k

Z ���q

���q

dqq
�Z mg

jk�qj

dp
2p!‘

�
Z �g

mg

dp

!2
‘

exp
�
�

2p2

3m2
g

��

� g2�
�q

mg
� g2�: (114)
In the first p integral, which only runs up to the scale mg,
one may approximate !‘ ’ mg, while in the second p
integral, which runs from mg to �g & �, one may take
!‘ ’ p. To obtain the right-hand side of Eq. (114) we have
set k ’ q ’ �, and we have employed our choice �q &

g� for the quark cutoff. This also allowed us to approxi-
mate logarithms of �q=mg by numbers of order O�1�.
With this choice for the quark cutoff, the contribution
(114) is of sub-subleading order, �O�g2��, to the gap
equation.

With a more careful evaluation of the integrals, one
could extract the precise numerical prefactor of the sub-
subleading contribution (114). Note, however, that further
suppression factors may arise from the off-shellness of
the gap function at ���!‘;t � ~�k;q�, which consequently
would render this contribution beyond sub-subleading
order. As noted previously, this issue can only be decided
if ��q0;q� is known also off the quasiparticle mass shell,
and not only on-shell. We also note that the 1=p2 factor in
the residue Z‘ is an artifact of the Coulomb gauge [36],
and does not appear in, e.g., covariant gauge. One would
have to collect all other terms of sub-subleading order to
make sure that the complete sub-subleading contribution
is gauge invariant and the term (114) not cancelled by
some other terms.

Similarly, we estimate the contribution from the trans-
verse gluon pole,
-24
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g2
�
k

Z ���q

���q

dqq
Z �g

jk�qj

dpp

2!3
t
� g2�

Z �q

0
d8

Z �g

mg

d!t

!2
t

� g2�
�q

mg
� g2�; (115)

where we defined 8 
 q��. We approximated dpp ’
d!t!t since, for the purpose of power counting, to very
good approximation one may take the dispersion relation
of the transverse gluon equal to that of a relativistic
particle with mass mg, !t�p� ’ �p2 �m2

g�
1=2. We also

used �q & mg � �g and k ’ q ’ �. In conclusion, also
the transverse gluon pole possibly contributes to sub-
subleading order in the gap equation, with the same
caveats concerning the off-shellness of the gap function
as mentioned previously.

Let us now focus on the integral around the cut of the
gluon propagator in Eq. (111). We substitute q0 by p0 �
k0 � q0 
 ! and use the fact that tanh�q0=�2T�	 

� coth�!=�2T�	. Since the gluon propagator is the only
part of the integrand which is discontinuous across the
cut, we obtain after analytic continuation k0 ! ~�k � iB

�
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dq0
1

2
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�
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�
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��Q�
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�
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�p
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1

2
coth

�
!
2T

�

�
Z2�~�k �!���~�k �!;q�

�~�k �!� iB�2 � �Z�~�k �!��q	2
E‘;tcut�!;p�; (116)

where E‘;tcut�!;p� 
 Im,‘;t
HDL�!� iB; p�=� is the spectral

density of the HDL propagator arising from the cut.
Explicitly,

E‘cut�!;p� �
2M2

�
!
p

��
p2 � 3m2

g

�
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!
2p

ln

��������p�!
p�!

��������
��

2

�

�
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p

�
2
�
�1
; (117a)

Etcut�!;p� �
M2

�
!
p

p2

p2 �!2

��
p2 �

3

2
m2
g

�
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�
!
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ln

��������p�!
p�!
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2
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�
M2!
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�
2
�
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:

(117b)

In order to power count the contribution from the cut of
,‘

HDL to the gap equation, it is sufficient to approximate
the spectral density by [8]

E‘cut�!;p� ’
2M2

�
!
p

1

�p2 � 3m2
g�

2 : (118)

This form reproduces the correct behavior for !� p.
For ! & p, it overestimates the spectral density when
p & mg, while it slightly underestimates it for p * mg.
For the gap equation, however, this region is unimpor-
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tant, since the respective contribution is suppressed by the
large energy denominator �~�k �!� iB�2 � �Z�~�k �
!��q	

2 ’ p2 in Eq. (116). To leading order, we may set
Z�~�k �!� ’ 1. We also approximate ��~�k �!;q� ’ �.
Then, the ! integral can be performed analytically. (One
may compute this integral with the principal value pre-
scription; the contribution from the complex pole con-
tributes to the imaginary part of the gap function, which
we neglect throughout this computation.) This produces
at most logarithmic singularities, which are integrable.
We therefore simply approximate the ! integral by a
number of order O�1�. Consequently, the contribution
from Eq. (116) to the gap equation is of order

g2
�
k

Z ���q

���q

dqq
Z �g

jk�qj
dp

m2
g

�p2 � 3m2
g�

2

� g2�
Z �q

0
d8
�Z mg

8

dp

m2
g
�m2

g

Z �g

mg

dp

p4

�

� g2�
�q

mg
� g2�; (119)

where we approximated the p integral by a method simi-
lar to the one employed in Eq. (114). For our choice �q &

g�, Eq. (119) constitutes another (potential) contribution
of sub-subleading order to the gap equation.

Finally, we estimate the contribution from the cut of
the transverse gluon propagator. For all momenta p and
energies �p � ! � p, a very good approximation for
the spectral density (117b) is given by the formula

Etcut�!;p� ’
M2

�
!p

p6 � �M2!�2
: (120)

This approximate result constitutes an upper bound for
the full result (117b). The advantage of using this ap-
proximate form is that, interchanging the order of the p
and ! integration in the gap equation, the former may
immediately be performed. Approximating Z�~�k �!� ’
1, neglecting the dependence of the gap function on the
direction of q, and defining F 
 max�jk� qj; !�, at T �
0 the contribution to the gap equation is
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: (121)
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Here, we have used the fact that the particular combina-
tion of arctan’s in the first line effectively cuts off the !
integral at the scale !�M. As usual, we have set k ’
q ’ �. If we simply neglect the off-shell behavior of the
gap function and approximate ��~�k �!; q� ’ �, this
contribution would (at least) be of subleading order.
Note that the corresponding contribution in previous
treatments of the QCD gap equation, cf., for instance,
Eq. (67) of Ref. [8], was discarded as being of higher
order. At this point, we refrain from a more careful
evaluation of the contribution (121), because this requires
a calculation of the gap function off the quasiparticle
mass shell. Since the purpose of the present work is to
show that our method reproduces previous results, we
follow Ref. [8] and also discard the contribution (121)
in the following.

The remaining term from the evaluation of the
Matsubara sum in Eq. (111) is the contribution from the
quark pole, i.e., the first line of Eq. (112). This has to be
combined with the subleading-order terms from hard
gluon exchange, i.e., from Eq. (106) and from the first
line of Eq. (108), in order to obtain the gap equation
which contains all contributions of leading and sublead-
ing order. Before doing so, however, we also evaluate the
Dirac traces in Eq. (100). In pure Coulomb gauge, we only
require

Trs��
�
k00�

�
q 00� �

�k� q�2 � p2

2kq
; (122a)

��ij � p̂ip̂j�Trs���
k0i�

�
q 0j� � �2�

p2

2kq
�
�k2 � q2�2

2kqp2 ;

(122b)

where we used p2 
 �k� q�2 � k2 � q2 � 2kqk̂ � q̂ to
eliminate k̂ � q̂ in favor of p2. Let us estimate the order
of magnitude of the terms arising from the traces at the
Fermi surface, k 
 �. Setting q 
 �� 8, where ��q �

8 � �q, one obtains

Trs��
�
k00�

�
q 00� � 2�

p2

2kq
�O

�
82

�2

�
;

(123a)

��ij � p̂ip̂j�Trs��
�
k0i�

�
q 0j� � �2�

p2

2kq
�O

�
82

�2

�
:

(123b)

As shown above, the contribution from hard gluon ex-
change is at most of subleading order. Thus, for this
contribution it is sufficient to keep only the leading terms
in Eq. (123), i.e., one may safely neglect terms of order
O�82=�2� & O��2

q=�
2
g� �O�g2� or higher. Note that,

since for hard gluon exchange p�� * �g, the terms
p2=�2kq� cannot be omitted. However, since the magnetic
gluon propagator is effectively �1=p2, cf. Eq. (108), i.e.,
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(up to a sign) identical to the electric propagator, these
terms will ultimately cancel between the electric and the
magnetic contribution. This cancellation is well-known,
see for instance Ref. [37], and is special to the spin-zero
case. It does not occur in spin-one color superconductors
where there is an additional exponential prefactor which
suppresses the magnitude of the spin-one gap relative to
the spin-zero case [37].

As is well known, electric soft gluon exchange also
contributes to subleading order in the gap equation. Thus,
as in the case of hard gluon exchange, we may drop the
terms of orderO�82=�2� in Eq. (123a). On the other hand,
magnetic soft gluon exchange constitutes the leading
order contribution to the gap equation.We therefore would
have to keep all terms up to subleading order, i.e.,
�O�8=��. Fortunately, the corrections to the result
(123b) are of order O�82=�2� �O�g2�, i.e., they are of
sub-subleading order and thus can also be omitted.

We combine Eqs. (106) and (108), and the first line of
Eq. (112), and assume that the gap function is even in its
energy argument, ���~�q;q� � ��~�q;q�, and isotropic,
��~�q;q� 
 ��~�q; q� 
 �q. Then, on the quasiparticle
mass shell k0 � ~�k the gap Eq. (100) becomes

�k �
g2

24�2

Z ���q

���q

dq
q
k

Z2�~�q�

~�q
tanh

�
~�q
2T

�
�q

�
Z k�q

jk�qj
dpp

�
(�p��g�

4

p2 �(��g � p�

�
X
s��

�
,‘

HDL�~�k � s~�q � iB; p�
�
�1�

p2

4kq

�

� ,t
HDL�~�k � s~�q � iB; p�

�
1�

p2

4kq

���
: (124)

The next step is to divide the integration region in the p�
q plane into two parts, separated by the gluon ‘‘light
cone’’ j~�k � s~�qj � p. For our choice �q � �g the
region, where j~�k � s~�qj<p, is very large, while its
complement is rather small. In order to estimate the
contribution from the latter to the gap equation, we may
approximate the HDL gluon propagators by their limiting
forms for large gluon energies, cf. Eqs. (103) and (104),

p0 � p: ,‘
HDL�P� ’

p2
0

m2
gp2 ; ,t

HDL�P� ’
1

m2
g
:

(125)

Following the power-counting scheme employed previ-
ously, the contribution from the electric sector is of order

g2
�
k

Z ���q

���q

dq
q
�q

�~�k � s~�q�
2

m2
g

Z j~�k�s~�qj

jk�qj

dp
p

� g2
�

m2
g

Z �q

0
d8�q � g2�

�2
q

m2
g
� g2�: (126)
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This is a contribution of sub-subleading order, as long as
one adheres to the choice �q & g�. Analogously, we
estimate the contribution from the magnetic sector to be

g2
�
k

Z ���q

���q

dq
q
�q

Z j~�k�s~�qj

jk�qj
dpp

1

m2
g
� g2

�

m2
g

Z �q

0

d8
�q
82

� g2�
�2
q

m2
g
� g2�: (127)

Consequently, all contributions from the region j~�k �
s~�qj � p are of sub-subleading order, and the further
analysis can be restricted to the region j~�k � s~�qj< p.
In this region, it is permissible to use the low-energy limit
of the HDL gluon propagator, which follows from
Eqs. (103) and (104) keeping only the leading terms in
the gluon energy,

p0 � p: ,‘
HDL�P� ’ �

1

p2 � 3m2
g
;

,t
HDL�P� ’

p4

p6 �M4p2
0

:
(128)

Here, we only retained the real part of the transverse
gluon propagator, since the imaginary part contributes to
the imaginary part of the gap function, which is usually
ignored. (In Ref. [8] it was argued that, at least close to
the Fermi surface, the contribution of the imaginary part
is of sub-subleading order in the gap equation.) With the
approximation (128), the gap Eq. (124) becomes

�k �
g2

24�2

Z ���q

���q

dq
q
k

Z2�~�q�

~�q
tanh

�
~�q
2T

�
�q

�
4 ln

�
k� q
�g

�

�
X
s��

Z �g

j~�k�s~�qj
dp
�

p

p2 � 3m2
g

�
1�

p2

4kq

�

�
p5

p6 �M4�~�k � s~�q�2

�
1�

p2

4kq

���
; (129)

where we already performed the integration over hard
gluon momenta p � �g. The integration over soft gluon
momenta can also be performed analytically. Formally,
the terms �p2=�4kq� give rise to subleading-order con-
tributions, ��2

g=�8kq�, but they ultimately cancel, since
they come with different signs in the electric and the
magnetic part. Other contributions from these terms are
at most of sub-subleading order. Exploiting the symmetry
of the integrand around the Fermi surface and setting k ’
�, we arrive at

�k �
g2

12�2

Z �q

0
d�q���

Z2�~�q�

~�q
tanh

�
~�q
2T

�

��q

�
2 ln

�
4�2

�2
g

�
� ln

�
�2
g

3m2
g

�

�
1

3
ln
�

�6
g

M4j~�2k � ~�2qj

��
: (130)
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Here, we have neglected terms �~�k � s~�q against 3m2
g

under the logarithm arising from soft electric gluons, and
terms ��~�k � s~�q�

6 against M4�~�k � s~�q�
2 under the

logarithm from soft magnetic gluons.
Now observe that the gluon cutoff �g cancels in the

final result,

�k �
g2

18�2

Z �q

0
d�q���

Z2�~�q�

~�q
tanh

�
~�q
2T

�

��q
1

2
ln
� ~b2�2

j~�2k � ~�2qj

�
; (131)

where ~b 
 256�4�2=�Nfg2�	5=2. This is Eq. (19) of
Ref. [12], since �g2 
 g2=�18�2�, with the upper limit of
the �q��� integration, �, replaced by the quark cutoff
�q.

The solution of the gap Eq. (131) is well known, and
given by Eq. (2). As was shown in Ref. [8], the depen-
dence on the cutoff �q enters only at sub-subleading
order, i.e., it constitutes an O�g� correction to the prefac-
tor in Eq. (2). Therefore, to subleading order we do not
need a matching calculation to eliminate �q.

The result (131) shows that the standard gap equation of
QCD can be obtained from the effective action (53). The
above, rather elaborate derivation of Eq. (131) demon-
strates that, in order to obtain this result, it is mandatory
to choose �q � �g. This also enabled us to identify
potential sub-subleading-order contributions. However,
we argued that, at this order, the off-shell behavior of
the gap function has to be taken into account.
V. SUMMARY AND OUTLOOK

In this paper we have presented a formal derivation of
an effective action for non-Abelian gauge theories,
Eq. (53). We first introduced cutoffs in momentum space
for quarks, �q, and gluons, �g. These cutoffs separate
relevant from irrelevant quark modes and soft from hard
gluon modes. We then explicitly integrated out irrelevant
quark and hard gluon modes. The effective action (53) is
completely general and, as shown explicitly in Sec. III A,
after appropriately choosing �q and �g, it comprises
well-known effective actions as special cases, for in-
stance, the ‘‘Hard Thermal Loop’’ (HTL) and ‘‘Hard
Dense Loop’’ (HDL) effective actions. We also demon-
strated, cf. Sec. III B, that the high-density effective
theory introduced by Hong and others [14–19] is con-
tained in the effective action (53).

We then showed how the QCD gap equation can be
derived from the effective action (53). The gap equation is
a Dyson-Schwinger equation for the anomalous part of
the quark self-energy. It has to be solved self-consistently,
which is feasible only after truncating the set of all
possible diagrams contributing to the Dyson-Schwinger
-27
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equation. Such truncations can be derived in a systematic
way within the Cornwall-Jackiw-Tomboulis (CJT) for-
malism [24]. Here, we only include diagrams of the
sunset type, cf. Fig. 18, in the CJT effective action, which
gives rise to one-loop diagrams (with self-consistently
determined quark and gluon propagators) in the quark and
gluon self-energies.

Usually, the advantage of an effective theory is that the
degree of importance of various operators can be esti-
mated (via power counting) at the level of the effective
action, i.e., prior to the actual calculation of a physical
quantity. This tremendously simplifies the computation of
quantities which are accessible within a perturbative
framework. On the other hand, the requirement of self-
consistency for the solution of the Dyson-Schwinger
equation invalidates any such power-counting scheme
on the level of the effective action. For instance, pertur-
batively, the right-hand side of the gap Eq. (1) is pro-
portional to g2. However, self-consistency generates addi-
tional large logarithms � ln��=�� � 1=g which cancel
powers of g.

Nevertheless, there is still a distinct advantage in using
an effective action for the derivation and the solution of
Dyson-Schwinger equations for quantities which have to
be determined self-consistently, such as the color-
superconducting gap function in QCD. This advantage
originates from the introduction of the cutoffs which
separate various regions in momentum space. They allow
for a rigorous power counting of different contributions to
the Dyson-Schwinger equation. We explicitly demon-
strated this in Sec. IV, where we reviewed the calculation
of the color-superconducting gap parameter to subleading
order.

In order to obtain the standard result (2), it was man-
datory to choose �q & g�� �g & �. This is in contrast
to previous statements in the literature [15–17] that a
consistent power-counting scheme requires �q ��g. In
particular, the choice �q � �g has the consequence that
the gluon energy in the QCD gap equation is restricted to
values p0 & �q, while the gluon momentum can be much
larger, p & �g. This naturally explains why it is permis-
sible to use the low-energy limit (128) of the HDL gluon
propagators in order to extract the dominant contribution
to the gap equation (which arises from soft magnetic
gluons). In previous calculations of the gap within the
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framework of an effective theory [15–17], the low-energy
limit for the HDL propagators was used without further
justification, even though for the choice �q ��g the
gluon energy can be of the same order as the gluon
momentum. The physical picture which arises from
the choice �q & g�� �g & � is summarized in
Fig. 17. Relevant quarks are located within a thin layer
of width ��q around the Fermi surface. Soft gluon
exchange mediates between quarks within a ‘‘patch’’
of size ��g inside this layer. The area of the patch is
much larger than its thickness. Hard gluon exchange
mediates between quark states inside and outside of the
patch.

Obviously, this picture, as well as all power-counting
arguments, are rigorously valid only at asymptotically
large values of the quark chemical potential, where g�
1. In the physically relevant region, � & 1 GeV and g�
1, the scale hierarchy �q & g�� �g & � breaks down.
When all scales are of the same order, the patch on the
Fermi surface becomes a sphere of the size of the Fermi
sphere.

In the course of the calculation, we were able to iden-
tify various potential contributions of sub-subleading
order. However, we argued that, at this order, a solution
of the gap equation must take into account the off-shell
behavior of the gap function. For a complete sub-sublead-
ing-order calculation it also appears to be necessary to
include 2PI diagrams beyond those of sunset topology in
'2, cf. Eq. (90) and Fig. 18. Besides an improvement of the
result for the color-superconducting gap parameter be-
yond subleading order, we believe that our rather general
effective action (53) can serve as a convenient starting
point to investigate other interesting problems pertaining
to hot and/or dense quark matter.
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