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Collective quantization of a gravitating Skyrmion
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Collective quantization of a B � 1 gravitating skyrmion is described. The rotational and isorotational
modes are quantized in the same manner as the skyrmion without gravity. It is shown in this paper how the
static properties of nucleons such as masses, charge densities, magnetic moments are modified by the
gravitational interaction.
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I. INTRODUCTION

The Skyrme model is a nonlinear meson theory pro-
posed by T. H. R. Skyrme [1]. It gives a unified description
of hadronic physics by incorporating baryons as topologi-
cal solitons. The baryon number B corresponds to the
topological charge. Following the findings of the
Finkelstein-Rubinstein constraints which enable a single
skyrmion to be quantized as a fermion [2], the model was
identified with QCD in the Large-Nc limit by E. Witten [3].
The static properties of nucleons such as masses, mean
radius, charge densities and magnetic moments are eval-
uated upon collective (zero mode) quantization of the sky-
rmion [4,5].

The Einstein-Skyrme system has been studied by several
authors. The first obtained solutions in this system are
spherically symmetric black holes with Skyrme hair [6–
8]. It was the first counter example of the no-hair conjec-
ture for black holes discovered. Later, regular solutions for
B � 1 [7–9] and axially symmetric black hole and regular
solutions for B � 2 [10] were found. The extended models
to SU�3� and SU�N� were also studied in Refs. [11].

It is, however, necessary to quantize those skyrmions to
interpret as gravitating or black hole nucleons. Therefore,
in this paper we shall perform collective quantization of the
B � 1 gravitating skyrmion and compute its static proper-
ties following the work of Ref. [4]. The effects of gravity
on the nucleon observables are examined. Since the sky-
rmion picture of a nucleon is correct within about 30%
error, it is difficult to estimate the effects quantitatively.
However, we believe that the results we have obtained can
help us to understand qualitatively the effects of gravity on
the nucleon properties.

In the Einstein-Skyrme theory, the Planck mass is re-
lated to the pion decay constant F� and the coupling
constant � by Mpl � F�

�������������
4�=�

p
. To realize the realistic

value of the Planck mass, the coupling constant should be
extremely small with ��O�10�39�, which makes the
theory little different from the theory without gravity.
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However, some theories such as scalar-tensor gravity the-
ory [12] and theories with extra dimensions predict the
time variation of the gravitational constant [13]. Thus there
may have been an epoch in the early universe where the
gravitational effects on nucleons were significant. We con-
sider those effects worth being studied in the Skyrme
model.

It is discussed that skyrmions could be produced in a
manner analogous to the production of cosmic strings and
monopoles in the early universe via the Kibble mechanism
[14]. This mechanism has been applied to the study of the
production of baryons/antibaryons in jet events [15] and in
quark gluon plasma [16,17]. It may be possible to extend
our work to these interesting high-energy phenomena
where the hot and dense conditions in the early universe
are mimicked.

II. CLASSICAL GRAVITATING SKYRMIONS

The classical regular solutions of the Einstein-Skyrme
system with B � 1 have been already studied in Refs. [7–
9]. We therefore give a short review of the model and
solutions in this section.

The Skyrme model coupled with gravity can be defined
by the Lagrangian

L � LG �LS (1)

where

L G �
1

16�G
R (2)

L S � �
F2
�

16
g��tr�@�U@�U�1�

�
1

32e2
g��g��tr��@�U�U�1; �@�U�U�1�

	 ��@�U�U
�1; �@�U�U

�1� (3)

where U is an SU�2�-valued chiral field, F� is the pion
decay constant and e is a dimensionless free parameter.
The B � 1 skyrmion can be obtained by imposing the
hedgehog ansatz on the chiral field

U � cosF�r� � i ~n 
 ~� sinF�r�: (4)
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FIG. 1 (color online). Radial dependence of the profile func-
tion with � � 0:0; 0:04; 0:08; 0:12; 0:16, respectively.
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Correspondingly we consider the static spherically sym-
metric metric given by

ds2 � �N2�r�C�r�dt2 �
1

C�r�
dr2 � r2d�2 (5)

where we have defined

C�r� � 1�
2m�r�
r

:

Inserting these ansatz into the Lagrangian (3), one obtains
the static energy density for the chiral field

E S�
F2
�

8

�
CF02�

2sin2F

r2

�
�

1

2e2
sin2F

r2

�
2CF02�

sin2F

r2

�
:

(6)

Let us introduce dimensionless variables

x � eF�r;��x� � eF�m�r�:

In terms of x and�, the static energy thus can be written by

ES � 4�
F�
e

Z (
1

8

�
CF02 �

2sin2F

x2

�

�
sin2F

2x2

�
2CF02 �

sin2F

x2

�)
Nx2dx: (7)

The covariant topological current is defined by

B� � �
%����

24�2

1�������
�g

p tr�U�1@�UU
�1@�UU

�1@�U�; (8)

whose zeroth component corresponds to the baryon num-
ber density

B0 � �
1

2�2

1

N
F0sin2F

r2
: (9)

Topological soliton solutions can be obtained if the follow-
ing boundary conditions for the profile function are con-
sidered

F�0� � k�; F�1� � 0 (10)

where k is an arbitrary integer. Then the baryon number
becomes

B �
Z �������

�g
p

B0d3x � �
2

�

Z 0

k�
sin2FdF � k: (11)

Since our concern is a B � 1 skyrmion, k is restricted to be
one hereafter.

The field equations for the gravitational fields N�x� and
��x� can be derived from the Einstein equations as

N0 �
�
4

�
x�

8sin2F
x

�
NF02 (12)

�0 �
�
8

�
�x2 � 8sin2F�CF02 � 2sin2F�

4sin4F

x2

	
(13)
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where we have defined the coupling constant � � 4�GF2
�.

The variation of the static energy (7) with respect to the
profile F�x� leads to the field equation for matter

F00 �
1

NC�x2 � 8sin2F�

"
��x2 � 8sin2F�N0CF0

�

�
1�

4sin2F

x2
� 4CF02

�
N sin2F

� 2�x� 4 sin2FF0�NCF0 � 2
�
1�

8sin2F

x2

�

	 ����0x�NF0

#
: (14)

To solve these coupled field equations, let us consider the
boundary conditions for the gravitational fields. Expanding
the fields F�x�; ��x�; N�x� around the origin and substitut-
ing into the field equations, one obtains

F�x� � �� b1x�O�x3���x�

�
�
8
b21�1� 4b21�x

3 �O�x4�N�x�

� b2 �
�
4
b21b2�1� 8b21�x

2 �O�x3�

where b1 and b2 are shooting parameters determined so as
to satisfy the boundary conditions at infinity F�1� � 0 and
N�1� � 1.

The skyrmion solutions for the various values of the
coupling constant are shown in Fig. 1. As is shown in
Ref. [9], there exist two branches of solutions depending
on the stability. We have examined only the solution in the
stable branch since it is physically interesting as a nucleon.
In particular, the stable solution with � � 0:0 recovers the
solution in flat spacetime and accord with the solution
obtained in Ref. [4]. No solution exists for � * 0:162.
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FIG. 2. Coupling constant dependence of the N �� mass
difference in units of MeV.
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III. COLLECTIVE QUANTIZATION

To describe physical nucleon and � states, we need to
perform quantization for the classical skyrmion. The field
theory is truncated to certain collective degrees of freedom
of the skyrmion, which reduces the problem to a simple
quantum mechanics on the collective space. From the
symmetry of the Lagrangian, one can see that if U is the
soliton solution, then U ! AUA�1 where A is an arbitrary
constant SU�2� matrix, is also a solution with the same
finite energy. Therefore A is the collective coordinate to be
quantized. Letting the matrix A time dependent A�t�, we
replace the field U in the Lagrangian (3) as

U� ~r; t� � A�t�U0A�t��1 (15)

where U0 is the hedgehog solution constructed in the
previous section. For the hedgehog solution, the spin and
isospin rotation are equivalent. Definite spin and isospin
states are obtained by quantizing those degrees of freedom.
Substituting the transformation of the chiral fields (17) into
(3), one can get

LS � �MB�1 � *tr� _A _A�1� � �MB�1 � 2*
X3
i�0

_a2 (16)

where

* �
2�

3F�e3
�;�

�
Z 1

0

1

NC

"
1� 4

�
CF02 �

sin2F

x2

�#
x2sin2Fdx (17)

and MB�1 is the B � 1 classical skyrmion mass and in the
second equality, we have parameterized A � a0 � i ~� 
 ~a
with a20 � ~a2 � 1. Canonical quantization can be per-
formed in standard manners in terms of a’s. The
Hamiltonian is then diagonalized as

H � MB�1 �
1

8*

X3
i�0

�
�
@2

@a2i

�
� MB�1 �

l�l� 2�

8*
(18)

where l � 2I � 2J, and �I; J� are, respectively, the isospin
and spin quantum number with the operators

Ik �
i
2

�
a0

@
@ak

� ak
@
@a0

� %klmal
@
@am

�
; Jk

�
i
2

�
ak

@
@a0

� a0
@
@ak

� %klmal
@
@am

�
: (19)

Let us note that if the scaling parameter is explicitly written
in the Hamiltonian (18), one can see that this quantization
corresponds to the expansion around the skyrmion in
powers of 1=Nc with the second term being of order
1=Nc. The nucleon, delta mass and their mass difference
are thus given by
114023
MN � MB�1 �
1

2*
3

4
;M� � MB�1 �

1

2*
15

4
;M� �MN

�
3

2*
: (20)

For higher l states, there are no counterparts in nature and
they are considered as artifacts of this model. Hereafter we
adopt the same parameter set as in Ref. [4] F� � 129 MeV
and e � 5:45 so that for � � 0:0, the experimental values
of a nucleon and delta mass are reproduced with about 30%
error. Figure 2 shows the � dependence of the mass dif-
ference betweenN and � in units of MeV. It is seen that the
mass difference increases monotonically with increasing
�. Figure 1 implies that the strong gravity makes the size of
the skyrmion smaller which makes the inertial moment
smaller, resulting in increase in the mass difference. In
the collective quantization, the skyrmion can be quantized
as a slowly rotating rigid body and the mass difference
between the delta and nucleon is interpreted as a conse-
quence of the rotational kinetic energy. Thus the gravity
works for increasing the kinetic energy of the skyrmion. In
the naive SU�6� quark model, the mass difference is as-
cribed to the hyperfine splittings. The increase in the mass
difference may imply that due to the reduction of the
distance between quarks, the effects of the hyperfine split-
tings become dominant by the gravity [18].

The isoscalar mean square radius of the nucleon is
defined in terms of the baryon number density by

hr2i �
Z �������

�g
p

r2B0�r�d3x

� �
1

�eF��2
2

�

Z 1

0
x2F0sin2Fdx: (21)

Fig. 3 shows the � dependence of the root mean square
radius. It decreases with increasing �, which confirms the
attractive effect of the gravity.
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FIG. 3. Coupling constant dependence of the mean square
radius in units of fm.

NORIKO SHIIKI, NOBUYUKI SAWADO, AND SHINSHO ORYU PHYSICAL REVIEW D 70, 114023 (2004)
To compute the charge densities and magnetic moments,
let us derive the baryon and isovector current. From
Eq. (8), the baryon current can be written by

Bi � �
%ijk

8�2

1�������
�g

p tr�LjLkL0� (22)

where Li � U�1@iU. Substituting (4) and (15) into (22),
one can get

Bi � i
%ijk

2�2

1�������
�g

p
sin2F
r

F0r̂jtr��k _A�1A� (23)

where r̂j � xj=r and we have used the identity

_A�1A �
�a

2
tr��a _A�1A�: (24)

From the Skyrme Lagrangian (3), one can construct the
Noether current for the SU�2�L transformation 0U �
iQLU as

J�L � �
iF2

�

8
g��tr�QLR�� �

i

8e2
g��g��tr��QL; R��

	 �R�; R��� (25)

where R� � U@�U�1 � ��@�U�U�1 is the right current.
Similarly, for SU�2�R transformation 0U � iUQR, one
obtains

J�R �
iF2

�

8
g��tr�QRL�� �

i

8e2
g��g��tr�QR; L���L�; L��

(26)

where L� � U�1@�U is the left current. The relations
between vector and axial transformations and left and right
transformations

QV �
1

2
�QL �QR�; QA �

1

2
�QR �QL� (27)
114023
lead to the vector and axial currents

V�;a �
iF2

�

8
g��tr�Qa�R� � L���

�
i

8e2
g��g��tr�Qa�R�; �R�; R���

�Qa�L�; �L�; L���� (28)

A�;a �
iF2

�

8
g��tr�Qa�R� � L���

�
i

8e2
g��g��tr�Qa�R�; �R�; R���

�Qa�L�; �L�; L����: (29)

For convenience, we perform the integration of the vector
and axial current to obtainZ �������

�g
p

V0;ad3x � i
F�
e

2�
3

�tr��a _AA�1� (30)

Z �������
�g

p
~q 
 ~rVi;ad3x��

F�
e
�
3
�ql%limtr��mA�1�aA� (31)

Z �������
�g

p
Ai;ad3x�

1

e2
�
3
Dtr��aA�iA�1� (32)

where

� �
Z
Nx2sin2F

"
1� 4

�
CF02 �

sin2F

x2

�#
dx (33)

D �
Z
Nx2

"
CF0 �

sin2F
x

� 4
�
C
sin2F
x

F02

� 2C
sin2F

x2
F0 �

sin2F sin2F

x3

�#
dx: (34)

The isoscalar and isovector charge densities per unit r are
then given by

�I�0 �
Z �������

�g
p

B0d5d’ � �eF�
2

�
sin2FF0 (35)

�I�1 � eF�Nx
2sin2F

"
1� 4

�
CF02 �

sin2F

r2

�#
=�: (36)

The charge density for the proton and neutron are given by

�p �
1

2
��I�0 � �I�1�; �n �

1

2
��I�0 � �I�1� (37)

and are shown in Fig. 4 for � � 0:0; 0:1. For the strong
gravity, the peaks of the charge densities become higher
and move towards the center.

The isoscalar and isovector magnetic moments in the
nucleon rest frame are expressed in terms of the baryon and
isovector current as
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FIG. 4. Radial dependence of proton and neutron charge
densities as functions of the radial distance r (fm).
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~� I�0 �
1

2

Z �������
�g

p
~r	 ~Bd3x (38)

~� I�1 �
1

2

Z �������
�g

p
~r	 ~V3d3x: (39)

The expectation value of the isoscalar magnetic moments
in a proton spin-up state are thus given by

�0
p � hp " j��I�0�ijp "i

�
i

4�2

Z
�r̂ir̂j � 0ij�sin2FF0d3xtr��j _A�1A�

�
1

4�
e
F�

hx2i
�
0i3: (40)

The neutron isoscalar magnetic moment is equal to the
proton isoscalar magnetic moment. Figure 5 shows the
FIG. 5. Coupling constant dependence of the isoscalar mag-
netic moments �0

p ��0
n in units of Bohr magnetons �B.
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third component of the isoscalar magnetic moment mea-
sured in Bohr magnetons �B � 1=2MN . It decreases with
increasing �. The isovector magnetic moment can be
obtained in a similar manner as of the isoscalar

�1
p � hp " j

Z �������
�g

p
%li3x

lVi;3d3xjp "i (41)

� �
�
3

�

e3F�
hp " jtr��3A�1�3A�jp "i (42)

�
2�
9

�

e3F�
(43)

where we have used the relation for the third equality

hp " jtr��iA�1�jA�jp "i � �
2

3
hp " j�i�ijp "i: (44)

The neutron isovector magnetic moment has the same
value but opposite sign. Thus the isovector magnetic mo-
ment is defined by �I�1 � �1

p ��1
n � 2�1

p. Figure 6
shows the computed isovector magnetic moment. As in
the isoscalar moment, it decreases with increasing � but
the effect of gravity is more evident.

The magnetic moments for the proton and neutron are
given by the sum of the isoscalar and vector magnetic
moment

�p�n� �
1

2�B
��0

p�n� ��1
p�n��: (45)

Fig. 7 shows the � dependence of the proton and neutron
magnetic moments. The absolute values are both decreas-
ing with increasing �. This result indicates that although in
the situation where gravitational effects are negligible, the
assumption that the observed baryons are three-quark
states with zero orbital angular momentum is a good
FIG. 6. Coupling constant dependence of the isovector mag-
netic moment in units of Bohr magnetons �B.
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FIG. 7. Coupling constant dependence of the proton and
neutron magnetic moment in units of Bohr magnetons �B.
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approximation, it may no longer be valid under the strong
gravitational field. In this case, the ground states of
strongly interacting systems are not in pure S-wave and
other states with nonzero orbital angular momenta should
be taken into account.

The axial coupling can be computed from the integral of
the axial current

gA � �
�

3e2
D: (46)

The result is shown in Fig. 8. Since the axial coupling is
related to g�NN and g��N , our result implies that the strong
gravity reduces the baryon decay rate, stabilizing the
baryon against the strong interaction.

In Ref. [19], it was shown using a simple quark model
that all allowed transition moments between octet and
FIG. 8. Coupling constant dependence of the axial coupling
gA.

114023
decuplet can be expressed in terms of the proton magnetic
moment. Based on this argument, Adkins et al. derived the
relation between the transition moment of � ! N7 and the
proton, neutron magnetic moments in Ref. [4] which is
given by

�N� �

���
1

2

s
��p ��n�: (47)

Assuming that this derived relation is also valid under the
influence of gravity, we have computed the transition mo-
ment and shown in Fig. 9. It decreases with increasing of �
as expected from the results of the magnetic moments.
Since the strong gravity reduces the transition moment
significantly, it may be possible to determine the gravita-
tional constant by observing the variation in �N�. It is
interesting that the decay rates are reduced by the gravita-
tional effects whether the interaction is strong or electro-
magnetic, which means the gravity works as a stabilizer of
baryons.

IV. CONCLUSIONS

We have performed collective quantization of a B � 1
skyrmion in the Einstein-Skyrme system and investigated
the static nucleon properties. Although the spacetime is
curved, the collective space remains SU�2�. Therefore the
quantization is rather straightforward. Modification by the
gravitational interaction appears in the observables such as
N-� mass difference, mean radius, charge densities, mag-
netic moments, transition moments. The qualitative change
in the mass difference, mean square radius and charge
densities under the strong gravitational influence confirm
the attractive feature of the gravity. On the other hand, the
reduction of the axial coupling and transition moments by
the strong gravity indicate the gravitational effects as a
FIG. 9. Coupling constant dependence of the transition mo-
ment between � and N via electromagnetic interaction.

-6



COLLECTIVE QUANTIZATION OF A GRAVITATING SKYRMION PHYSICAL REVIEW D 70, 114023 (2004)
stabilizer of baryons. Although the Skyrme model de-
scribes a nucleon with about 30% error, the possibility
that it may provide qualitatively correct description of
the interaction of a nucleon with gravity can not be ex-
cluded. It is expected that in the early universe or equiva-
lent high energy experiments, the gravitational interaction
with nucleons is not negligible. We hope that our work
could provide insight into the observations in such situ-
114023
ations. It will be also interesting to quantize gravitating
skyrmions with higher baryon numbers or black hole sky-
rmions in future.
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