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Electromagnetic form factors of the nucleons from generalized Skyrme models
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We compare the prediction of Skyrme-like effective Lagrangians with data for electromagnetic form
factors of nucleons and consider the possibility of fixing the parameters of these higher-order Lagrangians.
Our results indicate that one- or two-parameter models can lead to better agreement with the data but more
accurate determination of the effective Lagrangian faces theoretical uncertainties.
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I. INTRODUCTION

The Skyrme model [1], despite its relative successes [2],
can only be considered as a prototype of an effective theory
of QCD. Indeed, large Nc analysis [3,4] suggests that
bosonization of QCD would most likely involve an infinite
number of mesons. If this is the case, then taking the
appropriate decoupling limits (or large mass limit) for
higher spin mesons leads to an all-orders Lagrangian in
derivatives of pion fields. For now however, fixing the form
of the effective Lagrangian from an exact low-energy limit
of QCD seems to be out of our reach and the alternative has
been to propose simple effective Lagrangians [5–7] and
rely on a few nucleon properties to set the parameters they
depend on. From that point of view, a rather stringent test
for such models lies in whether they could accurately
describe the data for the electromagnetic form factors of
nucleons for moderate values of momentum transfer.

The electromagnetic form factors of the semiclassically
quantized SU(2) Skyrmion were studied systematically by
Braaten et al. [8] but this first attempt did not take into
account relativistic kinematical corrections which are im-
portant for momentum transfers Q2 > 1 GeV2. These cor-
rections were implemented to the original Skyrme model
predictions by Holzwarth [9,10] using the prescription of Ji
[11]. Actually, Holzwarth also introduced a second correc-
tion to the Skyrme model to account for vector meson
effects either by introducing a multiplicative factor to
reflect the contributions of the poles coming from these
mesons, or by adding the vector mesons as dynamical
degrees of freedom in the Lagrangian. Yet, in spite of
remarks and suggestions in [10,12,13], an analysis on
how higher-order Lagrangians could reproduce the nu-
cleon electromagnetic form factors or, conversely, on
how the form factors could help construct a more accurate
effective Lagrangian is still lacking.

In this work, we calculate the electromagnetic form
factors for a class of higher-order (Skyrme-like) models
introduced in [6]. For simplicity, we limit our numerical
analysis to one- and two-parameter models with a proper
treatment of relativistic effects, and evaluate to what extent
ress: lmarleau@phy.ulaval.ca
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the experimental data of the electromagnetic form factors
of the nucleons can suggest a form of higher-order
Lagrangians or discriminate among possible candidates.

II. THE SKYRME MODEL

Let us first introduce the Lagrangian density for the
Skyrme model,

L S � �
F2

�

16
Tr�L	L

	� �
1

32e2
Tr�L	; L��

2 (1)

where F� is the pion decay constant, L	 is the left-handed
chiral current L	 � Uy@	U, and the Skyrme constant e is
a dimensionless constant. U is a SU(2) field related to the
pion field � by U � exp�2i� 	 �=F��. The field configu-
rations with finite energy must satisfy the boundary con-
dition

U�r; t� ! 1 for jrj ! 1: (2)

These configurations fall into topological sectors charac-
terized by

B �
1

2�2

Z
d3x detfLa

i g � �
"ijk

48�2

Z
d3xTr�Li�Lj; Lk��;

(3)

a topological invariant taking integral values.
Skyrme interpreted this topological invariant as the

baryon number. Accordingly, the lowest-energy B � 1
sector is identified with the nucleon. In this sector, the
lowest-energy field configuration is given by the hedgehog
ansatz

U�r� � exp�i� 	 r̂F�r�� (4)

where F�r� satisfies the boundary conditions F�0� � � and
F�1� � 0.

With the convenient change of scale, we can use
2

���
2

p
=eF� and F�=2

���
2

p
as units of length and energy,

respectively, and rewrite the Lagrangian density (1) as

L 1 �
1

2
L2 �

�
�
1

2
TrL	L

	
�
�

1

2

�
1

16
Trf	�f

	�
�

(5)

where f	� � �L	; L��. A pion mass term [14] is usually
added to account for the chiral symmetry breaking ob-
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served in nature,

L � �
m2

�F2
�

8
�TrU � 2�: (6)

This term serves as a regulator for the magnetic radii and
form factors (see (36)) of nucleons, otherwise they would
diverge [15].

Using the hedgehog ansatz (4), one obtains the mass of
the static Skyrmion,

M � �
Z

d3xLS

� 4�
�

F�

2
���
2

p
e

�Z 1

0
drr2

�
F02 � 2

sin2F

r2

�
sin2F

2r2

�
2F02 �

sin2F

r2

�
� 2�2�1� cosF�

�
(7)

where r has now been rescaled and � � 2
���
2

p
m�=eF�. The

stable static soliton is obtained by minimizing the mass and
requires solving the chiral equation

�1� a�
�
F00 � 2

F0

r
� 2
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r2

�
� a

�
F02 c

s
�

sc

r2
� 2

F0

r

�

� �2s � 0 (8)

with the boundary conditions F�0� � � and F�1� � 0 for
B � 1. For simplicity, here we used a � sin2F=r2, s �
sinF, c � cosF.

Fluctuations around this static soliton should be quan-
tized. Quantization of the Skyrmion is usually performed
with the introduction of a spin and isospin rotation matrix
as a collective coordinate [2]. The spin/isospin rotation of
Skyrmion takes the form

U�r; t� � Ay�t�U�r�A�t� (9)

with A�t� an arbitrary time-dependent SU(2) matrix.
Substituting (9) in (5), one gets

L � �M � ITr�@tAy@tA� � �M �
I�I � 1�

2I
(10)

where M is defined in (7) and

I �
8�
3

�
2

���
2

p

e3F�

�Z 1

0
r2drsin2F�r�

�
2�

sin2F�r�

r2
� F02

�

(11)

is the moment of inertia of the Skyrmion. Here I is the spin
or isospin of the nucleon. The parameters F� and e are
fixed using two experimental inputs (mass of the nucleons
or else). One is then able to reproduce the static properties
of baryons within a 30% accuracy [2]. These methods can
also be generalized to extensions of the Skyrme model as
we will show in the following section.
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III. ALL-ORDERS SKYRMIONS

The Skyrme model is more a prototype for low-energy
pion interactions than a full effective field theory. Higher-
order terms are expected to appear in addition to (5) and
(7), but in its most general form the Lagrangian would
involve an increasing number of terms at each order in pion
field derivatives making the treatment practically intrac-
table. One of us has proposed a special class of models
whose energy density, assuming the hedgehog ansatz, is at
most linear in F02 [6]. This requirement is sufficient to
determine a unique term to each order in derivatives and
turns out to have deeper geometrical meaning [16].

The static energy density coming from the Lagrangian
of order 2m in derivatives of the field takes the form

E m � am�1�3a�m�b� a�� (12)

where a � sin2F=r2 and b � F02. Using the hedgehog
ansatz, the first two terms arise from the nonlinear $ and
the Skyrme terms

E 1 � �L1 � �
1

2
TrLiL

i � �2a� b�; (13)

E 2 � �L2 � �
1

16
Trfijf

ij � a�a� 2b�; (14)

while the third term leads to

E 3 � �L3 �
1

32
Trf	�f�%f	

% � 3a2b; (15)

as for the term proposed by Jackson et al. [5] to allow for
the dynamics of the ! meson in the Skyrme model.

Generalizing to all-order, the static energy associated to
this class of all-order Lagrangian can be written in a simple
form,

E �
X1
m�1

hmEm � 3(�a� � �b� a�(0�a� (16)

where a specific model is characterized by a choice of the
parameters hm or equivalently of the function (�a� �P

1
m�1 hmam and (0�a� � d(

da . Yet, (�x� is not completely
arbitrary. Requiring that a unique soliton solution exists
sets some constraints on (�x� [7]:

d
dx

(�x� � 0;
d
dx

�
(�x�

x3

�
� 0;

d
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�
1

x2
d
dx

(�x�
�
� 0

(17)

for x � 0.
The mass of the soliton, including the pion mass term, is

M � 4�
�

F�

2
���
2

p
e

�Z 1

0
r2drf3(�a� � �b� a�(0�a�

� 2�2�1� cosF�g
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and leads to the generalized chiral equation

(0�a�
�
F00 � 2

F0

r
� 2

sc

r2

�
� a(00�a�

�
F02 c

s
�

sc

r2
� 2

F0

r

�

� �2s � 0: (18)

In that context, the Skyrme Lagrangian corresponds to
(�a� � a� �a2=2�. The moment of inertia of the soliton
also takes a simple form,

I �
8�
3

�
2

���
2

p

e3F�

�Z 1

0
r4dr a�2(0�a� � �b� a�(00�a��:

(19)

Most all-orders models depend on more than two pa-
rameters. In the next section, we analyze the behavior of
the electromagnetic form factors for a few models in the
hope that these could help fix the hm coefficients and obtain
a better agreement with the experimental data in general.
IV. ELECTROMAGNETIC FORM FACTORS

The electromagnetic form factors of the proton (plus
sign) and neutron (minus sign) in the Breit frame, for
spacelike momentum transfer q2 > 0, are the Fourier trans-
forms of their electric charge and magnetic moment den-
sities:

Gp;n
E ��q2� �

1

2

Z 1

0
drfB0�r� � B1�r�gj0�qr�; (20)

Gp;n
M ��q2� � MN

Z 1

0
dr
�
4r2B0�r�

e2F2
�I

� IB1�r�
�
j1�qr�
qr

(21)

with

B0�r� �
�2

�
sin2�F�F0; (22)

and

B1�r� �
8�
3I

�
2

���
2

p

e3F�

�
r4a�2(0�a� � �b� a�(00�a�� (23)

are the baryon density and moment of inertia density,
respectively. Here jn is the spherical Bessel function of
order n and MN is the nucleon’s mass.

Both densities (22) and (23) are normalized,
Z 1

0
drB0�r� �

Z 1

0
drB1�r� � 1; (24)

while the electromagnetic form factors satisfy the normal-
ization condition

Gp;n
E �0� � 1; (25)

Gp;n
M �0� � 	p;n �

MN

3

�
r2B
2I

� I

�
(26)
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where 	p;n is the magnetic moment of the proton and
neutron, respectively, and r2B is the baryonic square radius

r2B �
8

e2F2
�

Z 1

0
dr r2B0�r�: (27)

However, the definitions (20) and (21) only hold in the
Breit frame moving at velocity v with respect to the
nucleon rest frame where the chiral profile F�r� is com-
puted. A correction for this Lorentz boost must be applied.
Ji [11] has proposed a simple prescription to circumvent
this difficulty for electromagnetic form factors:

GE�q
2� � Gnr

E

�
q2

/2

�
; (28)

GM�q
2� � /�2Gnr

M

�
q2

/2

�
; (29)

where Gnr
E and Gnr

M are given, respectively, by (23) and (24)
and / is the Lorentz factor

/2 � �1� v2��1 � 1�
q2

4M2 (30)

with the nucleon mass M.
Unfortunately, the boost transformations (28) and (29)

violate the so-called superconvergence rule

q2GE;M�q
2� ! 0; for q2 ! 1 (31)

which is expected to hold for electromagnetic form factors.
Indeed the limit q2 ! 1 in the Breit frame corresponds to
q2 � 4M2 in the rest frame and generally Gnr

E;M�4M
2� does

not vanish.
A possible approach to restore superconvergence is to

relax the condition that M must take the value of the
nucleon mass and instead allow M to vary in (30) in order
to get the best agreement with the data of Gp

M=�	pGD� at
the highest available values of q2 [17]. However, for the
models under study here, this procedure turned out to be
unsatisfactory. The value of M ensuring superconvergence
caused the ratio of the electromagnetic form factors to
become too suppressed in the large-q2 limit. On the other
hand, the models which we propose as candidates for the
description of QCD at low energy are not expected to hold
for large values of q2. Since the superconvergence rule
seems to be too restrictive, it will not be applied here. We
will instead promote M as a parameter and adjust its value
to provide a better fit of high-q2 data.

V. RESULTS AND DISCUSSION

The parameters of the Skyrme model, e and F�, are
usually set with either of the following two methods: (i)
adjust e and F� to obtain the mass of the nucleons
(939 MeV) and of the � resonance (1232 MeV) or (ii)
set F� according to its experimental value (186 MeV) and
adjust e to reproduce the nucleon-� mass split (295 MeV).
-3
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FIG. 1. Electromagnetic form factors of the proton from
Model A: c � 1

27 , e � 5:03 (solid lines); Model B: c1 �
1
3 , c2 �

1, e � 3:40 (dashed lines); and the Skyrme model: e � 4:25
(dotted lines). The data are from [21–23] (diamonds) and
[17,24,25] (squares).
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For comparison purposes, we adopt the second method,
also used in [9,10], and assume that the pion mass takes its
physical value.

We consider here two simple extensions of the Skyrme
model that fall into the class of models described in
Sec. III:

Model A: (A�a� � a�
a2

2
� ca3; (32)

Model B: (B�a� � a�
c1a3

�1� c2a�
: (33)

The first extension, Model A, consists of adding a term
proportional to L3 to the Skyrme model to implement the
! meson dynamics. On the other hand, Model B is a more
elaborate attempt to reproduce poles due to vector mesons
with a rational form. This latter model is a generalization
of a model introduced by Jackson et al. [7] with c1 �

1
3 and

c2 �
2
3 .

Fixing the model parameters e, c, c1, and c2 as well as
the scale parameter M is a tedious procedure which re-
quires a few steps: First, we choose a set of parameters (c
for Model A or c1 and c2 for Model B) and solve the
differential equation (18) for massive pions and use the
method described above (inputs are F� and nucleon-�
mass split) to fit for the appropriate value of e. In the
second step, we compute the form factors, compare them
with data, and adjust M to minimize the (2 of the ratio of
the electromagnetic form factors of the proton. The whole
procedure is repeated with different sets of parameters until
we get the configuration e; c;M or e; c1; c2;M with lowest
(2. Note that the neutron form factors are plagued with
large experimental uncertainties. Indeed, the fit is almost
insensitive to the nucleon form factor data and for compu-
tational reasons, we choose to use only the proton data as
input.

The results for the electromagnetic form factor of the
proton are presented in Fig. 1. We get e � 5:03, c ’ 1

27 , and
M � 1:20 GeV for Model A, and e � 3:40, c1 ’

1
3 , c2 ’ 1,

and M � 1:20 GeV for Model B. The results for the
Skyrme model are also shown for comparison (e � 4:25
and M � 1:66 GeV). According to Fig. 1, both models
present improvements over the Skyrme model, especially
for the ratio GE=	pG

p
M of the form factors. Despite its

simplicity, Model A seems to overcome Model B. However
both models exhibits a rapid divergence of the magnetic
form factor of proton.

In view of these results, we must conclude that although
the models examined here provide clear improvements,
they cannot reproduce the data for the magnetic form factor
of the proton adequately. The problem originates with their
inability to mimic the pole coming from the vector mesons.
Computing these predictions for an arbitrary number of
Skyrme model extensions being prohibitive, we resort to
another approach [9,10]. The 1-meson effects are incorpo-
114021
rated by multiplying the form factors (20) and (21) by

��q2� � %
� M2

1

M2
1 � q2

�
� �1� %� (34)

with M1 � 770 MeV. The electromagnetic mean square
radii of the proton (plus sign) and neutron (minus sign)
then become

hr2ip;nE � �
6

G�0�

dGp;n
E ��q2�

dq2

��������q2�0

�
6%

M2
1

�1� 1�

2
�

4

e2F2
�

Z 1

0
dr r2fB0�r� � B1�r�g;

(35)

hr2ip;nM � �
6

G�0�

dGp;n
M ��q2�

dq2

��������q2�0

�
6%

M2
1
�

8

e2F2
�

MN

3	p;n

Z 1

0
dr r2

�
4r2B0�r�

e2F2
�I

� IB1�r�
�
:

(36)

This correction introduces an additional parameter whose
allowed values go from the purely pionic model (% � 0) to
the mesonic dominance (% � 1). It should be noted that
neither the ratio of the electromagnetic form factors of the
proton nor the electric mean square radius of the neutron
depend on the parameter %. A similar effect could also
include taking into account the !-meson effects, but a
corresponding factor would involve a second % parameter
and our calculations indicate that this additional factor
does not leads to noticeable amelioration of the behavior.
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FIG. 2. Electromagnetic form factors of the proton from Model
A: c � 1

54 , e � 4:73 (solid lines); Model B: c1 �
1
3 , c2 � 1, e �

3:39 (dashed lines); and the Skyrme model: e � 4:25 (dotted
lines). The data are the same as for Fig. 1.
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FIG. 4. Electric form factor of neutron for models of Fig. 2.
The data are from [34,35] (squares) and [36– 42] (diamonds).
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The electromagnetic form factors of nucleons obtained
from Model A and B including pole effects (34) are pre-
sented in Figs. 2–4. All the models’ parameters as well as
the parameters M and now % are fitted using the procedure
described above to minimize the (2 of the magnetic form
factor. The best agreement with data is reached for values
of the parameters e � 4:73, c ’ 1

54 with M � 1:31 GeV
and % � 0:73 for Model A, and e � 3:39, c1 ’

1
3 , and c2 ’

1 with M � 1:26 GeV and % � 0:72 for Model B. The
results for the Skyrme model are found to be consistent
with those of Refs. [9,10] with M � 1:42 GeV and % �
0:75. Clearly, the inclusion of vector meson effects produce
a significant improvement Gp

M=	pGD over the results of
Fig. 1. Again both extensions of the Skyrme model, Model
A and B, do a better job of reproducing the data, the former
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.01  0.1  1  10

G
M

n /µ
n 

G
D

Q2[(GeV/c)2]

FIG. 3. Magnetic form factor of neutron for models of Fig. 2.
The data are from [26–29] (squares) and [30–33] (diamonds).
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model being slightly superior despite its relative simplicity.
We note also that a sharp rise of Gp

M=	pGD prediction still
appears but this time only at the end of the spectrum, i.e.,
for Q2 beyond 10 GeV2. Any attempts to separately cor-
rect the rise in this Q2 region for the proton or to lower
the overall magnitude of Gn

E in Fig. 4 has failed. The
increase of M or lowering of %, respectively, which is
necessary to carry out these corrections, completely jeop-
ardizes the remainder of the fit which otherwise accurately
reproduces most of the proton data. Furthermore, as shown
in Table I, the addition of higher-order terms has little
effect on other static properties of the nucleons with the
optimized values of the parameters (Note that the magnetic
moments of nucleons predicted by the models are all lower
than their experimental values but one has to remember
that these properties are subject to quantum corrections
[20]). Note that higher values of %, as result from our
calculations, indicate a strong dominance of the 1 meson
as in [9,10].

Our results therefore indicate that the data are best
reproduced by a higher-order effective Lagrangian in the
low-energy limit of QCD. Unfortunately, as we have no-
TABLE I. Static nucleon properties and parameters for models
of Fig. 2. The experimental data come from [18,19].

Skyrme Model A Model B Exp.

M (GeV) 1.43 1.31 1.26 	 	 	

% 0.75 0.73 0.72 	 	 	

	p (	N) 1.78 1.80 1.81 2.79

	n (	N) � 1:42 � 1:41 � 1:40 � 1:91

rpE (fm) 0.685 0.702 0.707 0:870� 0:008

rpM (fm) 0.826 0.842 0.844 0:858� 0:056

hrnEi
2 (fm2) �0:2364 �0:2424 �0:2399 �0:1161� 0:0022

rnM (fm) 0.857 0.877 0.879 0:876� 0:070
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ticed, the determination of a more accurate effective
Lagrangian faces theoretical uncertainties which remain
to be addressed. First, the boost prescription (28) and (29),
not being compatible with superconvergence, prevents us
from reproducing results for q2 > 10�GeV=c�2. An ade-
quate boost prescription holding account of superconver-
gence should allow extension of the analysis to higher
114021
momentum transfer. Secondly, we have only explored the
possibilities of two types of Skyrme model extensions.
These could not mimic the vector meson effects satisfac-
torily without the artifact of Eq. (34). Finding a form of
Skyrme-like Lagrangian that would allow one to bypass
the approach in (34) and avoid the introduction of the %
parameter remains a challenge.
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