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Bounds on the derivatives of the Isgur-Wise function with a nonrelativistic light quark
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In a preceding study in the heavy quark limit of QCD, it has been demonstrated that the best lower
bound on the curvature of the Isgur-Wise function ��w� is �00�1�> 1

5 �4�
2 � 3��2�2�> 15

16 . The quadratic
term ��2�2 is dominant in a nonrelativistic expansion in the light quark, both �00�1� and ��2�2 scaling
like �R2m2

q�
2, where mq is the light quark mass and R the bound state radius. The nonrelativistic limit is

thus a good guideline in the study of the shape of ��w�. In the present paper we obtain similar bounds on
all the derivatives of �NR�w�, the IW function with the light quark nonrelativistic, and we demonstrate
that these bounds are optimal. Our general method is based on the positivity of matrices of moments of
the ground state wave function, that allows to bound the nth derivative ��n�NR�w� in terms of the mth ones
(m< n). We show that the method can be generalized to the true Isgur-Wise function of QCD ��w�.

DOI: 10.1103/PhysRevD.70.114020 PACS numbers: 12.39.Jh
I. INTRODUCTION

Using the operator product expansion (OPE) in the
heavy quark limit of QCD, new Bjorken-like sum rules
(SR) have been obtained [1–3]. It has been shown that the
Isgur-Wise (IW) function ��w� is an alternate series in
powers of �w� 1�, and lower bounds have been found on
the absolute magnitude of its derivatives. Important in-
gredients in the derivation of the SR are the considera-
tion, following Uraltsev [4], of the nonforward
amplitude, plus the systematic use of boundary condi-
tions that ensure that only a finite number of jP inter-
mediate states (with their tower of radial excitations)
contribute.

In particular, it has been found that the nth derivative is
bounded by the �n� 1�th one [2]

��1�n��n��1� 	
2n� 1

4
��1�n�1��n�1��1� 	

�2n� 1�!!

22n ;

(1)

where the second inequality follows from the recursive
character of the first one, and generalizes the inequality
for the slope �2 
 ��0�1�:

�2 	 3
4 (2)

that follows from Bjorken [5] and Uraltsev [4] SR. The
first inequalities (1) read, for the curvature 2 
 �00�1�

2 	 5
4�

2 	 15
16: (3)

In [3] one has obtained, from a wider class of SR, the
following better bound on the curvature

2 	 1
5 �4�2 � 3��2�2� 	 15

16; (4)
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where the absolute lower bound (independent of �2) fol-
lows from (2). Radiative corrections to the bounds (3) and
(4) have been computed by M. Dorsten [6].

It has been underlined in [3] that the quadratic term in
(4) has a clear physical interpretation, as it is leading in a
nonrelativistic (NR) expansion in the mass of the light
quark:

�00NR�1�>
3
5��

2�2 (5)

where �NR�w� denotes the Isgur-Wise function with the
light quark in the NR limit.

It is clear that it is very important to have rigorous
bounds on the derivatives of the IW function. The main
general reason is that the shape of the latter is linked to
the determination of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix element jVcbj through the exclusive pro-
cesses B! D��‘�. As pointed out in [3], a more quanti-
tative reason is that, beyond the first derivative, higher
derivatives will play a non-negligible role at the edge of
the phase space, at high w, in the region where the data
are presently rather precise, and will become more and
more precise in the near future.

Therefore, it is not only of an academic interest to find
bounds on higher derivatives. To this aim, one can begin
by using systematically for higher derivatives the method
exposed in [3]. It is then possible to find bounds of the
form (4) for higher derivatives [7].

However, we have realized that, studying the NR situ-
ation, a more powerful method can be developed that
leads to better bounds, exposed below. With this method,
one finds for the second derivative, in the NR limit, the
bound (5), but for higher derivatives ��n�NR�1� one finds more
complicated bounds involving the mth ones (m< n). It is
important to notice that, unlike the method that we have
used in QCD [1–3], where the IW functions to excited
states played a crucial role, in the present paper we note
that a simple general property (positivity) involving only
-1  2004 The American Physical Society
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the elastic IW function allows us to deduce all the bounds
on its derivatives at zero recoil.

In QCD, in the heavy quark limit one can hope to
obtain bounds such that, in the NR limit for the light
quark, reduce to these better bounds. For the moment, the
aim of the present paper is to obtain bounds for the
derivatives of �NR�w�, opening the way to study the
more complex case of the actual IW function ��w� in
QCD.

In Sec. II we set the relation between the derivatives
��m�NR�1� and the moments h0jzmj0i, where j0i is the ground
state radial wave function. In Sec. III we study the general
constraints on the moments. In Sec. IV we shift to the
corresponding constraints on the derivatives and the re-
sulting bounds. In Section V we illustrate our bounds by
particularizing to simple potentials and in Sec. VI we
conclude. In Appendix Awe demonstrate a mathematical
identity used in the text, in Appendix B we show the
frame dependence of subleading moments and in
Appendix C we demonstrate the optimality of the bounds.
In Appendix D we deduce a simple formula giving a
weaker but completely explicit bound for all the even
derivatives ��2n��1�, that we compare with our optimal
bounds.

II. ISGUR-WISE FUNCTION IN THE NR LIMIT:
RELATION BETWEEN ITS DERIVATIVES

AND MOMENTS

A. Universal NR form factors in
heavy-heavy transitions

As it is well known from nuclear physics, the first-
quantized nonrelativistic operator corresponding to the
electromagnetic current eQQ�x��0Q�x� of field theory is
given by the expression eQ��x� rQ�, where rQ is the
position of the active quark (see for example [8]). Here
we are interested in the form factor corresponding
to a general current Q0�x��Q�x� for transitions between
bound states of the type �Q; q� ! �Q0; q� with unequal
masses. For simplicity, let us begin with the matrix ele-
ment of the fourth component of the vector current
J0�0� 
 Q0�0��0Q�0�.

Let us write the corresponding nonrelativistic (NR)
form factor in a general frame. The form factor for the
transition �Q; q� ! �Q0; q� will be given simply by the
matrix element of the operator ��rQ�:

F�P0;P� 
 hP0j��rQ�jPi 

Z

�f
P0 �rq; 0��i

P�rq; 0�drq;

(6)

where rQ and rq are, respectively, the positions of the
active and the spectator quarks.

There is a simple argument to find this nonrelativistic
expression of the current J0 
 Q0�0Q. Its matrix ele-
ments between one-particle states of given momenta p
114020
and p0 in the nonrelativistic limit, where p0=mQ0 and
p=mQ are small, are hp0; s0jJ0jp; si 
 �s0;s. As readily
verified, these matrix elements are precisely those of
the multiplication operator (in configuration space) by
the function ��r�. Indeed, one has:

hp0; s0j��r�jp; si 
 �s0;s
Z
e�ip

0�r��r�eip�rdr 
 �s0s: (7)

The nonrelativistic limit of the current is therefore
J0 
 ��r�.

The wave functions, that factorize in center-of-mass
and internal wave functions, are given by

�i
P�rq; rQ� 
 exp�i�mqrq �mQrQ� � v� i�rq � rQ�;

�f
P0 �rq; rQ0 � 
 exp�i�mqrq �mQ0rQ0 � � v0� f�rq � rQ0 �;

(8)

where

v 

P

mq �mQ
; v0 


P0

mq �mQ0

; (9)

are the nonrelativistic velocities and one gets for the form
factor (6) the following expression, exhibiting Galilean
invariance, since the NR form factor F�P;P0� is a func-
tion of the variable �v� v0�2 :

F�P0;P� 
 h fj exp�imq�v� v0� � rq�j ii � f��v� v0�2�:

(10)

Up to now, Eqs. (6)–(10) are valid for the current
J0�0� 
 Q0�0��0Q�0� and for any value of the masses
mQ, mQ0 , and mq. If we now assume the hierarchy

1=R� mq � mQ;mQ0 ; (11)

we will be in the situation of a heavy-heavy Q! Q0

quark transition with a light spectator, nonrelativistic
quark q. The first condition 1=R� mq, where R is the
radius of the bound state, ensures that the quark q is
nonrelativistic, while from the second condition mq �

mQ;mQ0 , the quark q is light relative to the active quarks
Q and Q0. This latter condition implies a heavy quark
symmetry SU�2Nh� where Nh is the number quarks that
are heavy relatively to the quark q. Therefore, these
conditions imply Isgur-Wise scaling, with all form factors
being given by the universal form factor f��v� v0�2� (10).
Notably, the flavor independence is due to the fact that the
internal wave function,  f and  i become independent of
the heavy quark mass.

Expanding the form factor f��v� v0�2� in powers of
�v� v0�2 we can write then

f��v� v0�2� 

X
n

1

n!
f�n��0��v� v0�2n



X
n

��1�n
1

�2n�!
�mq�

2nh0jz2nj0i�v� v0�2n;

(12)
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and we obtain the relations between the derivatives of the
form factor and the moments:

f�n��0� 
 ��1�n
n!

�2n�!
�mq�

2nh0jz2nj0i; (13)

or, by spherical symmetry,

f�n��0� 
 ��1�n
n!

�2n� 1�!
�mq�

2n&2n; (14)

with

&2n 
 h0jr2nj0i: (15)

B. Relation between the universal NR form factor and
the NR limit of the Isgur-Wise function

Thus, the NR form factor F�P0;P� is a function of the
variable �v� v0�2, while the relativistic Isgur-Wise func-
tion ��w� depends on w, where

w 
 v � v0 with v 

P
M
; v0 


P0

M0
; (16)

and �M;P�, �M0; P0� are the masses and four-momenta of
the initial and final mesons.

There are several facts that ask for care in the identi-
fication between the NR form factor f��v� v0�2� and the
Isgur-Wise function ��w� in its nonrelativistic limit
�NR�w�.

Let us leave aside for the moment the fact that the
velocities (16) differ from their nonrelativistic limits (9)
by the binding energy that is neglected in the latter.

Of course, f��v� v0�2� and �NR�w� cannot be generally
identified, since w is not a function of �v� v0�2 :

w 
 v � v0 

���������������
1 � v02

p ��������������
1 � v2

p
� v � v0


 1 � 1
2

�
�v� v0�2 �

� ��������������
1 � v2

p
�

���������������
1 � v02

p �
2
�
: (17)

To relate w and �v� v0�2 one needs to choose a frame.
The natural frame is the rest frame of the initial particle,
i. e. v 
 0. One has, in this frame:

w 
 �1 � �v� v0�2�1=2: (18)

The relation between w and �v� v0�2 being nonlinear, the
relations between the derivatives relatively to w and to
�v� v0�2 are complicated. As we show in Appendix B,
the derivative of order n relatively to w depends on the
derivatives of order m � n relatively to �v� v0�2 and
conversely.

Another frame, the equal-velocity frame (EVF) where
the velocities are equal and opposite v0 
 �v, gives from
(17) :

w 
 1 � 1
2�v� v0�2: (19)

Thus, in this frame, the relation between w and �v� v0�2

is linear, and the nth derivative relatively to w is propor-
tional to the nth derivative relatively to �v� v0�2.
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In the EVF, we obtainX
n

1

n!
��n�NR�1��w� 1�n


 �NR�w� 
 h j exp�imq�v� v0� � rq�j i



X1
n
0

��1�n
1

�2n�!
�mq�

2nh0jz2nj0i�v� v0�2n



X1
n
0

��1�n2n
1

�2n�!
�mq�

2nh0jz2nj0i�w� 1�n: (20)

Therefore, in this frame one gets the relation between the
derivatives of �NR�w� and the moments:

��n�NR�1� 
 ��1�n2n
n!

�2n� 1�!
�mq�

2nh0jr2nj0i: (21)

This relation is exact in this frame, and coincides with the
leading term in the NR limit in all collinear frames, as
the rest frame (see Appendix B).

Therefore, in a NR expansion for the light quark, one
can only claim to obtain frame-independent results for
the derivatives of �NR�w� in the leading NR order for the
moments. From now on we will then rely only on the
relation (21).

However, v, v0 in relation (20) are not identical to their
nonrelativistic limits (9). This fact does not invalidate the
relations given above, since w in the EVF (19) differs
from its NR expression in terms of NR velocities by terms
of order "=mQ where " is the binding energy. This can be
summarized by expanding w in terms of the NR veloc-
ities (9) and binding energies:

w 
 1 �
1

2

�
P

mq �mQ
�

P0

mq �mQ0

�
2

� subleading terms in velocities �O�"=mQ�: (22)

Therefore, since these differences are subleading we can
make the identification

�NR�wNR� 
 f��v� v0�2�; (23)

wherewNR is the leading term ofw given by the preceding
expansion, and relation (21) holds indeed for the leading
terms.

From Eq. (21) one may be surprised that the NR
expansion leads to a result for ��n��1� increasing with
mqR� �v=c��1, seemingly at odds with the notion of a
NR expansion. In fact, the two last formulas in ex-
pression (20) show that the form factor is expanded in a
series of powers �mq�

2nh0jz2nj0i��v� v0�=c�2n �
�mqR�2n��v� v0�=c�2n where R is the bound state radius
R� �pint�

�1, pint being the internal quark momentum. On
the other hand v� v0 is the external center-of-mass ve-
locity transfer. Therefore, since mqR�mq=pint 


��v=c�int�
�1, the form factor is expanded in powers of

the type ��v=c�int�
�2n��v=c�ext�

2n. The negative order in
-3
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��v=c�int�
�2n is therefore compensated by the correspond-

ing positive powers of ��v=c�ext�
2n. The derivatives ��n�NR�1�

in Eq. (21) are given by the inverse powers ��v=c�int�
�2n,

that multiply in (20) ��v� v0�=c�2n 
 2n�w� 1�n. In a
general frame, the coefficient of �v� v0�2n or �w� 1�n

will contain an expansion in powers of ��v=c�int�
�2n�m

�m 	 0�. However, the subleading terms �m> 0� are
frame dependent, as shown in Appendix B.
III. CONSTRAINTS ON THE MOMENTS

Let us define the moments

&n 
 h0jrnj0i; (24)

and consider the even moments &2n, related to h0jz2nj0i
from rotational invariance

&2n 
 �2n� 1�h0jz2nj0i: (25)

We will now formulate necessary constraints on the &2n
resulting from the fact that they are indeed moments, i.e.,
that there exists a function ’�r� such that

&2n 

Z 1

0
r2nj’�r�j2dr: (26)

It turns out that these conditions are sufficient, but this is
only proved in Appendix C, implying that the constraints
are optimal.
(i) A
 necessary condition is that for any nonzero
polynomial P

P�r2� 

Xn
i
0

air
2i 	 0 �r 	 0� )

Z 1

0
P�r2�j’�r�j2dr 


Xn
i
0

ai&2i > 0:
(27)

From this condition, that is not very explicit, one
deduces the following conditions (ii), (iii), and
(iv), that are equivalent. Condition (iv) is explicit.
(ii) F
or any n 	 0 and nonvanishing a0; � � � an one hasXn
i;j
0

�ai�
aj&2i�2j > 0 and

Xn
i;j
0

�ai�aj&2i�2j�2 > 0:
(28)

One demonstrates (ii) from (i) by considering the
polynomials P�r2� 
 j

Pn
i
0 air

2ij2 and P�r2� 

r2j

Pn
i
0 air

2ij2. Conversely, (i) results from (ii).

(iii) F
or any n 	 0, the matrices �&2i�2j�0�i;j�n and

�&2i�2j�2�0�i;j�n are positive definite.
This condition is just a rephrasing of condition
(ii).
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(iv) F
-4
or any n 	 0, one has

det��&2i�2j�0�i;j�n�> 0; (29)

det��&2i�2j�2�0�i;j�n�> 0: (30)
To obtain (iv) from (iii) it is enough to note that a
positive definite matrix has strictly positive eigenvalues,
and that the determinant is the product of its eigenvalues.

Let us first write the determinants (29) and (30) for the
lower values of n, namely

&2 > 0 (31)

det
1 &2

&2 &4

� �
> 0 (32)

det
&2 &4

&4 &6

� �
> 0 (33)

det
1 &2 &4

&2 &4 &6

&4 &6 &8

0@ 1A> 0 (34)

det
&2 &4 &6

&4 &6 &8

&6 &8 &10

0@ 1A> 0 (35)

det

1 &2 &4 &6

&2 &4 &6 &8

&4 &6 &8 &10

&6 &8 &10 &12

0BBB@
1CCCA> 0 (36)

� � �

where (32), (34), and (36) belong to the class of positivity
conditions (29), and (31), (33), and (35) to the class (30).

From (32) and (33) we find, respectively

&4 >&2
2; (37)

&6 >
&2

4

&2
: (38)

To get the constraint on &8 from (34) in terms of positive
definite quantities, we make use of the following identi-
ties:

&4 det

1 &2 &4

&2 &4 &6

&4 &6 &8

0BB@
1CCA 
 det

1 &2

&2 &4

 !
det

&4 &6

&6 &8

 !

�

"
det

&2 &4

&4 &6

 !#
2

; (39)
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det

1 &2 &4

&2 &4 &6

&4 &6 &8

0BB@
1CCA 
 det

&4 &2 &6

&2 1 &4

&6 &4 &8

0BB@
1CCA


 det
&4 &2

&2 1

 !
det

1 &4

&4 &8

 !

�

"
det

&2 1

&6 &4

 !#
2

; (40)

that follows from the general identity among determi-
nants of the Appendix A. We find:

&8 >
&2

6 � 2&2&4&6 �&3
4

&4 �&2
2



�&2&6 �&2

4�
2

&4�&4 �&2
2�

�
&2

6

&4



�&6 �&2&4�

2

&4 �&2
2

�&2
4;

(41)

where the first equality follows from (34) and (39) and the
second from (34) and (40).

To proceed in the same way with the 10th moment, we
make use of the inequality (35) and the relations among
determinants similar to (39) and (40), and this yields

&10 >
&2&2

8 � 2&4&6&8 �&3
6

&2&6 �&2
4



�&4&8 �&2

6�
2

&6�&2&6 �&2
4�

�
&2

8

&6



�&2&8 �&4&6�
2

&2�&2&6 �&2
4�

�
&2

6

&2
: (42)

Things become more complicated for higher moments,
but the method proceeds in the same way. The 12th mo-
ment is dealt with the inequality (36) and the results
among determinants (A8)–(A10).
IV. BOUNDS ON THE DERIVATIVES

Let us summarize the inequalities among the moments
deduced in the previous section. We adopt in (41) and (42)
the expressions given by the last equalities in the right-
hand side. This will be instructive, as it will become clear
below. We have obtained

&2 > 0; (43)

&4 >&2
2; (44)

&6 >
&2

4

&2
; (45)

&8 >
�&6 �&2&4�

2

&4 �&2
2

�&2
4; (46)

&10 >
�&2&8 �&4&6�

2

&2�&2&6 �&2
4�

�
&2

6

&2
: (47)
114020
From the frame-independent relation between mo-
ments and derivatives obtained from (21)–(25) (cf.
Appendices B and D):

��n�NR�1� 
 ��1�n2n
n!

�2n� 1�!
�mq�

2n&2n; (48)

and from (43)–(47), we obtain, respectively, the follow-
ing inequalities among the derivatives:

���1�NR�1�> 0; (49)

��2�NR�1�>
3
5 ���1�NR�1��

2; (50)

���3�NR�1�>�
5

7

���2�NR�1��
2

��1�NR�1�
; (51)

��4�NR�1�>
7

9

����3�NR�1� �
3
7�

�1�
NR�1��

�2�
NR�1��

2

��2�NR�1� �
3
5 ��

�1�
NR�1��

2
�

5

21
���2�NR�1��

2;

(52)

���5�NR�1�>
9

11

�
��4�NR�1� �

5
9
��2�NR�1��

�3�
NR�1�

��1�NR�1�

�
2

���3�NR�1� �
5
7
���2�NR�1��

2

���1�NR�1�

�
35

99

���3�NR�1��
2

��1�NR�1�
:

(53)

Importantly, we observe that the left-hand side and the
right-hand side of all the inequalities (49)–(53) scale in
the same way in the parameter R2m2

q, where mq is the
light quark mass and R the bound state radius, since the
derivatives ��n�NR�1�, from (21), scale like �R2m2

q�
n. The

inequalities (49) and (50) are the nonrelativistic limit of
the bounds of the true IW function (2) and (4).

Comparing with the results of the method used in
Appendix D, we have found stronger results for all the
derivatives.

For the even derivatives, we find for 2n > 2 a new term
that strengthens the lower bound. This can be seen from
the bounds (52) and (D9) or ��4�NR�1�. We have found a new
term besides the term proportional to ���2�NR�1��

2. However,
for the curvature ��2�NR�1�, relevant for the nonrelativistic
limit of the curvature of the true IW function ��w�, we
find the same bound (5) as with the former simpler
method of Appendix D.

As for the odd derivatives, the trivial bound (D10) has
been changed in a very substantial way, since we find the
lower bounds (51) and (53).

Finally, let us emphasize that the lower bounds (49)–
(53) are optimal. The optimality of these bounds is dem-
onstrated in the Appendix C.
-5
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V. SOME ILLUSTRATIONS

For the sake of a simple illustration of the bounds, let
us consider the harmonic oscillator in the equal-velocity
frame:

�h:o:
NR �w� 
 exp���w� 1�m2

qR2�; (54)

where the bound state radius R is normalized in a conve-
nient way to have this simple expression. The nth deriva-
tive reads

��n�NR�1� 
 ��1�n�m2
qR

2�n: (55)

Then, the bound (49) reads simply m2
qR2 > 0 and (50)–

(53) will become for the nth derivative

n 
 2 1>
3

5
; n 
 3 1>

5

7
;

n 
 4 1>
55

63
; n 
 5 1>

91

99
:

(56)

Interestingly, we find that the bounds become better and
better as we consider higher derivatives. For the 5th
derivative the bound is already very strict.

However, it is not granted that these features will
remain for more realistic potentials. Therefore, it can be
useful to examine another simple potential, although not
confining, namely, the Coulomb potential. In this case we
have a dipole form factor

�Coulomb
NR �w� 


1

�1 � �w� 1�m2
qR

2�2
: (57)

The derivatives read

��n�NR�1� 
 �n� 1�!��1�n�m2
qR

2�n; (58)

and the inequalities (50)–(53) give, respectively

n 
 2 1>
2

5
; n 
 3 1>

15

28
;

n 
 4 1>
263

378
; n 
 5 1>

3626

4719
:

(59)

These inequalities are somewhat less strict than in the
harmonic oscillator case but here also they improve for
higher derivatives.

We can expect that in the case of a realistic phenome-
nological Q #q potential, with a confining and a short
distance parts, the situation will be in between the har-
monic oscillator and the Coulomb potentials.

VI. GENERALIZATION OF THE
METHOD TO QCD.

We have obtained lower bounds on the derivatives at
zero recoil of the nonrelativistic Isgur-Wise function
�NR�w�, i.e., the IW function with a NR light quark.
Our main motivation has been to find the leading term
in a NR expansion of the derivatives at zero recoil of the
114020
true IW function ��w� that should be obtained in the
heavy quark limit of QCD. The parameter in this expan-
sion is �v2=c2�int or, equivalently 1=R2m2

q, wheremq is the
light quark mass and R is the bound state radius. In
previous work [3] we did obtain in the heavy quark limit
of QCD such an expansion for the slope and the curva-
ture, inequalities (2) and (4),

���1��1�> 3
4 ; ��2��1�> 1

5 f�4��1��1� � 3���1��1��2g:

(60)

Since ���1��1� and ��2��1�, scale, respectively, like R2m2
q

and �R2m2
q�

2, in the NR limit these inequalities become
respectively (49) and (50). The inequalities (60) contain
terms, specific to QCD in the heavy quark limit, that are
subleading in a NR expansion.

Our aim would be, in the long run, to obtain bounds for
the nth derivative of the IW function in the heavy quark
limit of QCD that must contain the subleading terms in a
NR expansion. We know that in the strict NR limit we
must recover the bounds (49)–(53) obtained in the present
paper.

To obtain these bounds in QCD we could try the
method of [3] in a systematic way, that uses sum rules
for the nonforward amplitude, relating a sum over inter-
mediate states and the OPE, that depends on three vari-
ables wi 
 vi � v

0, wf 
 vf � v
0, wif 
 vi � vf, that lie in

a certain domain [1]. Differentiating the SR relatively to
�wi; wf; wif� and going to the frontier of the domain one
gets relations that allow to obtain (60) [3]. This method
can be pursued further and obtain bounds for the higher
derivatives [7]. However, the obtained bounds, in their NR
limit, are weaker than (51)–(53).

We have developed here a more powerful method,
based on the positivity of matrices of moments of the
ground state wave function, that allows to go further for
the derivatives n > 2 in the NR limit. To generalize the
present method to QCD in the heavy quark limit one
should investigate whether the derivatives ��n��1� can be
expressed in terms of positive definite quantities that are
true moments as in the nonrelativistic expression (26).
Then, one could draw the consequences that follow
from the positivity of the relevant matrices. A step in
this direction is the conjecture that, at least in the meson
case [1], all SR in the heavy quark limit of QCD are
satisfied in the Bakamjian-Thomas (BT) class of relativ-
istic quark models [9]. We have realized this in practice
for the lower derivatives ��n��1�, n 
 1; 2; 3. These models
are relativistic for the states and also for the current
matrix elements in the heavy quark limit, exhibiting
Isgur-Wise scaling. One can hope to start from the NR
quark model and go to BT models, and from those to the
heavy quark limit QCD.

Another, more direct way to proceed to the heavy
quark limit of QCD is to start from the sum rules ob-
-6
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tained in [1–3], realizing that one can obtain the NR
bounds of the present paper from the equivalent sum rules
of the nonrelativistic limit. Indeed, in the NR limit we
have a SR of the formX

n00
fn;n00 �k�fn00;n0 �k0� 
 fn;n0 �k� k0�; (61)

that follows, very simply, from

fn;n0 �k� 
 hnjeik�rjn0i: (62)

In QCD in the heavy quark limit we have sum rules of the
same form (61), but without the explicit expression (62).
However, to derive the inequalities of this paper, (61) is
sufficient. Indeed, from (61) one getsX

i;j

cicjf0;0�ki � kj� 

X
n

X
i;j

cicjf0;n�ki�fn;0��kj�



X
n

j
X
i

cif0;n�ki�j2 	 0: (63)

From this relation one can infer, for any function ’�k�,Z
dkdk0’�k0�f0;0�k� k0�’�k� 	 0; (64)

and therefore, for the Fourier transformZ
drje’�r�j2 ~f0;0�r� 	 0; (65)

and hence

~f 0;0�r� 	 0: (66)

These are the conditions that we need to obtain con-
straints on the moments and hence bounds on the deriva-
tives of the form factor f0;0�k� k0�, because writing the
form factor in terms of its Fourier transform

f0;0�k� k0� 

Z
dr~f0;0�r�ei�k�k0��r; (67)

and taking into account that f0;0�k� k0� must be an even
function, we obtain (Oz is defined along the momentum
transfer k� k0):

f0;0�k� k0� 

X
n

��1�n
1

�2n�!
�k� k0�2n

&2n

2n� 1
; (68)

i.e., an expansion of the form factor in terms of moments
of the form (20), with the identification

&2n 
 h0jr2nj0i 

Z
dr~f0;0�r�r2n; (69)

since the positivity condition ~f0;0�r� 	 0 (66) holds and,
from (67): Z

~f0;0�r�dr 
 1; (70)

We do recover essentially the previous results (43)–(47)
114020
using only the sum rules (61). If ~f0;0�r� is a function, it
can be seen as the square of a wave function, and all the
strict inequalities of the NR type (43)–(47) would follow.
However, this is not implied by the SR, and weaker
results could follow, namely, the inequalities may not be
strict. For example, one could have a distribution like

~f 0;0�r� 

1

4/r2
0

��jrj � r0�; (71)

which is not the square of a wave function, that would
imply

&2n 
 r2n
0 ; (72)

and, for example, the strict inequality (44) would become
an equality. For example, in the true QCD case, the lower
bound (2) for �2 could become an equality. By the way,
this would correspond to the approximation considered in
Ref. [10].

Our strategy will then be to start from the SR in the
heavy quark limit of QCD that are equivalent to the NR
ones (61), and proceed along the same lines. We can
presume that the method will give the optimal bounds
for the derivatives of the true Isgur-Wise function ��w�.
VII. CONCLUSION

To conclude, we have obtained the best possible general
bounds on the derivatives of the Isgur-Wise function
�NR�w�, i.e., considering the light quark as nonrelativistic,
in terms of lower derivatives. These bounds must be the
nonrelativistic limit of the bounds on the derivatives of
the true Isgur-Wise function ��w�, and constitute a guide-
line in the derivation of the latter. Moreover, we argue that
the method developed here, that exploits the positivity of
matrices of moments, can be generalized, starting from
SR in the heavy quark limit of QCD, to obtain the best
bounds on all the derivatives of ��w�.
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APPENDIX A: AN IDENTITY BETWEEN
DETERMINANTS

In Sec. III we have made use of the identity among
determinants

det��aij�1�i;j�n� det��aij�2�i;j�n�1�


 det��aij�1�i;j�n�1� det��aij�2�i;j�n�

� det��aij�1�i�n�1;2�j�n� det��aij�2�i�n;1�j�n�1�;

(A1)

or, in a more readable way:
-7



F. JUGEAU, A. LE YAOUANC, L. OLIVER, AND J.-C. RAYNAL PHYSICAL REVIEW D 70, 114020 (2004)
det

a1;1 a1;2 � � � a1;n�1 a1;n

a2;1 a2;2 � � � a2;n�1 a2;n

� � � � � � � � � � � � � � �

an�1;1 an�1;2 � � � an�1;n�1 an�1;n

an;1 an;2 � � � an;n�1 an;n

0BBBBB@
1CCCCCA det

a2;2 � � � a2;n�1

� � � � � � � � �

an�1;2 � � � an�1;n�1

0@ 1A


 det

a2;2 � � � a2;n�1 a2;n

� � � � � � � � � � � �

an�1;2 � � � an�1;n�1 an�1;n

an;2 � � � an;n�1 an;n

0BBB@
1CCCA det

a1;1 � � � a1;n�2 a1;n�1

� � � � � � � � � � � �

an�2;1 � � � an�2;2 an�2;n�1

an�1;1 � � � an�1;2 an�1;n�1

0BBB@
1CCCA

� det

a1;2 � � � a1;n�1 a1;n

� � � � � � � � � � � �

an�2;2 � � � an�2;n�1 an�2;n

an�1;2 � � � an�1;n�1 an�1;n

0BBB@
1CCCA det

a2;1 � � � a2;n�2 a2;n�1

� � � � � � � � � � � �

an�1;1 � � � an�1;n�2 an�1;n�1

an;1 � � � an;n�2 an;n�1

0BBB@
1CCCA: (A2)

To demonstrate this relation, let us introduce the column vectors

xi 

Xn
j
1

ai;jej; (A3)

where the ai;j are the elements of the matrices (A1) or (A2). Multiplying (A2) by �e1 ^ � � � ^ en� � �e1 ^ � � � ^ en�, this
formula writes

�x1 ^ x2 ^ �� � ^ xn�1 ^ xn� � �e1 ^ x2 ^ � � � ^ xn�1 ^ en� 
 �x1 ^ x2 ^ � � � ^ xn�1 ^ en� � �e1 ^ x2 ^ �� � ^ xn�1 ^ xn�

��en ^ x2 ^ �� � ^ xn�1 ^ xn� � �x1 ^ x2 ^ � � � ^ xn�1 ^ e1�:

(A4)

Assuming that the vectors x1; � � � xn are independent, one can expand e1 and en:

e1 
 01x1 � � � � � 0nxn; en 
 11x1 � � � � � 1nxn: (A5)

The left-hand side of (A4) becomes

�x1 ^ x2 ^ � � � ^ xn�1 ^ xn� � �e1 ^ x2 ^ � � � ^ xn�1 ^ en� 
 �x1 ^ x2 ^ � � � ^ xn�1 ^ xn�

���01x1 � 0nxn� ^ x2 ^ � � � ^ xn�1 ^ �11x1 � 1nxn��


 �011n � 0n11��x1 ^ x2 ^ � � � ^ xn�1 ^ xn�

��x1 ^ x2 ^ � � � ^ xn�1 ^ xn�; (A6)

while the terms in the right-hand side become

�x1 ^ x2 ^ � � � ^ xn�1 ^ en� � �e1 ^ x2 ^ � � � ^ xn�1 ^ xn� 
 011n�x1 ^ x2 ^ � � � ^ xn�1 ^ xn�

��x1 ^ x2 ^ � � � ^ xn�1 ^ xn�;

�en ^ x2 ^ � � � ^ xn�1 ^ xn� � �x1 ^ x2 ^ � � � ^ xn�1 ^ e1� 
 0n11�x1 ^ x2 ^ � � � ^ xn�1 ^ xn�

��x1 ^ x2 ^ � � � ^ xn�1 ^ xn�:

(A7)

The identity is therefore demonstrated if the vectors x1; � � � xn are independent.
If the vectors are dependent one can show that both the left-hand side and the right-hand side vanish identically.
In particular, in Sec. III we refer to the following identities:
114020-8
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det
&4 &6

&6 &8

� �
det

1 &2 &4 &6

&2 &4 &6 &8

&4 &6 &8 &10

&6 &8 &10 &12

0BBB@
1CCCA 
 det

&4 &6 &8

&6 &8 &10

&8 &10 &12

0@ 1A det
1 &2 &4

&2 &4 &6

&4 &6 &8

0@ 1A

� det
&2 &4 &6

&4 &6 &8

&6 &8 &10

0@ 1A264
3752

; (A8)

det
1 &4

&4 &8

� �
det

&4 &2 &6 &8

&2 1 &4 &6

&6 &4 &8 &10

&8 &6 &10 &12

0BBB@
1CCCA 
 det

&4 &2 &6

&2 1 &4

&6 &4 &8

0@ 1A det
1 &4 &6

&4 &8 &10

&6 &10 &12

0@ 1A

� det
&2 1 &4

&6 &4 &8

&8 &6 &10

0@ 1A264
3752

; (A9)

det
&4 &2

&2 1

� �
det

&8 &6 &4 &10

&6 &4 &2 &8

&4 &2 1 &6

&10 &8 &6 &12

0BBB@
1CCCA 
 det

&8 &6 &4

&6 &4 &2

&4 &2 1

0@ 1A det
&4 &2 &8

&2 1 &6

&8 &6 &12

0@ 1A

� det
&6 &4 &2

&4 &12 1
&10 &8 &6

0@ 1A264
3752

: (A10)
APPENDIX B: FRAME DEPENDENCE OF THE
SUBLEADING MOMENTS

Let us begin from the general expressions (18) and (20)
in the initial hadron rest frame, v 
 0, without neglecting
powers h0jz2pj0i�w� 1�p (p <m). From the relation

�v� v0�2m 
 �w2 � 1�m 

Xm
i
0

2m�i
m
i

� �
�w� 1�m�i;

(B1)

one obtains the following relation between derivatives
and moments:

��n�NR�1� 

Xn

m
n=2

��1�m22m�n n!m!

�2m�!�n�m�!�2m� n�!

� �mq�
2mh0jz2mj0i: (B2)

conversely, to obtain the moments in terms of the deriva-
tives, it is enough to replace the variable w by

y 
 w2 � 1: (B3)

Then

�NR�w� 
 �NR��1 � y�1=2� (B4)

can be expanded in powers of y 
 w2 � 1 :
114020
�NR��1 � y�1=2� 

X1
n
0

1

n!
��n�NR�1�

X1
m
n

cn;my
m



X1
m
0

��1�m
1

�2m�!
�mq�

2mh0jz2mj0iym:

(B5)

From this expression we can read the expression of the
moments in terms of the derivatives

h0jz2mj0i 
 ��1�m�2m�!�mq�
�2m

Xm
n
0

1

n!
cn;m�

�n�
NR�1�: (B6)

The coefficients cn;m are defined by

��1 � y�1=2 � 1�n 

X1
m
n

cn;my
m (B7)

and therefore given by

cn;m 

Xn
i
0

��1�n�i
n
i

� �
i=2
m

� �
: (B8)

This sum can be calculated and gives:

cn;m 
 ��1�m�n2�2m�n
�

2m� n� 1
m� n

� �
�

2m� n� 1
m� n� 1

� ��
: (B9)

Explicitly, one has
-9
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c0;m 
 �m;0 cn;m 
 ��1�m�n2�2m�nn
�2m� n� 1�!

m!�m� n�!
; (B10)

where the second relation holds except for n 
 m 
 0, since c0;0 
 1.
From relations (B6) and (B10) we obtain the final relation giving the moments in terms of the derivatives

h0jz2mj0i 
 �mq�
�2m

"
�m;0�NR�1� �

Xm
n
1

��1�n2�2m�n �2m�!�2m� n� 1�!

m!�m� n�!�n� 1�!
��n�NR�1�

#
: (B11)

The relations (B2) and (B11) are the main results of this section.
Explicitly, one obtains, for the lower derivatives and moments:

�NR�1� 
 h0j1j0i;

�0NR�1� 
 �m2
qh0jz

2j0i;

�00NR�1� 

1
3m

4
qh0jz4j0i �m2

qh0jz2j0i;

��3�NR�1� 
 � 1
15m

6
qh0jz

6j0i �m4
qh0jz

4j0i;

��4�NR�1� 

1

105m
8
qh0jz8j0i � 2

5m
6
qh0jz6j0i �m4

qh0jz4j0i;

��5�NR�1� 
 � 1
945m

10
q h0jz10j0i � 2

21m
8
qh0jz8j0i �m6

qh0jz6j0i:

(B12)

h0j1j0i 
 �NR�1�;

h0jz2j0i 
 �m�2
q �0NR�1�;

h0jz4j0i 
 3m�4
q ��00NR�1� � �0NR�1��;

h0jz6j0i 
 15m�6
q ����3�NR�1� � 3�00NR�1� � 3�0NR�1��;

h0jz8j0i 
 105m�8
q ���4�NR�1� � 6��3�NR�1� � 15�00NR�1� � 15�0NR�1��;

h0jz10j0i 
 945m�10
q ����5�NR�1� � 106��4�NR�1� � 45��3�NR�1� � 105�00NR�1� � 105�0NR�1��:

(B13)
We observe that in expressions (B2) and (B11) there is a
leading term in the nonrelativistic expansion and in (B12)
and (B13), the first term in the expansion is the leading
term.

The purpose of the present detailed calculation is to
point out that actually the subleading terms are frame
dependent and that therefore, one can only get informa-
tion on the leading term in the nonrelativistic expansion,
the unique term that appears in the equal-velocity frame
used in Sec. II.

Moreover, there is continuity between the rest frame
and the equal-velocity frame, since w can be expressed in
terms of �v� v0�2 in all collinear frames

0v� 1v0 
 0; 0� 1 
 1; (B14)

one gets indeed

w 

���������������������������������������������
1 � �1 � 0�2�v� v0�2

q ���������������������������������
1 � 02�v� v0�2

q
�0�1 � 0��v� v0�2; (B15)

with 0 
 1 in the rest frame and 0 
 1
2 in the equal-

velocity frame. The first order in �v� v0�2 yields, inde-
pendently of 0,
114020
w � 1 � 1
2�v� v0�2; (B16)

giving the leading order relation between derivatives of
�NR�w� and moments (21).
APPENDIX C: OPTIMALITY OF THE
CONSTRAINTS

We have seen that the nonrelativistic Isgur-Wise func-
tion

�NR�w� 
 h 0je�imq�v0�v��rj 0i �w 
 1
2�v

0 � v�2 � 1�;

(C1)

has its derivatives at w 
 1 related to the moments

&2n 
 h 0jr
2nj 0i; (C2)

by

��n�NR�1� 
 ��1�n
2nn!

�2n� 1�!
m2n
q &2n; (C3)

and that these moments satisfy the following tower of
constraints:

det�&2i�2j�0�i;j�n > 0; (C4)
-10
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det�&2i�2j�2�0�i;j�n > 0; (C5)

which consists, for each n 	 0, of a lower bound on &2n
depending on the moments &2k for 0 � k � n� 1.

In this appendix, we show that this cannot in general
(for arbitrary wave function) be improved. Namely that,
given &2k for 0 � k � n� 1 satisfying (C4) and (C5) ,
the moment&2n can have any value larger than this lower
bound.

To that goal, we forget (C2) by now, and consider
arbitrary numbers &2n �n 
 0; 1; 2; � � �� satisfying the
constraints (C4) and (C5). In this appendix we prove
that, for any N 	 0, there exists a wave function  �N�

0
such that one has

&2n 
 h �N�
0 jr2nj �N�

0 i for all 0 � k � N: (C6)

We shall not be able here to know if there is a wave
function  0 satisfying (C2) for all n, but our more limited
result (C6) is enough to prove the point.

To simplify notations, we introduce

x 
 r2 (C7)

as a variable taking positive values. Let us proceed with
our demonstration underlying the following points.

(i) Introduce, in the vector space of polynomials in x,
the linear form defined by the values &2k on the mono-
mials xk (which constitutes an algebraic basis of this
vector space). It is given by

hPi 

Xn
k
0

ak&2k for P�x� 

Xn
k
0

akxk: (C8)

As a preliminary and crucial step, we have:
(ii) This linear form hPi is strictly positive. Namely,

one has

P�x� 	 0 for all x 	 0; and P � 0 ) hPi> 0:

(C9)

To prove this, observe first that (C4) and (C5) imply
that �&2i�2j�0�i;j�n and �&2i�2j�2�0�i;j�n are positive defi-
nite matrices, or explicitly that one hasXn
i;j
0

aiaj&2i�2j > 0;
Xn
i;j
0

aiaj&2i�2j�2 > 0; (C10)

for any coefficients a0; � � � ; an not all vanishing, and
using the definition (C8) of hPi, these properties (C10)
translate into:

hjQj2i> 0; hxjQj2i> 0; (C11)

for any nonvanishing polynomial Q.
Then, any P satisfying P�x� 	 0 for all x 	 0 is a

linear combination with positive coefficients of polyno-
mials of the form jQj2 or xjQj2. Indeed, considering the
roots of P, we have
114020
P 

Y
i

�x� ci�
Y
j

�x� c0j�
2
Y
k

jx� zkj
2; (C12)

with ci 	 0, c0j > 0, Im zk � 0, since complex roots zk
occur in conjugate pairs, strictly positive roots c0j occur in
even multiplicity (else a change of sign at x 
 c0j), and
negative roots �ci are arbitrary.

(iii) Next introduce a scalar product in the vector space
of polynomials by

hPjP0i 
 hPP0i: (C13)

The scalar product properties are easily verified. Notably,
the important fact that hPjPi 
 0 implies P 
 0 results
from (C4).

We may then consider the orthogonal polynomials
p0; p1; p2; � � � with respect to this scalar product. The
theory of orthogonal polynomials is classical matter
[11,12]. They are usually considered with respect to a
scalar product defined by a weighted integral, but their
properties extends easily to the more general case needed
here, where we do not know a priori if the scalar product
(C13) can be given by an integral.

The polynomial pn has degree n, and we have:

hpnjpn0 i 
 d2
n�n;n0 : (C14)

It will be convenient for us to fix pn by taking the
coefficient of xn to be 1. These polynomials can be com-
puted recursively by the orthogonalization Schmidt pro-
cess:

pn 
 xn �
Xn�1

k
0

hpkjxni
hpkjpki

pk; (C15)

where the automatic fact that hpkjpki � 0 is essential.
Also, since any polynomial of degree � n is a linear
combination of p0; � � � ; pn, we have the property:

hPjpni 
 0 for any P of degree < n; (C16)

which is of constant use in the following. Taking P 

1; x; � � � ; xn�1, (C16) gives a system of n linear equations
for the n� 1 coefficients of pn, which, according to (C4),
can be solved uniquely up to a constant, and then
Cramer’s formulae give an explicit expression for pn.

We are actually interested by the zeros of pn.
(iv) All the roots of pn are simple and strictly positive.
In fact, let x1; � � � ; xm be the strictly positive roots of pn

of odd multiplicity. We have only to show that m 
 n. If
m< n, according to (C16), we have

h�x� x1� � � � �x� xm�pni 
 h�x� x1� � � � �x� xm�jpni


 0: (C17)

However, the polynomial �x� x1� � � � �x� xm�pn has a
constant sign for x 	 0, and does not vanish identically.
Therefore, according to (C9) and (C17) and hence m< n
cannot be.
-11
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(v) We may now write explicit formulae for &2k with
0 � k � 2n� 1:

&2k 

Xn
i
1

4ixki �0 � k � 2n� 1�; (C18)

where x1; � � � ; xn are the roots of pn, and the coefficients
4i are given by:

4i 

1

p0
n�xi�

�
pn�x�
x� xi

�
: (C19)

To prove (C18), notice that it amounts to:

hPi 

Xn
i
1

4iP�xi� �any P of degree � 2n� 1�:

(C20)

Performing the Euclidean division of P by pn, we have

P 
 Qpn � R; (C21)

with degree Q< n and degree R< n. We may verify
(C20) separately for Qpn and for R.

For P 
 Qpn, the left-hand side of (C20) vanishes by
(C16), and the right-hand side vanishes because the xi are
the roots of pn.

For P 
 R, we use the identity

R�x� 

Xn
i
0

1

p0
n�xi�

pn�x�
x� xi

R�xi�; (C22)

which stems from the fact that both sides are polynomials
of degree <n, that are equal at n points x 
 xi. Then
(C20) is satisfied due to the choice (C19) of the coeffi-
cients 4i.

(vi) Define

�n�x� 

Xn
i
1

4i��x� xi�: (C23)

Then (C18) writes

&2k 

Z 1

0
�n�x�xkdx �0 � k � 2n� 1�; (C24)

to be compared with formula (C6) to be proved, which
writes

&2k 

Z 1

0
�N�x�xkdx �0 � k � N�; (C25)

with

�N�x� 
 2/
���
x

p
j �N�

0 �
���
x

p
�j2: (C26)

We have still the problem that �n�x� is not a function.
The idea to solve this problem is to vary&4n�2, keeping

fixed &2k for 0 � k � 2n� 2. The polynomial pn then
depends on &4n�2 as a parameter, and as well its zeros
xi�&4n�2� and the coefficients 4i�&4n�2� defined by (C19).
Then formula (C24) is lost for &4n�2, but remains valid
114020
for 0 � k � 2n� 2, and in fact gives a whole family of
formulae

&2k 

Z 1

0
�n�&4n�2; x�x

kdx �0 � k � 2n� 2�;

(C27)

with a weight distribution

�n�&4n�2; x� 

Xn
i
1

4i�&4n�2���x� xi�&4n�2��; (C28)

depending on &4n�2. We may then take the mean value of
(C27) over any interval �&�1�

4n�2; &
�2�
4n�2� in which the con-

straints are satisfied, obtaining

&2k 

Z 1

0
�n�x�x

kdx �0 � k � 2n� 2�; (C29)

with

�n�x� 

1

&�2�
4n�2 �&�1�

4n�2

Z &�2�
4n�2

&�1�
4n�2

�n�&4n�2; x�d&4n�2:

(C30)

Now, �n�x� defined by (C30) has a good chance to be a
genuine function, because integrating a � distribution
over a parameter usually gives a function.

However, there is an obvious case in which this does not
hold, namely, when the point where the � distribution is
concentrated does not depend on the parameter. So we
still have to show that each zero of pn does vary with
&4n�2. Let us consider the orthogonal polynomials

~p0; ~p1; � � � with respect to the new scalar product ghPjP0i
associated to new values ~&0; ~&2; � � � of the moments, with
~&2k 
 &2k for 0 � k � 2n� 2, and ~&4n�2 � &4n�2.
Note that the new scalar product of two polynomials is
the same as the original one when the sum of the degrees
is � 2n� 2. It follows that ~pk 
 pk for 0 � k � n� 1,
and also that

h~pnjpki 
 h~pnj~pki 
 0 for 0 � k � n � 2: (C31)

Therefore, the expansion of ~pn over the pk writes:

~p n 
 pn � cpn�1: (C32)

And one has c � 0. Indeed, since h~pnje~pn�1i 
 0, one has

c 

1

hpn�1jpn�1i
�h~pnjpn�1i � h~pnj g~pn � 1i�



1

hpn�1jpn�1i
�hxnjxn�1i � ghxnjxn�1i�; (C33)

so that

c 

1

hpn�1jpn�1i
�&4n�2 � ~&4n�2�: (C34)
-12
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The fact that a zero of pn cannot be a zero of ~pn now
follows from (C32) and the fact that a zero of pn cannot be
a zero of pn�1.

This last point is a well known property of orthogonal
polynomials, which can be proved directly as follows.
Assume that a zero xi of pn is also a zero of pn�1. Then
we have�

pn�1

        pn
x� xi

�



�
pn�1

x� xi

        pn
�

 0 (C35)

by (C16). On the other hand, writing pn
x�xi


 axn�1 � � � � ,
where a � 0, we have again by (C16):�

pn�1

        pn
x� xi

�

 ahpn�1jxn�1i 
 ahpn�1jpn�1i;

(C36)

which cannot vanish, contradicting (C35).
We are now in a position to complete the proof of (C6).

Indeed, using the implicit functions theorem, one can
infer from (C32) and (C34) that, for a small enough
interval �&�1�

4n�2; &
�2�
4n�2�, each function xi�&4n�2� is a dif-

feomorphism of this interval to an interval �x�1�i ; x
�2�
i � in x.

Then introducing the reciprocal function xi ! &i�xi� of
&4n�2 ! xi�&4n�2�, the integral of a � function is com-
puted by changing the variable of integration &4n�2 to
xi 
 xi�&4n�2�:Z &�2�

4n�2

&�1�
4n�2

4i�&4n�2���x� xi�&4n�2��d&4n�2



Z x�2�i

x�1�i

4i�&i�xi����x� xi�j&
0
i�xi�jdxi


 5
�x�1�i ;x

�2�
i �
�x�4i�&i�x��j&

0
i�x�j; (C37)

where 5I is the characteristic function of an interval I,
namely 5I�x� 
 1 for x 2 I and 5I�x� 
 0 for x76 I. Then
(C30) gives

�n�x� 

1

&�2�
4n�2 �&�1�

4n�2

Xn
i
1

5
�x�1�i ;x

�2�
i �
�x�4i�&i�x�j&0

i�x�j;

(C38)

and this is a genuine positive function, which can there-
fore be written as the square of a wave function.
APPENDIX D: EXPLICIT LOWER LIMITS FOR
THE EVEN DERIVATIVES

In this appendix we generalize to all even derivatives
��2n��1� the proof of the bound (50) that we have given in
Ref. [3].

From expression (21):

��m�NR�1� 
 ��1�m2m
m!

�2m�!
�mq�

2mh0jz2mj0i; (D1)

using rotational invariance we obtain
114020
��m�NR�1� 
 ��1�m2m
m!

�2m�!
�mq�

2m 1

2m� 1
h0jr2mj0i;

(D2)

and from

h0jr2mj0i 
 jh0jrmj0ij2 �
X
n�0

jhnjrmj0ij2: (D3)

Using again spherical symmetry

h0jr2mj0i 
 �m� 1�2jh0jzmj0ij2

��m� 1�2
X

n
0;rad

jhnjzmj0ij2; (D4)

one obtains

��m�NR�1� 
 ��1�m2m
m!

�2m�!
�mq�

2m �m� 1�2

2m� 1

�

"
jh0jz2mj0ij2 �

X
n�0;rad

jhnjzmj0ij2
#
; (D5)

and therefore

��1�m��m�NR�1�>
m!

�2m�!
2m�mq�

2m �m� 1�2

2m� 1
jh0jzmj0ij2:

(D6)

This expression demonstrates that �NR�w� is an alternate
series in powers of �w� 1�.

Assuming m to be even, m 
 2n, one gets

��2n�NR �1�>
�2n�!
�4n�!

22n�mq�
4n �2n� 1�2

4n� 1
jh0jz2nj0ij2: (D7)

The moment h0jz2nj0i can be expressed in terms of ��n�NR�1�
though (D1), giving finally

��2n�NR �1�>
��2n�!�3

�n!�2�4n�!

�2n� 1�2

4n� 1
���n�NR�1��

2 �n 	 0�:

(D8)

We obtain, for the lower values of n,

n 
 1 ��2�NR�1� 	
3
5 ���1�NR�1��

2;

n 
 2 ��4�NR�1� 	
5
21 ���2�NR�1��

2:
(D9)

The formula (D8) generalizes the result (50) to all even
derivatives.

For the odd derivatives one gets, with the present
method, from (D6), the weaker result

���2n�1�
NR �1�> 0 �n 	 0�: (D10)

We see that we had obtained in Secs. III and IVa much
stronger result for ��4�NR�1� than (D9), and non trivial
results for ���3�NR�1� and ���5�NR�1�. However, we have
obtained here an explicit lower bound for ��2n�NR �1� (D8).
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