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We calculate production cross sections of a forward quark-gluon pair and of two gluons at
midrapidity in deep inelastic scattering and in high energy proton-nucleus collisions. The calculation
is performed in the framework of the color glass condensate formalism. We first calculate the cross
sections in the quasiclassical approximation, which includes multiple rescatterings in the target. We then
proceed to include the effects of nonlinear small-x evolution in the production cross sections. It is
interesting to note that our result for the two-gluon production cross section appears to be in direct
violation of Abramovsky-Gribov-Kanchelli cutting rules, which is the first example of such violation in
QCD. The calculated quark-gluon and gluon-gluon production cross sections can be used to construct
theoretical predictions for two-particle azimuthal correlations at the Relativistic Heavy Ion Collider
and LHC (Ip�d�A) as well as for deep inelastic scattering experiments at the Hadron Electron Ring
Accelerator and the Electron-Relativistic Heavy Ion Collider.
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I. INTRODUCTION

Recent prediction of high-pT suppression in the nuclear
modification factor RdA at forward rapidity Relativistic
Heavy Ion Collider (RHIC) dAu collisions [1–3] based on
the physics of parton saturation/color glass condensate
(CGC) [4–11] has been confirmed by the experimental
data in Refs. [12–16]. The prediction of Ref. [2] was based
on the calculation of inclusive gluon production cross
section in deep inelastic scattering (DIS) and pA colli-
sions. The calculation was first done in the quasiclassical
framework of the McLerran-Venugopalan model includ-
ing all multiple rescatterings [17] (see also [18–21]). The
effects of nonlinear small-x evolution [9,10,22] were in-
cluded in the obtained formula in Ref. [23] (see also [24]).
In Refs. [2,3] it was argued that at lower energies/rapid-
ities, where the particle production is given by the quasi-
classical formula from Ref. [17], the nuclear modification
factor RpA should exhibit low-pT suppression together
with a strong enhancement at high pT , known as the
Cronin effect [25] (see also [26–29] for similar conclu-
sions). However, at higher energies/rapidities, when quan-
tum evolution becomes important, one should expect
suppression of RpA at all pT [1–3] due to the onset of
Balitsky-Fadin-Kuraev-Lipatov (BFKL) anomalous di-
mension for gluon distributions [30]. (It had been earlier
suggested in Ref. [31] that the forward rapidity region
would be most sensitive to small-x evolution effects.)
Similar argument about enhancement and suppression
can be carried through for the valence-quark production
cross section calculated in Ref. [31]. The suppression has
been confirmed experimentally in Refs. [12,13]. The cen-
trality dependence of the observed suppression was also
in agreement with the predictions of the color glass
condensate formalism [2]. Further developments in the
area included an analysis of running coupling corrections
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[32] and a study of similar suppression in dilepton pro-
duction [33] (see also [34]). Recently, more quantitative
analyses [35,36] based on the color glass condensate
formalism have been performed which show good agree-
ment with the data [12,13].

Another distinctive prediction of the color glass con-
densate [4–10] is the disappearance of back-to-back jets
in the low pT < Qs and intermediate pT * Qs transverse
momentum regions. While the single particle spectra in
dAu collisions at RHIC have been successfully described
by CGC-inspired models [35,36], it is important to go
beyond single particle spectra and probe other observ-
ables, such as two-particle correlations, in order to map
out the region of phase space where CGC is the dominant
physics. The inclusive two-particle (gluon) cross section
at high energy is given by the kT factorization [37] in the
high pT region (pT � Qs) with the gluon distribution
function evolving via the BFKL evolution equation [30].
Models based on kT factorization have been applied to
many different processes, such as the nonflow contribu-
tion to the elliptic flow observable v2 in heavy ion colli-
sions [38]. Recently, a similar model of two-particle
correlations in dA was used in Ref. [39] to predict broad-
ening and disappearance of back-to-back correlations in
pA (or dA) collisions. The predictions of Ref. [39] appear
to be confirmed by the preliminary data reported in
Ref. [40], thus strengthening the case for saturation/color
glass condensate in dAu data at RHIC.

Nevertheless, a theoretically rigorous treatment of in-
clusive two-particle production in DIS and proton-
nucleus collisions in the low pT region (pT & Qs) has
not been performed yet. It is clearly needed in order to
provide reliable predictions in the pT & Qs momentum
region, which is the region where the new physics of CGC
is expected to be most pronounced. (Very recently, there
-1  2004 The American Physical Society
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FIG. 1 (color online). Two-gluon production in DIS on a
nucleus including multiple rescatterings.
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has been a series of articles investigating quark-antiquark
production in pA collisions using the quasiclassical ap-
proximation in the CGC formalism [41].)

Our goal in this work is to derive inclusive two-particle
production cross sections using the color glass condensate
formalism. We start by considering production of two
gluons. We assume that the two gluons are separated by
a large rapidity interval so that their respective rapidities
are ordered, y2 � y1. This kinematics is, for instance,
relevant to the case of two-particle production in p�d�A
collisions (for example, at RHIC or LHC) when one of the
produced particles is in the midrapidity region while the
second particle is closer to the forward rapidity region. In
Sec. II, we derive an expression for a two-gluon inclusive
cross section in DIS, using the quasiclassical approxima-
tion (the McLerran-Venugopalan model) in the color glass
condensate formalism and making the large-Nc approxi-
mation to simplify the calculations. (The quasiclassical
approximation employed here is identical to the one used
in Refs. [17–19] to describe single gluon production.) The
result for a two-gluon production cross section in the
quasiclassical approximation is given by Eqs. (1) and
(13). We note that a similar expression for a two-quark
production cross section was obtained previously for DIS
in Ref. [42]. In Sec. III, we include the effects of non-
linear small-x evolution [9] in the two-gluon inclusive
cross section obtained in Sec. II. The final answer for
the two-gluon inclusive cross section for DIS is given in
Eq. (32). This result can be easily generalized to pA
collisions.

An ansatz for a two-gluon inclusive cross section in-
cluding saturation effects was written in Ref. [24] in-
spired by kT factorization together with Abramovsky-
Gribov-Kanchelli (AGK) cutting rules [43]. We note
that the diagrammatic structure of our answer in
Eq. (32) does not seem to adhere to AGK cutting rules’
expectation for a two-gluon inclusive cross section.
Furthermore, we are unable to cast the expression (32)
into the kT-factorized form used in Ref. [24]. However, the
leading-twist kT-factorization expression [23,37] can be
reproduced exactly from Eq. (32), as will be discussed at
the end of Sec. III.

In Sec. IV we calculate the inclusive production of a
valence-quark and a gluon in pA collisions both in the
quasiclassical approximation and including the quantum
evolution in the target. The rapidities of the valence-quark
and the gluon are assumed to be comparable and large
(both quark and gluon are produced in the forward rapid-
ity region). The result is given by Eqs. (76)–(78). These
expressions together with Eq. (32) can be used to describe
the nuclear modification factor for azimuthal correlations
IdAu at any rapidity between midrapidity and the deuteron
beam at RHIC. In particular, Eq. (32) provides the theo-
retical basis for the correlation analysis carried out in
Ref. [39].
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II. TWO-GLUON PRODUCTION IN THE
QUASICLASSICAL APPROXIMATION

In this section we are going to derive an expression for
an inclusive two-gluon production cross section in DIS
including all multiple rescatterings of the two produced
gluons and the quark-antiquark pair on the nucleons in
the target nucleus [7,8,44]. A typical diagram contribut-
ing to the process is shown in Fig. 1. The two produced
gluons have transverse momenta k1 and k2 and rapidities
y1 and y2, correspondingly. To simplify the calculations
we will consider the case when y2 � y1. A more general
case of y2 � y1 was considered in Ref. [45] for two-gluon
production at the leading-twist level given by kT factori-
zation. Our goal here is to include the saturation effects in
the two-gluon production cross section, which means
summing all twists. We will achieve this difficult task
only for a simpler case of y2 � y1, though, in principle,
the more general case y2 � y1 presents no new conceptual
difficulties and is only technically more complicated.

As shown in Fig. 1 the gluon production process in DIS
in the quasiclassical approximation [7,8,44] consists of
two factorizable stages. First, the incoming virtual pho-
ton splits into a quark-antiquark pair, which emits two
gluons in the incoming wave function. (The time scale for
this splitting and gluon emissions is much longer than the
time of interaction with the target.) The whole system
multiply rescatters on the nuclear target. (In general, the
gluon emissions can happen after the interaction with the
target, as will be discussed shortly.) In the quasiclassical
approximation considered here, the interactions with the
nucleons are limited to no more than two exchanged
gluons per nucleon (see the second reference in
Ref. [8]). Single gluon production in the same approxi-
mation was calculated for pA collisions in Ref. [17] and
for DIS in Ref. [20].

Let us assume that the virtual photon has a large ‘‘�’’
component of the momentum and the nucleus has a large
‘‘�’’ component of its momentum. Then the diagram of
the process shown in Fig. 1 is dominant in A� � 0 gauge.
In this section we will perform all the calculations in the
framework of the light cone perturbation theory in A� �
0 gauge [46]. First of all, let us explicitly factor out the
-2
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wave function ���!q �q�x0~0; �� of the virtual photon split-
ting in a quark-antiquark pair of transverse size x0~0 �
x0 � x~0 with the quark carrying a fraction � of the
virtual photon’s light cone momentum. The wave function
���!q �q�x0~0; �� is a well-known function and can be
found, for example, in Refs. [47,48]. The two-gluon in-
clusive production cross section can be written as

d��
�A!q �qGGX

d2k1dy1d2k2dy2
�

1

2�2

Z
d2x0~0

Z 1

0
d����!q �q�x0~0; ��



d�̂q �qA!q �qGGX

d2k1dy1d2k2dy2
�x0~0�: (1)

A. Time-ordering rules

To calculate a two-gluon production cross section for a
quarkonium scattering on a nucleus, similarly to
Refs. [17,20] one has to consider various possible ordering
of the emissions of the two gluons by the q �q pair. The
interaction with the nucleus target can be considered
instantaneous compared to long lifetimes of emitted glu-
ons. Thus, we will denote the moment of interaction with
the target by the light cone time � � x� � 0. If �1 and �2
are the times of the emission of the two gluons, the
possible emission ordering in the amplitude reduces to
three cases: (i) both gluons are emitted before the inter-
action, �1; �2 < 0; (ii) one gluon is emitted before the
interaction and the other one is emitted after the interac-
tion, �1 < 0< �2 or �2 < 0< �1; (iii) both gluons are
emitted after the interaction, �1; �2 > 0.

The three cases are represented in Fig. 2 for a particu-
lar coupling of the two gluons to the q �q pair. There the
dashed line in the middle denotes the (instantaneous)
interaction with the target. The dashed line comprises
all the multiple rescatterings like the ones shown in
Fig. 1. The dotted lines represent intermediate states,
which will give energy denominators in light cone per-
turbation theory [46]. Even though Fig. 2 shows a par-
ticular way of the gluons coupling to the q �q pair, the
conclusions we will draw below about which diagrams
dominate will be applicable to other couplings of the
gluons.
τ1

τ2

τ1 τ1

τ1τ1τ1

τ2 τ2 τ2

τ2 τ2

(i) (ii) (iii)
τ=0 τ=0 τ=0

A

B

k1

k2

FIG. 2. Possible orderings of the emission of the two gluons
by the quark-antiquark pair.
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Let us define the light cone energy of a gluon or a quark
line carrying momentum �k; k�� as [46]

Ek � k� �
k2

2k�
: (2)

In Regge kinematics that we consider here, the light cone
momenta of the gluons are ordered, such that k�2 � k�1
and Ek2 � Ek1 . First, we consider case (i) in Fig. 2. The
diagrams (i)A and (i)B (top and bottom) are different
only by energy denominators. Therefore, forgetting the
rest of the diagram for now, we write

�i�A�
1

Ek2

1

Ek1 � Ek2


1

Ek2

1

Ek1
(3)

and

�i�B�
1

Ek1

1

Ek1 � Ek2


1

E2k1
: (4)

The intermediate states giving the energy denominators
in Eqs. (3) and (4) are shown by dotted lines in Fig. 2.
Since Ek2 � Ek1 , Eqs. (3) and (4) imply that �i�A� �i�B.
Therefore, diagram (i)B can be safely neglected. The
conclusion we draw from this analysis is that for gluon
emissions before the interaction (�1; �2 < 0) the (longitu-
dinally) harder gluon has to be emitted first, as pictured in
diagram (i)A in Fig. 2.

In calculating diagrams (i)A and (i)B, we have ne-
glected the � component of the momenta of the q �q pair
because they are negligibly small. The quark and the
antiquark carry a very large� component of the momen-
tum, of the order of p� � k�2 � k�1 , which leads to
negligibly small light cone energy Ep. We have also
neglected the change in the � component of the target
momentum, since the interaction with the target took
place after the intermediate states which gave the energy
denominators in case (i) in Fig. 2. This is not the case in
the rest of the diagrams in Fig. 2. The�momentum/light
cone energy of the target changes due to the interaction
(dashed line). However, since the light cone energy is
conserved in the final state (� � �1), the change of
the target’s � momentum is compensated by the change
of the�momentum of the projectile, which is mostly due
to the appearance of two extra gluons leading to an
addition of extra Ek1 � Ek2 to the q �qwave function’s light
cone energy. Therefore, the target’s light cone energy
decreases by Ek1 � Ek2 after the interaction. Thus, when
calculating the energy denominators of the intermediate
states after the interaction, one has to add the change in
the light cone energy of the target to the energies of the
lines shown in Fig. 2. This is equivalent to subtracting
Ek1 � Ek2 in the corresponding energy denominators.
(This rule is worked out in more detail in Sec. IIIA of
Ref. [23].)

Guided by the rule we just derived, we write for the
energy denominators of the diagrams in case (ii) in Fig. 2
-3
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FIG. 3 (color online). All possible emission of the harder
gluon #2 by the q �q pair.
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�ii�A�
1

Ek1

1

Ek1 � �Ek1 � Ek2�
� �

1

Ek1

1

Ek2
; (5)

�ii�B�
1

Ek2

1

Ek2 � �Ek1 � Ek2�
� �

1

Ek2

1

Ek1
: (6)

As we see from Eqs. (5) and (6), the two diagrams are of
the same order, �ii�A� �ii�B [� �i�A], and neither of
them can be neglected. [As we will see below,
diagrams (ii)A and (ii)B are different in the parts respon-
sible for the interaction with the target, so while being
parametrically of the same order, they are not identically
equal.]

Finally, calculating the graphs in case (iii) of Fig. 2,
one arrives at

�iii�A�
1

Ek1 � Ek2

1

Ek1


1

E2k1
(7)

and

�iii�B�
1

Ek1 � Ek2

1

Ek2


1

Ek1

1

Ek2
: (8)

Since Ek1 � Ek2 we conclude that �iii�A� �iii�B.
Diagram (iii)A should be neglected. Therefore, we derive
a rule for late-time emissions, which take place after the
interaction (�1; �2 > 0): the harder gluon has to be emit-
ted after the softer gluon. It is interesting to note that this
ordering is the exact inverse of the ordering giving the
leading contribution at early times before the interaction.
The rule can also be generalized to any number of gluon
emissions contributing to the BFKL [30] or, equivalently,
dipole evolution [9,49]: in the evolution at early times
preceding the interaction, the gluons are ordered so that
the harder gluons are emitted before the softer ones [49].
The ordering is reversed for late times following the
interaction, where the harder gluons should be emitted
after the softer gluons to pick up the leading logarithmic
contribution. This observation was made previously in
Ref. [23].

B. Two-gluon inclusive cross section in the
quasiclassical approximation

The diagrams contributing to emission of the harder
gluon with momentum (k2; y2) are shown in Fig. 3. [In the
following, we will refer to this gluon as gluon #2 and to
the other (softer) produced gluon as gluon #1.] To sim-
plify the color algebra, we will continue the calculation in
’t Hooft’s large-Nc limit. Only planar diagrams will con-
tribute for gluon emission. Using the notation from
Mueller’s dipole model [49,50], we denote the gluon in
the large-Nc limit by a double quark line and leave the
ends of the gluon line disconnected from the quark lines.
The latter notation indicates a sum over all possible
connections of the gluon to the q �q pair.
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As in Fig. 2, the dashed lines in Fig. 3 denote the � � 0
moment of the interaction of the system with the target
nucleus. However, unlike in Fig. 2, in Fig. 3 we depict the
squares of the amplitude contributing to the total produc-
tion cross section. Therefore, each diagram has two
dashed lines corresponding to interaction with the target
in the amplitude and in the complex conjugate amplitude.
The solid vertical lines denote the final state at � � �1.

Similar to Mueller’s dipole model [49], the emitted
gluon #2 in Fig. 3(a) splits dipole 0~0 into two color
dipoles. The emission of the softer gluon #1 can happen
in either of these two dipoles. However, the original
dipole model [49] was written for the calculation of the
total cross sections, where one has to calculate only the
forward scattering amplitude of the quarkonium. In that
quantity, all the final state emissions (� > 0) cancel, as
was shown in Ref. [50]. This is not the case for the
inclusive production cross section that we want to calcu-
late here. All final state emissions have to be taken into
account, as shown in Fig. 3. Also, since we are interested
in gluon production, the momentum of gluon #2 is fixed.
Therefore, since we are going to perform our calculations
in transverse coordinate space, we have to keep the trans-
verse coordinates of gluon #2 different on both sides of
the cut. (To obtain the cross section, we will afterwards
perform a Fourier transform into transverse momentum
space.) Thus, the gluon’s transverse coordinate is denoted
by x2 to the left of the cut and x20 to the right of the cut.
Then the color ‘‘dipole’’ formed by, say, the lines 2, 20,
and ~0 in Fig. 3(a) would not be literally a dipole since one
needs more than two transverse coordinates to describe it,
but it would still have the color topology of a dipole and
we will refer to it as a dipole below.

Let us start by analyzing the gluon production in
Fig. 3(a). As was mentioned before, the softer gluon #1
can be emitted either off the color dipole formed by lines
0, 2, and 20 or off dipole 2; 20; ~0. In the following analysis,
we will concentrate on the latter case of emission of
gluon #1 in dipole 2; 20; ~0. (A generalization to emission
in dipole 0, 2, and 20 is straightforward.) We will denote
by M0�x2; x20 ; x~0; k1� the cross section of emission of a
softer gluon #1 in dipole 2; 20; ~0. Then dipole 0; 2; 20 would
not have gluon emissions in it, but it would still be able to
interact with the target. Interactions of the target with
line 0 would cancel due to real-virtual cancellations
[17,23,48]. Interactions with lines 2 and 20 do not cancel:
instead, they are given by the S matrix of a 220 quark
dipole interacting with the target [23,51]. The S matrix is
-4
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given by

S0�x2; x20 � � 1� N0�x2; x20 �; (9)

where, in the Glauber-Mueller approximation, the for-
ward scattering amplitude N0 is [44]

N0�x2; x20 � � 1� e�x
2
220
Q2
s0 ln�1=x220��=4; (10)

where x220 � jx2 � x20 j and the quark saturation scale in
the McLerran-Venugopalan model Qs0 [7,8] is given by
(in the large-Nc limit)

Q2
s0�b� � 2��2s"T�b�; (11)

with " the atomic number density in the nucleus with
atomic number A, T�b� the nuclear profile function with
b � �x2 � x20 �=2, and � some infrared cutoff.

In the diagram in Fig. 3(b), the softer gluon #1 cannot
be emitted off gluon 20 in the complex conjugate ampli-
tude: that would be suppressed due to the inverse ordering
rule we derived in Sec. II A. Furthermore, if gluon 20 is
emitted off the quark line 0, gluon #1 cannot be emitted
in the dipole formed by lines 0 and 20 due to the same
inverse ordering rule. Therefore, if gluon 20 is emitted off
the quark line 0, gluon #1 can be emitted only by
114017
dipole 0~0 in the complex conjugate amplitude.
Therefore, the diagram in Fig. 3(b) would bring in a
factor of M0�x2; x0; x~0; k1� if gluon #1 is emitted in the
lower dipole. In the same case, in the upper dipole, only
dipole 02 would interact with the target bringing in a
factor of S0�x0; x2�. The diagram in Fig. 3(c) can be
obtained from 3(b) by horizontal reflection, which can
be accomplished by interchanging x2 $ x20 . Finally, a
similar line of argument shows that the diagram in
Fig. 3(d) brings in a factor ofM0�x0; x0; x~0; k1� if the gluon
is emitted in the lower dipole.

Combining diagrams A–D in Fig. 3 and defining

� s �
�sNc
�

; (12)

we write
d�̂q �qA!q �qGGX

d2k1dy1d
2k2dy2

�x0~0�jy2�y1 �
�s
�2��3

Z
d2Bd2x2d2x20e�ik2�x220

��
x20
x220
�
x2~0
x2
2~0

��
x200
x2200
�
x20~0
x2
20~0

�
M0�x2; x20 ; x~0;k1�S0�x2; x20 �

�

�
x20
x220
�
x2~0
x2
2~0

�
x200
x2200

M0�x2; x0; x~0;k1�S0�x0; x2��
�
x200
x2200
�
x20~0
x2
20~0

�
x20
x220

M0�x0; x20 ; x~0;k1�S0�x0; x20 �

�
x20
x220

x200
x2200

M0�x0; x0; x~0;k1�� �0$ ~0�
�
; (13)
where B � �x0 � x~0�=2 is the impact parameter of the
original dipole 0~0. The term �0$ ~0� implies that we
have to add the whole expression again, interchanging 0
and ~0 to account for the emission of gluon #1 from the top
‘‘dipole.’’

Now we have to calculate M0�x2; x20 ; x~0; k1�. To do that,
let us consider all possible emissions of gluon #1 in
dipole 2; 20; ~0 as shown in Fig. 4. The transverse coordi-
nates of gluon #1 are x1 and x10 to the left and to the right
of the cut, correspondingly.

To calculate all the diagrams in Fig. 4, one has to use
the rules of Sec. II A Let us illustrate the prescription for
calculating these graphs for the fairly general case when
gluon #1 is emitted off gluon #2 on both sides of the cut.
Dipole 2; 20; ~0 in Fig. 4(a) would then split into a
dipole 1; 10; ~0 and a quadrupole 2; 20; 1; 10. The interac-
tions of line ~0 with the target cancel via real-virtual
cancellations [17,48], thus reducing the interactions of
dipole 1; 10; ~0 to the interaction of a real dipole 1; 10 bring-
ing in a factor of S0�x1; x10 �. The interaction of the
quadrupole 2; 20; 1; 10 brings in a factor which we will
denote Q0�x2; x20 ; x1; x10 �. In the quasiclassical approxi-
mation of McLerran-Venugopalan model, this S matrix
of the quadrupole interaction with the target Q0 is calcu-
lated in the appendix, yielding (cf. [42])
Q0�x2; x20 ; x1; x10 � � e��x
2
21 ln�1=x21���x

2
2010

ln�1=x2010���Q
2
s0=4

�
x2220 ln�1=x220�� � x

2
110 ln�1=x110�� � x

2
210 ln�1=x210�� � x

2
201 ln�1=x201��

x221 ln�1=x21�� � x
2
2010 ln�1=x2010�� � x

2
220 ln�1=x220�� � x

2
110 ln�1=x110��


 �e��x
2
21 ln�1=x21���x

2
2010

ln�1=x2010���Q
2
s0=4 � e��x

2
110

ln�1=x110���x
2
220

ln�1=x220���Q
2
s0=4�: (14)
-5
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As one can see from Eq. (14), Q0�x2; x2; x1; x1� � 1, which is what one would expect due to real-virtual cancellations
[17,23,48]. One can also check that

Q0�x2; x20 ; x1; x1� � e�x
2
220

ln�1=x220��Q
2
s0=4; (15)

corresponding to the Smatrix of the interaction of dipole 220 with the target. (Interactions with line 1 cancel again due to
real-virtual cancellations if we put x1 � x10 .)

Now let us evaluate the graph in Fig. 4(b) for the same case of gluon #1 being emitted off gluon #2 on both sides of the
cut. In the top dipole, interactions can take place only to the left of the cut, giving a factor of S0�x2; x1�. In the bottom
dipole, the interactions with line ~0 cancel, leaving only dipole 120 to interact with the target, which brings in a factor of
S0�x1; x20 �. The diagram in Fig. 4(c) is evaluated in a similar way, yielding a factor of S0�x20 ; x10 �S0�x2; x10 �. Finally, in
the diagram in Fig. 4(d), only the lower dipole can interact with the target, giving a factor of S0�x2; x20 �.

Combining the factors calculated above for diagrams A–D in Fig. 4, putting in the contribution of gluon emission,
and summing over all possible connections of gluon #1 to lines 2; 20, and 1, we obtain

M0�x2; x20 ; x~0; k1� �
�s
�2��3

Z
d2x1d2x10e�ik1�x110

�
x12
x212

x1020

x21020
�Q0�x2; x20 ; x1; x10 �S0�x1; x10 � � S0�x2; x20 �

� S0�x2; x1�S0�x1; x20 � � S0�x20 ; x10 �S0�x2; x10 �� �
x1~0
x2
1~0

x10~0
x2
10~0

�Q0�x2; x20 ; x1; x10 �S0�x1; x10 �

� S0�x2; x20 � �Q0�x2; x20 ; x1; x~0�S0�x1; x~0� �Q0�x2; x20 ; x~0; x10 �S0�x~0; x10 ��

�
x12
x212

x10~0
x2
10~0

�Q0�x2; x20 ; x1; x10 �S0�x1; x10 � � S0�x2; x~0�S0�x20 ; x~0� �Q0�x2; x20 ; x1; x~0�S0�x1; x~0�

� S0�x2; x10 �S0�x20 ; x10 �� �
x1~0
x2
1~0

x1020

x21020
�Q0�x2; x20 ; x1; x10 �S0�x1; x10 � � S0�x2; x~0�S0�x20 ; x~0�

� S0�x2; x1�S0�x20 ; x1� �Q0�x2; x20 ; x~0; x10 �S0�x10 ; x~0��
�
: (16)
Equations (1) and (13) together with Eqs. (9), (10), (14),
and (16) give us the two-gluon inclusive production cross
section for DIS on a nucleus including all the quasiclass-
ical multiple rescatterings in the large-Nc approximation.
It is the main result of this section.
III. TWO-GLUON PRODUCTION INCLUDING
QUANTUM EVOLUTION

In this section, our goal is to include the effects of
nonlinear small-x quantum evolution of Ref. [9] into the
quasiclassical expression (13) for an inclusive two-gluon
production cross section. We will begin by reviewing the
nonlinear evolution equation and its application to single
inclusive gluon production. We will proceed by deriving
the expression generalizing Eq. (13) by including the
nonlinear evolution [9] in it. We will conclude by verify-
ing that the obtained expression matches the standard
kT-factorization result [37] at the leading-twist level.

A. Brief review of small-x evolution and
single gluon production

To include the effects of small-x evolution in the dipole
S matrix, one first defines the S matrix for a quark
dipole 0~0 having rapidity Y with respect to the target as
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S�x0; x~0; Y� � 1� N�x0; x~0; Y�; (17)

where the forward scattering amplitude has to be deter-
mined from the nonlinear evolution equation [9]

N�x0; x~0; Y� � N0�x0; x~0�e
�2�s ln�x0~0="�Y

�
�s
2�

Z Y

0
dye�2�s ln�x0~0="��Y�y�



Z
"
d2x2

x2
0~0

x220x
2
2~0

�N�x0; x2; y� � N�x2; x~0; y�

� N�x0; x2; y�N�x2; x~0; y��; (18)

with the initial condition given by Eq. (10) and " being an
ultraviolet cutoff [49]. The evolution Eq. (18) resums all
powers of leading logarithms of center of mass energy
�sY and all multiple interactions with the target, which
brings in powers of �2sA1=3, with A the atomic number of
the nucleus [8,17,20,48].

Equation (18) is derived in Ref. [9] by resumming a
cascade of gluons in the incoming q �q wave function,
which in the large-Nc limit turns into a cascade of color
dipoles. The emissions are similar to the ones we consid-
ered in Sec. II A for the early times preceding the inter-
action. The difference is that in Ref. [9] one resums
emissions to all orders, without limiting oneself to just
-6
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two gluons. At the leading logarithmic level, the contri-
bution of this gluonic (dipole) cascade to the S matrix of
the dipole-nucleus scattering is given by the solution of
Eq. (18). However, one can use this cascade to construct
other useful observables.

In Ref. [23] it was shown that an inclusive gluon
production cross section in a dipole-nucleus scattering
114017
is given by the following formula:

d�q �qA!q �qGX

d2kdy
�x0~0� �

Z
d2Bn1�x0; x~0; Y; x1; x2; y�


 d2x1d
2x2s�x1; x2; k; y�; (19)

where we defined
s�x1; x2; k; y� �
�s
�2��3

Z
d2z1d2z2e

�ik��z1�z2�
X2
i;j�1

��1�i�j
z1 � xi
jz1 � xij

2

z2 � xj
jz2 � xjj

2 �NG�z1; xj; y� � NG�z2; xi; y�

� NG�z1; z2; y� � NG�xi; xj; y�� (20)

in terms of the forward scattering amplitude of the adjoint (gluon) dipole, which in the large-Nc limit can be easily
expressed in terms of the forward amplitude of the fundamental (quark) dipole

NG�x0; x1; y� � 2N�x0; x1; y� � N
2�x0; x1; y�: (21)

In Eq. (19) the quantity n1�x0; x~0; Y; x1; x2; y� has the meaning of the probability of finding a dipole 12 at rapidity y in
the original dipole 0~0 having rapidity Y [49]. It obeys the following equation [49]:

n1�x0; x~0; Y; x1; x~1; y� � )2�x0 � x1�)�x~0 � x~1�e
�2�s ln�x0~0="��Y�y� �

�s
2�

Z Y

y
dy0e�2�s ln�x0~0="��Y�y

0�



Z
"
d2x2

x2
0~0

x220x
2
2~0

�n1�x0; x2; y
0; x1; x~1; y� � n1�x2; x~0; y

0; x1; x~1; y��; (22)

which is the linear part of the dipole evolution Eq. (18) equivalent to the BFKL equation [30].
The quantity s�x1; x2; k; y� in Eq. (19) is the cross section for single gluon production by dipole 12 scattering on a

nucleus at rapidity y with the emitted gluon being the first (hardest) gluon in the gluonic (dipole) cascade developed by
the incoming dipole 12. Then Eq. (19) has a simple physical meaning: it convolutes the probability of finding a dipole in
the initial onium wave function which would emit the gluon with the probability of the gluon emission by this dipole.

To recover the quasiclassical result for single gluon production [17], one has to put Y � y � 0 on the right-hand side
of Eq. (19). That would effectively turn off the quantum evolution, giving

d�q �qA!q �qGX

d2kdy
�x0~0� �

Z
d2Bs�x0; x~0; k; 0�

�
Z
d2Bd2z1d2z2e

�ik��z1�z2�
X2
i;j�1

��1�i�j
z1 � xi
jz1 � xij

2

z2 � xj
jz2 � xjj

2 �e
��xi�xj�

2Q2
s0 ln�1=jxi�xjj��=2

� e��z1�xj�
2Q2

s0 ln�1=jz1�xjj��=2 � e��z2�xi�
2Q2

s0 ln�1=jz2�xij��=2 � e��z1�z2�
2Q2

s0 ln�1=jz1�z2j��=2�; (23)
which is the quasiclassical gluon production cross section
found in Refs. [17–20].

If the evolution Eq. (18) is pictured as resumming the
so-called ‘‘fan’’ diagrams in dipole-nucleus scattering
[4,5], then the single inclusive gluon production cross
section would correspond to diagrams such as the one
shown in Fig. 5. There, the produced gluon, which is
denoted by the cross, can be emitted only from the top
ladder in the diagram. As it turned out, emissions from all
other (lower) ladders cancel [23], in agreement with ex-
pectations of the AGK cutting rules [43] (see also [24]).
Thus, the evolution between the projectile and the pro-
duced gluon is just a linear BFKL evolution, as we can
see in Eq. (22). The evolution between the produced gluon
and the target is the full nonlinear evolution given by
Eq. (18), as can be seen from Eq. (19).

Before concluding the subsection, let us define another
useful quantity. Following Ref. [49], let

n2�x0; x~0; Y; x1; x~1; y1; x2; x~2; y2�

be the probability of finding dipoles 1~1 and 2~2 with
rapidities y1 and y2, correspondingly, in the original
dipole 0~0 having rapidity Y. This quantity obeys the
following evolution equation [49]:
-7
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n2�x0; x~0; Y; x1; x~1; y1; x2; x~2; y2� �
�s
2�

Z Y

maxfy1;y2g
dye�2�s ln�x0~0="��Y�y�

Z
"
d2x3

x2
0~0

x230x
2
3~0


 �n1�x0; x3; y; x1; x~1; y1�n1�x3; x~0; y; x2; x~2; y2� � n1�x0; x3; y; x2; x~2; y2�


 n1�x3; x~0; y; x1; x~1; y1� � n2�x0; x3; y; x1; x~1; y1; x2; x~2; y2�

� n2�x3; x~0; y; x1; x~1; y1; x2; x~2; y2��; (24)
which is linear and can be solved after one finds n1 from
Eq. (22).

B. Two-gluon inclusive cross section
with quantum evolution

Now we have all the essential ingredients necessary to
include quantum evolution effects in Eq. (13). Similarly
to the analysis carried out in Ref. [23], we will separate
all the gluons into the ones which are harder (have higher
rapidity with respect to the target) than the harder of the
two gluons with rapidities y1 and y2 that are going to be
produced and into the ones which are softer (have lower
rapidity) than the gluon y2 (y2 � y1).

Similarly to the analysis of Sec. IIIA in Ref. [23], one
can easily conclude that all of the harder gluons can be
emitted only at early (� < 0) times both in the amplitude
and in the complex conjugate amplitude. Because of the
ordering rule from Sec. II A of this paper, this implies that
these harder gluons have to be emitted before gluons #2
and #1. Therefore, we have to distinguish two important
cases:

A. G
FIG
sing
emi
luons #2 and #1 are emitted in two different dipoles
created by the evolution due to emission of gluons
which are harder than either gluon #2 or gluon #1.
B. G
luon #2 is emitted in a dipole created by the evolu-
tion consisting of emissions of harder gluons.
Gluon #1 is emitted either by one of the dipoles
adjacent to gluon #2 (as was studied in Fig. 4) or in
a dipole generated by evolution inside one of these
adjacent dipoles.
*

Y

y

γ

. 5 (color online). Feynman diagram corresponding to
le gluon production cross section given by Eq. (19). The
tted gluon is denoted by the cross.

114017
Case A is relatively straightforward. Quantum evolu-
tion creating two dipoles of given sizes and rapidities at
times � < 0 is included in the quantity n2 from Eq. (24).
Emission of each of the gluons #1 and #2 in two inde-
pendent dipoles is equivalent to the same problem of a
single inclusive gluon emission in a dipole-nucleus colli-
sion as considered in Sec. III A and is described by the
quantity s from Eq. (20), which also includes all the
successive evolution generated through emissions of glu-
ons softer than either #1 or #2 [23]. Therefore, the con-
tribution of case A to double gluon production can be
written asZ
d2Bn2�x0; x~0; Y; x1; x~1; y1; x2; x~2; y2�d

2x1d2x~1d
2x2d2


 x~2s�x1; x~1; k1; y1�s�x2; x~2; k2; y2�; (25)

with B � �x0 � x~0�=2 as before.
Contribution of case B is somewhat more complicated.

The probability of finding an early time (� < 0) dipole in
the original onium in which gluon #2 is emitted is de-
scribed by the quantity n1 from Eq. (22). Emission of
gluon #2 is then described by the diagrams of Fig. 3 and,
equivalently, by Eq. (13). The only difference is that now
we have to include quantum evolution in the quantity M0

and in the S matrix S0. The inclusion of evolution into the
S matrix S0 is accomplished in Eqs. (17) and (18). The
inclusion of evolution into the quantity M0 requires a
separate diagrammatic analysis, shown in Fig. 6.

Let us first define a quantity M�x2; x20 ; x~0; Y; k1; y1�,
which by analogy with M0 has a physical meaning
of an inclusive cross section of producing a gluon with
transverse momentum k1 and rapidity y1 in dipole 2; 20; ~0
having rapidity Y. To write an evolution equation for
M�x2; x20 ; x~0; Y; k1; y1�, one has to analyze a single step
of small-x evolution for this quantity. All the important
gluon emissions in dipole 2; 20; ~0 are shown in Fig. 6. We
start the analysis with the diagram in Fig. 6(a). Emitting
gluon #4 splits the original dipole 2; 20; ~0 into a
dipole 2; 20; 4 and a dipole 4~0. Then gluon #1 can be
emitted in dipole 2; 20; 4, which would bring in a factor of

M�x2; x20 ; x4; y; k1; y1�;

with y the rapidity of gluon #4. In this case all interactions
in dipole 4~0 cancel. Alternatively, gluon #1 can be emit-
ted in dipole 4~0, which would bring in the familiar factor
of
-8
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Z
d2xad2xbn1�x4; x~0; y; xa; xb; y1�s�xa; xb; k1; y1�

from Eq. (19) describing a single inclusive gluon produc-
tion in a dipole-nucleus scattering. In this second case,
interactions of dipole 2; 20; 4 with the target would not
completely cancel. Instead, they would bring in a factor of
S�x2; x20 ; y� � 1� N�x2; x20 ; y�, corresponding to interac-
tion of dipole 220 with the target.

In the diagram shown in Fig. 6(b), the interaction of
gluon #4 with line ~0 to the right of the cut gets canceled
by the diagram similar to the one in Fig. 6(e) but with
gluon #4 connecting to line ~0 instead of line 2 to the right
of the cut [50]. Therefore, gluon #4 interacts only with

lution for M.
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line 20 on the right-hand side of Fig. 6(b) and only with
line 2 on the right-hand side of Fig. 6(e). Because of the
inverse ordering rule for late-time emissions from
Sec. II A, gluon #1 cannot be emitted in dipole 24 in
graph B of Fig. 6. [In Fig. 6(e) dipole 24 is not present in
the final state and cannot contribute to gluon production.]
Therefore, in both graphs B and E dipole 24 brings in
only a factor of S�x2; x4; y� � 1� N�x2; x4; y� into the
evolution equation we are constructing. The other
dipole 4; 20; ~0 would then bring in a factor of

M�x4; x20 ; x~0; y; k1; y1�:

Diagrams C and F can be obtained from B and E by
interchanging 2$ 20. Finally, in diagram D interactions
of gluon #4 with line ~0 cancel due to real-virtual cancel-
lations of Ref. [50] that we have just employed in graphs B
and E. The remaining interaction with lines 2 and 20

shown in Fig. 6(d) does not split dipole 2; 20; ~0. Because
of the inverse ordering rule of Sec. II A, there will be no
softer gluon emissions in dipole 2; 204, such that all sub-
sequent evolution will take place only in dipole 2; 20; ~0.
Therefore, diagram D contributes only to virtual correc-
tions, along with the usual virtual corrections at � < 0 in
dipoles 2~0 and 20~0.

Combining the contributions of all diagrams in Fig. 6,
we write the following evolution equation:
M�x2; x20 ; x~0; Y; k1; y1� � e��s ln�x2~0x20~0x220="
3��Y�y1�d�x2; x20 ; x~0; k1; y1� �

�s
2�

Z
d2x4

Z Y

y1
dye��s ln�x2~0x20~0x220="

3��Y�y�




(�
x42
x242
�
x4~0
x2
4~0

��
x420

x2420
�
x4~0
x2
4~0

�"
M�x2; x20 ; x4; y; k1; y1� �

Z
d2xad

2xbn1�x4; x~0; y; xa; xb; y1�


 s�xa; xb; k1; y1��1� N�x2; x20 ; y��

#
�

�
x42
x242
�
x4~0
x2
4~0

��
x420

x2420
�
x42
x242

�
M�x4; x20 ; x~0; y; k1; y1�


 �1� N�x2; x4; y�� �
�
x42
x242
�
x420

x2420

��
x420

x2420
�
x4~0
x2
4~0

�
M�x2; x4; x~0; y; k1; y1��1� N�x20 ; x4; y��

)
: (26)
The only thing left to do to complete our analysis is to determine the initial condition for the evolution Eq. (26), which
we denoted d�x2; x20 ; x~0; k1; y1�. This quantity is the gluon production cross section in the scattering of a dipole 2; 20; ~0 on
a nucleus with the small-x quantum evolution included, in which the emitted gluon (k1; y1) is the first (hardest) gluon in
the gluonic cascade resumming the quantum evolution of Eq. (18). Since the emission diagrams are the same as in Fig. 4,
the quantity d�x2; x20 ; x~0; k1; y1� should be given by the expression similar to Eq. (16), where the dipole and quadrupole S
matrices S0 and Q0 have to be replaced by their evolved values. We, therefore, write
-9
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d�x2;x20 ;x~0;k1;y1��
�s
�2��3

Z
d2x1d

2x10e
�ik1�x110

�
x12
x212

x1020

x21020
�Q�x2;x20 ;x1;x10 ;y1�S�x1;x10 ;y1��S�x2;x20 ;y1�

�S�x2;x1;y1�S�x1;x20 ;y1��S�x20 ;x10 ;y1�S�x2;x10 ;y1���
x1~0
x2
1~0

x10~0
x2
10~0

�Q�x2;x20 ;x1;x10 ;y1�S�x1;x10 ;y1�

�S�x2;x20 ;y1��Q�x2;x20 ;x1;x~0;y1�S�x1;x~0;y1��Q�x2;x20 ;x~0;x10 ;y1�S�x~0;x10 ;y1��

�
x12
x212

x10~0
x2
10~0

�Q�x2;x20 ;x1;x10 ;y1�S�x1;x10 ;y1��S�x2;x~0;y1�S�x20 ;x~0;y1��Q�x2;x20 ;x1;x~0;y1�S�x1;x~0;y1�

�S�x2;x10 ;y1�S�x20 ;x10 ;y1���
x1~0
x2
1~0

x1020

x21020
�Q�x2;x20 ;x1;x10 ;y1�S�x1;x10 ;y1��S�x2;x~0;y1�S�x20 ;x~0;y1�

�S�x2;x1;y1�S�x20 ;x1;y1��Q�x2;x20 ;x~0;x10 ;y1�S�x10 ;x~0;y1��
�
: (27)
2 2
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FIG. 7. Redrawing the quadrupole interaction amplitude in
the form convenient for including quantum evolution (see text).
Indeed, S�x1; x10 ; y1� in Eq. (27) is given by Eqs. (17) and
(18). The reason why inclusion of evolution just corre-
sponds to replacing the Glauber-Mueller expression (9)
for S0 by the fully evolved Eq. (17) has been discussed
before in Ref. [23]. It was observed there that real-virtual
cancellations for the gluon emissions contributing to the
dipole evolution discussed in Ref. [50] act very much like
the real-virtual cancellations for Glauber-Mueller mul-
tiple rescatterings [17]. Namely, if interactions of ex-
changed Coulomb gluons with a given quark line cancel
in the multiple rescattering (Glauber-Mueller) picture,
then emissions of an s-channel gluon by the same quark
line at early and late times on both sides of the cut would
also cancel [50]. One can show that interactions with
quark and gluon lines that contribute in the multiple
rescattering case would also contribute in the case of
evolution. In the end, one concludes that inclusion of
quantum evolution can be accomplished by replacing S0
from Eqs. (9) and (10) by S from Eqs. (17) and (18) [23].

To calculate Q�x2; x20 ; x1; x10 ; y1�, we have to write an
evolution equation for the S matrix of the evolution of
quadrupole 2; 20; 1; 10. An evolution equation involving a
color quadrupole was derived before in Ref. [50] to re-
produce the Bartels-Jaroszewicz-Kwiecinski-
Praszalowicz (BJKP) equation [52] for four Reggeons
in the framework of the dipole model [49]. The equation
derived in Ref. [50] corresponds to off-forward evolution
for dipoles in the presence of a single quadrupole, with all
the evolution included in the dipoles. Therefore, it should
not be compared to the equation we are about to write,
since we are interested in the evolution inside the
quadrupole.

We are going to derive an evolution equation for the
quadrupole SmatrixQ�x2; x20 ; x1; x10 ; y1� including all the
nonlinear evolution effects. The initial condition for evo-
lution of Q�x2; x20 ; x1; x10 ; y1� is given by Eq. (14). To write
one step of the evolution, we first redraw the quadrupole
as shown in Fig. 7. Instead of the amplitude squared
pictured on the left in Fig. 7, we will use a form of
quadrupole cross section similar to the forward ampli-
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tude shown on the right in Fig. 7. Obviously, the diagram
on the right in Fig. 7 preserves the color structure of the
quadrupole. All the interactions with the target in the
graph on the left happen along the dashed lines at time
� � 0. On the right in Fig. 7, we merge two dashed lines
from the graph on the left into one dashed line with
interactions in it. This way, a real interaction with a
nucleon where a single gluon is exchanged in each of
the dashed lines in the left graph in Fig. 7 becomes a
two-gluon exchange (diffractive) interaction in the
dashed line in the graph on the right in Fig. 7. Again,
the picture is similar to the forward amplitude
calculation.

One step of the quadrupole evolution in the represen-
tation in Fig. 7 is shown in Fig. 8. The step consists of an
emission of a single gluon #3. For instance, in Fig. 8(a)
gluon #3 splits the original quadrupole 2; 20; 1; 10 into a
quadrupole 3; 20; 1; 10 and a dipole 23. Figure 8(b) gives a
similar contribution. In Figs. 8(c)–8(f) we drew the
gluon #3 line as disconnected at the dashed line: the
gluon line is indeed implied to be connected and continu-
ous. The disconnected line is just a notation which we
borrowed from Ref. [50] for, say, a gluon emitted in
dipole 21 and absorbed in dipole 110 in Fig. 8(c).
However, when connecting the two parts of the
gluon #3 line in Figs. 8(c)–8(f) one has to be careful to
pick up the leading large-Nc contribution. For instance, in
Fig. 8(c) the leading term consists of gluon #3 splitting
-10
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the original quadrupole 2; 20; 1; 10 into a dipole 31 and a
quadrupole 2; 3; 10; 20. The dominant contribution of
Fig. 8(e) consists of gluon #3 splitting the
quadrupole 2; 20; 1; 10 into dipoles 2; 20; 3 and 1; 10; 3, in
2
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2 2
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2 2
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C
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1’ 1’ 1’

1’ 1’ 1’

FIG. 8. One step of the quadrupole evolution.

114017
which interactions with line 3 cancel due to real-virtual
cancellations. Leading terms for other graphs in Fig. 8
can be obtained in similar ways. Combining them with
virtual corrections yields
Q�x2; x20 ; x1; x10 ; y1� � e��s ln�x21x2010x220x110="
4�y1Q0�x2; x20 ; x1; x10 � �

�s
2�

Z y1

0
dye��s ln�x21x2010x220x110="

4��y1�y�



Z
d2x3

��
x32
x232
�
x31
x231

��
x32
x232
�
x320

x2320

�
S�x2; x3; y�Q�x3; x20 ; x1; x10 ; y� �

�
x320

x2320
�
x310

x2310

��
x31
x231
�
x310

x2310

�


 S�x3; x10 ; y�Q�x2; x20 ; x1; x3; y� �
�
x32
x232
�
x31
x231

��
x31
x231
�
x310

x2310

�
S�x3; x1; y�Q�x2; x20 ; x3; x10 ; y�

�

�
x32
x232
�
x320

x2320

��
x320

x2320
�
x310

x2310

�
S�x3; x20 ; y�Q�x2; x3; x1; x10 ; y� �

�
x32
x232
�
x31
x231

��
x320

x2320
�
x310

x2310

�


 S�x2; x20 ; y�S�x1; x10 ; y� �
�
x32
x232
�
x320

x2320

��
x31
x231
�
x310

x2310

�
S�x2; x1; y�S�x20 ; x10 ; y�

�
: (28)
Note that due to real-virtual cancellations the last two
terms in Eq. (28) corresponding to diagrams E and F in
Fig. 8 contain only the dipole S matrices in them. The
relative signs of various terms in Eq. (28) are easier to
determine in the representation of the interaction on the
left-hand side in Fig. 7, keeping in mind that gluon
emissions at � < 0 and � > 0 come in with different signs.

As we have already mentioned, the linearized version
of Eq. (28) [see Eq. (38) below] should be combined with
Eq. (49) in Ref. [50] to complete the description of the
BJKP evolution in the framework of the dipole model. By
linearizing Eq. (28) we mean substituting S � 1� N in it
[see Eq. (17)] while keeping only terms linear inQ and in
N, i.e., neglecting products such asQN andNN. However,
as was discussed in Ref. [50], the contribution of line-
arized Eq. (28) to BJKP evolution is likely to be small: as
we will see in the next subsection, the linearized version
of Eq. (28) is almost equivalent to the BFKL equation.
Therefore, its solution is likely to grow with energy just
like a single BFKL Pomeron, which is much slower than
the double BFKL Pomeron exchange. On the other hand, a
solution of the full BJKP evolution equation for four
Reggeons presented in Ref. [53] has an intercept much
smaller than that of a single BFKL Pomeron exchange,
making the contribution of Eq. (28) potentially important
for BJKP evolution in the dipole model.

Let us check Eq. (28) for consistency with our earlier
results. First, note that if x2 � x20 the interactions with
line 2=20 would cancel and the following equality should
be true:

Q�x2; x2; x1; x10 ; y1� � S�x1; x10 ; y1� � 1� N�x1; x10 ; y1�:

(29)

From Eqs. (10) and (15) we can see that Eq. (29) is
certainly true for the initial conditions for Eq. (28) given
by Q0 from Eq. (14). Now, as one can explicitly check,
putting x2 � x20 in Eq. (28) (with x220 ! " in the expo-
nent) and assuming that Eq. (29) is true, one readily
recovers Eq. (18). Thus, Eq. (28) consistently maps onto
Eq. (18) in the limit of Eq. (29).

Using Eq. (29) in Eq. (27) and remembering that due to
Eq. (21) the S matrix of a gluon dipole SG can be ex-
pressed in terms of the S matrix of the quark dipole as

SG�x0; x1; y� � S2�x0; x1; y�; (30)

we observe that

d�x0; x0; x1; k; y� � s�x0; x1; k; y�; (31)

which verifies that Eq. (27) is consistent with Eq. (20).
Equation (28), when solved to find Q, can be used to

construct d in Eq. (27), which can then be used as the
initial condition to the evolution Eq. (26). The quantity
-11
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M�x2; x20 ; x~0; Y; k1; y1� obtained this way can be used in
Eq. (13) instead of M0 along with S from Eq. (17) to
obtain the evolved contribution of case B considered
above to the two-gluon production cross section.
**

BA

γγ

FIG. 9 (color online). Feynman diagrams corresponding to doubl
gluons are denoted by crosses.
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Together with the contribution of case A from Eq. (25),
it gives us the following expression for the double gluon
production cross section in a quark dipole-nucleus scat-
tering [with B � �x0 � x~0�=2]:
d�q �qA!q �qG1G2X

d2k1dy1d2k2dy2
�x0~0�jy2�y1 �

Z
d2B

�
n2�x0; x~0;Y;x1; x~1; y1; x2; x~2; y2�d

2x1d2x~1d
2x2d2x~2s�x1; x~1; k1; y1�s�x2; x~2; k2; y2�

�n1�x0; x~0;Y;x1; x~1; y2�d
2x1d2x~1

�s
�2��3

Z
d2x2d2x20e�ik2�x220

��
x21
x221
�
x2~1
x2
2~1

��
x201
x2201
�
x20~1
x2
20~1

�


M�x2; x20 ; x~1; y2;k1; y1�S�x2; x20 ; y2��
�
x21
x221
�
x2~1
x2
2~1

�
x201
x2201

M�x2; x1; x~1; y2;k1; y1�S�x2; x1; y2�

�

�
x201
x2201
�
x20~1
x2
20~1

�
x21
x221

M�x1; x20 ; x~1; y2;k1; y1�S�x1; x20 ; y2��
x21
x221

x201
x2201

M�x1; x1; x~1; y2;k1; y1�

� �1$ ~1�
��
: (32)
Equation (32) is the central result of this section. Together
with Eqs. (1), (18), (22), (24), and (26)–(28), it gives us
the expression for the two-gluon inclusive cross section
for DIS on a nucleus with the effects of nonlinear evolu-
tion (18) included.

The structure of Eq. (32) is illustrated in Fig. 9, where,
if one pictures the evolution of Eq. (18) as resumming fan
diagrams, the diagrams correspond to the first (case A)
and the second (cases B and C) terms in Eq. (32). The first
term in Eq. (32) corresponds to splitting of the original
linear evolution in two, which is described by Eq. (24) for
n2. Then each of the two ladders independently produces a
gluon with all the possible splittings happening after-
wards. This is illustrated in Fig. 9(a). The second term
in Eq. (32) corresponds to nonlinear evolution succes-
sively producing both gluons, after which all possible
splittings are allowed, as shown in Figs. 9(b) and 9(c),
where we have divided the nonlinear evolution into the
linear [Fig. 9(b)] and nonlinear [Fig. 9(c)] parts. The
linear evolution in this second term in Eq. (32) is given
by n1 from Eq. (22) and by M from the linear part of
Eq. (26). This linear evolution leads to production of both
gluons #2 and #1 and is illustrated in Fig. 9(b). The initial
conditions for Eq. (26) are nonlinear, given by Eqs. (27)
and (28). They include ladder splittings and are pictured
by the fan diagram in the lower part of Fig. 9(b). One
should note, however, that Eq. (26), while being linear in
M, has extra factors of 1� N on its right-hand side. That
means that evolution of M includes ladder splittings be-
tween gluons #2 and #1, one of which is shown in
Fig. 9(c). There the evolution leading to creation of
gluon #2 is still linear since it is still given by n1 in the
second term on the right-hand side of Eq. (32). However,
since the evolution in the rapidity interval between the
emitted gluons (evolution of M) is nonlinear, splittings
are allowed between gluons #2 and #1, as depicted in
Fig. 9(c).
*

C

γ

e gluon production cross section given by Eq. (32). The emitted
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Diagrams A and B in Fig. 9 are the same as would have
been expected from AGK cutting rules [43] (see also
[23,54] for similar correspondence between the dipole
model results and AGK rules expectations). However,
diagram C in Fig. 9, while being included in Eq. (32),
is prohibited by AGK cutting rules. Therefore, we seem to
observe a direct violation of the AGK rules in QCD. Since
AGK rules have never been proven for QCD, one should
not be too surprised that they do not work here. It is
interesting to note that AGK violation sets in at the level
of the two-gluon production: single gluon inclusive pro-
duction cross section calculated in Ref. [23] adheres to
AGK rules and so does the diffractive DIS cross section
calculated in Ref. [54].

The violation of AGK cutting rules in Eq. (32) is due to
nonlinear terms in Eq. (26), which are in turn due to late-
time (after the interaction) gluon emissions at light cone
times � > 0. These terms were not important for the
calculation of the total cross section in the dipole model
[49]: there they were found to cancel [50]. Thus, if one
would try to construct an analogy between the fan dia-
grams [4] and dipole calculations [9] based on the corre-
spondence of total cross sections, one would omit such
terms. Since the fan diagrams seem to adhere to AGK
rules, this omission would lead to the erroneous conclu-
sion that AGK rules should work for the production cross
section. However, as we have seen above, these late-time
emissions are important for single [23] and double inclu-
sive gluon production, violating the AGK rules for the
latter. What appears to fail here is the one-to-one corre-
spondence between the fan diagrams and dipole
calculations.

Another difference between our result (32) and the
direct application of AGK rules to calculating inclusive
cross section done in Ref. [24] is that nonlinear splittings
may start exactly at the point in rapidity when the softer
of the produced gluons is emitted in diagram B or exactly
at the point of emission of both gluons #1 and #2 in
diagram A. A similar discrepancy was already observed
when comparing the single gluon inclusive cross section
calculated in Ref. [23] to the results in Ref. [24].

In comparing our result with the formula obtained in
Ref. [24] [see Eqs. (30) and (36) there], we note that in a
general case we could not cast Eq. (32) in the
kT-factorized form of Ref. [24]. Again, this distinguishes
the case of two-gluon production considered here from
the case of single gluon production from Ref. [23].

Indeed, our result, given by Eq. (32), is rather compli-
cated, especially keeping in mind that one has to first
solve evolution Eqs. (18), (22), (24), (26), and (28) in
order to obtain the desired two-particle production cross
section. In order to make Eq. (32) easier to implement, it
is highly desirable to find some way of simplifying it.
Unfortunately, we could not find any simplification of
Eq. (32) in the general case. Nevertheless, in certain
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kinematic regimes Eq. (32) may be simplified. For in-
stance, if the center of mass energy of the collision is not
too high or if the transverse momenta of the produced
gluons are sufficiently large (jk1j; jk2j * Qs), the nonlin-
ear saturation effects, such as ladder splittings, could be
neglected. This implies that the diagrams in Figs. 9(a) and
9(c) are small with the linear part of diagram B domi-
nating the cross section. This is the well-known leading-
twist result [37], which we will derive from our Eq. (32) in
Sec. III C below.

In the opposite kinematic regime of very large center of
mass energy of the collision and not too high gluon
transverse momenta, saturation effects become impor-
tant. There one can note that in Figs. 9(b) and 9(c) the
evolution between the projectile and the (harder) gluon #2
is linear and is given by a single BFKL ladder exchange.
On the other hand, one can show [24] that the diagram in
Fig. 9(a) is dominated by the contribution where the triple
Pomeron vertex in the evolution between the projectile
and gluon #2 is all the way up at the projectile’s rapidity.
Therefore, the evolution between the projectile and
gluon #2 in Fig. 9(a) is given by a double Pomeron
exchange and is thus energetically more favorable than
the single Pomeron exchange of Figs. 9(b) and 9(c). Since
the rest of the three diagrams are parametrically the
same, one concludes that Fig. 9(a) dominates in this
regime, as was originally shown in Ref. [24]. Keeping
only the corresponding first term on the right-hand side of
Eq. (32) would significantly simplify the calculation of
the cross section: since an analytical solution of Eq. (24)
for n2 exists [49], one would need only to find a solution of
Eq. (18), for which there are a number of analytical and
numerical results in the literature. However, one has to be
careful in neglecting the diagrams in Figs. 9(b) and 9(c).
If one is interested in azimuthal two-particle correlations
of the produced gluons, then the contributions of graphs
in Figs. 9(b) and 9(c) might be more important than the
contribution of Fig. 9(a) even deep inside the saturation
region [39] .
C. Recovering the leading-twist result

Let us show that Eq. (32) reduces to the usual ‘‘leading-
twist’’ kT-factorization result [37] in the limit of large
transverse momenta of the produced gluons. Large trans-
verse momenta correspond to small transverse distances.
For short transverse distances, all the evolution equations
written above should be linearized since all the nonline-
arities would be negligibly small. Therefore, we can right
away neglect the first term on the right-hand side of
Eq. (32), which contains a splitting (which is a nonline-
arity) in the evolution between the target and emitted
gluons as shown in Fig. 9(a). In the remaining second
term on the right of Eq. (32), we can put all S  1 to
obtain the linearized expression
-13



JAMAL JALILIAN-MARIAN AND YURI V. KOVCHEGOV PHYSICAL REVIEW D 70, 114017 (2004)
d�q �qA!q �qG1G2X

d2k1dy1d2k2dy2
�x0~0�jLO 

Z
d2Bn1�x0; x~0; Y; x1; x~1; y2�d

2x1d
2x~1

�s
�2��3

Z
d2x2d

2x20e
�ik2�x220

��
x21
x221
�
x2~1
x2
2~1

��
x201
x2201
�
x20~1
x2
20~1

�


M�x2; x20 ; x~1; y2; k1; y1�jlin �
�
x21
x221
�
x2~1
x2
2~1

�
x201
x2201

M�x2; x1; x~1; y2; k1; y1�jlin

�

�
x201
x2201
�
x20~1
x2
20~1

�
x21
x221

M�x1; x20 ; x~1; y2; k1; y1�jlin �
x21
x221

x201
x2201

M�x1; x1; x~1; y2; k1; y1�jlin

� �1$ ~1�
�
: (33)
To linearize the evolution equation for M [Eq. (26)], we
start by linearizing its initial condition given by d. It is
determined by Eq. (27) with Q given by Eq. (28).
Therefore, we start with the initial conditions for
Eq. (28) given by Eq. (14). Expanding Eq. (14) to the
lowest order in the transverse separations (or, equiva-
lently, in Qs0), we obtain

Q0�x2; x20 ; x1; x10 �jLO  1� n0�x21� � n0�x2010 � � n0�x220 �

� n0�x110 � � n0�x210 � � n0�x201�;

(34)

where the two-gluon exchange amplitude n0 is given by
the first term in the expansion of N0 from Eq. (10),

n0�x21� �
1

4
x221Q

2
s0 ln

1

x21�
: (35)

Let us assume that Eq. (28) independently includes linear
BFKL evolution in each of the n0’s in Eq. (34), such that
the fully evolved linearized quadrupole amplitude Q is
given by
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q�x2; x20 ; x1; x10 ; Y� � Q�x2; x20 ; x1; x10 ; Y�jlin
� 1� n�x2; x1; Y� � n�x20 ; x10 ; Y�

� n�x2; x20 ; Y� � n�x1; x10 ; Y�

� n�x2; x10 ; Y� � n�x20 ; x1; Y�; (36)

with n determined by the linearized version of Eq. (18)
corresponding to BFKL evolution [30]

n�x0; x~0; Y� � n0�x0~0�e
�2�s ln�x0~0="�Y

�
�s
2�

Z Y

0
dye�2�s ln�x0~0="��Y�y�



Z
"
d2x2

x2
0~0

x220x
2
2~0

�n�x0; x2; y�

� n�x2; x~0; y��: (37)

After lengthy algebra, one can show that
q�x2; x20 ; x1; x10 ; Y� from Eq. (36) satisfies the linearized
version of Eq. (28)
q�x2; x20 ; x1; x10 ; y1� � e��s ln�x21x2010x220x110="
4�y1Q0�x2; x20 ; x1; x10 �jLO �

�s
2�

Z y1

0
dye��s ln�x21x2010x220x110="

4��y1�y�



Z
d2x3

��
x32
x232
�
x31
x231

��
x32
x232
�
x320

x2320

�
q�x3; x20 ; x1; x10 ; y� �

�
x320

x2320
�
x310

x2310

��
x31
x231
�
x310

x2310

�


 q�x2; x20 ; x1; x3; y� �
�
x32
x232
�
x31
x231

��
x31
x231
�
x310

x2310

�
q�x2; x20 ; x3; x10 ; y� �

�
x32
x232
�
x320

x2320

�




�
x320

x2320
�
x310

x2310

�
q�x2; x3; x1; x10 ; y� �

�
x32
x232
�
x31
x231

��
x320

x2320
�
x310

x2310

�
�1� n�x2; x20 ; y�

� n�x1; x10 ; y�� �
�
x32
x232
�
x320

x2320

��
x31
x231
�
x310

x2310

�
�1� n�x2; x1; y� � n�x20 ; x10 ; y��

�
: (38)
This proves that the ansatz of Eq. (36) is indeed the correct linearized quadrupole amplitude Q. Therefore, to construct
the initial conditions for the linearized version of Eq. (26), we should substitute q�x2; x20 ; x1; x10 ; Y� from Eq. (36) into the
linearized version of Eq. (27), obtaining
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dlin�x2; x20 ; x~0; k1; y1� �
2�s
�2��3

Z
d2x1d2x10e�ik1�x110

�
x12
x212

x1020

x21020
�n�x20 ; x1; y1� � n�x2; x10 ; y1� � n�x2; x20 ; y1� � n�x1; x10 ; y1��

�
x1~0
x2
1~0

x10~0
x2
10~0

�n�x1; x~0; y1� � n�x10 ; x~0; y1� � n�x1; x10 ; y1�� �
x12
x212

x10~0
x2
10~0

�n�x2; x10 ; y1� � n�x1; x~0; y1�

� n�x2; x~0; y1� � n�x1; x10 ; y1�� �
x1~0
x2
1~0

x1020

x21020
�n�x1; x20 ; y1� � n�x10 ; x~0; y1� � n�x20 ; x~0; y1�

� n�x1; x10 ; y1��
�
: (39)

Here we consider scattering on a large nucleus. The amplitude n�x1; x10 ; y� depends on the transverse size of the quark-
antiquark pair x110 as well as on the transverse position of the dipole. However, the transverse position of the dipole is
given by the overall impact parameter B in the scattering process. The integrals over x1 and x10 in Eq. (39), while
formally going out to infinity in the transverse direction, are indeed effectively limited to the typical hadronic size on
which the concept of a gluon still makes sense. The dependence of n on B is smooth for a large nucleus, slowly varying
on transverse distances of the order of the typical hadronic size. Therefore, we write (see [23] for a similar
approximation)

n�x1; x2; y�  n�x12; B; y�: (40)

With the help of Eq. (40), we rewrite Eq. (39) as

dlin�x2; x20 ; x~0; k1; y1� �
�s
2�2

1

k21

Z
d2zn�z; B; y1�r

2
z

�
e�ik1�z ln

jz� x2~0jjz� x20~0j
jz� x220 jjzj

�
; (41)

wherer2z is the transverse coordinate gradient squared. Equation (41) is the initial condition for the linearized version of
Eq. (26). The latter can be obtained from Eq. (26) by putting all N � 0 in it, which yields

m�x2; x20 ; x~0; Y; k1; y1� � e��s ln�x2~0x20~0x220="
3��Y�y1�dlin�x2; x20 ; x~0; k1; y1� �

�s
2�

Z
d2x4

Z Y

y1
dye��s ln�x2~0x20~0x220="

3��Y�y�




(�
x42
x242
�
x4~0
x2
4~0

��
x420

x2420
�
x4~0
x2
4~0

�"
m�x2; x20 ; x4; y; k1; y1� �

Z
d2xad

2xbn1�x4; x~0; y; xa; xb; y1�


 s�xa; xb; k1; y1�

#
�

�
x42
x242
�
x4~0
x2
4~0

��
x420

x2420
�
x42
x242

�
m�x4; x20 ; x~0; y; k1; y1� �

�
x42
x242
�
x420

x2420

�




�
x420

x2420
�
x4~0
x2
4~0

�
m�x2; x4; x~0; y; k1; y1�

)
; (42)
where we have introduced a linearized amplitude M
denoted by

m�x2; x20 ; x~0; Y; k1; y1� � M�x2; x20 ; x~0; Y; k1; y1�jlin: (43)

The form of Eq. (41) provides us with the following
ansatz for the solution of Eq. (42):

m�x2; x20 ; x~0; Y; k1; y1� � f�x2~0; Y; k1; y1�

� f�x20~0; Y; k1; y1�

� f�x220 ; Y; k1; y1� (44)

with f some unknown functions. Substituting the ansatz
of Eq. (44) into Eq. (42), one can see that it is a solution of
Eq. (42) if
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f�x21; Y; k1; y1� �
1

2

Z
d2xad2xbn1�x2; x1; Y; xa; xb; y1�


 s�xa; xb; k1; y1�: (45)

The final answer for m is

m�x2;x20 ;x~0;Y;k1;y1��
1

2

Z
d2xad2xb�n1�x2;x~0;Y;xa;xb;y1�

�n1�x20 ;x~0;Y;xa;xb;y1�

�n1�x2;x20 ;Y;xa;xb;y1��


s�xa;xb;k1;y1�: (46)

Similar to Eq. (40), we rewrite
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n1�x2; x20 ; Y; xa; xb; y1� ! n1�x220 ; B; Y; xa; xb; y1�; (47)

with the impact parameter B. Again, we assume that for a large nucleus n1 is a slowly varying function of B. Using
Eq. (46) as M in Eq. (33) then yields

d�q �qA!q �qG1G2X

d2k1dy1d2k2dy2
�x0~0�jLO 

Z
d2Bn1�x0; x~0; Y; x1; x~1; y2�d

2x1d
2x~1

�s
2�2��2

1

k22



Z
d2ze�ik2�z ln

�
jz� x1~1jjz� x1~1j

jzj2

�
d2xad2xbr2zn1�z; B; y2; xa; xb; y1�s�xa; xb; k1; y1�: (48)
Similarly, we rewrite Eq. (20) as

s�xa;xb;k1;y1��
�s
�2��2

1

k21

Z
d2we�ik1�w


 ln
�
jw�xabjjw�xabj

jwj2

�
r2wNG�w;B;y1�:

(49)

In the linear regime

NG�w;B; y1�  2n�w;B; y1�; (50)

with n taken from Eq. (37). Therefore, linearized s can be
obtained from Eq. (49) using Eq. (50)

slin�xa;xb;k1;y1��
�s
2�2

1

k21

Z
d2we�ik1�w


 ln
�
jw�xabjjw�xabj

jwj2

�
r2wn�w;B;y1�:

(51)

Defining bab � �xa � xb�=2, we relabel the variables of n1
in Eq. (48) as [23,49]

n1�z; B; y2; xa; xb; y1� ! n1�z; xab; B� bab; y2 � y1�:

(52)

Then the integrals over xa and xb in Eq. (48) can be
written asZ
d2xabd2babr2zn1�z;xab;B�bab;y2�y1�slin�xa;xb;k1;y1�

�
Z
d2xabd

2babr
2
zn1�z;xab;bab;y2�y1�slin�xa;xb;k1;y1�;

(53)
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where we have put the index indicating that we have to use
a linearized amplitude s from Eq. (51) and shifted bab by
B. Using the explicit solution of Eq. (22) [49],Z

d2babn1�z; xab; bab; y2 � y1�

�
1

2�x2ab

Z d0
2�i

e2�s1�0��y2�y1�
�
z
xab

�
0
; (54)

with the eigenvalue of the BFKL equation [30,49]

1�0� �  �1� �
1

2
 �0� �

1

2
 �1� 0�; (55)

and with the help of Eq. (51) we rewrite Eq. (53) as

1

2�2r
2
z

Z
d2w

"Z
d2bab

1

r4w
n1�z; w; bab; y2 � y1�

#


 L̂k1�w�n�w;B; y1�; (56)

where we have defined the operator for Lipatov’s effective
vertex [24,30]

L̂ k�z� �
4��s
k2
r
 2

ze
�ik�z! r2z : (57)

Performing the integrations over x1 and x10 in Eq. (48) in
a similar manner, we finally obtain
d�q �qA!q �qG1G2X

d2k1dy1d
2k2dy2

�x0~0�jLO 
1

�2��4
Z
d2Bd2zd2w

"Z
d2b2

1

r4z
n1�x0~0; z; b2; Y � y2�

#
L̂k2�z�




"Z
d2b1

1

r4w
n1�z; w; b1; y2 � y1�

#
L̂k1�w�n�w;B; y1�: (58)

Equation (58) has the structure of three BFKL ladders (two factors of n1 and one factor of n) with two Lipatov vertices,
which are responsible for production of gluons, inserted between them. It is equivalent to the kT-factorization prediction
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for two-gluon production from a single BFKL ladder [see
Eq. (30) in Ref. [24]]. We have, therefore, proven that at
the leading-twist (large kT) level, our two-gluon inclusive
production cross section (32) reduces to the conventional
kT-factorized expression (58).

Two comments are in order here. First of all, it is a little
worrisome that in order to recover the conventional
leading-twist result of Eq. (58) we had to expand the
initial conditions for the evolution of quadrupole ampli-
tude Q given by Eq. (14) to the lowest order, as shown in
Eq. (34). Of course, by doing so, we have shown that the
leading-twist formula (58) is included in our full expres-
sion (32). Nevertheless, taking a solution of an evolution
equation at very short transverse distances does not nec-
essarily imply doing the same to initial conditions of
evolution. For instance, if we are interested in the dipole
amplitude N�x0; x~0; Y� at small x0~0, we have to solve the
linear part of Eq. (18) with the full initial conditions
given by Eq. (10) and not with the leading order initial
conditions given by Eq. (35). The kernel of Eq. (18) in-
volves integration over all transverse sizes, including
large sizes where multiple rescatterings are important
and have to be included. Multiple rescatterings become
important at lower energies than the small-x evolution
and thus have to be included as an initial condition even
for a linear (BFKL) evolution equation. (As one can
show, multiple rescatterings in the quasiclassical limit
become important at rapidity ymult � ln1=�s, while the
BFKL evolution becomes important at yBFKL � 1=�s.)
Thus, expanding the initial conditions of Eq. (10) would
not be justified if one is interested in the small x0~0 of the
amplitude N�x0; x~0; Y�. The effects of saturation in the
initial conditions on the short distance/large kT behavior
of the amplitudes and gluon production cross sections
have been studied before in Refs. [1,2]. It is exactly these
effects that bring in suppression of the nuclear modifica-
tion factor RpA for the gluon production [1–3]. Therefore,
taking the large k1 and k2 limits of Eq. (32) more care-
fully may result in an expression different from the
kT-factorization formula of Eq. (58).

The second observation one has to make is that by now
the reader can appreciate the tremendous simplifications
one needs to make [e.g., Eq. (34), linearization of all
evolution equations, etc.] in order to recover the
kT-factorization formula of Eq. (58). This is strikingly
different from the case of single inclusive gluon produc-
tion considered in Ref. [23]. There, the obtained expres-
sion for the cross section was cast in a kT-factorized form
without making any linearization assumptions, i.e., with-
out taking the leading-twist (high-kT) limit. This
kT-factorization result of Ref. [23] was, indeed, unex-
pected and very puzzling. However, it is also interesting
to observe that it does not hold for the double inclusive
gluon production cross section (32). This leaves us guess-
ing whether the preservation of kT factorization in the
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formula from Ref. [23] for the single gluon inclusive
production cross section after multiple rescatterings and
small-x evolution had been included [see Eq. (19) above]
was just incidental. A similar breakdown of kT factoriza-
tion has been observed recently for q �q production in pA
collisions [41].
IV. VALENCE-QUARK-GLUON PRODUCTION IN
PROTON-NUCLEUS COLLISIONS

In this section we calculate the cross section for pro-
duction of a valence-quark and a gluon in high energy
proton-nucleus collisions. Both produced quark and gluon
are assumed to have similar rapidity and to be in the
proton (deuteron) fragmentation region. In this case, one
can treat the proton (deuteron) as a dilute system of
partons while the target nucleus is treated as a color glass
condensate. The produced quark and gluon then fragment
into jets which can be measured. Previously, this approach
has been used to calculate valence-quark, photon, and
dilepton cross sections in proton (deuteron)-nucleus col-
lisions [31,33]. Here, we extend this formalism to produc-
tion both of a quark and a gluon. Explicitly, we calculate
the differential cross section for the following process:

q�p�A! q�q�g�k�X; (59)

given by the amplitude

M�q; k;p� � hq�q�g�k�outjq�p�ini

� h0outjaout�k�bout�q�b
y
in�p�j0ini; (60)

which, using the Lehmann-Symanzik-Zimmermann re-
duction formalism, can be written as (we set the renor-
malization factors equal to 1 since we are working at the
leading order in �s)

M � g
Z
d4xd4yd4zd4rd4 �rei�q�z�k�r�p�y� �u�q�


 �i! @6 z�SF�z; x��7tcSF�x; y�


 �i@6
 

y�u�p�Gcb
7"�x; �r�D

":
ba ��r; r�;:�k�; (61)

where SF and G7" are the quark and gluon propagators,
respectively, in the classical field background, and D": is
defined such that

Z
d4rG0cb

7" �x; r�D
":
ba �r; y� � )ca)

:
7 )4�x� y�; (62)

where G0
7" is the free gluon propagator. This amplitude is

shown in Fig. 10 where the quark and gluon lines with a
thick dot represent the propagators in the background field
as illustrated in Fig. 11.
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FIG. 10. Production of a quark and a gluon including multiple
scattering from the target.

JAMAL JALILIAN-MARIAN AND YURI V. KOVCHEGOV PHYSICAL REVIEW D 70, 114017 (2004)
To proceed further, we write the propagators in the
above amplitude in momentum space. The amplitude is

M � g
Z d4k1
�2��4

d4k2
�2��4

d4k3
�2��4

�u�q� ~q6 SF�q; k1��
7tc


 SF�k2; p�p6
 

u�p�Gcb
7"�k2 � k1; k3�D

":
ba �k3; k�;:�k�:

(63)

The quark and gluon propagators in the classical back-
ground field are already known [55,56]. It is useful to
separate the free and interacting parts of the propagator
in the following. Therefore, we define the interaction part
of the propagators in momentum space as (and suppress-
ing the color factor for the moment)

SF�q; p� � �2��4)4�p� q�S
0
F�p� � S

0
F�q��f�q; p�S

0
F�p�;

G:7�q; p� � �2��4)4�p� q�G0:7�p�

�G0:
" �q��g�q; p�G

0"7�p�;

(64)

where the free propagators are

S0F�p� � i
p6

p2
and

G0
:7�k� �

i
k

�
�g:7 �

=:k7 � =7k:
= � k

� (65)

and =: is the light cone gauge vector so that = � A �
A� � 0 defines the gauge in which we are working. In this
gauge the interaction part of the gluon propagator in
Eq. (64), denoted here by �g�q; p�, is diagonal in
=

FIG. 11. Multiple scattering of a quark or a gluon on a target.
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Lorentz indices, i.e., is proportional to g:7, which al-
lowed us to suppress the Lorentz indices and write it in
the form shown in Eq. (64). Such decomposition may not
hold in other gauges. Inserting Eqs. (64) into the ampli-
tude and defining

M�q; 0; k;p� � M1 �M2 �M3 �M4

� ;�0�: �k��M
:
1 �M

:
2 �M

:
3 �M

:
4 �; (66)

where ;�0�: �k� is the polarization vector of the produced
gluon, we get

M1 � �g �u�q�;6 t
aS0F�q� k��f�q� k; p�u�p�; (67)

M2 � �g �u�q��f�q; p� k�S
0
F�p� k�;6 t

au�p�; (68)

M3 � �g �u�q��7t
b�bag �k; p� q�u�p�G

7:
0 �p� q�;:�k�;

(69)

M4 � �g
Z
d4l �u�q��f�q; p� l�S

0
F�p� l�


 �7tb�bag �k; l�u�p�G
7:
0 �l�;:�k�; (70)

where �f and �g are given by

�f�q;p� � �2��)�p
� �q����

Z
d2xte

i�qt�pt��xt�V�xt�� 1�;

(71)

�g�q;p��2p��2��)�p��q��
Z
d2xtei�qt�pt��xt�U�xt��1�:

(72)

The matrices V and U include all the multiple scatterings
of the quark and gluon as they propagate in the strong
classical field of the target and are given by

V�xt� � P̂eig
R
dz�A�a �xt;z��ta ; (73)

U�xt� � P̂eig
R
dz�A�a �xt;z��Ta : (74)

Here ta and Ta are matrices in the fundamental and
adjoint representations of the SU�N� group, respectively,
and A�a �xt; x�� � �g)�x���"a�xt�=@2t �.

With these definitions at hand, extracting an explicit
factor of �2��)�p� � q� � k�� while using the delta
function )�l� � k�� to do the l� integration and perform-
ing the l� integration in M4 via contour integration using
the �p� l� pole, we can write the amplitude as
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M1 � �ig
1

2q � k
�u�q�;6 �q6 � k6 ���u�p�ta�V�qt � kt� � �2��2)2�qt � kt��;

M2 � ig
1

2p � k
�u�q����p6 � k6 �;6 u�p��V�qt � kt� � �2��2)2�qt � kt��ta;

M3 � ig
k�

p � q
�u�q��7u�p�d7:�p� q�;:�k�tb�Uba�qt � kt� � )ba�2��2)2�qt � kt��;

M4 � ig
k�

p�
Z d2lt
�2��2

�u�q����p6 � l6 ��7u�p�
d7:�l�

l2t
;:�k��V�qt � lt� � �2��2)2�qt � lt��tb�Uba�kt � lt�

� )ba�2��2)2�kt � lt��;

(75)
where d:7�l� is related to the free gluon propagator via
d:7�l� � �il2G:7

0 �l� and l� � k�, l� � ��l2t =2q��. We
have also set the transverse momentum of the incoming
quark to zero without any loss of generality. We show the
different diagrams contributing to the amplitude in
Fig. 12. They correspond, respectively, to the quark multi-
ply scattering from the target before or after radiating a
gluon in Figs. 12(a) and 12(b) and the radiated gluon
multiply scattering from the target in Fig. 12(c), while
in Fig. 12(d) both the radiated gluon and the final state
quark multiply scatter from the target. For the sake of
clarity, momenta of the incoming quark and outgoing
quark and gluon are shown explicitly in Fig. 12(a).

In Fig. 13 we show one of the diagrams which are
suppressed in the high energy limit and do not contribute
and, therefore, are not included in Eqs. (75). This is due to
the fact that the typical time scale for gluon emission is
much longer than the time between rescatterings in the
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target nucleus. The diagram in Fig. 13 is, therefore, sup-
pressed by a power of center of mass energy and can be
safely neglected. Another diagram (not shown), which is
suppressed in the high energy limit for the same reason, is
when both the initial and final state quark lines as well as
the radiated gluon multiply scatter from the target.

To calculate the cross section, we need to square the
amplitude jMj2 (66). There is a factor of �g:7 � �

1
=�k�


�k:=7 � =:k7� coming from squaring and summing over
the polarization of the final state gluon in the light cone
gauge which can be used to simplify the expressions.
Furthermore, we define z � q�=p� so that 1� z �
k�=p�. Below, we list the different contributions coming
from squaring the amplitude. For reasons which will
become clear shortly, we consider the square of M1 �
M2 first. The contribution of the�g:7 term to the squared
amplitude is (extracting a factor of g2 for convenience)
�g:7�M
:
1 �M

:
2 �
y�M7

1 �M
7
2 � � 16p�p�

�
z�1� z�2

�zkt � �1� z�qt�2
Tr�Vy�qt � kt� � �2��

2)2�qt � kt��t
ata�V�qt � kt�

� �2��2)2�qt � kt�� �
z�1� z�2

k2t
Tr�V�qt � kt� � �2��

2)2�qt � kt��t
ata�Vy�qt � kt�

� �2��2)2�qt � kt�� �
�
�1� z�2�1� z2�

q2t
k2t �zkt � �1� z�qt�2

�
z2�1� z2�

�zkt � �1� z�qt�2

�
1� z2

k2t

�
Trta�Vy�qt � kt� � �2��

2)2�qt � kt��t
a�V�qt � kt� � �2��

2)2�qt � kt��
�
;

(76)

where Tr denotes trace of color matrices. This term is identical, up to color matrices, to the photon� quark production
calculated in Ref. [35]. We now consider contribution of the �k:=7 � =:k7� piece. Using the Dirac equation and the
identity �u�q���u�p� � 2

���������������
2p�q�
p

(valid for on mass shell particles) simplifies the trace algebra considerably and we get

�k:=7 � =:k7�

= � k
�M:

1 �M
:
2 �
y�M7

1 �M
7
2 � � 32p�p�z2�1� z��Vy�qt � kt�ta � taVy�qt � kt��




�
1

�zkt � �1� z�qt�
2 t
aV�qt � kt� �

1

k2t
V�qt � kt�ta

�
: (77)
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Note that this piece has no analog in QED and would
vanish in the case of photon emission.

A few remarks regarding the difference between pho-
ton and gluon radiation are in order here. In single in-
clusive photon production in pA collisions as considered
in Ref. [35], the photon is emitted by a quark scattering,
via multiple gluon exchanges, from a target which is
treated as a classical gluon field, generated by recoilless
sources of color charge. The photon current is conserved
and satisfies k:M: � 0 due to gauge invariance. It is,
therefore, enough to work in the covariant gauge where
the sum over polarization of photons is just �g:7. There
is an essential difference between photon and gluon ra-
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diation here due to the fact that, in the case of gluon
radiation, one also needs to consider radiation of gluons
from the target and not just from the quark. This is
essential for gauge invariance of the amplitude and cur-
rent conservation. However, it can be shown that, as long
as one works in the light cone gauge, the gluon radiation
from the target vanishes identically. This is the case here
since we are working in the light cone gauge. However,
this means that one needs to keep the full projector
�g:7 � �

1
=�k��k:=7 � =:k7� rather than only the �g:7

piece, which would be the case in the covariant gauge. We
now consider the rest of the diagrams:
jMy3M1j � 16p�p�z�1� z2�
q2t � zqt � �qt � kt�

q2t �zkt � �1� z�qt�2
�Uyab�qt � kt� � )

ab�2��2)2�qt � kt��Trt
bta�V�qt � kt�

� �2��2)2�qt � kt��;

jMy3M2j � 16p�p�z�1� z2�
qt � kt
q2t k

2
t
�Uyab�qt � kt� � )ab�2��2)2�qt � kt��Trtb�V�qt � kt� � �2��2)2�qt � kt��ta;

jM3j
2 � 16p�p�

z�1� z2�

q2t
�Uyab�qt � kt� � )ab�2��2)2�qt � kt���Uca�qt � kt� � )ca�2��2)2�qt � kt��Trtbtc;

jMy3M4j � �16p�p�z�1� z2�
Z d2lt
�2��2

qt � lt
q2t l

2
t
�Uyab�qt � kt� � )ab�2��2)2�qt � kt���Uca�kt � lt� � )ca�2��2


 )2�kt � lt��Trt
b�V�qt � lt� � �2��

2)2�qt � lt��t
c;

jMy4M1j � �16p�p�z�1� z2�
Z d2lt
�2��2

�1� z�qt � lt � zkt � lt
l2t �zkt � �1� z�qt�

2 �U
yab�kt � lt� � )ab�2��2)2�kt � lt��Trtb�Vy�qt � lt�

� �2��2)2�qt � lt��ta�V�qt � kt� � �2��2)2�qt � kt��;

jMy4M2j � �16p�p��1� z2�
Z d2lt
�2��2

�1� z�l2t � zkt � lt
l2t k

2
t

�Uyac�kt � lt� � )ac�2��2)2�kt � lt��Trtc�Vy�qt � lt�

� �2��2)2�qt � lt���V�qt � kt� � �2��2)2�qt � kt��ta;

jM4j
2 � 16p�p�z�1� z2�

Z d2lt
�2��2

d2 �lt
�2��2

lt � �lt
l2t �l2t
�Uyac�kt � �lt� � )

ac�2��2)2�kt � �lt���U
ab�kt � lt� � )

ab�2��2


 )2�kt � lt��Trtctb�Vy�qt � lt� � �2��2)2�qt � lt���V�qt � �lt� � �2��2)2�qt � �lt��:

(78)
Note that, for a given interference term such as jMy3M1j,
there is also the conjugate term jMy1M3jwhich is obtained
from jMy3M1j by daggering the color matrices.
Equations (76)–(78) provide the complete expression for
the amplitude squared jMj2. In order to get the invariant
cross section, one needs to include the phase space and the
flux factors given by �d3q=�2��3��1=2q��, �d3k=�2��3�

�1=2k��, and 1=2p�. Including a factor of 1=2 coming
from averaging over the incoming quark spin and restor-
ing the coupling constant and the overall delta function,
the invariant cross section is given by
q�k�
d�qA!qgX

d3qd3k
�

1

16p�
1

�2��6
�2��


 )�p� � q� � k��g2jMj2: (79)

This is the invariant cross section for production of a
quark and gluon in the scattering of a quark on a target
nucleus (or a proton at small x) including classical mul-
tiple scattering. In order to get the invariant cross section
for production of two hadrons or two jets in a proton
(deuteron)-nucleus collision, one needs to convolute the
cross section given in Eq. (79) with the (valence) quark
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distribution function of a proton or deuteron and the quark
or gluon fragmentation functions

Eh1Eh2
d�pA!h1h2X

d3qh1d3kh2
� qp�xq� � q�k�

d�qA!qgX

d3qd3k

�Dq
h1�z1� �D

g
h2�z2�; (80)

where qp�xq� is the quark distribution function in a proton
and the quark and gluon fragmentation functions are
denoted by Dq

h1�z1� and Dg
h2�z2�, while � denotes a con-

volution over Bjorken x for distribution function and over
z1; z2 for fragmentation functions. The cross section cal-
culated here is valid when one produces two hadrons (or
jets) in the forward rapidity region of a proton (deuteron)
nucleus collision. It includes the effects of quantum evo-
lution (in x) in the target. To see this, one has to evaluate
theWilson line (U’s and V’s) correlators in Eqs. (76)–(78)
using the Jalilian-Marian-Iancu-McLerran-Weigert-
Leonidov-Kovner evolution equation [10]. One can use
this cross section in order to investigate two-particle
correlations (back-to-back jets) in the RHIC forward
rapidity region which can be measured, at RHIC for
example, by the Solenoidal Tracker at RHIC detector at
rapidity y � 3:8.

In order to consider the case when one of the hadrons is
produced in the midrapidity region, one needs to allow
the possibility that the gluon is radiated not from the
valence quark directly, but from anywhere along the (in
principle, nonlinear ) gluon cascade between the valence
quark and the target.

At this point, it is worthwhile to make a connection
between the notations used in different sections since they
may seem disjoint to a casual reader. The degrees of
freedom are indeed the same even though they are de-
noted differently due to convenience. In Secs. II and III
the forward scattering amplitude of a quark-antiquark
dipole on the target is denoted by N�xt; yt� and can be
q(p)

A

q(q)

g(k)

X

(a) (b)

(c) (d)

FIG. 12. Diagrams corresponding to M1;M2;M3;M4.
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expressed as

N�xt; yt� � 1�
1

Nc
TrhVy�xt�V�yt�i; (81)

where V is a path-ordered integral in the fundamental
representation, used in Sec. IV and defined in Eq. (73).
Also, the adjoint dipole amplitude denoted NG in, for
instance, Eq. (21), is equal to

NG�xt; yt� � 1�
1

N2
c � 1

TrhUy�xt�U�yt�i; (82)

where U is the path-ordered integral in the adjoint repre-
sentation, used in Sec. IV and defined in Eq. (74).
Furthermore, the S matrix of the color quadrupole inter-
action with the target, which is denoted Q0�xt; yt; zt; rt� in
the classical case and calculated in Eq. (14) and denoted
Q�xt; yt; zt; rt� in the case of quantum evolution included
in Eq. (28), can be rewritten in terms of the correlator of
four path-ordered exponentials

Q�xt; yt; zt; rt� �
1

Nc
TrhVy�xt�V�zt�Vy�rt�V�yt�i: (83)

The relations in Eqs. (81)–(83) between N, NG,Q, and the
correlators of V ’s and U’s hold even when the quantum
evolution is included.
V. CONCLUSIONS

In this paper, we have calculated two cross sections for
inclusive two-particle production relevant for the dAu run
at RHIC and for the upcoming pA run at LHC. The cross
section for two-gluon production at midrapidity for DIS is
given by Eq. (32). The expression in Eq. (32) includes all
multiple rescatterings of the produced gluons on the tar-
get, along with the nonlinear small-x evolution effects [9].
Even though, unlike the single gluon inclusive production
cross section of Ref. [23] [see Eq. (19) above], our two-
gluon cross section in Eq. (32) cannot be cast in
kT-factorized form, it can be easily generalized to the
FIG. 13. A typical diagram which is suppressed in the high
energy limit and, therefore, not included.
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case of proton-nucleus (pA) scattering. Following
Ref. [23], we note that the probability n1�x0~0; x12; b; y� of
finding a dipole 12 in the original dipole 0~0 can be related
to the unintegrated gluon distribution C�q; y� as

Z
d2b

1

r2x12
n1�x0~0; x12; b; y� �

�2��2

�s

Z
d2qeiq�x12C�q; y�;

(84)

where the coefficient on the right-hand side of Eq. (84)
has been fixed in order for Eq. (19) to be reducible to the
conventional kT-factorization form of Ref. [37]. The in-
formation about the original dipole 0~0 is now contained in
its unintegrated gluon distribution C�q; y�. Equation (84)
makes generalization of Eq. (19) from DIS to pA rather
straightforward: instead of the unintegrated gluon distri-
bution functionC�q; y� of the incoming dipole, one has to
use a BFKL evolved unintegrated gluon distribution
C�q; y� of the proton in Eq. (84) and, consequently, in
Eq. (19).

To repeat the above procedure for Eq. (32), we have to
devise a generalization procedure for the probability of
finding two dipoles n2 as well. To do that, let us first
clarify the physical meaning of Eq. (84). The 1=r2x12 term
in Eq. (84) is due to r2x12 , which is usual to the definition
of unintegrated gluon distribution in terms of the dipole
amplitude [see Eq. (2) in Ref. [2]], and 1=r4x12 , which is
proportional to gluon propagators in a two-gluon ex-
change amplitude. Thus, in Eq. (84) the gluon distribution
is obtained from the dipole probability n1 by connecting
two t-channel exchange gluons to dipole 12 in it. Now,
generalization of Eq. (84) to n2 becomes manifest: one
has to connect two exchange gluons to each of the two
produced dipoles. The final expression readsZ

d2b1~1d
2b2~2

1

r2x1~1r
2
x2~2

n2�x0; x~0; Y; x1; x~1; y1; x2; x~2; y2�

�
�2��4

�2s

Z
d2qd2leiq�x1~1�il�x2~2C2�q; Y � y1; l; Y � y2�;

(85)

where b1~1 � �x1 � x~1�=2, b2~2 � �x2 � x~2�=2, and
C2�q; Y � y1; l; Y � y2� is the two-gluon distribution
function in the incoming dipole 0~0, with the two gluons
having transverse momenta q and l and rapidities Y � y1
and Y � y2 with respect to the projectile onium.

Analyzing Eq. (32), one can see that for scattering on a
large nucleus both n1 and n2 come into Eq. (32) integrated
over impact parameter(s), as employed in Eqs. (84) and
(85). Therefore, using Eqs. (84) and (85) one can rewrite
Eq. (32) in terms of single and double unintegrated gluon
distributions C and C2. Taking these distributions for a
proton (deuteron) instead of the quarkonium would ac-
complish generalization of Eq. (32) to the case of p�d�A
scattering.
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Equations (76)–(78) along with Eq. (79) give us a
production cross section for a valence quark and a gluon
in the forward rapidity direction in p�d�A scattering. If
the correlators of Wilson lines in Eqs. (76)–(78) are
averaged in the Gaussian approximation [8], the obtained
cross section (79) would reduce to the quasiclassical
result containing multiple rescatterings only. (For an ex-
plicit evaluation of color averaging of the Wilson lines
using a Gaussian weight, see [21,57].) If the Wilson lines
are averaged with the weight function obtained from
solving the JIMWLK evolution equation [10], then
Eq. (79) would include the complete effects of small-x
evolution as well.

Before we conclude we would like to make a comment
about the applicability of Eqs. (18) and (76)–(78) for
RHIC kinematics. Indeed, in deriving these equations,
we have assumed for simplicity that the gluons are widely
separated in rapidity, y2 � y1. On the other hand, we
know that particle production at midrapidity at RHIC
appears to be better described by the quasiclassical phys-
ics leading to Cronin enhancement. Therefore, if one of
the produced particles is at forward rapidity with the
other one being at midrapidity, our formulas would apply,
though one would not need to include the small-x evolu-
tion between the target nucleus and the particle produced
at midrapidity, since there the physics is quasiclassical.
However, the suppression in RdAu, which is most likely
caused by small-x evolution, sets in already at rapidity
= � 1 and continues all the way up to the highest achiev-
able rapidity at RHIC [12,13,15]. That means quantum
evolution describes physics at= � 1. Therefore, if both of
the produced particles are at rapidity = � 1, say, if y1 �
1 and y2 � 3, we can still have a large rapidity interval
between them, y2 � y1, and have quantum evolution
between the target and the gluon at y1 included in
Eqs. (18) and (76)–(78). Indeed, the upcoming pA run at
the LHC would have a much wider rapidity window,
where our results would be even more applicable.
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APPENDIX

In this appendix we calculate the S matrix of the
interaction a quadrupole 2; 20; 1; 10 with the target nucleus.
The S matrix includes the Glauber-Mueller [7,17,44,48]
multiple rescatterings only and is denoted by
Q0�x2; x20 ; x1; x10 � in Sec. II above. The possible interac-
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FIG. 14. Leading diagrams contributing to the interaction of a color quadrupole 2; 20; 1; 10 with a nuclear target in the large-Nc
limit.
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tions are shown in Fig. 14. The first term there corre-
sponds to the case where all the interactions in the am-
plitude and in the complex conjugate amplitude are
virtual; i.e., each nucleon exchanges two gluons with
the q �q pair and remains intact. This is the diffractive
piece of the interaction [48]. The gluons connect to both
the quark and the antiquark lines. This is denoted by
leaving the gluon lines disconnected at the top ends. All
the virtual exchanges are leading at large Nc. The first
diagram in Fig. 14 gives a contribution

e�x
2
21 ln�1=x21��Q

2
s0=4e�x

2
2010

ln�1=x2010��Q
2
s0=4; (A1)

which is just a product of the Smatrices of dipoles 12 and
1020.

The second diagram in Fig. 14 corresponds to the case
of at least one real interaction: there the nucleon at
longitudinal coordinate z interacts with the q �q pair by a
single gluon exchange in the amplitude and in the com-
plex conjugate amplitude. The single gluon exchange
breaks up the nucleon in the final state. We will refer to
this interaction as real [17,20]. The interaction of the
nucleon at z is chosen to be the first real interaction: all
prior exchanges are virtual (exchanges to the left of z in
the amplitude and to the right of z in the complex con-
jugate amplitude). After the interaction of nucleon at z,
the exchanges can be both real and virtual. However, in
the large Nc limit, only those real exchanges contribute
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where gluons connect to either lines 1 and 10 or lines 2 and
20. The color structure is similar to the dipole model [49]:
the nucleon at z splits the original single quark loop
2; 20; 1; 10 into two, and the successive interactions can
take place only within each of the two resulting loops.

The contribution of the second graph in Fig. 14 is
therefore

Z L

0

dz
L
e�1=4�x

2
21 ln�1=x21���x

2
2010

ln�1=x2010���Q
2
s0z=L




�
�
1

4
Q2
s0

�
�x2220 ln�1=x220�� � x

2
110 ln�1=x110��

� x2210 ln�1=x210�� � x
2
201 ln�1=x201���


 e�1=4�x
2
220

ln�1=x220���x
2
110

ln�1=x110���Q
2
s0�L�z�=L: (A2)

In Eq. (A2) the first exponent resums all virtual inter-
actions before the first real interaction at z, the second
exponent resums all the real and virtual interactions with
dipoles 220 and 110 following the first real interaction, and
the term in between accounts for the first real interaction
itself. We also average over the longitudinal coordinate z,
which varies from 0 to L, where L is the longitudinal
extent of the nucleus at a given impact parameter.

Performing the integration over z in Eq. (A2) and
adding to it the contribution from Eq. (A1) yields
Eq. (14) in the text.
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